用户名: 密码: 验证码:
miRNA靶标预测的系统生物学方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
miRNA靶基因的鉴定对miRNA工作机制的理解至关重要,但由于缺乏有力的实验手段和高准确度的预测算法,靶基因的鉴定已经成为miRNA研究的瓶颈问题。为此,本文提出了基于系统生物学的靶基因预测算法,旨在利用系统生物学思想,融合序列信息、基因表达信息、蛋白质间作用信息以及其它生物学先验知识,为解决miRNA靶标预测这一问题进行一定尝试。
     首先,本文对现有miRNA靶基因预测算法作了全面而深入的研究。通过剖析各算法的实现机制及评估部分算法的性能,总结现阶段靶基因预测算法存在的问题,并指明后续研究的努力方向。
     其次,针对基于序列的靶基因预测,本文提出了基于两级SVM结构的算法SVMicrO,并利用从最新发表的文献中收集的大量了阳性及阴性样本数据集对模型进行了训练和评估。本文分别定义了113及30个特征以构建Site-SVM和UTR-SVM;采用mRMR和SFS方法对特征进行了选取;引入了样本权重以及类别权重解决样本数据间的不平衡问题。基于高置信度靶标鉴定实验的结果,本文将SVMicrO与其它常用的算法进行了全面系统的比较,体现了SVMicrO相对较优的性能及较强的泛化能力。
     再次,考虑到miRNA具有降解mRNA的功能,本文对miRNA过表达实验的表达谱数据进行了研究,并结合SVMicrO的预测结果,建立了基于序列和微阵列数据的贝叶斯推论模型。其中,本文通过逻辑回归逼近将SVMicrO的预测结果映射到概率空间;采用混合高斯模型对miRNA过表达实验的表达谱数据进行建模,并用VBEM完成对该模型的参数估计。评估结果说明,通过序列信息和微阵列数据的融合,能够获得比使用单一信息更佳的性能。
     最后,针对miRNA的第一功能为翻译抑制的事实,本文从miRNA对蛋白质合成的影响以及蛋白质间调控作用角度入手,建立基于“作用通路→转录因子→调控基因集”因果模型的靶基因预测算法SysMicrO,为靶基因预测算法开辟了一条新的思路。本文首先建立了转录因子调控基因集以及转录因子上游基因网络数据库;其次利用GSEA分析miRNA过表达实验中有明显富集度变化的转录因子;最终追溯这些转录因子上游的基因并与SVMicrO预测结果进行交迭,给出预测结果。评估结果表明,SysMicrO不仅可以有效地对SVMicrO的预测结果进行筛选从而提高特异度,还可以给预测结果提供相关注释信息和生物学解释,为后续的分析和鉴定提供合理的建议。
microRNAs(miRNAs) are a class of single-strand non-coding RNAs with approximately 22 nucleotides in length. miRNAs play important regulatory roles in post transcription stage by either degrading mRNA or inhibiting translation and thought to relate to many biological processes and deaseses. Identifying targets of miRNA is a key to understand the mechanisms of regulatory function of miRNA, howere, it become the bottle neck of miRNA research because of the laking of effective biological experiments and high accuracy prediction algorithms. Given this fact, this thesis works on a systems biological approach, which integrates sequence level information, gene expression information, protein interaction information and other biological prior knowledge, aiming to contribute to miRNA target identification.
     Firstly, an abroad and thorough research is carried out to survey a large number of existing computational miRNA target prediction algorithms. Basing on the investigation of the mechanisms of each algorithm the performance evaluation of several algorithms, shortages of existing algorithms are sumrized. The possible research directions are point out as well.
     Sencondly, a two-stages SVM based algorithm SVMicrO is proposed for target prediction in sequence level. A large amount of positive and negative samples are carefully derived from the most up-to-date literatures for building training and evaluating dataset. Based on statistical characteristics discovered by former researches as well as our understanding of miRNA:Target interactions, 113 and 30 noval features are extracted for constructing Site-SVM and UTR-SVM respectively. mRMR and SFS are used for feature selection. Sample weight as well as class weight is introduced into SVM to deal with the imbalanced dataset. To compare the performance, SVMicrO and several other popular algorithms are evaluated based on the results of high confidence target identification experiments. The simulation results show that the SVMicrO can produce better performence and generalization capacity.
     Thirdly, considering mRNA has the function of mRNA degradation, this paper perform a deep research on gene expression profiling in miRNA over-expression experiments and built a Bayesian inferring model based on microarray data and sequence level prediction. In this model, Logistic Regression model is used to map SVMicrO prediction result to probability space and a Gaussin Mixture Model, whose parameters are estimated by VBEM algorithm, is built to model gene expression profiling data. The evaluation results indicate that the proposed algorithm, that integrates tow types of information, outperforms sequence-based prediction and prediction based expression data alone.
     Fourthly, given the fact that the primary function of miRNA is translation inhibition, an algorithm called SysMicrO, which raises a new concept of miRNA target prediction algorithm, is proposed based on the noval causality hypothesis which is“Pathway→Transcription factor→regulation gene set”by considering the regulation relationship between miRNA and protein as well as protein and protein. The transcription factor regulated geneset and transcription factor upstream regulation network database are constructed as the first step for carrying out the algorithm. For predition, GSEA is used to detect the enriched genesets which indicate the related transcription factors are affected by the miRNA. Finally prediction results are listed out by calculating the intersection of transcription factor upstream genes and SVMicrO predicted results. The evaluation results show that not only can SysMicrO improve the specificity by screen out the SVMicrO prediction, but also can provide the annotation and biological explaination which is meaningful information for subsequent analysis and target identification.
引文
[1] P. D. Zamore, T. Tuschl, P. A. Sharp, et al. RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals[J]. Cell, 2000, 101(1): 25-33.
    [2] D. Baltimore, M. P. Boldin, R. M. O'connell, et al. MicroRNAs: new regulators of immune cell development and function[J]. Nat Immunol, 2008, 9(8): 839-845.
    [3] K. Hayashi, S. M. Chuva De Sousa Lopes, M. Kaneda, et al. MicroRNA biogenesis is required for mouse primordial germ cell development and spermatogenesis[J]. PLoS ONE, 2008, 3(3): e1738.
    [4] M. S. Kumar, S. J. Erkeland, R. E. Pester, et al. Suppression of non-small cell lung tumor development by the let-7 microRNA family[J]. Proc Natl Acad Sci U S A, 2008, 105(10): 3903-3908.
    [5] X. Y. Lu,X. L. Huang. Plant miRNAs and abiotic stress responses[J]. Biochem Biophys Res Commun, 2008, 368(3): 458-462.
