用户名: 密码: 验证码:
MALDI质谱新方法与新技术及其在蛋白质组学中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本博士学位论文工作的主要集中于基于基质辅助激光解析飞行时间质谱(MALDI-TOFMS)的新方法新技术新发展及其在在蛋白质组学领域中的应用研究。在痕量多肽富集除盐的研究方面取得了创新性的进展,利用嵌段共聚物成功实现了样品高效靶上原位除盐与富集后直接用于MALDI-TOFMS分析,并成功应用到实际样品小鼠肝脏的蛋白质组学研究中。在蛋白质直接靶上酶解技术方面,发展了以树枝状聚合物-碳纳米管为基体,将胰蛋白酶固定在树枝状聚合物的表面得到可溶性的固定化酶,成功实现了蛋白质在靶板上快速酶解后直接用于MALDI-TOFMS分析,特别适用于低丰度蛋白质的高效酶解和质谱鉴定。在基质方面开展了针对磷酸化多肽、寡聚糖和磷脂离子化效率低等问题的研究工作,对基质体系进行研究,大大提高了上述三类分子的离子化效率,为质谱高灵敏度检测提供了解决方案。在MALDI-TOFMS用于非小细胞组织切片直接分析开展了研究工作,建立了用组织成像的方法寻找非小细胞癌生物标志物的方法,发现在非小细胞肺鳞癌中发现有别于癌旁组织的m/z 3000-3500的簇峰;发现非小细胞2种亚型肺鳞癌和肺腺癌相比,有各自特征性的磷脂分子峰出现;发现癌组织中heme b(m/z 616.2)表达量远低于癌旁组织,成为区别非小细胞肺癌和癌旁组织的生物标志物。
     随着人类基因组序列“全书”的绘制完成,首次在分子层面上为人类揭示生命奥秘提供了一份生命“解剖图”。此后,人类对生命“密码”的解读大大加快了,进入了后基因组时代中。蛋白质组学(Proteomics)研究正是生命科学进入后基因组时代的标志之一。蛋白质组学以蛋白质组(Proteome)为研究对象。蛋白质组最初是指“由一个细胞或一个组织的基因组所表达的全部相应的蛋白质”。测定一个有机体的基因组所表达的全部蛋白质的设想,萌发在1975年双向凝胶电泳发明之时。1994年Williams正式提出了这个问题,而“蛋白质组”的名词则是由Wilkins创造的,它是由蛋白质的“Protein”和基因组的“Ome”字母拼接而成,发表在1995年7月的Electrophoresis杂志上。现在这一概念得到了扩展,指有机体全部基因表达的全部蛋白质及其存在方式,或者说是一种细胞、组织或完整生物体在特定时空上所拥有的全套蛋白质,以及蛋白质表达后的修饰,蛋白质之间的相互作用,蛋白质的空间结构和更高级的复合物等。
     蛋白质分离技术、蛋白质鉴定技术、蛋白质相互作用分析及生物信息学数据处理技术被称为蛋白质组研究的四大基本支撑技术。其中,在蛋白质鉴定方面,质谱技术是目前在鉴定蛋白质的多种方法中发展最快、应用最广泛、最具发展潜力的技术。自约翰.芬恩(JohnB.Ferm)和田中耕一(Koichi.Tanaka)分别发明了两种重要的软电离方式“电喷雾离子化(ESI)”和“基质辅助激光解析离子化(MALDI)”技术,建立对生物大分子进行确认和结构分析的方法以来,质谱目前已经成为生命科学领域最活跃的前沿研究领域之一。蛋白质组学的科学研究之所以能够取得蓬勃的发展,主要依赖于质谱技术的飞速发展以及高通量分离和分析技术的突破性进步。然而,由于蛋白质的可变性和多样性等特点,蛋白质组研究在分析技术和分析仪器上还有很多瓶颈问题有待解决。如蛋白质的表达水平差异大,动态范围宽,现有的分离技术还不足以将一个生物体内所有的蛋白质分离开来:现有分析仪器的灵敏度还很难将体内微量的蛋白质精确分析,而这种微量蛋白在生命过程中起到关键性作用。随着蛋白质组学研究的进一步深入,传统的生物质谱技术平台已不足以应对蛋白质组学中高灵敏度高通量高准确度等的检测要求,所以研究和发展基于生物质谱的新技术与新方法对于促进蛋白质组学的研究显得意义重大。
     本论文以发展MALDI质谱分析相关的新技术新方法为切入点,开展了相关研究工作。本论文共分为五章,主要内容摘要如下:
     第一章主要综述了蛋白质组学研究发展概况,包括蛋白质组学的研究目的、意义、主要研究方法以及蛋白质组学在人类疾病研究中的应用。质谱仪器作为蛋白质组学研究领域中一个重要的技术支撑,本章节对质谱仪器的发展状况进行了简单的综述,包括其核心部件离子源、质量分析器和检测器技术的发展状况。着重对蛋白质组学中应用广泛的两种质谱仪器基质辅助激光解析质谱和电喷雾质谱的原理和应用进行了小结。本章还对蛋白质组学分析时面临的挑战进行了归纳,对MALDI技术研究的重要性和面临的挑战进行分析,并在此基础上提出了本课题工作的研究方向。
     第二章研究工作主要为嵌段共聚物PSF-b-PEO用于痕量多肽靶上除盐和富集后直接MALDI-TOFMS分析的新方法研究。我们选择微观相分离结构的嵌段共聚物PSF-b-PEO作为MALDI靶涂层,然后利用制作的聚合物涂层进行痕量多肽的靶上除盐和富集工作。嵌段共聚物结构中具有亲水和疏水的两端,在点覆样品溶液后,由于疏水端不溶解在样品溶剂中,保持嵌段聚合物在金属上的膜稳定性;亲水端则可以溶解在样品溶剂中并对盐和一些污染物具有强的吸附作用,因而在样品溶剂挥发的过程中,盐和其它污染物被牢牢地包裹在聚合物内部。点覆基质溶液后,由于盐被包裹在聚合物内部,不再进入到基质的溶剂中,而肽段会再次溶解在基质中并和基质形成结晶。并且,由于聚合物膜的疏水性使得样品会收缩在一个很小的靶点区域内,使样品在靶上得到了富集。因此无需额外清洗除盐,富集除盐后的样品就可以直接进行MALDI-TOFMS分析。
     第三章的研究工作主要为以树枝状聚合物-碳纳米管为基体,将胰蛋白酶固定在树枝状聚合物的表面得到可溶性的固定化酶,成功实现了痕量蛋白质在靶板上快速酶解后直接用于MALDI-TOFMS分析。我们首先在混合酸中对碳纳米管进行酸化处理在表面形成大量羧基并通过酸化处理截短碳纳米管以及去除杂质。然后将聚酰胺-胺型树枝状聚合物(dendrimers)通过共价结合的方式结合在碳纳米管表面,并将胰蛋白酶通过戊二醛交联反应固定在聚合物的氨基端。碳纳米管表面修饰了dendrimers后,极大地增强了碳纳米管的可溶性。因此,以树枝状聚合物-碳纳米管为基体的固定化酶既具有固定化酶的稳定性高的优点又具有可溶性酶活性高的优点,并且由于它的可溶性,酶解后不需要将碳纳米管从溶液中分离即可进行质谱鉴定。以树枝状聚合物-碳纳米管为基体的固定化胰蛋白酶进行靶上酶解,效率高、速度快、酶自降解峰少,酶解完成后可以直接进行质谱检测,特别适合痕量蛋白质的酶解和鉴定。
     第四章研究工作主要为针对提高磷酸化多肽、寡聚糖及磷脂离子化效率开展的MALDI基质体系研究。通过在基质溶液中添加磷酸铵盐提高磷酸化肽的离子化效率;合成了新型离子基质2,3,4-三羟基苯乙酮/N,N-二甲基苯胺(2,3,4-THAP/DMA),2,3,4-三羟基苯乙酮/吡啶(2,3,4-THAP/Py),2,4,6-三羟基苯乙酮/N,N-二甲基苯胺(2,4,6-THAP/DMA)和2,4,6-三羟基苯乙酮/吡啶(2,4,6-THAP/Py)提高寡聚糖离子化效率;此外,还扩展了非极性基质[2E-3-(4-叔-丁基苯基)-2-甲基丙-2-亚烯基]丙二腈(DCTB)的应用范围,发现其在提高磷脂离子化效率方面有着重要的贡献。大大提高了上述三类分子的离子化效率,为质谱高灵敏度检测提供了解决方案
     第五章研究工作主要为MALDI质谱成像技术用于非小细胞肺癌组织切片分析的研究。MALDI质谱成像技术用于直接分析组织切片已在基础与临床医学研究中迅速发展。通过对冰冻组织切片表面的质谱扫描可以快速直观地得到组织中的分子如蛋白,多肽等的分布信息。我们采用质谱成像技术对人的非小细胞肺癌组织切片及癌旁组织切片进行了研究,对质谱直接组织表面分析的方法进行了优化,初步建立了以质谱成像法寻找非小细胞肺癌中的生物标志物的方法。结果表明,肺鳞癌组织中有m/z3000-3500范围内的特征性簇峰出现;发现非小细胞2种亚型肺鳞癌和肺腺癌相比,有各自特征性的磷脂分子峰出现;以及在肺癌组织中heme b表达量远低于癌旁组织。质谱用于直接组织切片分析技术能够直观地在分子水平上反映出癌组织和正常组织间的差异,有望进一步提高肺癌临床诊断的准确度。
The main contribution of this doctoral dissertation is the development of new methods and techniques of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) and their application for proteomics research. Carrying out discoveries and inventions of the enrichment and desalting of low-abundance peptides using block copolymer and combined with MALDI-TOFMS analysis, which were then successfully applied in real sample analysis; Development of novel on-plate high speed proteolysis method with water-soluble immobilized trypsin on dendrimers-modified-carbonnanotubes (dCNTs) followed with MALDI-TOFMS analysis, which is especially helpful for low-abundance proteins digestion and identification; Investigation of new matrices system for high ionization of molecules includes phosphopeptides, oligosaccharides and phosphatidylcholines, their ionization efficiency were in a large extent enhanced with these novel matrices systems; Using MALDI-TOFMS for directly tissue section profiling analysis of non-small cell lung cancer(NSCLC). Results indicated that cluster peaks appears in the m/z ranges from 3000 to 3500 corresponding to squamous cell carcinoma tissues; The phospholipids profiles from different subtypes of NSCLC were investigated, and there were obvious differences between squamous cell carcinoma tissues and adenocarcinoma tissues; Also, results showed m/z 616.2 corresponding to heme b showed low ion intensity in cancerous regions compared with paracancerous.
