用户名: 密码: 验证码:
亚热控制成形过程模拟及模具磨损关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
伴随着经济发展和制造全球化的热潮,市场竞争日益加剧。采用节约高效的先进制造技术已成为制造业重要的发展趋势。精密塑性成形技术是一种以高效、低成本获取高质量的净形或近净形零件的先进制造技术,而亚热控制精密成形则是在温成形和热成形温度范围之间成形的一种新的精密成形工艺。该工艺具有变形抗力较低、简化工序、减少设备吨位等优点,并可通过控制锻后冷却及利用余热进行热处理获得力学性能优良、尺寸精度高的优质锻件,达到节约能耗的目的。因而这种方法具有广泛的应用前景,但目前尚未有系统的研究报导。为深入认识亚热成形特性,本文以汽车精锻件常用合金结构钢40Cr和DIN优质碳素钢Cf53为研究对象,以汽车外星轮为载体,采用物理模拟和数值模拟相结合的方法对亚热控制精密成形特性及变形过程中的模具磨损进行了系统的理论和实验研究。
     本文基于热模拟试验,对40Cr钢和Cf53钢的亚热流变行为进行了试验研究及分析,结果表明随变形工艺参数的变化,流变应力曲线表现为不同的型式。在变形温度较高(1000℃和950℃)、变形速率较低(0.1s-1和0.5s-1)的时候,流变应力曲线出现明显的峰值,属于动态再结晶型。峰值应力时的应变(峰值应变)随变形温度的降低和变形速率的增大而升高。变形温度、变形速率及变形量对流变应力均有影响,其中变形速率和变形温度是最敏感的影响因素,是工艺控制中的主控因素。通过40Cr圆环亚热压缩试验,探讨了亚热变形工艺参数对摩擦因子的影响,研究结果为实际成形及数值模拟分析中摩擦因子的选取提供依据。
     基于热模拟试验的分析结果,在对现有流变应力模型进行评价的基础上,建立了40Cr钢和Cf53钢的亚热变形稳态应力模型,采用双曲正弦表达式计算40Cr钢和Cf53钢的亚热变形稳态激活能。40Cr钢亚热变形激活能为:270.321 KJ·mol-1,Cf53钢亚热变形激活能为:290.782 KJ·mol-1。并计算得出不同变形条件下的lnZ值,对应相应的表格即可快速算出特定变形条件下的峰值流变应力,进而可方便地为模具设计、设备选择等方面提供重要理论依据。
     基于Zener-Hollomon参数的研究,将变形激活能及其他参数与应变相关联,建立了一个基于动态变形激活能的亚热流变应力模型,计算了40Cr钢和Cf53钢在连续变形过程中的变形激活能及其变化情况,得到了变形激活能与变形量之间的关系。模型计算结果表明,所有工艺下的预测值均与试验值相吻合,为将本文构造的流变应力模型应用于数值模拟分析中提供了依据。
     采用编写用户子程序的方法将本文建立的流变应力模型耦合到MSC.Marc/Mentat有限元软件系统中,建立了亚热精密成形工艺模拟系统。利用该系统对40Cr钢和Cf53钢的亚热挤压成形过程进行了数值模拟,分析了变形温度、凸模速度、变形程度和摩擦因子对亚热挤压成形过程中的应力场、应变场分布和金属流动规律的影响,为确定合理的亚热成形工艺参数提供了科学依据。
     在分析现有磨损模型基础上提出适用于有限元模拟的模具磨损模型,建立了模具磨损模拟系统,首次采用数值模拟方法获得了各工艺参数对模具最大磨损深度及磨损分布的影响规律。研究表明摩擦因子和凸模速度对模具的磨损深度和磨损分布影响很大。将模具磨损模型预测结果与实际生产实例所测模具磨损轮廓对比,发现二者趋势相吻合,证明了模型的正确性。研究结果为预测模具寿命、预测产品尺寸及模具设计的补偿研究提供理论基础,具有重要的实际意义。
     通过物理模拟进行了不同变形条件下亚热正挤压和反挤压成形,比较研究了数值模拟结果和实验结果。研究结果表明,模拟与实验所得变形载荷大小及趋势基本一致,证实了本文的流变应力模型及数值模拟系统在40Cr钢和Cf53钢亚热变形过程的应用中具有较高的准确性和可靠性。
     应用基于本文建立的流变应力模型、模具磨损模型的亚热控制精锻模拟系统,以Cf53钢的汽车外星轮为例,对其亚热成形过程进行工艺分析,确定了工艺方案,成功实现了Cf53钢的亚热控制精锻成形,并投入了批量生产。结果表明采用本论文研究的亚热控制精锻工艺,降低了材料变形抗力,取消了单独正火处理的工序,采用成形后的余热控制冷却,从而获得优良的内部组织与较高的力学性能,具有简化工艺,节约能源,使产品兼具优良的内外质量的特点。
Accompany with the upsurge of the economy development and the manufacturing globalization, and to make the product have more market competition abilities, the advanced manufacturing technique having low cost and high quality has becoming the manufacturing industry development trend. Precision plasticity forming is the process which can get net shape or near net shape part with a low cost. The semi-hot precision forming process is one of the precision plasticity forming whose forming temperature range is between warm forming and hot forming. The semi-hot precision forming has some advantages: saving energy consumption, lower the forming resistance, reducing the equipments input and acquiring good property products. Although this advanced process has been gotten widely using, its mechanism has not been system researched. In order to investigate the forming property, takes 40Cr and Cf53 steel as the subjects, systematic experimental and theoretical studies on the forming behavior and microstructure evolvement of the semi-hot precision forming was carried out, then conducts numerical simulation and experimental verification of the process , and has also applied for the invention patent.