    [6] C. J. Marsit, K. Eddy,K. T. Kelsey. MicroRNA responses to cellular stress[J]. Cancer Res, 2006, 66(22): 10843-10848.
    [7] N. Stern-Ginossar, C. Gur, M. Biton, et al. Human microRNAs regulate stress-induced immune responses mediated by the receptor NKG2D[J]. Nat Immunol, 2008, 9(9): 1065-1073.
    [8] R. Sunkar, V. Chinnusamy, J. Zhu, et al. Small RNAs as big players in plant abiotic stress responses and nutrient deprivation[J]. Trends Plant Sci, 2007, 12(7): 301-309.
    [9] W. Dunn, P. Trang, Q. Zhong, et al. Human cytomegalovirus expresses novel microRNAs during productive viral infection[J]. Cell Microbiol, 2005, 7(11): 1684-1695.
    [10] M. Figlerowicz,A. Tyczewska. [The influence of small regulatory RNAs on the viral infection--new strategies in HCV therapy][J]. Przegl Epidemiol, 2006, 60(4): 693-700.
    [11] C. S. Sullivan,D. Ganem. MicroRNAs and viral infection[J]. Mol Cell, 2005, 20(1): 3-7.
    [12] J. L. Umbach, M. F. Kramer, I. Jurak, et al. MicroRNAs expressed by herpes simplex virus 1 during latent infection regulate viral mRNAs[J]. Nature, 2008, 454(7205): 780-783.
    [13] M. S. Weinberg,K. V. Morris. Are viral-encoded microRNAs mediating latent HIV-1 infection[J]. DNA Cell Biol, 2006, 25(4): 223-231.
    [14] D. C. Corney,A. Y. Nikitin. MicroRNA and ovarian cancer[J]. Histol Histopathol, 2008, 23(9): 1161-1169.
    [15] T. Dalmay. MicroRNAs and cancer[J]. J Intern Med, 2008, 263(4): 366-375.
    [16] S. Deng, G. A. Calin, C. M. Croce, et al. Mechanisms of microRNA deregulation in human cancer[J]. Cell Cycle, 2008, 7(17): 2643-2646.
    [17] M. Negrini,G. A. Calin. Breast cancer metastasis: a microRNA story[J]. Breast Cancer Res, 2008, 10(2): 203.
    [18] L. Zhang, N. Yang,G. Coukos. MicroRNA in human cancer: one step forward in diagnosis and treatment[J]. Adv Exp Med Biol, 2008, 622: 69-78.
    [19] J. F. Chen, E. P. Murchison, R. Tang, et al. Targeted deletion of Dicer in the heart leads to dilated cardiomyopathy and heart failure[J]. Proc Natl Acad Sci U S A, 2008, 105(6): 2111-2116.
    [20] Y. Zhao, J. F. Ransom, A. Li, et al. Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA-1-2[J]. Cell, 2007, 129(2): 303-317.
    [21] E. Van Rooij, L. B. Sutherland, N. Liu, et al. A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure[J]. Proc Natl Acad Sci U S A, 2006, 103(48): 18255-18260.
    [22] T. Thum, P. Galuppo, C. Wolf, et al. MicroRNAs in the human heart: a clue to fetal gene reprogramming in heart failure[J]. Circulation, 2007, 116(3): 258-267.
    [23] M. Tatsuguchi, H. Y. Seok, T. E. Callis, et al. Expression of microRNAs is dynamically regulated during cardiomyocyte hypertrophy[J]. J Mol Cell Cardiol, 2007, 42(6): 1137-1141.
    [24] D. P. Bartel. MicroRNAs: genomics, biogenesis, mechanism, and function[J]. Cell, 2004, 116(2): 281-297.
    [25]石夏荣,俞吉安. MicroRNA特征与功能[J].上海交通大学学报, 2004, 5: 829-833.
    [26]陈芳,殷勤伟.调控基因表达的miRNA[J].科学通报, 2005, 13: 1289-1299.
    [27] R. C. Lee, R. L. Feinbaum,V. Ambros. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14[J]. Cell, 1993, 75(5): 843-854.
    [28] David Hutchinson. MEDLINE for health professionals: how to search PubMed on the Internet[M]. Sacramento, CA: New Wind Publishing, 1998.
    [29] Breakthrough of the year. Areas to watch in 2007[J]. Science, 2006, 314(5807): 1854-1855.
    [30] (法)让.泰奥多里德.生物学史[M].北京:商务印书馆, 2000.
    [31] George H. Fried,George J. Hademenos. Schaum's outline of theory and problems of biology[M]. New York ; London: McGraw-Hill, 1999.
    [32] Ernst Mayr. The growth of biological thought : diversity, evolution, and inheritance[M]. Cambridge, Mass.: Belknap Press, 1982.
    [33]田清涞.普通生物学[M].北京:海洋出版社, 2000,1.
    [34] (英)达尔文著,谢蕴贞译.物种起源[M].北京:新世界出版社, 2007.
    [35] Gerald Karp. Cell and molecular biology : concepts and experiments[M]. Hoboken, N.J.: John Wiley, 2008.
    [36] James D. Watson. Molecular biology of the gene[M]. San Francisco: Pearson/Benjamin Cummings, 2008.
    [37] Robert Franklin Weaver. Molecular biology[M]. Boston ; London: McGraw-Hill Higher Education, 2008.
    [38]刘永明.分子生物学简明教程[M].北京:化学工业出版社, 2006,8.
    [39] J. D. Watson,F. H. Crick. Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid[J]. Nature, 1953, 171(4356): 737-738.
    [40] James D. Watson,Gunther S. Stent. The double helix : a personal account of the discovery of the structure of DNA[M]. London: Penguin, 1998.
    [41] M. H. Wilkins, A. R. Stokes,H. R. Wilson. Molecular structure of deoxypentose nucleic acids[J]. Nature, 1953, 171(4356): 738-740.
    [42] F. Crick. Central dogma of molecular biology[J]. Nature, 1970, 227(5258): 561-563.
    [43]王志珍.一个科技里程碑:分子生物学的中心法则[J].生理科学进展, 2003, 2: 101-102.
    [44] Teresa K. Attwood,David J. Parry-Smith. Introduction to bioinformatics[M]. Harlow: Longman, 1999.
    [45] Arthur M. Lesk. Introduction to bioinformatics[M]. Oxford: Oxford University Press, 2008.
    [46]钟杨,张亮,赵琼.简明生物信息学[M].北京:高等教育出版社, 2001,12.