     As the human genome sequence "encyclopedia" completed, it ushered a new epoch of deciphering the mystery of life and afforded "anatomic map"of human life at the molecular level for the first time. It fueled the deciphering of "life codes", and made the genomics entering the post-genomics era since then. "Proteomics", as a new frontier in life science, has become one of the landmarks for the post-genomics period. Proteomics studied with the proteome as its research object. The term "proteome" was first coined to describe "the set of proteins encoded by the genome from a given cell or tissue". Determination of all the proteins from an organism was firstly germinated in 1975 at the time invention of two-dimensional gel electrophoresis. In 1994, Willams proposed this question formally, but the term "Proteome" was created by Wilkins, it comes from the term "Protein" and the term "genome". Nowadays, the concept of "Proteome" is expanded, it refers to not only all the proteins in any given cell, but also the set of all protein isoforms and modifications, the interactions between them, the structural description of proteins and their higher-order complexes etc.
     Protein separation, protein identification, protein interaction analysis and bioinformatics data processing are four basic support techniques in proteomic study. As for protein identification, mass spectrometry technology is the fastest developing, the most extensive application and the most promising technology in the various protein identification methods currently. From the invention of two important soft ionization methods "electrospray ionization"(ESI) and "matrix-assisted laser desorption ionization"(MALDI) technology by JohnB.Fenn and Koichi.Tanaka respectively, as well as the establishment of biological macromolecules identification and structure analysis method, mass spectrometry(MS) has now become the most active frontier research field in life sciences. The vigorously development of proteomics mainly rely on development of mass spectrometry technology and progress of rapid protein separation and analysis technique with high-throughput. However, because of the diversity and variability of protein, proteomics studies are far more complex and much more difficult than genomics studies, especially bottlenecks will arise in analytical techniques and instruments. For example, the separation capability of existing technology is not enough to isolate all of the proteins in a given biological because of the wide dynamic range of the protein expression level; the sensitivity of the existing analysis instrument is hard to obtain traces of proteins, even though the precise analysis of trace protein plays an important role in life process. With the further in-depth study of proteomics, traditional biomass spectrometry platform is not enough to cope with detection requirements with high sensitivity, high accuracy, and high throughput. Therefore, the development of new methods and new techniques of biomass spectrometry is of great significance for promoting proteomics research.
     This thesis focused on the development of new methods and new techniques of mass spectrometry analysis. The whole doctoral dissertation consists of five chapters and the contents are summarized as follows:
     The first chapter summarized the development situation of proteomics research, including its research purpose, scientific significance, main research methods, and its application in human diseases research. As an important technical support platform of proteomics research fields, the development of mass spectrometry instrument, including its core components like ion source, quality analyzer and detector technology were reviewed in this chapter. Especially, it focused on the introduction of the principle and application of the most two widely used mass spectrometry (MALDI-MS and ESI-MS) in proteomics. At last, we introduced the challenges that proteomics analysis still faced. Based on that, the investigation direction and purpose of this dissertation was put forward.
     The research work describe in chapter two focused on describing a novel method of on-plate desalting and enriching of trace peptides with block copolymer PSF-b-PEO and combined with MALDI-TOFMS analysis. We choose the block copolymer PSF-b-PEO with microscopic phase separation structure as the MALDI target coating materials, and then made use of the polymer film for on-plate desalting and enriching of trace peptides. There are hydrophilic and hydrophobic domains in its structure, after the sample solution added on the polymer film, because hydrophobic domain could maintain the polymer do not dissolve in the sample solution thus keeping the stability of the polymer film. The hydrophilic domains could dissolve in samples solutions and had strong effect on adsorption of salts or other contaminates, thus with the evaporation of sample solvent, salts and other contaminates were firmly wrapped inside the polymer. After added the matrix solution, salts no longer entered into the matrix solution due to the adsorption of polymer, whereas peptides redissolved in the matrix solution and form crystals with the matrix. In addition, the sample shrunk in a small target area on the hydrophobic surface of the polymer film, thereby, the sample was enriched on-target. Therefore, after the simultaneous desalting and enriching process, the sample could be directly analyzed by MALDI-TOFMS without any additional washing process.
     The research work describe in chapter three focused on describing a novel method on-plate proteolysis with immobilized trypsin on dendrimers-modified-carbon nanotubes followed with MALDI-TOFMS analysis. Firstly, we treated the carbon nanotubes in mixed acid reagent to form large amount carboxyl group on its surface, and cut short of the carbon nanotubes as well as removed impurities through the acidification treatment. Then the polyamide-amine dendrimers was covalent modified on the carbon nanotubes surface. After that, trypsin was immobilized onto the dendrimers-modified carbon nanotubes(dCNTs) through the reaction of the aldehyde groups with the amine groups on the end of dendrimers. The dendrimers modification in a large extent enhanced the water-solubility of the carbon nanotubes. Therefore, the trypsin-linked dCNTs represents innovative properties that possess the advantages of both good stability of immobilized enzymes and high activity of soluble enzymes. Moreover, because of its good water-solubility, after the completion of proteolysis it can be used for directly mass spectrometric analysis without any need to remove the carbon nanotubes. It afforded many benefits using the trypsin-linked dCNTs for on-plate proteolysis, such as high digestion efficiency, high digestion speed, less enzymatic autolysis and can be directly used for MS analysis after the completion of digestion, making it especially suitable for proteolysis and identification of trace protein.
     The research work describe in chapter four focused on describing some novel matrices systems for enhanced the ionization of phosphopeptides, oligosaccharides or phosphatidylcholines. Added ammonium phosphate salts in matrix solution to improve the ionization efficiency of phosphopeptide; Synthesized novel ionic matrices 2,3,4-THAP/DMA, 2,3,4-THAP/Py, 2,4,6-THAP/DMA and 2,4,6-THAP/Py to improve the ionization efficiency of oligosaccharides; Expanded the application of nonpolar matrix T-2-(3-(4-t-Butyl-phenyl)-2-methyl-2-propenylidene)malononitrile(DCTB) to improve the ionization efficiency of phosphatidylcholines.
     The research work describe in chapter five described the method using MALD1-T0FMS for directly profiling of non-small cell lung cancer(NSCLC) tissues. MALDI-MS profiling for tissue section analysis is rapidly developed among foundation and clinical medical research. Through scanning on the frozen tissue slices, distribution information of molecules such as protein and peptides from a certain tissue are directly obtained in little time by Profiling MS technology. Based on the Profiling MS technology, human being's NSCLC tissues and paracancerous tissue slices were investigated, a profiling MS method analysis of NSCLC for biomarkers has been established after optimization the related methods. Results indicated that cluster peaks appears in the m/z ranges from 3000 to 3500 corresponding to corresponding to squamous cell carcinoma tissues; The phospholipids profiles from different subtypes of NSCLC were investigated, and there were obvious differences between squamous cell carcinoma tissues and adenocarcinoma tissues; Also, result showed m/z 616.2 corresponding to heme b showed low ion intensity in a cancerous regions compared with paracancerous. The profiling MS technique can present the differences between cancerous with paracancerous areas at molecular level, which is hoped to help improving the clinical diagnosis accuracy of NSCLC.
引文
[1]International Human Genome Sequencing Consortium.Initial sequencing and analysis of the human genome [J].Nature,2001,409:860-921.
    [2]Dunham,I.,Hunt,A.R.,Collins,J.E.,et al.The DNA sequence of human chromosome.[J].Nature,1999,402:489-495.
    [3]Collins,F.S.,Morgan,M.,Patrinos,A.The Human Genome Project:Lessons from large - scale biology.[J].Science,2003,300:286-290.
    [4]Wilkins,M.R.,Sanehez,J.C,Gooley,A.A.,et al.Progress with proteome projects:Why all proteins expressed by a genome should be identified and how to do it.[J].Biotechnol.Genet.Eng.Rev.,1996,13:19-50.
    [5]Klein,J.B.,Thongboonkerd,V.Overview of proteomics.[J].Contrib.Nephrol.,2004,141:1-10.
    [6]Wasinger,V.C,Cordwell,S.J.,Cerpapoljak,A.,et al.Progress with gene-product mapping of the Mollicutes:Mycoplasma genitalium.[J].Electrophoresis,1995,16:1090-1094.
    [7]Anderson,N.L.,Anderson,N.G.Proteome and proteomics:new technologies,new concepts and new words.[J].Electrophoresis.1998,19:1853-1861.