     Using the ring compressing test, process parameters on the impact of friction factor has been studied. Results show high temperature and low velocity decrease friction factor.
     Plastic deformation resistance is an important factor which can affect process developing, die life and equipment selection etc. Based on the thermal-simulation test, the flow behavior of 40Cr and Cf53 steel was analyzed. The results show that flow stress curve represent different types with the deformation process parameters changing. Strain rate and temperature is the most sensitive factors.
     Based on the thermal simulation results and the evaluation of the existing flow stress models, the forming activation energies of 40Cr and Cf53 has been calculated using a hyperbolic sine expression. They are 270.321 KJ·mol-1 and 290.782 KJ·mol-1 respectively.
     Based on the Zener-Hollomon parameters, semi-hot activation energy has been associated with the strain. A new creep model has been constituted. The calculated results using this new model showed that all the values are in line with the experiment, so this flow stress model can be applied to the follow-up numerical simulation analysis.
     The simulation of semi-hot extrusion of 40Cr and Cf53 steel was conducted out by the thermo- mechanical coupled finite element method and the new creep model was used in the simulation to calculate the flow stress. The simulation predicts the distribution of strain, stress and temperature in extrusion test. The deformation temperature, the forming velocity, deformation extent and friction factor on the semi-hot extrusion process has been analyzed. The results may provide the scientific guidance to determine reasonable forming process parameters.
     On the basis of the analysis of existing wear models, a new wear model has been applied to the finite element simulation of die. Comparing the actual contours with the simulated wear contour, we find that the two contours are match which prove that this model can be used to the research of mould. Then forming parameters on the wear of die has been studied using this model. The results show that forming velocity and friction factor is the most sensitive factors, which should be controlled in the process design.
     Physical simulation has been conducted to verify the accuracy of the flow stress model and the die wear model. The results show that the flow stress model and numerical simulation system in the semi-hot forming process of 40Cr and Cf53 steel have a high stability and reliability.