    [47]陈啸.生物信息学基础[M].北京:清华大学出版社, 2005,4.
    [48]陈铭.后基因组时代的生物信息学[J].生物信息学, 2004, 2: 29-34.
    [49]程现昆.我国生物信息学研究现状与展望[J].中国科技信息, 2006, 8: 241-243.
    [50]徐强,王长亮,李胜.系统生物学——一生命科学的新领域[J].中国医药导报, 2008(26): 20-22.
    [51] Ludwig Von Bertalanffy. General system theory; foundations, development, applications[M]. New York: G. Braziller, 1969.
    [52] L. Hood. Systems biology: integrating technology, biology, and computation[J]. Mech Ageing Dev, 2003, 124(1): 9-16.
    [53] H. Kitano. Systems biology: a brief overview[J]. Science, 2002, 295(5560): 1662-1664.
    [54] S. K. Podder. Cooperative non-enzymatic base recognition and the stability of the G-U wobble pair[J]. Nat New Biol, 1971, 232(30): 115-116.
    [55] A. M. Denli, B. B. Tops, R. H. Plasterk, et al. Processing of primary microRNAs by the Microprocessor complex[J]. Nature, 2004, 432(7014): 231-235.
    [56] Y. Zeng, R. Yi,B. R. Cullen. Recognition and cleavage of primary microRNA precursors by the nuclear processing enzyme Drosha[J]. EMBO J, 2005, 24(1): 138-148.
    [57] E. Bernstein, A. A. Caudy, S. M. Hammond, et al. Role for a bidentate ribonuclease in the initiation step of RNA interference[J]. Nature, 2001, 409(6818): 363-366.
    [58] G. Ku,M. T. Mcmanus. Behind the scenes of a small RNA gene-silencing pathway[J]. Hum Gene Ther, 2008, 19(1): 17-26.
    [59] Ole J. Bjerrum,Niels H. H. Heegaard. CRC handbook of immunoblotting of proteins[M]. Boca Raton, Fla.: CRC Press, 1988.
    [60]王洪海,张晓平,梁平.免疫学新技术介绍:Western Blot Analysis[J].军医进修学院学报, 1990(03): 280.
    [61]沙新平.报告基因系统的研究进展[J].国外医学.临床生物化学与检验学分册, 2003(01): 26-28.
    [62] F. V. Karginov, C. Conaco, Z. Xuan, et al. A biochemical approach to identifying microRNA targets[J]. Proc Natl Acad Sci U S A, 2007, 104(49): 19291-19296.
    [63] D. G. Hendrickson, D. J. Hogan, D. Herschlag, et al. Systematic identification of mRNAs recruited to argonaute 2 by specific microRNAs and corresponding changes in transcript abundance[J]. PLoS ONE, 2008, 3(5): e2126.
    [64] Edmond De Hoffmann,Vincent Stroobant. Mass spectrometry : principles and applications[M]. Hoboken, N.J.: Wiley ; Chichester : John Wiley [distributor], 2007.
    [65] D. Baek, J. Villen, C. Shin, et al. The impact of microRNAs on protein output[J]. Nature, 2008, 455(7209): 64-71.
    [66] B. Zhang, X. Pan, Q. Wang, et al. Computational identification of microRNAs and their targets[J]. Comput Biol Chem, 2006, 30(6): 395-407.
    [67] S. Griffiths-Jones. The microRNA Registry[J]. Nucleic Acids Research, 2004, 32: 109.
    [68] S. Griffiths-Jones. miRBase: the microRNA sequence database[J]. Methods Mol Biol, 2006, 342: 129-138.
    [69] S. Griffiths-Jones, R. J. Grocock, S. Van Dongen, et al. miRBase: microRNA sequences, targets and gene nomenclature[J]. Nucleic Acids Res, 2006, 34: 140-144.
    [70] G. L. Papadopoulos, M. Reczko, V. A. Simossis, et al. The database of experimentally supported targets: a functional update of TarBase[J]. Nucleic Acids Res, 2008.
    [71] P. Sethupathy, B. Corda,A. G. Hatzigeorgiou. TarBase: A comprehensive database of experimentally supported animal microRNA targets[J]. RNA, 2006, 12(2): 192-197.
    [72] B. J. Reinhart, E. G. Weinstein, M. W. Rhoades, et al. MicroRNAs in plants[J]. Genes Dev, 2002, 16(13): 1616-1626.
    [73] V. Ambros. The functions of animal microRNAs[J]. Nature, 2004, 431(7006): 350-355.
    [74] A. A. Millar,P. M. Waterhouse. Plant and animal microRNAs: similarities and differences[J]. Funct Integr Genomics, 2005, 5(3): 129-135.
    [75] A. Birmingham, E.M. Anderson, A. Reynolds, et al. 3'UTR seed matches, but not overall identity, are associated with RNAi off-targets[J]. Nature Methods, 2006, 3: 199-204.
    [76] J. Brennecke, A. Stark, R. B. Russell, et al. Principles of microRNA-target recognition[J]. PLoS Biol, 2005, 3(3): 85.
    [77] D. Didiano,O. Hobert. Perfect seed pairing is not a generally reliable predictor for miRNA-target interactions[J]. Nat Struct Mol Biol, 2006, 13(9): 849-851.
    [78] A. Grimson, K. K. Farh, W. K. Johnston, et al. MicroRNA targeting specificity in mammals: determinants beyond seed pairing[J]. Mol Cell, 2007, 27(1): 91-105.
    [79] K. Ui-Tei, Y. Naito, K. Nishi, et al. Thermodynamic stability and Watson-Crick base pairing in the seed duplex are major determinants of the efficiency of the siRNA-based off-target effect[J]. Nucleic Acids Res, 2008, 36(22): 7100-7109.
    [80] B. P. Lewis, I. H. Shih, M. W. Jones-Rhoades, et al. Prediction of mammalian microRNA targets[J]. Cell, 2003, 115(7): 787-98.
    [81] B. P. Lewis, C. B. Burge,D. P. Bartel. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets[J]. Cell, 2005, 120(1): 15-20.
    [82] TargetScan Website. http://www.targetscan.org/. 4.2.
    [83]时硕永,丁达夫.判定直系同源关系的进化分析方法[J].生物化学与生物物理学报, 2002(01).
    [84] A. J. Enright, B. John, U. Gaul, et al. MicroRNA targets in Drosophila[J]. Genome Biol, 2003, 5(1): R1.
    [85] M. Kertesz, N. Iovino, U. Unnerstall, et al. The role of site accessibility in microRNA target recognition[J]. Nat Genet, 2007, 39(10): 1278-84.