    [8]Tyers,M.,Mann,M.From genomics to proteomics.[J].Nature,2003,422:193-197.
    [9]Lee,K.H.Proteomics:a technology-driven and technology-limited discovery science.[J].Trends Biotechnol.,2001,19:217-222.
    [10]Cho,W.C.Proteomics technologies and challenges.[J].Geno.Prot.Bioinfo.,2007,5:77-85.
    [11]Patterson,S.D.,Aebersold,R.H.Proteomics:the first decade and beyond.[J].Nat.Genet,2003,33:311-323.
    [12]Issaq,H.J.,Conrads,T.P.,Janini,G.M.,et al.Methods for fractionation,separation and profiling of proteins and peptides.[J].Electrophoresis,2002,23:3048-3061.
    [13]Issaq,H.J.The role of separation science in proteomics research.[J].Electrophoresis,2001,22:3629-3638.
    [14]O'Farrell,P.H.High resolution two-dimensional electrophoresis of proteins.[J].J.Biol.Chem.,1975,250:4007-4021.
    [15]Gorg,A.,Weiss,W,Dunn,M.J.Current two-dimensional electrophoresis technology for proteomics.[J].Proteomics,2004,4:3665-3685.
    [16]Gygi,S.P.,Corthals,G.L.,Zhang,Y.,et al.Evaluation of two-dimensional gel electrophoresis based proteome analysis technology.[J].Proc.Natl.Acad.Sci.,2000,97:9390-9395.
    [17]Unlu,M.,Morgan,M.E.,Minden,J.S.Difference gel electrophoresis:a single gel method for detecting changes in protein extracts.[J].Electrophoresis,1997,18:2071-2077.
    [18]Rabilloud,T.Two-dimensional gel electrophoresis in proteomics:old,old fashioned,but it still climbs up the mountains.[J].Proteomics,2002,2:3-10.
    [19]Mitulovic,G,Mechtler,K.HPLC techniques for proteomics analysis—a short overview of latest developments.[J].Brief Funct.Genomic.Proteomic.2006,5:249-260.
    [20]Zhu,X.N.,Su,Z.G.Application of reversed-phase liquid chromatography in separation and analysis of proteins and peptides.[J].Chinese J.Anal.Chem.,2004,32:248-254.
    [21]Taouatas,N.,Altelaar,A.F.M.,Drugan,M.M.,et al.Strong cation exchange-based fractionation of Lys-N-generated peptides facilitates the targeted analysis of post-translational modifications.[J].Mol.Cell.Proteomics.,2009,8:190-200.
    [22]Lecchi,P.,Gupte,A.R.,Perez,R.E.,et al.Size-exclusion chromatography in multidimensional separation schemes for proteome analysis.[J].J.Biochem.Biophys.Meth.,2003,56:141-152.
    [23]Lee,W.C,Lee,K.H.Applications of affinity chromatography in proteomics.[J].Anal.Biochem.,2004,324:1-10.
    [24]Wehr,T.Multidimensional liquid chromatography in proteomic Studies.[J].LCGC North America,2002,20:954-962.
    [25]Washburn,M.P.,Wolters,D.,Yates,J.R.Large-scale analysis of the yeast proteome by multidimensional protein identification technology.[J].Nat.Biotechnol.,2001,19:242-247.
    [26]Shen,Y.F.,Smith,R.D.Proteomics based on high-efficiency capillary separations.[J].Electrophoresis,2002,23:3106-3124.
    [27]Jorgenson,J.W,Lukacs,K.D.Zone electrophoresis in open tubular glass capillaries.[J].Anal.Chem.1981,53:1298-1302.
    [28]Cooper,J.W.,Wang,Y.J.,Lee,C.S.Recent advances in capillary separations for proteomics.[J].Electrophoresis,2004,25:3913-3926.
    [29]Chiou,S.H.,Wang,K.T.Simplified protein hydrolysis with methanesulphonic acid at elevated temperature for the complete amino acid analysis of proteins.[J].J.Chromat.A.,1988,448:404-410.
    [30]Henzel,W.J.,Tropea,J.,Dupont,D.Protein identification using 20-minute Edman cycles and sequence mixture analysis.[J].Anal.Biochem.,1999,267:148-160.
    [31]Huang,R.P.Detection of multiple proteins in an antibody-based protein microarray system.[J].J.Immunol.Method.,2001,255:1-13.
    [32]Grandori,R.Electrospray-ionization mass spectrometry for protein conformational studies.[J].Curr.Org.Chem.,2003,7:1589-1603.
    [33]Kowalski,P.,Stoerker,J.Accelerating discoveries in the proteome and genome with MALDITOF MS.[J].Pharmacogenomics,2000,1:359-366.
    [34]Rademaker,G. J.,Thomas-Oates,J.Analysis of glycoproteins and glycopeptides using fast-atom bombardment.[M].Methods in Molecular Biology:Protein and peptide analysis by mass spectrometry.1996,61:231-241.
    [35]Cristoni,S.,Bernardi,L.R.,Biunno,I.,et al.Analysis of protein ions in the range 3000-12000 Th under partial (no discharge) atmospheric pressure chemical ionization conditions using ion trap mass spectrometry.[J].Rapid Commun.Mass Spectrom.,2002,16:1153-1159.
    [36]Aebersold,R.,Mann,M.Mass spectrometry-based proteomics.[J].Nature,2003,422:198-207.
    [37]Cravatt,B.R,Simon,G.M.,Yates,J.R.The biological impact of mass-spectrometry-based proteomics.[J].Nature,450:991-1000.
    [38]Fields,S.,Song,O.K.A novel genetic system to detect protein-protein interactions.[J].Nature,1989,340:245-246.
    [39]Ito,T.,Chiba,T.,Ozawa,R.,et al.A comprehensive two-hybrid analysis to explore the yeast protein interactome.[J].Proc.Natl.Acad.Sci.,2001,98:4569-4574.
    [40]Rigaut,G,Shevchenko,A.,Rutz,B.,et al.A generic protein purification method for protein complex characterization and proteome exploration.[J].Nat.Biotechnol.,1999,17:1030-1032.
    [41]Forler,D.,Kocher,T.,Rode,M.,et al.An efficient protein complex purification method for functional proteomics in higher eukaryotes.[J].Nat.Biotechnol.,2003,21:89-92.
    [42]Zhu,H.,Bilgin,M,Bangham,R.,et al.Global analysis of protein activities using proteome chips.[J].Science,2001,293:2101-2105.
    [43]Haoudi,A.,Bensmail,H.Bioinformatics and data mining in proteomics.[J].Exp.Rev.Proteomics,2006,3:333-343.
    [44]Kremer,A.,Schneider,R.,Terstappen,G.C.A bioinformatics perspective on proteomics:Data storage,analysis,and integration.[J].Bioscience Rep.,2005,25:95-106.
    [45]Lee,K.,Kye,M.,Jang,J.S.,et al.Proteomic analysis revealed a strong association of a high level of alpha-antitrypsin in gastric juice with gastric cancer.[J].Proteomics,2004,11:3343-3352.
    [46]Chambers,G,Lawrie,L.,Cash,P.,et al.Proteomics:a new approach to the study of disease.[J].J.Patho.,2000,192:280-288.
    [47]Seow,T.K.,Liang,R.C,Leow,C.K.,et al.Hepatocellular carcinoma:from bedside to proteomics.[J].Proteomics,2001,1:1249-1263.
    [48]Edgar,P.R,Schonberger,S.J.,Dean,B.,et al.A comparative proteome analysis of hippocampal tissue from schizophrenic and Alzheimer's disease individuals.[J].Mol.Pschiatry.,1999,4:173-178.
    [49]Ueno,I.,Sakai,T.,Yamaoka,M.,et al.Analysis of blood plasma proteins in patients with Alzheimer's disease by two-dimensional electrophoresis,sequence homology and immunodetection.[J].Electrophoresis,2000,21:1832-1845.
    [50]Edwards,A.V.,White,M.Y.,Cordwell,S.J.The Role of proteomics in clinical cardiovascular biomarker discovery.[J].Mol.Cell.Proteomics,2008,7:1824-1837.
    [51]Corcoran,E.E.,Joseph,J.D.,Macdonald,J.A.,et al.Proteomic analysis of calcium/calmodulin-dependent protein kinase I and IV in vitro substrates reveals distinct catalytic preferences.[J].J.Biol.Chem.,2003,278:10516-10522.
    [52]Chen,J.H.,Chang,Y.W.,Yao,C.W.,et al.Plasma proteome of severe acute respiratory syndrome analyzed by two dimensional gel electrophoresis and mass spectrometry.[J].Proc.Natl.Acad.Sci.,2004,101:17039-17044.
    [53]Tanaka,K.Yaki,H.,Ido,Y.et al.Protein and polymer analyses up to m/z 100 000 by laser ionization time-of-flight mass spectrometry.[J].Rapid Commun.Mass Spectrom.,1988,2:151-153.
    [54]Karas,M.,HiUenkamp,R Laser desorption ionization of proteins with molecular masses exceeding 10000 daltons.[J].Anal.Chem.1988,60: 2299-2301.
    [55] Vertes, A., Gijbels, R. Sublimation versus fragmentation in matrix-assisted laser desorption. [J]. Chem. Phys. Lett. 1990, 64: 284-290.
    [56] Karas, M., Gluckmann, M., Schafer, J. Ionization in matrix-assisted laser desorption/ionization: singly charged molecular ions are the lucky survivors. [J]. J. Mass Spectrom., 2000,35: 1-12.
    [57] Dole, M., Mack, L. L., Hines, R. L. Molecular beams of macroions. [J]. J. Chem. Phys. 1968,49:2240-2249.