     Semi-hot controlling precise forging simulation system was adopted to analyze the semi-hot forming property of an automobile outer race, and the process scheme has been determined. The semi-hot controlling precise forming of Cf53 steel was realized for the first time, and metallographic analysis for the outer race forging was preceded. The results show that the semi-hot controlling precise forging process in this study can decrease the material forming resistance, and the single normalizing treatment procedure can be omitted. The cooling can be controlled by the residual thermal. Then the finer internal structure and the higher overall mechanical property are obtained. This method has good characteristics of simplifying working process, conserving energy and making final products have better internal and surface quality.
引文
[1]皇甫骅,李社钊,王焱山.先进制造技术和精密成形技术[J].汽车工艺与材料, 1996, (12):1-4
    [2]李敏贤.先进制造技术的定义、特点及发展趋势[C].我国先进制造技术发展战略学术研讨会论文集,上海:上海交通大学, 1998:42-47
    [3] R. Balendra. Nett-shape Forming: state of the art[J]. Journal of Materials Processing Technology, 2001, 115(2):172-179
    [4]李敏贤,闵乃燕,安桂华,等.精密成形技术发展前沿[J].中国机械工程, 2000, 11(1-2):183-186
    [5]朱伟成.汽车零件精密锻造技术[M].北京:北京理工大学出版社, 1999
    [6]胡亚民,车路长.精锻成形技术现状及其发展[J].锻压机械, 1996, (3):6-9
    [7]蒋鹏,罗守靖,谢谈,等.国内精密锻造技术的近期状况—第1届全国精密锻造学术研讨会论文综述[J].锻压技术, 2002, (3):12-15
    [8]周贤宾.塑性加工技术的发展—更精、更省、更净[J].中国机械工程, 2003, 14(1):85-87
    [9]谢谈,贾德伟,蒋鹏,等.精密塑性成形技术在中国的应用与发展[J].机械工程学报, 2001, 37(7):100-104
    [10]张质良.温塑性成形技术[M].上海:上海科学技术文献出版社, 1986
    [11]张质良.精锻控制成形工艺的研究与应用[C].第一届全国精锻会议, 2001
    [12]安藤弘行.温热锻造.汽车工艺与材料[J]. 1996, (2):5-8
    [13] K. Siegert, M. Kammerer, T. Keppler-Ott, et al.. Recent developments on high precision forging of aluminum and steel[J]. Journal of Materials Processing Technology, 1997, 71(1):91-99
    [14] N. Ishinaga. An advanced press design for cold forging[J]. Journal of Materials Processing Technology, 1997, 71(1):100-104
    [15] E. Doege, B. Behrens. Reduce process chains due to the precision forging of gears-effect on the conventional forging technology[J]. Journal of Materials Processing Technology, 1997, 71(1):14-17
    [16] S. Sheljaskov. Current level of development of warm forging technology[J]. Journal of Materials Processing Technology, 1994, 46(1-2):253-274
    [17] S. Sheljaskov. Warm forging-a technology for manufacturing of precision components[J]. Advanced Technology of Plasticity, 5th ICTP, Columbus, Ohio, USA, 1996
    [18] Dr. Ekkehard Korner. Possibility of warm extrusion in combination with cold extrusion[J].Journal of Materials Processing Technology. 1992, 35(3-4):451-465
    [19]汪炜,张先彬,宋加兵.非调质钢活塞锻后余热处理的组织和性能[J].金属热处理, 2007, 32(2):90-92
    [20]朱启惠,刘澄,刘云旭.合金渗碳钢件锻造余热等温正火生产线工艺设计理论的研究[J].吉林工学院学报, 1995, 16(1):8-13
    [21]程培源.模具寿命与材料[M].北京:机械工业出版社, 1999
    [22]陈林.从失效分析看模具寿命及影响因素[J].金属成形工艺, 1996, 14(2):43-47
    [23]杨凌平,杨有才,丁文伟.模具的失效分析[J].模具技术, 2002, (3):30-33
    [24]陈国学.精密塑性成形模拟仿真的若干问题[C].第八届全国塑性加工学术年会论文集, 2002
    [25]董湘怀,郑莹.金属塑性成形计算机模拟的若干进展[J].金属成形工艺, 2000, 18(1):1-4
    [26]肖红生.温锻精密成形数值模拟关键技术及实验研究[D].上海:上海交通大学, 2000
    [27]江亲瑜,董美云,葛宰林,等.数值仿真技术及其在磨损研究中的应用[J].大连铁道学院学报, 1997, 18(2):39-43
    [28]严立,徐久军,潘新祥.磨损问题的仿真求解研究[J].摩擦学学报, 1999, 19(1): 50-55