    [86] M. Kiriakidou, P. T. Nelson, A. Kouranov, et al. A combined computational-experimental approach predicts human microRNA targets[J]. Genes Dev, 2004, 18(10): 1165-78.
    [87] M. Rehmsmeier. Prediction of microRNA targets[J]. Methods Mol Biol, 2006, 342: 87-99.
    [88] M. Rehmsmeier, P. Steffen, M. Hochsmann, et al. Fast and effective prediction of microRNA/target duplexes[J]. RNA, 2004, 10(10): 1507-1517.
    [89] V. Rusinov, V. Baev, I. N. Minkov, et al. MicroInspector: a web tool for detection of miRNA binding sites in an RNA sequence[J]. Nucleic Acids Res, 2005, 33(Web Server issue): W696-W700.
    [90] C. Burgler,P. M. Macdonald. Prediction and verification of microRNA targets by MovingTargets, a highly adaptable prediction method[J]. BMC Genomics, 2005, 6(1): 88.
    [91] N. R. Markham,M. Zuker. DINAMelt web server for nucleic acid melting prediction[J]. Nucleic Acids Res, 2005, 33(Web Server issue): W577-81.
    [92] N. R. Markham,M. Zuker. UNAFold: software for nucleic acid folding and hybridization[J]. Methods Mol Biol, 2008, 453: 3-31.
    [93] N. Rajewsky,N. D. Socci. Computational identification of microRNA targets[J]. Dev Biol, 2004, 267(2): 529-535.
    [94] M. Zuker. On finding all suboptimal foldings of an RNA molecule[J]. Science, 1989, 244(4900): 48-52.
    [95] Jan Barciszewski,Brian F. C. Clark. RNA biochemistry and biotechnology[M]. Dordrecht: Kluwer, 1999.
    [96] A. E. Walter, D. H. Turner, J. Kim, et al. Coaxial stacking of helixes enhances binding of oligoribonucleotides and improves predictions of RNA folding[J]. Proc Natl Acad Sci U S A, 1994, 91(20): 9218-9222.
    [97] D. H. Mathews, J. Sabina, M. Zuker, et al. Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure[J]. J Mol Biol, 1999, 288(5): 911-940.
    [98] J. Santalucia, Jr. A unified view of polymer, dumbbell, and oligonucleotide DNA nearest-neighbor thermodynamics[J]. Proc Natl Acad Sci U S A, 1998, 95(4): 1460-1465.
    [99] D. And Wang Gr{\"U}N, Y.L. And Langenberger, D. And Gunsalus, K.C. And Rajewsky, N. microRNA target predictions across seven Drosophila species and comparison to mammalian targets[J]. PLoS Comput Biol, 2005, 1: 13.
    [100] A. And Gr{\"U}N Krek, D. And Poy, M.N. And Wolf, R. And Rosenberg, L. And Epstein, E.J. And Macmenamin, P. And Da Piedade, I. And Gunsalus, K.C. And Stoffel, M. And Others. Combinatorial microRNA target predictions[J]. Nature Genetics, 2005, 37: 495-500.
    [101] S. Sinha, E. Van Nimwegen,E. D. Siggia. A probabilistic method to detect regulatory modules[J]. Bioinformatics, 2003, 19 Suppl 1: i292-i301.
    [102] S. K. Kim, J. W. Nam, J. K. Rhee, et al. miTarget: microRNA target gene prediction using a support vector machine[J]. BMC Bioinformatics, 2006, 7: 411.
    [103] Sung-Kyu Kim, Jin-Wu Nam, Wha-Jin Lee, et al. A Kernel Method for MicroRNA Target Prediction Using Sensible Data and Position-Based Features. in Computational Intelligence in Bioinformatics and Computational Biology, 2005. 2005.
    [104] X. Wang. miRDB: a microRNA target prediction and functional annotation database with a wiki interface[J]. RNA, 2008, 14(6): 1012-1017.
    [105] Issam M. El Naqa Xiaowei Wang. Prediction of both conserved and nonconserved microRNA targets in animals[J]. Bioinformatics, 2008, 24: 325-332.
    [106] K. C. Miranda, T. Huynh, Y. Tay, et al. A pattern-based method for the identification of MicroRNA binding sites and their corresponding heteroduplexes[J]. Cell, 2006, 126(6): 1203-1217.
    [107] S. Griffiths-Jones, A. Bateman, M. Marshall, et al. Rfam: an RNA family database[J]. Nucleic Acids Res, 2003, 31(1): 439-441.
    [108] I. Rigoutsos,A. Floratos. Combinatorial pattern discovery in biological sequences: The TEIRESIAS algorithm[J]. Bioinformatics, 1998, 14(1): 55-67.
    [109] O. Saetrom, O. Snove, Jr.,P. Saetrom. Weighted sequence motifs as an improved seeding step in microRNA target prediction algorithms[J]. RNA, 2005, 11(7): 995-1003.
    [110] G Paris, D Robilliard,C Fonlupt. Applying Boosting Techniques to Genetic Programming[J]. LECTURE NOTES IN COMPUTER SCIENCE, 2002: 267-280.
    [111] A Halaas, B Svingen, M Nedland, et al. A recursive MISD architecture for pattern matching[J]. Very Large Scale Integration (VLSI) Systems, IEEE Transactions on, 2004, 12(7): 727-734.
    [112] Jim C. Huang, Quaid D. Morris,Brendan J. Frey. Detecting MicroRNA Targets by Linking Sequence, MicroRNA and Gene Expression Data, Research in Computational Molecular Biology: Springer Berlin / Heidelberg, 2006: 114-129.
    [113] J. C. Huang, Q. D. Morris,B. J. Frey. Bayesian inference of MicroRNA targets from sequence and expression data[J]. J Comput Biol, 2007, 14(5): 550-563.
    [114] J. C. Huang, B. J. Frey,Q. D. Morris. Comparing sequence and expression for predicting microRNA targets using GenMiR3[J]. Pac Symp Biocomput, 2008: 52-63.
    [115] P. S. Linsley, J. Schelter, J. Burchard, et al. Transcripts targeted by the microRNA-16 family cooperatively regulate cell cycle progression[J]. Mol Cell Biol, 2007, 27(6): 2240-2252.
    [116] B. P. Lewis, I. H. Shih, M. W. Jones-Rhoades, et al. Prediction of mammalian microRNA targets[J]. Cell, 2003, 115(7): 787-798.
    [117] A. J. Enright, B. John, U. Gaul, et al. MicroRNA targets in Drosophila[J]. Genome Biol, 2003, 5(1): 1.