    [58] Yamashita, M., Fenn, J. B. Negative ion production with the electrospray ion source. [J]. J. Phys. Chem., 1984, 88: 4671-4675.
    [59] Whitehouse, C. M., Dreyer, R. N., Yamashita, M., et al. Electrospray interface for liquid chromatographs and mass spectrometers. [J]. Anal. Chem., 1985, 57: 675-679.
    [60] Fenn, J. B., Mann, M., Meng, C. K., et al. Electrospray ionization for mass spectrometry of large biomolecules. [J] Science, 1989,246: 64-71.
    [61] Iribarne, J. V., Thomson, B. A. On the evaporation of small ions from charge droplets. [J]. Chem. Phys., 1976, 64: 2287-2294.
    [62] Thomson, B. A., Iribarne, J. V. Field induced ion evaporation from liquid surfaces at atmospheric pressure. [J]. J. Chem. Phys., 1979,71: 4451-4463.
    [63] Wilm, M., Mann, M. Electrospray and Taylor-cone theory, Dole's beam of macromolecules at last. [J]. Int. J. Mass Spectrum. Ion Process., 1994, 136:167-180.
    [64] Fenn, J. B., Roswell, J., Meng, C.K. In electrospray ionization, how much pull does an ion need to escape its droplet prison? [J]. J. Am. Soc. Mass Spectrom., 1997,8:1147-1157.
    [65] Sakairi, M., Yergey, A. L., Siu, K. W. M., et al. Electrospray mass spectrometry: Application of ion evaporation theory to amino acids. [J]. Anal. Chem., 1991,63:1488-1490.
    [66] Kebarle, P. A brief overview of the present status of the mechanisms involved in electrospray mass spectrometry. [J]. J. Mass Spectrom., 2000, 35: 804-817.
    [67] Taylor, G. I. Disintegration of water drops in an electric field. [J]. Proc. Roy. Soc. Lond. A, 1964,280: 383-397.
    [68] 杨芃原,钱小红,盛龙生.[M].生物质谱技术与方法.北京,科学出版社,2003,第一版:42
    [69]Cody,R.B.,Tamura,J.,Musselman,B.D.Electrospray ionization magnetic- sector mass spectrometry-calibration,resolution,and accurate mass measurements.[J].Anal.Chem.,1992,64:1561-1570.
    [70]Larsen,B.S.,Mcewen,C.N.An electrospray ion-source for magnetic-sector mass spectrometers.[J].J.Am.Soc.Mass Spectrom.,1991,2:205-211.
    [71]Bruins,A.P.,Jennings,K.R.,Evans,S.Observation of metastable transitions in a double-focusing mass-spectrometer using a linked scan of electric sector and magnetic-sector fields.[J].Int.J.Mass Spectrum.Ion Process.,1978,26:395-404.
    [72]Bereman,M.S.,Lyndon,M.M.,Dixon,R.B.,et al.Mass measurement accuracy comparisons between a double-focusing magnetic sector and a time-of-flight mass analyzer.[J].Rapid Comm.Mass Spectrom.,2008,22:1563-1566.
    [73]Wojcik,L.,Bederski,K.Determination of the ion transmission coefficient for a mass spectrometer with a quadrupole ion analyzer.[J].Int.J.Mass Spectrum.Ion Process.,1996,153:139-144.
    [74]Titov,V.V.Detailed study of the quadrupole mass analyzer operating within the first,second,and third (intermediate) stability regions.I.Analytical approach.[J].J.Am.Soc.Mass Spectrom.,1998,9:50-69.
    [75]Titov,V.V.Detailed study of the quadrupole mass analyzer operating within the first,second,and third (intermediate) stability regions.Ⅱ.Transmission and resolution.[J].J.Am.Soc.Mass Spectrom.,1998,9:70-87.
    [76]Mirsaleh-Kohan,N.,Robertson,W.D.,Compton,R.N.Electron ionization time-of-flight mass spectrometry:Historical review and current applications.[J].Mass Spectrom.Rev.2008,27:237-285.
    [77]Mamyrin,B.A.Time-of-flight mass spectrometry (concepts,achievements,and prospects).[J].Int.J.Mass Spectrom.2001,206:251-266.
    [78]Boesl,U.,Weinkauf,R.,Schlag,E.Reflectron time-of-flight mass-spectrometry and laser excitation for the analysis of neutrals,ionized molecules and secondary fragments.[J].Int.J.Mass Spectrum.Ion Process.,1992,112:121-166.
    [79]Stafford,G.C,Kelley,P.E.,Syka,J.,et al.Recent improvements in and analytical applications of advanced ion trap technology.[J].Int.J.Mass Spectrum.Ion Process.,1984,60:85-98.
    [80]Keller,M;Lange,B.,Hayasaka,K.,et al.Continuous generation of single photons with controlled waveform in an ion-trap cavity system.[J].Nature.,2004,431:1075-1078.
    [81]Hager,J.W.A new linear ion trap mass spectrometer.[J].Rapid Commun.Mass Spectrom.,2002,16:512-526.
    [82]Marshall,A.G,Hendrickson,C.L.,Jackson,G.S.Fourier transform ion cyclotron resonance mass spectrometry:A primer.[J].Mass Spectrom.Rev.1998,17:1-35.
    [83]Schrader,W.,Klein,H.W.Liquid chromatography fourier transform ion cyclotron resonance mass spectrometry (LC-FTICR MS):an early overview.[J].Anal.Bioanal.Chem.,2004,379:1013-1024.
    [84]Perry,R.H.,Cooks,R.G,Noll,R.J.Orbitrap mass spectrometry:instrumentation,ion motion and applications.[J].Mass Spectrom.Rev.,2008,27:661-699.
    [85]McAlister,G.C,Phanstiel,D.,Good,D.M.,et al.Implementation of electron-transfer dissociation on a hybrid linear ion trap-orbitrap mass spectrometer.[J].Anal.Chem.2007,79:3525-3534.
    [86]Li,K.W.,Kingston,R.,Dreisewerd,K.,et al.Structural elucidation of a peptide from a single neuron by matrix-assisted laser desorption/ionization employing a tandem double focusing magnetic-orthogonal acceleration time-of-flight mass spectrometer.[J].Anal.Chem.1997,69:563-565.
    [87]Barton,S.J.,Whittaker,J.C.Review of factors that influence the abundance of ions produced in a tandem mass spectrometer and statistical methods for discovering these factors.[J].Mass Spectrom.Rev.2009,28:177-187.
    [88]Nesvizhskii,A.I.,Vitek,O.,Aebersold,R.Analysis and validation of proteomic data generated by tandem mass spectrometry.[J],Nat.Meth.,2007,4:787-797.
    [89]Hernandez,P.,Muller,M.,Appel,R.D.Automated protein identification by tandem mass spectrometry:Issues and strategies.[J],Mass Spectrom.Rev.2006,25:235-254.
    [90]Shukla,A.K.,Futrell,J.H.Tandem mass spectrometry:dissociation of ions by collisional activation.[J].J.Mass Spectrom.2000,35:1069-1090.
    [91]Domon,B.,Aebersold,R.Mass spectrometry and protein analysis.[J].Science,2006,312:212-217.
    [92]Imrie,D.C,Pentney,J.M.,Cottrell,J.S.A faraday cup detector for high-mass ions in matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.[J].Rapid Commun.Mass Spectrom.,1995,9:1293-1296.
    [93]Dietz,L.A.Basic properties of electron multiplier ion detection and pulse counting methods in mass spectrometry.[J].Rev.Sci.Instrum.1965,36:1763-1770.
    [94]Yates,J.R.Mass spectrometry and the age of the proteome.[J].J.Mass Spectrom.,1998,33:1-19.
    [95]Sickmann,A.,Mreyen,M.,Meyer,H.E.Mass spectrometry:A key technology in proteome research.[M].Proteomics of microorganisms:Fundamental aspects and application.,2003,141-176.
    [96]Chen,C.H.Review of a current role of mass spectrometry for proteome research.[J].Anal.Chim.Acta,2008,624:16-36.
    [97]Krause,E.,Wenschuh,H.,Jungblut,P.R.The Dominance of arginine containing peptides in MALDI-derived tryptic mass fingerprint of proteins.[J].Anal.Chem.,1999,71:4160-4165.
    [98]Purcell,A.W.,Gorman,J.J.The use of post-source decay in matrix-assisted laser desorption/ionisation mass spectrometry to delineate T cell determinants.[J].J.Immunol.Methods,2001,249:17-31.
    [99]Papayannopoulos,I.A.The interpretation of collision-induced dissociation tandem mass-spectra of peptides.[J].Mass Spectrum.Rev.,1995,14:49-73.
    [100]Samyn,B.,Debyser,G,Sergeant,K.,et al.A case study of de novo sequence analysis of N-sulfonated peptides by MALDI-TOF/TOF mass spectrometry.[J],J.Am.Soc.Mass Spectrom.,2004,15:1838-1852.
    [101]Uy,R.,Wold,F.Post-translational covalent modification of proteins.[J].Science,1977,198:890-896.
    [102]Hoffman,M.D.,Sniatynski,M.J.,Kast,J.Current approaches for global post-translational modification discovery and mass spectrometric analysis.[J].Anal.Chim.Acta.,2008,627:50-61.
    [103]Jensen,O.,N.Modification-specific proteomics:characterization of post- translational modifications by mass spectrometry.[J].Curr.Opin.Chem.Biol.,2004,8:33-41.