    [29]汪选国,严新平,李涛生,等.磨损数值仿真技术的研究进展[J].摩擦学学报, 2004, 24(2): 188-192
    [30] D. Schmoeckel. Cold and hot forming machines[J]. Journal of Materials Processing Technology, 1992, 35(3-4):399-413
    [31] H. N?gele, H. W?rner, M. Hirschvogel. Automotive parts produced by optimizing the process flow forming– machining[J]. Journal of Materials Processing Technology, 2000, 98(2):171-175
    [32] T. Altan, K. Markus. Application of the 2D finite element method to simulation of cold-forging processes[J]. Journal of Materials Processing Technology, 1992, 35(3-4):275-302
    [33] L. Kurt, K. Markus, T. Altan. Fatigue analysis concept to avoid failure of forging tooling[J]. Wire, 1995, 45(3):164-168
    [34] K. Markus, L. Joon, T. Altan. Application of the 2D finite element method to simulation of various forming processes[J]. Journal of Materials Processing Technology, 1992, 33(1-2):31-55
    [35] D. Hortig, D. Schmoeckel. Analysis of local loads on the draw die profile with regard to wear using the FEM and experimental investigations[J]. Journal of Materials Processing Technology, 2001, 115(1):153-158
    [36] L. Geun-An, I. Yong-Taek. Finite-element investigation of the wear and elastic deformation dies in metal forming[J]. Journal of Materials Processing Technology, 1999, 89-90:123-127
    [37] J. H. Kanga, I. W. Parkb, J. S. Jaec, et al.. A study on a die wear model considering thermal softening: (I) Construction of the wear model[J]. Journal of Materials Processing Technology, 1999, 96(1-3):53-58
    [38] J. H. Kanga, I. W. Parkb, J. S. Jaec, et al.. A study on die wear model considering thermal softening (II): Application of the suggested wear model[J]. Journal of Materials Processing Technology, 1999, 94(2-3):183-188
    [39] B. Painter, R. Shivpuri, T. Altan. Prediction of die wear during hot-extrusion of engine valves[J]. Journal of Materials Processing Technology, 1996, 59(1-2):132-143
    [40] P. P?dra, S. Andersson. Wear simulation with the Winkler surface model[J]. Wear, 1997, 207(1-2):79-85
    [41] S. M. Hsu, M. C. Shen, A. W. Ruff. Wear prediction for metals[J]. Tribology International, 1997, 30(5):377-383
    [42] B. Falk, U. Engel, M. Geiger. Estimation of tool life in bulk metal forming based on different failure concepts[J]. Journal of Materials Processing Technology, 1998, 80-81:602-607
    [43] T. H. Kim, B. M. Kim, J. C. Choi. Prediction of die wear in the wire-drawing process[J]. Journal of Materials Processing Technology, 1997, 65(1-3):11-17
    [44] A. F. M. Arif, A. K. Sheikh, S. Z. Qamar. A study of die failure mechanisms in aluminum extrusion[J]. Journal of Materials Processing Technology, 2003, 134(3):318-328
    [45] M. Tercelj, I. Perus, R. Turk. Suitability of CAE neural networks and FEM for prediction of wear on die radii in hot forging[J]. Tribology, 2003, 36(8):573-583
    [46] K. Velten, R. Reinicke, K. Friedrich. Wear volume prediction with artificial NN[J]. Tribology, 2000, 33(10):731-737
    [47] S. Stupkiewicz, Z. Mroz. A model of third body abrasive friction and wear in hot metal forming[J]. Wear, 1999, 231(1):124-138
    [48]薛玉君,程先华,黄文振.断裂力学和有限元法在疲劳磨损研究中的应用[J].机械强度, 2001, 23(3):365-368