    [118] M. Kertesz, N. Iovino, U. Unnerstall, et al. The role of site accessibility in microRNA target recognition[J]. Nat Genet, 2007, 39(10): 1278-1284.
    [119] M. Kiriakidou, P. T. Nelson, A. Kouranov, et al. A combined computational-experimental approach predicts human microRNA targets[J]. Genes Dev, 2004, 18(10): 1165-1178.
    [120] J. C. Huang, T. Babak, T. W. Corson, et al. Using expression profiling data to identify human microRNA targets[J]. Nat Methods, 2007, 4(12): 1045-1049.
    [121] Christopher M. Bishop. Pattern recognition and machine learning[M]. New York: Springer, 2006.
    [122]安金龙.支持向量机若干问题的研究[D].天津大学, 2004.
    [123]魏海坤,徐嗣鑫,宋文忠.神经网络的泛化理论和泛化方法[J].自动化学报, 2001(06): 806-815.
    [124]胡静.机器学习及其神经网络分类器优化设计[D].合肥工业大学, 2007.
    [125]张潮.基于机器学习的河网糙率反演[D].浙江大学, 2008.
    [126]何清.机器学习与文本挖掘若干算法研究[D].中国科学院研究生院(计算技术研究所), 2002.
    [127] Vn Vapnik,Ay Chervonenkis. On the uniform convergence of relative frequencies of events to their probabilities[J]. Theory of Probability and its Applications, 1971, 16(2): 264-280.
    [128] A Blumer, A Ehrenfeucht, D Haussler, et al. Learnability and the Vapnik-Chervonenkis Dimension[J]. Journal of the Association for Computing Machinery. Vol, 1989, 36(4): 929-965.
    [129] J Shawe-Taylor, Pl Bartlett, Rc Williamson, et al. Structural risk minimization over data-dependent hierarchies[J]. Information Theory, IEEE Transactions on, 1998, 44(5): 1926-1940.
    [130]赵宇.基于支持向量机的多用户检测算法、功率控制算法和波达方向估计算法[D].中国科学技术大学, 2006.
    [131] Moritz Kuhn. The Karush-Kuhn-Tucker Theorem. 2006.
    [132] Mc Ferris,Ts Munson. Interior-Point Methods for Massive Support Vector Machines[J]. SIAM JOURNAL OF OPTIMIZATION, 2003, 13(3): 783-804.
    [133] Machine Learning. Support-vector networks[J]. Machine Learning, 1995, 20: 273-297.
    [134] Be Boser,Imgvn Vapnik. A Training Algorithm for Optimal Margin Classifiers. 1992.
    [135] Ma Aizerman, Em Braverman,Li Rozonoer. Theoretical foundations of the potential function method in pattern recognition learning[J]. Automation and Remote Control, 1964, 25(6): 821-837.
    [136] D Meyer, F Leisch,K Hornik. The support vector machine under test[J]. Neurocomputing, 2003, 55(1-2): 169-186.
    [137] Cjc Burges. A Tutorial on Support Vector Machines for Pattern Recognition[J]. Data Mining and Knowledge Discovery, 1998, 2(2): 121-167.
    [138] Ingo Steinwart,Andreas Christmann. Support vector machines[M]. New York: Springer, 2008.
    [139] Shigeo Abe. Support vector machines for pattern classification[M]. London: Springer, 2005.
    [140] Bernhard Schlkopf,Alexander J. Smola. Learning with kernels : support vector machines, regularization, optimization, and beyond[M]. Cambridge, MA ; London: MIT Press, 2002.
    [141] Nello Cristianini,John Shawe-Taylor. An introduction to Support Vector Machines : and other kernel-based learning methods[M]. Cambridge: Cambridge University Press, 2000.
    [142]邓乃扬,田英杰.数据挖掘中的新方法:支持向量机[M].北京:科学出版社, 2004,6.
    [143]杨志民,刘广利.不确定性支持向量机原理及应用[M].北京:科学出版社, 2007,4.
    [144]方瑞明.支持向量机理论及其应用分析[M].北京:中国电力出版社, 2007,10.
    [145]白鹏,张喜斌,张斌.支持向量机理论及工程应用实例[M].西安:西安电子科技大学出版社, 2008,8.
    [146] Susan Bartlett, Grzegorz Kondrak,Colin Cherry. Automatic Syllabification with Structured SVMs for Letter-to-Phoneme Conversion. in Proceedings of ACL-08: HLT. 2008: Association for Computational Linguistics.
    [147] Cai, Congzhong, Xiao, et al. Function Prediction for DNA-/RNA-Binding Proteins, GPCRs, and Drug ADME-Associated Proteins by SVM[J]. Protein and Peptide Letters, 2008, 15(5): 463-468.
    [148] W. Chen, C. Peng, X. Zhu, et al. SVM-based identification of pathological voices[J]. Conference proceedings : ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Conference, 2007, 2007: 3786-3789.
    [149] King-Shy Goh, Edward Chang,Kwang-Ting Cheng. SVM binary classifier ensembles for image classification. in CIKM '01: Proceedings of the tenth international conference on Information and knowledge management. 2001: ACM Press.
    [150] Aiwen Jiang, Chunheng Wang,Yuanping Zhu. Calibrated Rank-SVM for multi-label image categorization. in Neural Networks, 2008. IJCNN 2008. (IEEE World Congress on Computational Intelligence). IEEE International Joint Conference on. 2008.
    [151] Hongliang Jin, Qingshan Liu, Hanqing Lu, et al. Face detection using one-class SVM in color images. in Signal Processing, 2004. Proceedings. ICSP '04. 2004 7th International Conference on. 2004.
    [152] R. Liu, Y. Wang, T. Baba, et al. SVM-based active feedback in image retrieval using clustering and unlabeled data[J]. Pattern Recognition, 2008, 41(8): 2645-2655.
    [153] I. Lizarazo. SVM-based segmentation and classification of remotely sensed data[J]. International Journal of Remote Sensing, 2008, 29(24): 7277-7283.
    [154] Xiang-Yang Wang, Hong-Ying Yang,Chang-Ying Cui. An SVM-based robust digital image watermarking against desynchronization attacks[J]. Signal Processing, 2008, 88(9): 2193-2205.
    [155]刘广利.基于支持向量机的经济预警方法研究[D].中国农业大学, 2003.
    [156]张绍武.基于支持向量机的蛋白质分类研究[D].西北工业大学, 2004.
    [157]宋华军.基于支持向量机的目标跟踪技术研究[D].中国科学院研究生院(长春光学精密机械与物理研究所), 2006.