    [104]Whitmarsh,A.J.,Davis,R.J.Regulation of transcription factor function by phosphorylation.[J].Cell.Mol.Life Sci.,2000,57:1172-1183.
    [105]Brownlee,M.Advanced protein glycosylation in diabetes and aging.[J].Annu. Rev.Med.,1995,46:223-234.
    [106]Pickart,C.M.Mechanisms underlying ubiquitination.[J].Annu.Rev.Biochem.,2001,70:503-533.
    [107]Paik,W.K.,Paik,D.C,Kim,S.Historical review:the field of protein methylation.[J].Trends Biochem.Sci.,2007,32:146-152.
    [108]Ito,K.,Charron,C.E.,Adcock,I.M.Impact of protein acetylation in inflammatory lung diseases.[J].Pharma.Therapeu.,2007,116:249-265.
    [109]Yan,J.X.,Packer,N.H.,Gooley,A.A.,et al.Protein phosphorylation:technologies for the identification of phosphoamino acids.[J].J.Chromat.A,1998,808:23-41.
    [110]Areces,L.B.,Matafora,V.Bachi,A.Analysis of protein phosphorylation by mass spectrometry.[J].Eur.J Mass Spectrom.,2004,10:383-392.
    [111]Kaji,H.,Saito,H.,Yamauchi,Y,et al.Lectin affinity capture,isotope-coded tagging and mass spectrometry to identify N-linked glycoproteins.[J].Nat.Biotechnol.,2003,21:667-672.
    [112]Xu,Y.W.,Wu,Z.X.,Zhang,L.J.,et al.Highly specific enrichment of glycopeptides using boronic acid-functionalized mesoporous silica.[J].Anal.Chem.,2009,81:503-508.
    [113]Hagglund,P.,Bunkenborg,J.,Elortza,R,et al.A new strategy for identification of N-glycosylated proteins and unambiguous assignment of their glycosylation sites using HILIC enrichment and partial deglycosylation.[J].J.Proteome Res.,2004,3:556-566.
    [114]Righetti,P.G,Campostrini,N.,Pascali,J.,et al.Quantitative proteomics:a review of different methodologies.[J].Eur.J Mass Spectrom.,2004,10:335-348.
    [115]Bantscheff,M.,Schirle,M.,Sweetman,G,et al.Quantitative mass spectrometry in proteomics:a critical review.[J].Anal.Bioanal.Chem.,2007,389:1017-1031.
    [116]Ong,S.E.,Foster,L.J.,Mann,M.Mass spectrometric-based approaches in quantitative proteomics.[J].Methods,2003,29:124-130.
    [117]Ong,S.E.,Blagoev,B.,Kratchmarova,I.,et al.Stable isotope labeling by amino acids in cell culture,SILAC,as a simple and accurate approach to expression proteomics.[J].Mol.Cell.Proteomics,2002,1:376-386.
    [118]Mann,M.Functional and quantitative proteomics using SILAC.[J].Nat.Rev. Mol.Cell.Biol.,2006,7:952-958.
    [119]Wiese,S.Protein labeling by iTRAQ:A new tool for quantitative mass spectrometry in proteome research.[J].Proteomics,2007,7:1004-1004.
    [120]Qian,W.J.,Monroe,M.E.Liu,T.,et al.Quantitative proteome analysis of human plasma following in vivo lipopolysaccharide administration using 160/180 labeling and the accurate mass and time tag approach.[J].Mol.Cell.Proteomics,2005,4:700-709.
    [121]Sethuraman,M.,McComb,M.E.,Huang,H.,et al.Isotope-coded affinity tag (ICAT) approach to redox proteomics:Identification and quantitation of oxidant-sensitive cysteine thiols in complex protein mixtures.[J].J.Proteome Res.,2004,3:1228-1233.
    [122]Gao,J.,Friedrichs,M.S.,Dongre,A.R.,et al.Guidelines for the routine application of the peptide hits technique.[J].J.Am.Soc.Mass Spectrom.,2005,16:1231-1238.
    [123]Zybailov,B.,Coleman,M.K.,Florens,L.,et al.Correlation of relative abundance ratios derived from peptide ion chromatograms and spectrum counting for quantitative proteomic analysis using stable isotope labeling.[J].Anal.Chem.,2005,77:6218-6224.
    [124]Old,W.M.,Meyer-Arendt,K.Aveline-Wolf,L.,et al.Comparison of label-free methods for quantifying human proteins by shotgun proteomics.[J].Mol.Cell.Proteomics,2005,4:1487-1502.
    [125]Reinders,J.,Lewandrowski,U.,Moebius,J.,et al.Challenges in mass spectrometry-based proteomics.[J].Proteomics,2004,4:3686-3703.
    [126]Hancock,W.S.,Wu,S.L.,Shieh,P.The challenges of developing a sound proteomics strategy.[J].Proteomics,2002,2:352-359.
    [127]Canas,B.,Lopez-Ferrer,D.,Ramos-Fernandez,A.et al.Mass spectrometry technologies for proteomics.[J].Brief.Function.Genom.Proteom.,2006,4:295-320.
    [128]Garrels,J.I.,McLaughlin,C.S.,Warner,J.R.Proteome studies of Saccharomyces cerevisiae:identification and characterization of abundant proteins.[J].Electrophoresis,1997,18:1347-1360.
    [129]Baldwin,M.A.,Protein identification by mass spectrometry-Issues to be considered.[J].Mol.Cell.Proteomics,2004,3:1-9.
    [130]Kurian,E.,Prendergast,F.G,Tomlinson,A.J.,et al.Identifying sites of protein modification by using matrix-assisted laser desorption ionization-time-of-flight mass spectrometry and on-line membrane preconcentration capillary electrophoresis tandem mass spectrometry.[J].J.Am.Soc.Mass Spectrom.,1997,8:8-14.
    [131]Vestal,M.Modern MALDI time-of-flight mass spectrometry.[J].J.Mass Spectrom.,2009,44:303-17.
    [132]Fenselau,C.MALDI MS and strategies for protein analysis.[J].Anal.Chem.,1997,69:661-665.
    [133]Vestal,M.,Hayden,K.High performance MALDI-TOF mass spectrometry for proteomics.[J].Int.J.Mass Spectrom.,2007,268:83-92.:
    [134]Padliya,N.D.,Wood,T.D.Improved peptide mass fingerprinting matches via optimized sample preparation in MALDI mass spectrometry.[J].Anal.Chim.Acta,2008,627:162-168.
    [135]Dai,YQ;Whittal,RM;Li,L Two-layer sample preparation:A method for MALDI-MS analysis of complex peptide and protein mixtures.[J].Anal.Chem.,1999,71:1087-1091.
    [1] Anderson, N. L., Anderson, N. G. The human plasma proteome: history, character, and diagnostic prospects. [J]. Mol Cell Proteomics, 2002,1: 845-67.
    [2] Wu, L. F., Han, D. K. Overcoming the dynamic range problem in mass spectrometry-based shotgun proteomics. [J]. Expert Review of Proteomics, 2006, 3:611-619.
    [3] Echan, L. A., Tang, H. Y., Ali-Khan, N., et al. Depletion of multiple high-abundance proteins improves protein profiling capacities of human serum and plasma. [J]. Proteomics. 2005, 5: 3292-3303.
    [4] Brand, J., Haslberger, T., Zolg, W., et al. Depletion efficiency and recovery of trace markers from a multiparameter immunodepletion column. [J]. Proteomics. 2006,6: 3236-3242.
    [5] Xu, S. Y., Ye, M. L., Xu, D. K., et al. Matrix with high salt tolerance for the analysis of peptide and protein samples by desorption/ionization time-of-flight mass spectrometry. [J]. Anal. Chem., 2006, 78: 2593-2599.
    [6] Beavis, R. C., Chait, B. T. Matrix-assisted laser desorption mass spectrometry of proteins. [J]. Methods Enzymol., 1996,270: 519-551.
    [7] Domon, B., Aebersold, R. Mass Spectrometry and Protein Analysis. [J]. Science, 2006,312:212-217.
    [8] Brockman, A. H., Dodd, B. S., Orlando, R. A desalting approach for MALDI-MS using on-probe hydrophobic self-assembled monolayers. [J]. Anal. Chem., 1997, 69: 4716-4720.
    [9] Horning, O. B., Theodorsen, S., Vorm, O., et al. Solid phase extraction-liquid chromatography (SPE-LC) interface for automated peptide separation and identification by tandem mass spectrometry. [J]. Int. J. Mass Spectrom, 2007,268: 147-157.
    [10]Ekstrom, S., Wallman, L., Hok, D., et al. Miniaturized solid-phase extraction and sample preparation for MALDI MS using a microfabricated integrated selective enrichment target. [J]. J Proteome Res., 2006, 5: 1071-1081.
    [11] Wang, Y., Schneider, B. B., Covey, T. R., et al. High-performance SPME/AP MALDI system for high-throughput sampling and determination of peptide. [J]. Anal. Chem., 2005,77: 8095-8101.
    [12] Winston, R. L., Fitzgerald, M. C., Concentration and desalting of protein samples for mass spectrometry analysis. [J]. Anal. Biochem, 1998,262: 83-85.
    [13]Shevchenko, A., Wilm, M., Vorm, O., et al. Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. [J]. Anal. Chem., 1996,68:1-8.
    [14]Kussmann, M., Nordhoff, E., Rahbeknielsen, H., et al. Matrix-assisted laser desorpiton/ionization mass spectrometry sample preparation techniques designed for various peptide and protein analytes. [J]. J. Mass Spectrom., 1997, 32: 593-601.