    [49]张文孝,郭成壁,岳奎,等.热疲劳过程力学行为的数值模拟[J].大连理工大学学报, 1995, 35(4):511-514
    [50] P. Neuenschwander, D. E. Maurer, L. Rychlicki. Long-term wear monitoring and wear prediction by means of wear models[J]. Control Engineering Practice, 1995, 3(7):1011-1015
    [51] E. Summerville, K. Venkatesan, C. Subramanian. Wear process in hot forging press tools[J]. Materials & Design, 1995, 16(5):289-294
    [52] Y. Xie, J. A. Williams. The prediction of friction and wear when a soft surface slides against a harder rough surface[J]. Wear, 1996, 196(1-2):21-34
    [53] D. Y. Li, K. Elalem, M. J. Anderson, et al.. A microscale dynamical model for wear simulation[J]. Wear, 1999, 225–229:380-386
    [54] K. Yongjin, G. W. Fischer. A novel approach to quantifying tool wear and tool life measurements for optimal tool management[J]. International Journal of Machine Tools & Manufacture, 2003, 43(4):359-368
    [55] S. J. Bull, Z. Qiusha. A simulation test for wear in injection moulding machines[J]. Wear, 2001, 249(5-6):372-378
    [56] R. C. Bayer. Mechanical wear prediction and prevention[J]. Tribology International, 1997, 30(8):629-630
    [57] D. H. Kim, H. C. Lee, B. M. Kim, et al.. Estimation of die service life against plastic deformation and wear during hot forging processes[J]. Journal of Materials Processing Technology, 2005, 166(3):372-380
    [58] H. Saiki, Y. Marumo, A. Minami, et al.. Effect of the surface structure on the resistance to plastic deformation of a hot forging tool[J]. Journal of Materials Processing Technology, 2001, 113(1-3):22-27
    [59] M. Eriksen. The influence of die geometry on tool wear in deep drawing[J]. Wear, 1997, 207(1-2):10-15
    [60] M. B. Karamis, H. Sert. The role of PVD TiN coating in wear behaviour of aluminium extrusion die[J]. Wear, 1998, 217(1):46-55
    [61] C. Boher , D. Attaf , L. Penazzi, et al.. Wear behaviour on the radius portion of a die in deep-drawing:Identification, localisation and evolution of the surface damage[J]. Wear, 2005, 259(7-12):1097-1108
    [62] X. Lu, R. Balendra. Pressure contours on forming dies Part II: Finite element simulation[J]. Journal of Materials Processing Technology, 2001, 115(2):220-226
    [63] R. Balendra. Overview of“Die-cavity elasticity considerations for nett-forming (DICAVITY)”[J]. Journal of Materials Processing Technology, 2001, 115(2):180-186
    [64] R. S. Lee, J. L. Jou. Application of numerical simulation for wear analysis of warm forging die[J]. Journal of Materials Processing Technology, 2003, 140(1-3):43-48
    [65] R. S. Lee, J. L. Jou, Y. C. Ho. Optimization of parameters affecting die life in warm forging[C]. Proceedings of the 32nd ICFG Plenary Meeting, Slovenia, September, 1999
    [66] S. H. Ahn, T. H. Kim, B. M. Kim, et al.. A study on the prediction of fatigue life in an axi-symmetric extrusion die[J]. Journal of Materials Processing Technology, 2003, 71(3):343-349
    [67] Y. Lee, F. Chen. Fatigue life of cold-forging dies with various values of hardness[J]. Journal of Materials Processing Technology, 2001, 113(1-3):539-543
    [68] A. Sons?z, A. E. Tekkaya. Service life estimation of extrusion dies by numerical simulation of fatigue-crack-growth[J]. International Journal of Mechanical Sciences, 1996, 38(5):527-538