    [158]李伟红.基于支持向量机的人脸特征选择及识别研究[D].重庆大学, 2006.
    [159]栾锋.支持向量机(SVM)和径向基神经网络(RBFNN)方法在化学、环境化学和药物化学中的应用研究[D].兰州大学, 2006.
    [160]蔡勇.基于核机器学习方法的点云处理若干方法研究[D].西南交通大学, 2006.
    [161]孙钢.基于SVM的入侵检测系统研究[D].北京邮电大学, 2007.
    [162]陈渤.基于核方法的雷达高分辨距离像目标识别技术研究[D].西安电子科技大学, 2008.
    [163] R. M. Kuhn, D. Karolchik, A. S. Zweig, et al. The UCSC Genome Browser Database: update 2009[J]. Nucleic Acids Res, 2009, 37: D755-D761.
    [164] K. D. Pruitt, T. Tatusova,D. R. Maglott. NCBI reference sequences (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins[J]. Nucleic Acids Res, 2007, 35: D61-D65.
    [165] K. D. Pruitt, K. S. Katz, H. Sicotte, et al. Introducing RefSeq and LocusLink: curated human genome resources at the NCBI[J]. Trends Genet, 2000, 16(1): 44-47.
    [166] D. Karolchik, A. S. Hinrichs, T. S. Furey, et al. The UCSC Table Browser data retrieval tool[J]. Nucleic Acids Res, 2004, 32: D493-D496.
    [167] TarBase V4.0. http://diana.pcbi.upenn.edu/data/public/TarBase_V4.0.tar. 2007.
    [168] TarBase V5.0. http://diana.cslab.ece.ntua.gr/data/public/TarBase_V5.0.rar. 2008.
    [169] miRecords Validated Target V1. http://mirecords.umn.edu/miRecords/download_data.php? v=1. 2008.
    [170] Randal L. Schwartz, Tom Phoenix,Brian D. Foy. Learning Perl[M]. Sebastopol, CA: O'Reilly, 2005.
    [171] Yevgeny Menaker, Michael Saltzman,Robert J. Oberg. Programming Perl in the .NET environment[M]. Upper Saddle River, NJ: Prentice Hall, 2003.
    [172] Larry Wall, Tom Christiansen,Jon Orwant. Programming Perl[M]. Beijing ; Cambridge, Mass.: O'Reilly, 2000.
    [173] S. F. Altschul, W. Gish, W. Miller, et al. Basic local alignment search tool[J]. J Mol Biol, 1990, 215(3): 403-410.
    [174] David Sankoff,J. H. Nadeau. Comparative genomics : empirical and analytical approaches to gene order dynamics, map alignment and the evolution of gene families[M]. Boston: Kluwer Academic, 2000.
    [175] M. Blanchette, W. J. Kent, C. Riemer, et al. Aligning multiple genomic sequences with the threaded blockset aligner[J]. Genome Res, 2004, 14(4): 708-15.
    [176] J Felsenstein. A Hidden Markov Model approach to variation among sites in rate of evolution. SMBE, 1996: 93-104.
    [177] A. Siepel, G. Bejerano, J. S. Pedersen, et al. Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes[J]. Genome Res, 2005, 15(8): 1034-1050.
    [178] C Ding,H Peng. Minimum redundancy feature selection from microarray gene expression data[J]. Journal of Bioinformatics and Computational Biology, 2005, 3(2): 185-205.
    [179] H Peng, F Long,C Ding. Feature Selection Based on Mutual Information: Criteria of Max-Dependency, Max-Relevance, and Min-Redundancy[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005: 1226-1238.
    [180] D Anguita, S Ridella, F Rivieccio, et al. Hyperparameter Design Criteria for Support Vector Classifiers[J]. Neurocomputing, 2003, 55: 109-134.
    [181] B Büstün, Wj Melssen, M Oudenhuijzen, et al. Determination of optimal support vector regression parameters by genetic algorithms and simplex optimization[J]. Analytica Chimica Acta, 2005, 544(1-2): 292-305.
    [182] C Gold, A Holub,P Sollich. Bayesian approach to feature selection and parameter tuning for support vector machine classifiers[J]. Neural Networks, 2005, 18(5-6): 693-701.
    [183] C. Q. Choi. Big lab on a tiny chip[J]. Sci Am, 2007, 297(4): 100-103.
    [184] J. Hogan. Lab on a chip: a little goes a long way[J]. Nature, 2006, 442(7101): 351-352.
    [185] A Manz, N Graber,Hm Widmer. Miniaturized Total Chemical Analysis Systems: a Novel Concept for Chemical Sensing[J]. TRANSPORT, 1: 1.
    [186] Yh Yang,T Speed. Design issues for cDNA microarray experiments[J]. Nature Reviews Genetics, 2002, 3(8): 579-588.
    [187] E Southern, K Mir,M Shchepinov. Molecular interactions on microarrays[J]. Nature Genetics, 1999, 21(1): 5-9.
    [188]张天浩,张春平,张光寅. DNA芯片制作原理及其杂交信号检测方法[J].生物工程进展, 2000(02): 63-69.
    [189] P. A. Permana, S. Nair,Y. H. Lee. Application of DNA microarray to the study of human adipose tissue/cells[J]. Methods Mol Biol, 2008, 456: 141-154.
    [190] C. H. Wen, Y. C. Su, S. L. Wang, et al. Application of the microarray technique to cell blocks[J]. Acta Cytol, 2007, 51(1): 42-46.
    [191] J. K. Cowell,L. Hawthorn. The application of microarray technology to the analysis of the cancer genome[J]. Curr Mol Med, 2007, 7(1): 103-120.
    [192] M. Bednar. DNA microarray technology and application[J]. Med Sci Monit, 2000, 6(4): 796-800.
    [193]陈菊祥,楼美清,应康.基因芯片在恶性胶质瘤研究中的应用[J].第二军医大学学报, 2000(09): 835-837.
    [194]徐清华,余裕炉.基因芯片技术的研究进展[J].中国优生与遗传杂志, 2007(01): 13-14.
    [195]王洪水,侯相山.基因芯片技术研究进展[J].安徽农业科学, 2007(08): 2241-2245.
    [196]喻红霞,胡建达.基因芯片的应用及其数据分析方法[J].福建医科大学学报, 2005(02): 235-237.
    [197]裴军.用基因芯片寻找差异表达基因[J].上海针灸杂志, 2002(01): 45.
    [198]余志文,于军,徐静平.神奇的基因芯片[J].电子元件与材料, 2000(06): 34-41.