    [15]Larsen,M.R.,Cordwell,S.J.,Roepstorff,R Graphite powder as an alternative to reversed phase material for desalting and concentration of peptide mixtures prior to mass spectrometric analysis.[J].Proteomics.,2002,2:1277-1287.
    [16]Bagshaw,R.D.,Callahan,J.W.,Mahuran,D.J.Desalting of in-gel-digested protein sample with mini-Cig columns for matrix-assisted laser desorption ionization time of flight peptide mass fingerprinting.[J].Anal.Biochem.,2000,284,432-435.
    [17]Schriemer,D.C,Li,L.Combining avidin-biotin chemistry with matrix-assisted laser desorption/ionization mass spectrometry.[J].Anal.Chem.,1996,68:3382-3387.
    [18]Chen,H.M.,Xu,X.Q.,Yao,N.,et al.Facile synthesis of C_8-functionalized magnetic silica microspheres for enrichment of low-concentration peptides for direct MALDI-TOF MS analysis.[J].Proteomics,2008,8:2778-2784.
    [19]Chen,H.M.Qi,D.W.Deng,C.H.,et al.Preparation of C_(60)-functionalized magnetic silica microspheres for the enrichment of low-concentration peptides and proteins for MALDI-TOF MS analysis.[J].Proteomics,2009,9:380-387.
    [20]Pan,C.S.,Xu,S.Y,Zou,H.F.,et al.Carbon nanotubes as adsorbent of solid-phase extraction and matrix for laser desorption/ionizationmass spectrometry.[J].J.Am.Soc.Mass Spectrom.,2005,16:263-270.
    [21]Ren,S.F.,Guo,Y.L.Carbon nanotubes (2,5-dihydroxybenzoyl hydrazine) derivative as pH adjustable enriching reagent and matrix for MALDI analysis of trace peptides.[J].J.Am.Soc.Mass Spectrom.,2006,17:1023-1027.
    [22]Matsui,M.,Kiyozumi,Y,Yamamoto,T.,et al.Selective adsorption of Biopolymers on zeolites.[J].Chem.Eur.J.,2001,7:1555-1560.
    [23]Munsch,S.,Hartmann,M.,Ernst,S.Adsorption and separation of amino acids from aqueous solutions on zeolites.[J].Chem.Commun.,2001,19:1978-1979.
    [24]Zhang,Y.H.,Wang,X.Y,Shan,W.,et al.Enrichment of low-abundance peptides and proteins on zeolite nanocrystals for direct MALDI-TOFMS analysis.[J].Angew.Chem.Int.Ed.,2005,44:615-617.
    [25]Jia,W.T.,Chen,X.H.,Lu,H.J.,et al.CaC03-poly(methylmethacrylate) nanoparticles for fast enrichment of low-abundance pep-tides followed by CaCO3-core removal for MALDI-TOFMS analysis.[J].Angew.Chem.Int.Ed.,2006,45:3345-3349.
    [26]Shen, W. W., Xiong, H. M., Xu, Y. et al. ZnO-poly (methyl methacrylate) nanobeads for fast enriching and desalting low abundant proteins followed by directly MALDI-TOF MS analysis. [J]. Anal. Chem., 2008, 80: 6758-6763.
    [27]Yao, N., Chen, H. M. Lin, H. Q., et al. Enrichment of peptides in serum by C_8-functionalized magnetic nanoparticles for direct matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analysis. [J]. J. Chroma. A 2008,1185:93-101.
    [28]Warren, M. E., Brockman, A. H., Orlando, R. On-probe solid phase extraction/ MALDI-MS using ion-pairing interactions for the cleanup of peptides and proteins. [J]. Anal Chem., 1998, 70: 3757-3761.
    [29]Blackledge, J. A., Alexander, A. J. Polyethylene membrane as a sample support for direct matrix-assisted laser desorption/ionization mass spectrometric analysis of high mass proteins. [J]. Anal. Chem., 1995, 67:843-848.
    [30]Worrall, T. A., Cotter, R. J., Woods, A. S. Purification of contaminated peptides and proteins on synthetic membrane surfaces for matrix-assisted laser desorption/ionization mass spectrometry. [J]. Anal. Chem., 1998, 70: 750-756.
    [31]Zaluzec, E. J., Gage, D. A., Allison, J. Direct matrix-assisted laser desorption ionization mass spectrometric analysis of proteins immobilized on nylon-based membranes. [J]. J. Am. Soc. Mass Spectrom., 1994, 5: 230-237.
    [32]Hung, K. C., Rashidzadeh, H., Wang, Y. Use of paraffin wax film in MALDI-TOF analysis of DNA. [J]. Anal. Chem., 1998, 70: 3088-3093.
    [33]Tannu, N. S., Wu, J., Rao, V. K., Paraffin-wax-coated plates as matrix-assisted laser desorption/ionization sample support for high-throughput identification of proteins by peptide mass fingerprinting. [J]. Anal Biochem. 2004,327:222-232.
    [34]Xu, Y., Dominic, M. D. Protein identification with teflon as a MALDI sample support. [J]. J. Mass Spectrom., 2002,37: 512-524.
    [35]Bai, J., Liu, Y. H., Lubman, D. M. On-probe purification for matrix-assisted laser desorption/ionization mass spectrometry (MALDI/MS) [A]. In: Proceedings of the 42nd ASMS Conference on Mass Spectrometry., 1994:976.
    [36]Bai, J., Liu, Y. H., Cain, T. C., et al. Matrix-assisted laser desorption/ ionization using an active perfluorosulfonated ionomer film substrate. [J]. Anal. Chem., 1994,66:3423-3430.
    [37]Schuerenbeg, M., Luebbert, C., Eickhoff, H., K., et al. Prestructured MALDI-MS Sample Supports. [J]. Anal. Chem., 2000,72: 3436-3442.
    [38]Xu,Y.,Bruening,L.M.,Watson,J.T.Patterned monolayer/polymer films for analysis of dilute and/or salt-contaminated protein samples by MALDI-MS.[J].Anal Chem.,1998,75:185-190.
    [39]Gobom,J.,Schuerenberg,M.,Mueller,M.,et al.a-cyano-4-hydroxycinnamic acid affinity sample preparation:A protocol for MALDI-MS peptide analysis in proteomics.[J].Anal Chem.,2001,73:434-438.
    [40]Jia,W.T.,Wu,H.X.,Lu,H.J.,et al.Rapid and automatic on-plate desalting protocol for MALDI-MS:Using imprinted hydrophobic polymer template.[J].Proteomics,2007,7:2497-2506.
    [1] Park, Z. Y., Russell, D. H., Identification of individual proteins in complex protein mixtures by high-resolution, high-massaccuracy MALDI TOF-mass spectrometry analysis of in-solution thermal denaturation/enzymatic digestion. [J]. Anal. Chem. 2001, 73: 2558-2564.
    [2] Mann, M., Hojrup, P., Roepstorff, P., et al. Use of mass-spectrometric molecular weight information to identify proteins in sequence databases. [J]. Biol. Mass Spectrom. 1993,22: 338-345.
    [3] Granvogl, B., Ploscher, M., Eichacker, L. A. Sample preparation by in-gel digestion for mass spectrometry-based proteomics. [J]. Anal. Bioanal. Chem. 2007,389:991-1002.
    [4] Peterson, D. S., Rohr, T., Svec, F. et al. Enzymatic microreactor-on-a-chip: Protein mapping using trypsin immobilized on porous polymer monoliths molded in channels of microfiuidic devices. [J]. Anal. Chem., 2002, 74:4081-4088.
    [5] Slysz, G. W., Schriemer, D. C., Blending protein separation and peptide analysis through real-time proteolytic digestion. [J]. Anal. Chem., 2005,77,1572-1579.
    [6] Massolini, G., Calleri, E. Immobilized trypsin systems coupled on-line to separation methods: Recent developments and analytical applications. [J]. J. Sep. Sci.,2005,28: 7-21.
    [7] Freije, J. R., Mulder, P., Werkman, W, et al. Chemically modified, immobilized trypsin reactor with improved digestion efficiency. [J]. J. Proteome Res., 2005,4: 1805-1813.
    [8] Gobom, J., Nordhoff, E., Ekman, R., et al. Rapid micro-scale proteolysis of proteins for MALDI-MS peptide mapping using immobilized trypsin. [J]. Int. J. Mass Spectrom. Ion Process., 1997,169/170: 153-163.
    [9] Liu, T., Wang, S., Chen, G. Immobilization of trypsin on silica-coated fiberglass core in microchip for highly efficient proteolysis. [J]. Talanta, 2009, 77:1767-1773.
    [10] Davis, M. T., Lee, T. D., Ronk, M., et al. Miroscale immobilized protease reactor columns for peptide-mapping by liquid-chromatography mass-spectral analyses. [J]. Anal. Biochem. 1995,224,235-244.
    [11] Sun, W., Gao, S. J., Wang, L. J., et al. Microwave-assisted protein preparation and enzymatic digestion in proteomics. [J]. Mol. Cell. Proteomics, 2006, 5: 769-776.
    [12] Pramanik, N. B., Mirza, U. A., Ning, Y. H., et al. Microwave-enhanced enzyme reaction for protein mapping by mass spectrometry: a new approach to protein digestion in minutes. [J]. Protein Sci., 2002,11: 2676-2687.
    [13] Carreira, R. J., Cordeiro, F. M., Moro, A. J., et al. New findings for in-gel digestion accelerated by high-intensity focused ultrasound for protein identification by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. [J]. J. Chromat. A, 2007,1153:291-299.