    [69] L. Guobin, L. Xiangzhi, W. Jianjun. Study of the thermal fatigue crack initial life of H13 and H21 steels[J].Journal of Materials Processing Technology, 1998(1-3), 74:23-26
    [70] R. Balendra. Economic considerations in die-form compensation for nett-forming[J]. Journal of Materials Processing Technology, 2001, 115(2):260-263
    [71]周琨,陈国学.伞齿轮精密成形模具变形的数值模拟分析[J].塑性工程学报, 2002, 9(1):74-77
    [72] Y. B. Park, K. H. Lee. Study on the deformation of die and product in closed die upsetting[J]. Journal of Materials Processing Technology, 2001, 118(1-3):417-421
    [73] J. A. Arsecularatne. On prediction of tool life and tool deformation conditions in machining with restricted contact tools[J]. International Journal of Machine Tools & Manufacture, 2003, 43(7):657-669
    [74] A. Rosochowski. Die compensation procedure to negate die deflection and component springback[J]. Journal of Materials Processing Technology, 2001, 115(2):187-191
    [75]赵国群,贾玉玺,王广春,等.基于有限元逆向模拟技术的预成形模具设计[J].机械工程学报, 2002, 36(2):65-68
    [76]李洪波,骆俊廷,杨学礼.温挤齿轮模具尺寸修正的理论分析及有限元模拟[J].模具技术, 2001, (4):1-3
    [77] T. Wanheim, R. Balendra, Y. Qin. Extrusion die for in-process compensation of component-errors due to die-elasticity[J]. Journal of Materials Processing Technology, 1997, 72(2):177-182
    [78] H. Long, R. Balendra. Evaluation of elasticity and temperature effects on the dimensional accuracy of back-extruded components using finite element simulation[J]. Journal of Materials Processing Technology, 1998, 80–81:665-670
    [79] Youngseon Lee,Junghwan Lee,T. Ishikawa.Analysis of the elastic characteristics at forging die for the cold forged dimensional accuracy[J]. Journal of Materials Processing Technology, 2002, 130-131:532-539
    [80]李洪波,吕玫,骆俊廷.精锻齿轮弹性回复的理论分析及有限元模拟[J].模具技术, 2003, (1):7-9
    [81] R. Balendra, Y. Qin, X. Lu. Analysis, evaluation and compensation of component-errors in the nett-forming of engineering components[J]. Journal of Materials Processing Technology, 2000, 106(1-3):204-211
    [82] W. Thomas, T. Oenoki, T. Altan. Process simulation in stamping-recent applications for product and process design[J]. Journal of Materials Processing Technology, 2000, 98(2):232-243
    [83] Y. Qin, R. Balendra. FE simulation of the influence of die-elasticity on component dimensions in forward extrusion[J].International Journal of Machine Tools and Manufacture, 1997, 37(2):183-192
    [84] H. Long, R. Balendra. FE simulation of the influence of thermal and elastic effects on the accuracy of cold-extruded components[J]. Journal of Materials Processing Technology, 1998, 84(1-3):247-260
    [85] K. Kuzman. Problems of accuracy control in cold forming[J]. Journal of Materials Processing Technology, 2001, 113(1-3):10-15
    [1]黄续传. GLEEBLE-3500试验机的热模拟技术[J].梅山科技, 2006, (1):44-46
    [2]张质良.温塑性成形技术[M].上海:上海科学技术文献出版社, 1986
    [3] G. Krauss. Deformation, Processing, and Structure. Papers presented at the 1982 ASM Materials Science Seminar, Metals Park, Ohio, ASM[C], 1984
    [4] Sellars CM. Hot deformation processing[J]. Materials Science and Technology, 1992, (8):134.