    [199] T. C. Chang, E. A. Wentzel, O. A. Kent, et al. Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis[J]. Mol Cell, 2007, 26(5): 745-752.
    [200] X. Wang. Systematic identification of microRNA functions by combining target prediction and expression profiling[J]. Nucleic Acids Res, 2006, 34(5): 1646-1652.
    [201] R. Schwab, J. F. Palatnik, M. Riester, et al. Specific effects of microRNAs on the plant transcriptome[J]. Dev Cell, 2005, 8(4): 517-527.
    [202] L. P. Lim, N. C. Lau, P. Garrett-Engele, et al. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs[J]. Nature, 2005, 433(7027): 769-773.
    [203] A. J. Giraldez, Y. Mishima, J. Rihel, et al. Zebrafish MiR-430 promotes deadenylation and clearance of maternal mRNAs[J]. Science, 2006, 312(5770): 75-79.
    [204] C. Esau, S. Davis, S. F. Murray, et al. miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting[J]. Cell Metab, 2006, 3(2): 87-98.
    [205] F. E. Nicolas, H. Pais, F. Schwach, et al. Experimental identification of microRNA-140 targets by silencing and overexpressing miR-140[J]. RNA, 2008, 14(12): 2513-2520.
    [206] G. Tzur, A. Levy, E. Meiri, et al. MicroRNA expression patterns and function in endodermal differentiation of human embryonic stem cells[J]. PLoS ONE, 2008, 3(11): e3726.
    [207]彭青松. Bayesian网及其在图像分析中的应用研究[D].合肥工业大学, 2005.
    [208]许志佴.三维复合型垃圾邮件过滤技术的研究与实现[D].上海交通大学, 2008.
    [209]田冰.分布式异构贝叶斯网络模型及其移动商务应用[D].广东工业大学, 2008.
    [210]霍利民.基于贝叶斯网络的电力系统可靠性评估[D].华北电力大学(河北), 2005.
    [211]毕忠伟.岩体力学参数推断的Bayes方法及截尾可靠度的研究与应用[D].中南大学, 2008.
    [212]虞慧婷.贝叶斯网络在临床及微阵列数据分析中的应用[D].第二军医大学, 2007.
    [213]蒋国萍.软件项目风险管理的贝叶斯网络模型研究[D].国防科学技术大学, 2005.
    [214]王筑娟,吴贤毅.关于概率本质的一些思考[J].贵州工业大学学报(社会科学版), 1999(02): 39-42.
    [215] Ga Barnard,T Bayes. Studies in the History of Probability and Statistics: IX. Thomas Bayes's Essay Towards Solving a Problem in the Doctrine of Chances[J]. Biometrika, 1958: 293-315.
    [216] Gf Cooper,E Herskovits. A Bayesian method for the induction of probabilistic networks from data[J]. Machine Learning, 1992, 9(4): 309-347.
    [217]朱慧明.现代经济管理中的线性贝叶斯推断理论与多总体贝叶斯分类识别方法研究[D].南京理工大学, 2003.
    [218]刘乐平,袁卫.现代贝叶斯分析与现代统计推断[J].经济理论与经济管理, 2004(06).
    [219]肖涵.基于高斯混合模型与子空间技术的故障识别研究[D].武汉科技大学, 2007.
    [220] Peter Schlattmann. Medical applications of finite mixture models[M]. Berlin ; London: Springer, 2008.
    [221] Christine Susan Mary Currie. Bayesian sampling methods in epidemic and finite mixture models[M]. Southampton: University of Southampton, 2004.
    [222] Geoffrey J. Mclachlan,David Peel. Finite mixture models[M]. New York ; Chichester: Wiley, 2000.
    [223]王兴斌.贝叶斯网络在语音鲁棒性识别中的应用[D].解放军信息工程大学, 2006.
    [224] Kb Petersen, O Winther,Lk Hansen. On the slow convergence of EM and VBEM in low-noise linear models[J]. Neural Computation, 2005, 17(9): 1921-1926.
    [225]王联结.生物化学与分子生物学[M].科学出版社, 2005,1.
    [226] J. W. Fickett,W. W. Wasserman. Discovery and modeling of transcriptional regulatory regions[J]. Curr Opin Biotechnol, 2000, 11(1): 19-24.
    [227]郭方明,武秀.基因调控与阴阳平衡[J].亚太传统医药, 2008(03): 20-22.
    [228]杨朝辉,胡福泉.自然反义转录物:生物界中一种重要的基因表达调控分子[J].生命的化学, 2008(05): 569-573.
    [229] Kevin V. Morris. RNA and the regulation of gene expression : a hidden layer of complexity[M]. Wymondham: Caister Academic, 2008.
    [230]陈坚,薛绪潮.基因诱导调控系统研究进展[J].山东医药, 2007(29): 106-107.
    [231]魏泉德,黄艳,余新炳.组蛋白与基因调控研究进展[J].热带医学杂志, 2006(05): 596-598.
    [232]余佳,王芳,张俊武.基因调控中的新星——microRNA[J].医学分子生物学杂志, 2006(02): 108-112.
    [233] Gary H. Perdew, John P. Vanden Heuvel,Jeffrey M. Peters. Regulation of gene expression : molecular mechanisms[M]. Totowa, N.J.: Humana Press, 2006.
    [234] Eric H. Davidson. The regulatory genome : gene regulatory networks in development and evolution[M]. Amsterdam ; London: Elsevier/Academic Press, 2006.
    [235] David S. Latchman. Gene regulation : a eukaryotic perspective[M]. New York ; Abingdon: Taylor & Francis, 2005.
    [236]李洁.植物转录因子与基因调控[J].生物学通报, 2004(03): 9-11.
    [237] D. S. Latchman. Transcription factors: an overview[J]. Int J Biochem Cell Biol, 1997, 29(12): 1305-1312.
    [238] M. Karin. Too many transcription factors: positive and negative interactions[J]. New Biol, 1990, 2(2): 126-131.
    [239] David S. Latchman. Eukaryotic transcription factors[M]. Amsterdam ; London: Academic, 2008.
    [240] Jacob E. Friedman. New transcription factors and their role in diabetes and its therapy[M]. Amsterdam ; London: Elsevier, 2006.
    [241] Joseph Locker. Transcription factors[M]. Chichester: BIOS, 2001.
    [242] David S. Latchman. Transcription factors : a practical approach[M]. Oxford: Oxford University Press, 1999.
    [243] J. Hiscott. Introduction--cytokine receptors, signaling pathways and viruses[J]. Cytokine Growth Factor Rev, 2001, 12(2-3): 129-31.