    [14] Lopez, D., Capelo, J. L., Vazquez, J. Ultra fast trypsin digestion of proteins by high intensity focused ultrasound.[J].J.Proteome Res.,2005,4:1569-1574.
    [15]Wang,S.,Zhang,L.Y.,Yang,P.Y,et al.Infrared-assisted tryptic proteolysis for peptide mapping.[J].Proteomics,2008,8:2579-2582.
    [16]Murphy,A.,Fagain,C.0.Stability characteristics of chemically modified soluble trypsin.[J].J.Biotechnol.,1996,49:163-171.
    [17]Bayramoglu,G,Yilmaz,M.,Senel,A.U.,et al.Preparation of nanofibrous polymer grafted magnetic poly(GMA-MMA)-g-MAA beads for immobilization of trypsin via adsorption.[J].Biochem.Eng.J.,2008,40:262-274.
    [18]Xu,X.J.,Wang,X.Y,Liu,Y,et al.Trypsin entrapped in poly(diallyl dimethylammonium chloride) silica sol-gel microreactor coupled to matrix-assisted laser desorption/ionization time-of-flight mass spectrometry Rapid Commun.Mass Spectrom.,2008,22:1257-1264.
    [19]Sakai,K.,Kato,M.,Toyo,T.On-line trypsin-encapsulated enzyme reactor by the sol-gel method integrated into capillary electrophoresis.[J].Anal.Chem.,2002,74:2943-2949.
    [20]Sakai,K.,Kato,M.,Toyo,T.Creation of an on-chip enzyme reactor by encapsulating trypsin in sol-gel on a plastic microchip.[J].Anal.Chem.,2003,75:388-393.
    [21]Yamada,K.,Nakasone,T.,Nagano,R.,et al.Retention and reusability of trypsin activity by covalent immobilization onto grafted polyethylene plates.[J].J.Appl.Polym.Sci.2003,89:3574-3581.
    [22]Jiang,H.H.,Zou,H.R,Wang,H.L.,et al.Covalent immobilization of trypsin on glycidyl methacrylate-modified cellulose membrane as enzyme reactor.[J].Chem.J.Chinese Univ.,2000,21:702-706.
    [23]Rusmini,R,Zhong,Z.Y,Feijen,J.et al.Protein immobilization strategies for protein biochips.[J].Biomacromolecules 2007,8:1775-1789.
    [24]Migneault,I.,Dartiguenave,C,Vinh,J,et al.Two glutaraldehyde-immobilized trypsin preparations for peptide mapping by capillary zone electrophoresis,liquid chromatography,and mass spectrometry.[J].J.Liq.Chrom.Relat.Tech.,2008,31:789-806.
    [25]Migneault,I.,Dartiguenave,C,Vinh,J.et al.Comparison of two glutaraldehyde immobilization techniques for solid-phase tryptic peptide mapping of human hemoglobin by capillary zone electrophoresis and mass spectrometry.[J].Electrophoresis,2004,25:1367-1378.
    [26]Xi,F.N.,Wu,J.M.,Jia,Z.S.,et al.Preparation and characterization of trypsin immobilized on silica gel supported macroporous chitosan bead.[J].Process Biochem.,2005,40:2833-2840.
    [27]Bryjak,J.,Liesiene,J.,Kolarz,B.N.Application and properties of butylacrylate /pentaerythrite triacrylate copolymers and cellulose-based Granocel as carriers for trypsin immobilization.[J].Colloids.Surf.B:Biointerfaces,2008,61:66-74.
    [28]Bengtsson,M.,Ekstrom,S.,Markovarga,G,et al.Improved performance in silicon enzyme microreactors obtained by homogeneous porous silicon carrier matrix.[J].Talanta,2002,56:341-353.
    [29]Li,Y,Xu,X.Q.,Deng,C.H.et al.Immobilization of trypsin on superparamagnetic nanoparticles for rapid and effective proteolysis.[J].J.Proteome Res.,2007,6:3849-3855.
    [30]Wang,S.,Bao,H.M.,Yang,P.Y,et al.Immobilization of trypsin in polyaniline coated nano-Fe30Vcarbon nanotube composite for protein digestion.[J].Anal.Chim.Acta.,2008,612:182-189.
    [31]Peterson,D.S.,Rohr,T.,Svec,F.,et al.High-throughput peptide mass mapping using a microdevice containing trypsin immobilized on a porous polymer monolith coupled to MALDI TOF and ESI TOF mass spectrometers.[J].J.Proteome Res.2002,1:563-568.
    [32]Ibanez,A.J.,Muck,A.,Halim,V.Trypsin-linked copolymer maldi chips for fast protein identification.[J].J.Proteome Res.,2007,6:1183-1189.
    [33]Li,Y,Yan,B.,Deng,C.H.et al.On-plate digestion of proteins using novel trypsin-immobilized magnetic nanospheres for MALDI-TOF-MS analysis.[J].Proteomics,2007,7:3661-3671.
    [34]Jin,W.J.,Sun,X.F.,Wang,Y.Solubilization and functionalization of carbon nanotubes.[J].New Carbon Materials,2004,19:312-318.
    [35]Cheng,F.Y,Adronov,A.Noncovalent functionalization and solubilization of carbon nanotubes by using a conjugated Zn-porphyrin polymer.[J].Chem.-A Eur.J.,2006,12:5053-5059.
    [36]Fu,K.F.,Sun,Y.P.Dispersion and solubilization of carbon nanotubes.[J].J.Nanosci.Nanotechnol.,2003,3:351-364.
    [37]Kahn,M.,Banerjee,S.,Wong,S.S.Solubilization of oxidized single-walled carbon nanotubes in organic and aqueous solvents through organic derivatization.[J].Nano Lett.,2002,2:1215-1218.
    [38]Wang,J.,Musameh,M,Lin,Y.H.Solubilization of carbon nanotubes by Nafion toward the preparation of amperometric biosensors.[J].J.Am.Chem.Soc,2003,125:2408-2409.
    [39]Ren,S.F.,Zhang,L.,Cheng,Z.H.,et al.Immobilized carbon nanotubes as matrix for MALDI-TOF-MS analysis:Applications to neutral small carbohydrates.[J].J.Am.Soc.Mass Spectrom.,2005,16:333-339.
    [40]Ding,W.,Eitan,A.,Fisher,F.T.et al.Direct observation of polymer sheathing in carbon nanotube-polycarbonate composites.[J].Nano.Lett.,2003,3:1593-1597.
    [41]Viswanathan,G,Chakrapani,N.,Yang,H.,et al.Single-step in situ synthesis of polymer-grafted single-wall nanotube composites.[J].J.Am.Chem.Soc,2003,125:9258-9259.
    [42]Georgakilas,V.,Kordatos,K.,Prato,M.,et al.Organic functionalization of carbon nanotubes.[J].J.Am.Chem.Soc,2002,124:760-761.
    [43]Chen,J.,Hamon,M.A.,Hu,H.,et al.Solution properties of single-walled carbon nanotubes.[J].Science,1998,282:95-98.
    [44]Bai,S.H.,Thomas,C,Rawat,A.,et al.Recent progress in dendrimer-based nanocarriers.[J].Crit.Rev.Ther.Drug Carrier Syst,2006,23:437-495.
    [45]Duncan,R.,Izzo,L.Dendrimer biocompatibility and toxicity.[J].Adv.Drug Deliver Rev.,2005,57:2215-2237.
    [46]Esfand,R.,Tomalia,D.A.Poly(amidoamine) (PAMAM) dendrimers:from biomimicry to drug delivery and biomedical applications.[J].Drug Disc.Today,2001,6:427-436.
    [47]Pan,B.,Cui,D.,Gao,F.,et al.Growth of multi-amine terminated poly(amidoamine) dendrimers on the surface of carbon nanotubes.[J].Nanotechnology,2006,17:2483-2489.
    [48]Zeng,Y.L.,Huang,Y.F.,Jiang,J.H.,et al.Functionalization of multi-walled carbon nanotubes with poly(amidoamine) dendrimer for mediator-free glucose biosensor.[J].Electrochem.Commun.,2007,9:185-190.
    [1] Stump, M. J., Fleming, R. C., Gong, W. H., et al. Matrix-assisted laser desorption mass spectrometry. [J]. Appl. Spectrosc. Rev., 2002,37: 275-303.
    [2] Karas, M., Bachmann, D., Hillenkamp, F. Influence of the wavelength in high-irradiance ultraviolet laser desorption mass spectrometry of organic molecules. [J]. Anal. Chem., 1985, 57: 2935-2939.
    [3] Karas, M., Bachmann, D., Bahr, U., et al. Matrix-assisted ultraviolet laser desorption of non-volatile compounds. [J]. Int. J. Mass Spectrom. Ion Proc., 1987, 78: 53-68.
    [4] Byrd, G. D., Burnier, R. C., Freiser, B. S. Gas-phase ion-molecule reactions of Fe~+ and Ti~+ with alkanes.[J].J.Am.Chem.Soc,1982,104:3565-3569.
    [5]Bahr,U.,Karas,M.,Hillenkamp,R,et al.Analysis of biopolymers by matrix-assisted laser desorption/ionization (MALDI) mass spectrometry.[J].Fresenius J.Anal.Chem.,1994,348:783-791.
    [6]Castoro,J.A.,Wilkins,C.L.High-resolution laser-desorption ionization fourier-transform mass spectrometry.[J].Trends Anal.Chem.,1994,13:229-233.
    [7]Tanaka,K.,Waki,H.,Ido,Y.,et al.Protein and polymer analyses up to m/z 100 000 by laser ionization time-of-flight mass spectrometry.[J].Rapid Commun.Mass Spectrom.,1988,2:151-153.