    [5] Sellars CM. Computer modelling of hot-working process[J]. Materials Science and Technology, 1985,(1):325-332
    [6] Sellars CM. Hot working materials engineering[J]. Proceedings of the First International Symposium, 1986: 231-243
    [7]周纪华,管克智.金属塑性变形阻力[M].北京:机械工业出版社, 1989
    [8] A. K. Mukheriee. Experimental correlation for high temperature creep[J]. Trans ASM, 1969, 62:155
    [9] A. Laasraoui, J. J. Jonas. Metall. Trans. A, 1991, 22:1545-1558
    [10]高维林.含Nb低碳钢的热变形行为和金属塑性变形中流变应力的预测[J].金属学报, 1992, 28(8):351-358
    [11]井上胜郎.鋼の高温加工強度に関する研究ご(I):高温高速度引張り実験装置[J].铁ど钢, 1955, 41(5):506
    [12]池田俊雄.鋼の高温塑性加工[J].日本金属学志, 1953, 17:43
    [13]丰岛清三.高速度引張り実験機に軟鋼の変形抵抗の測定[J].铁ど钢, 1955, 41(3):344
    [14]美坂佳助,吉本友吉.普通炭素鋼熱間変形抵抗数式化[J].铁ど钢, 1966, 52(10):1584
    [15]志田茂.碳素钢の变形抵抗と实验式[J].塑性ど加工, 1969, 10(97):103
    [16]李自刚.钢的热塑性变形及随后冷却过程的物理模拟与数值模拟[D].上海:上海交通大学, 1998
    [17] A. Cingara, H. J. McQueen. New formula for calculating flow curves from high temperature constitutive data for 300 austenitic steels[J]. Journal of Materials Processing Technology, 1992, 36(1):31-42
    [18] W. Roberts. Deformation, Processing and structure[C]. American Society for Metals, Metals Park, OH, 1984:109
    [19] T. Wu, G. Ren. Research on warm forging/cold orbital forming technology for the straight bevel gear in differential case[J]. China Mechanical Engineering, 2005, (16):1106-1109
    [20] A. Laasraoui, J. J. Jonas. Prediction of temperature distribution, flow stress and microstructure during the multipass hot rolling of steel plate and strip[J]. ISIJ International, 1991, 31:95-105
    [1] P. V. Marcal, I. P. King. Elastic-Plastic analysis of two-dimension stress system by the finite element method[J]. International Journal of Mechanical Sciences, 1967, (9):143-155
    [2] C. H. Lee, S. Kobayashi. New solution to rigid plastic deformation problems using a matrix method[J]. Trans. ASME. J. Engin, 1973, 95:865-873
    [3]刘建生,陈慧琴,郭晓霞.金属塑性加工有限元数值模拟技术与应用[M].北京:冶金工业出版社, 2003
    [4]李尚健.金属塑性成形过程模拟[M].北京:机械工业出版社, 2001
    [1] K. Lange, L. Cser, M. Geiger, et al.. Tool life and tool quality in bulk metal forming[J]. CIRP Annals - Manufacturing Technology, 1992, 41(2):667-675
    [2]程培源.模具寿命与材料[M].北京:机械工业出版社, 1999
    [3] L. Geun-An, I. Yong-Taek. Finite-element investigation of the wear and elastic deformation dies in metal forming[J]. Journal of Materials Processing Technology, 1999, 89-90:123-127
    [4] P. P?dra, S. Andersson. Wear simulation with the Winkler surface model[J]. Wear, 1997, 207(1-2):79-85
    [5] S. M. Hsu, M. C. Shen, A. W. Ruff. Wear prediction for metals[J]. Tribology International, 1997, 30(5):377-383
    [6] R. S. Lee, J. L. Jou. Application of numerical simulation for wear analysis of warm forging die[J]. Journal of Materials Processing Technology, 2003, 140(1-3):43–48

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700