    [244] Robert E. Rhoads. Signaling pathways for translation : stress, calcium, and rapamycin[M]. Berlin ; New York: Springer, 2001.
    [245] Jean-Fran?ois M. D. Dufour, Pierre-Alain Clavien, Christian Trautwein, et al. Signaling pathways in liver diseases[M]. Berlin ; [Great Britain]: Springer, 2005.
    [246] R. Iyengar. Teaching resources. Introduction: Overview of pathways and networks and GPCR signaling[J]. Sci STKE, 2005, 2005(270): tr4.
    [247] Sankar Ghosh. Handbook of transcription factor NF-kappaB[M]. Boca Raton: CRC Press, 2007.
    [248] T. P. Speed. Statistical analysis of gene expression microarray data[M]. Boca Raton, Fla. ; London: Chapman & Hall/CRC, 2003.
    [249] G. Parmigiani. The analysis of gene expression data : methods and software[M]. New York ; London: Springer, 2003.
    [250] Helen C. Causton, John Quackenbush,Alvis Brazma. Microarray gene expression data analysis : a beginner's guide[M]. Oxford: Blackwell, 2003.
    [251] Mei-Ling Ting Lee. Analysis of microarray gene expression data[M]. Boston, Mass. ; London: Kluwer Academic, 2004.
    [252]郭瑞萍.不同休眠级苜蓿品种抗寒基因克隆与表达差异性研究[D].吉林大学, 2007.
    [253]王寿勇.体外循环肺损伤敏感基因筛选[D].华中科技大学, 2006.
    [254]李新志.稳定表达EGFP的不同转移特性骨肉瘤细胞亚株的筛选及基因差异性分析[D].华中科技大学, 2006.
    [255] A. Begun. Power estimation of the t test for detecting differential gene expression[J]. Funct Integr Genomics, 2008, 8(2): 109-113.
    [256] P. Baldi,A. D. Long. A Bayesian framework for the analysis of microarray expression data: regularized t -test and statistical inferences of gene changes[J]. Bioinformatics, 2001, 17(6): 509-19.
    [257] Hardeo Sahai,Mohammed I. Ageel. The analysis of variance: fixed, random, and mixed models[M]. Boston, Mass.: Birkha, 2000.
    [258]曹文君,李运明,陈长生.基因表达谱富集分析方法研究进展[J].生物技术通讯, 2008(06): 931-934.
    [259]顾祖光.基因芯片数据分析中的基因集合分析技术[J].河北农业科学, 2008(08): 169-170.
    [260]方焯.基于生物知识的生物芯片表达谱数据分析研究[D].华中科技大学, 2006.
    [261] F. James. Statistical methods in experimental physics[M]. Hackensack, NJ ; London: World Scientific, 2006.
    [262] A. Subramanian, P. Tamayo, V. K. Mootha, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles[J]. Proc Natl Acad Sci U S A, 2005, 102(43): 15545-15550.
    [263] A. Subramanian, H. Kuehn, J. Gould, et al. GSEA-P: a desktop application for Gene Set Enrichment Analysis[J]. Bioinformatics, 2007, 23(23): 3251-3253.
    [264] V. Saxena, D. Orgill,I. Kohane. Absolute enrichment: gene set enrichment analysis for homeostatic systems[J]. Nucleic Acids Res, 2006, 34(22): e151.
    [265] M. Yoneda, H. Endo, H. Mawatari, et al. Gene expression profiling of non-alcoholic steatohepatitis using gene set enrichment analysis[J]. Hepatol Res, 2008, 38(12): 1204-1212.
    [266] R. Lin, S. Dai, R. D. Irwin, et al. Gene set enrichment analysis for non-monotone association and multiple experimental categories[J]. BMC Bioinformatics, 2008, 9(1): 481.
    [267] M. Holden, S. Deng, L. Wojnowski, et al. GSEA-SNP: applying gene set enrichment analysis to SNP data from genome-wide association studies[J]. Bioinformatics, 2008, 24(23): 2784-2785.
    [268] H. Wakaguri, R. Yamashita, Y. Suzuki, et al. DBTSS: database of transcription start sites, progress report 2008[J]. Nucleic Acids Res, 2008, 36: D97-D101.
    [269] A. Grote, J. Klein, I. Retter, et al. PRODORIC: a database and tool platform for the analysis of gene regulation in prokaryotes[J]. Nucleic Acids Res, 2009, 37: 61-65.
    [270] J. C. Bryne, E. Valen, M. H. Tang, et al. JASPAR, the open access database of transcription factor-binding profiles: new content and tools in the 2008 update[J]. Nucleic Acids Res, 2008, 36: 102-106.
    [271] N. A. Kolchanov, E. V. Ignatieva, E. A. Ananko, et al. Transcription Regulatory Regions Database (TRRD): its status in 2002[J]. Nucleic Acids Res, 2002, 30(1): 312-317.
    [272] E. Wingender, X. Chen, R. Hehl, et al. TRANSFAC: an integrated system for gene expression regulation[J]. Nucleic Acids Res, 2000, 28(1): 316-319.
    [273] E. Wingender, P. Dietze, H. Karas, et al. TRANSFAC: a database on transcription factors and their DNA binding sites[J]. Nucleic Acids Res, 1996, 24(1): 238-241.
    [274]张光亚,方柏山.转录调节位点和转录因子数据库介绍[J].生物学通报: 10-11.
    [275] H. Ogata, S. Goto, K. Sato, et al. KEGG: Kyoto Encyclopedia of Genes and Genomes[J]. Nucleic Acids Res, 1999, 27(1): 29-34.
    [276] D Nishimura. A view from the Web: BioCarta[J]. Biotech Software and Internet Report, 2001, 2(3): 117-120.
    [277] G. Joshi-Tope, M. Gillespie, I. Vastrik, et al. Reactome: a knowledgebase of biological pathways[J]. Nucleic Acids Res, 2005, 33: D428-D432.
    [278] C. Choi, M. Krull, A. Kel, et al. TRANSPATH-A High Quality Database Focused on Signal Transduction[J]. Comp Funct Genomics, 2004, 5(2): 163-168.
    [279] F. Schacherer, C. Choi, U. Gotze, et al. The TRANSPATH signal transduction database: a knowledge base on signal transduction networks[J]. Bioinformatics, 2001, 17(11): 1053-1057.
    [280] G. D. Bader, M. P. Cary,C. Sander. Pathguide: a pathway resource list[J]. Nucleic Acids Res, 2006, 34: 504-506.
    [281]刘蓉,刘军万.生物信息学中途径研究进展[J].生物技术通报, 2008(01): 83-87.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700