    [8]Dreisewerd,K.The desorption process in MALDI.[J].Chem.Rev.2003,103:395-425.
    [9]Karas,M.,Kruger,R.Ion formation in MALDI:the cluster ionization mechanism.[J].Chem.Rev.,2003,103:427-439.
    [10]Horneffer,V.,Gluckmann,M.,Kruger,R.,et al.Localization of Non-covalent Complexes in MALDI-preparations by CLSM.[J].Int.J.Mass Spectrom.,2006,249/250:426-432.
    [11]Batoy,S.,Akhmetova,E.,Miladinovic,S.,et al.Developments in MALDI mass spectrometry:The quest for the perfect matrix.[J].Appl.Spectros.Rev.2008,6:485-550.
    [12]GimonKinsel,M.,PrestonSchaffter,L.M.,Kinsel,G.R.,et al.Effects of matrix structure/acidity on ion formation in matrix-assisted laser desorption ionization mass spectrometry.[J].J.Am.Chem.Soc,1997,119:2534-2540.
    [13]Preston,S.L.M.,Kinsel,G.R.,Russell,D.H.Effects of heavy-atom substituents on matrices used for matrix-assisted laser-desorption ionization mass-spectrometry.[J].J.Am.Soc.Mass Spectrom.1994,5:800-806.
    [14]Liao,P.C,Allison,J.Ionization processes in matrix-assisted laser desorption/ionization mass spectrometry:matrix-dependent formation of [M+H]~+ vs.[M+Na]~+ ions of small peptides and some mechanistic comments.[J].J.Mass Spectrom.,1995,30:408-423.
    [15]Wu,K.J.,Shaler,T.A.,Becker,C.H.,Time-of-flight mass spectrometry of underivatized single-stranded DNA oligomers by matrix-assisted laser desorption.[J].Anal.Chem.,1994,66:1637-1645.
    [16]Hillenkamp,R,Karas,M.Matrix-assisted laser desorption/ionisation,an experience.[J].Inter.J.Mass Spectrom.,2000,200:71-77.
    [17]Karas,M.,Hillenkamp F.Laser desorption ionization of proteins with molecular masses exceeding 10000 daltons.[J].Anal.Chem.,1988,60:2299-2301.
    [18]Beavis,R.C.Matrix-assisted ultraviolet laser desorption:evolution and principles.[J].Org.Mass Spectrom.1992,27:653-659.
    [19]Beavis,R.C,Chaudhary,T.,Chait,B.T.a-cyano-4-hydroxycinnamic acid as a matrix for matrix-assisted laser desorption mass spectrometry.[J].Org.Mass Spectrom.,1992,27:156-158.
    [20]Castro,J.A.,Koster,C.,Wilkins,C.Matrix-assisted laser desorption/ionization of high-mass molecules by fourier-transform mass spectrometry.[J].Rapid.Commun.Mass Spectrom.,1992,6:239-241.
    [21]Ehring,H.,Karas,M.,Hillenkamp,F.Role of photoionization and photochemistry in ionization processes of organic molecules and relevance for matrix-assisted laser desorption ionization mass spectrometry.[J].Org.Mass Spectrom.,1992,27:472-480.
    [22]Horneffer,V.,Dreisewerd,K.,Ludemann,H.C,et al.Is the incorporation of analytes into matrix crystals a prerequisite for matrix-assisted laser desorption/ionization mass spectrometry? A study of five positional isomers of dihydroxybenzoic acid.[J].Inter.J.Mass Spectrom.,1999,187:859-870.
    [23]Fitzgerald,M.C,Parr,G.R.,Smith,L.M.Basic matrices for the matrix-assisted laser-desorption ionization mass-spectrometry of proteins and oligonucleotides.[J].Anal.Chem.,1993,65:3204-3211.
    [24]Chen,Y.T.,Ling,Y.C.Detection of water-soluble vitamins by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry using porphyrin matrices.[J].J.Mass Spectrom.,2002,37:716-730.
    [25]Ugarov,M.V.,Egan,T.,Khabashesku,D.V.,et al.MALDI matrices for biomolecular analysis based on functionalized carbon nanomaterials.[J].Anal.Chem.,2004,76:6734-6742.
    [26]Xu,S.Y.,Ye,M.L,Xu,D.K,et al.Matrix with high salt tolerance for the analysis of peptide and protein samples by desorption/ionization time-of-flight mass spectrometry.[J].Anal.Chem.,2006,78:2593-2599.
    [27]Andreas,T.,Elmar,H.Ionic (liquid) matrices for matrix-assisted laser desorption/ionization mass spectrometry-applications and perspectives.[J].Anal.Bioanal.Chem.,2006,386:24-37.
    [28]Armstrong,D.W.,Zhang,L.K.,He,L.F.,et al.Ionic liquids as matrixes for matrix-assisted laser desorption/ionization mass spectrometry.[J].Anal.Chem.,2001,73:3679-3686.
    [29]Li,Y.L.,Gross,M.L.Ionic-liquid matrices for quantitative analysis by MALDI-TOF mass spectrometry.[J].J.Am.Soc.Mass Spectrom.,2004,15:1833-1837.
    [30]Santos,L.S.,Haddad,R.,Hoehr,N.F.,et al.Fast screening of low molecular weight compounds by thin-layer chromatography and "on-spot" MALDI-TOF mass spectrometry.[J].Anal.Chem.,2004,76:2144-2147.
    [31]Mank,M.,Stahl,B.,Boehm,G.2,5-dihydroxybenzoic acid butylamine and other ionic liquid matrixes for enhanced MALDI-MS analysis of biomolecules.[J].Anal.Chem.,2004,76:2938-2950.
    [32]Lemaire,R.,Tabet,J.C,Ducoroy,R,et al.Solid ionic matrixes for direct tissue analysis and MALDI Imaging.[J].Anal.Chem.,2006,78:809-819.
    [33]ZabetMoghaddam,M.,Heinzle,E.,Tholey,A.Qualitative and quantitative analysis of low molecular weight compounds by ultraviolet matrix-assisted laser desorption/ionization mass spectrometry using ionic liquid matrices.[J].Rapid Commun.Mass Spectrom.,2004,18:141-148.
    [34]Laremore,T.N.,Murugesan,S.,Park,T.J.,et al.Matrix-assisted laser desorption/ionization mass spectrometric analysis of uncomplexed highly sulfated oligosaccharides using ionic liquid matrices.[J].Anal.Chem.,2006,78:1774-1779.
    [35]CardaBroch,S.,Berthod,A.,Armstrong,D.W.Ionic matrices for matrix-assisted laser desorption/ionization time-of-flight detection of DNA oligomers.[J].Rapid Commun.Mass Spectrom.,2003,17:553-560.
    [36]Tholey,A.Ionic liquid matrices with phosphoric acid as matrix additive for the facilitated analysis of phosphopeptides by matrix-assisted laser desorption/ ionization mass spectrometry.[J].Rapid Commun.Mass Spectrom.,2006,20:1761-1768.
    [37]ZabetMoghaddam,M.,Heinzle,E.,Lasaosa,M.,et al.Pyridinium-based ionic liquid matrices can improve the identification of proteins by peptide mass-fingerprint analysis with matrix-assisted laser desorption/ionization mass spectrometry.[J].Anal.Bioanal.Chem.,2006,384:215-224.
    [38]Tholey,A.,ZabetMoghaddam,M.,Heinzle,E.Quantification of peptides for the monitoring of protease-catalyzed reactions by matrix-assisted laser desorption/ionization mass spectrometry using ionic liquid matrixes. [J]. Anal. Chem., 2006, 78: 291-297.
    [39] Cramer, R., Corless, S. Liquid ultraviolet matrix-assisted laser desorption/ionization mass spectrometry for automated proteomic analysis. [J]. Proteomics, 2005, 5: 360 - 370.
    [40] Li, Y. L., Gross, M. L., Hsu, F. F. Ionic-liquid matrices for improved analysis of phospholipids by MALDI-TOF mass spectrometry. [J]. J. Am. Soc. Mass Spectrom., 2005,16: 679-682.
    [41] Sunner, J., Dratz, E., Chen, Y. C. Graphite surface assisted laser desorption/ ionization time-of-flight mass-spectrometry of peptides and proteins from liquid solutions. [J]. Anal. Chem., 1995, 67: 4335-4342.
    [42] McLean, J. A., Stumpo, K. A., Russel, D. H. Size-selected (2-10 nm) gold nanoparticles for matrix assisted laser desorption ionization of peptides. [J]. J. Am. Chem. Soc., 2005,127: 5304-5305.
    [43] Shan, Z., Han, L. Yuan, M. J., et al. Mesoporous tungsten titanate as matrix for matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analysis of biomolecules. [J]. Anal. Chim. Acta., 2007, 593: 13-19.
    [44] Xu, S. Y., Li, Y. F., Zou, H. F., et al. Carbon nanotubes as assisted matrix for laser desorption/ionization time-of-flight mass spectrometry. [J]. Anal. Chem., 2003, 75: 6191-6195.
    [45] Pan, C. S., Xu, S. Y., Hu, L. G., et al. Using oxidized carbon nanotubes as matrix for analysis of small molecules by MALDI-TOF MS. [J]. J. Am. Soc. Mass Spectrom., 2005,16: 883-892.
    [46] Ren, S. F., Zhang, L., Cheng, Z. H., et al. Immobilized carbon nanotubes as matrix for MALDI-TOF-MS analysis: Applications to neutral small carbohydrates. [J]. J. Am. Soc. Mass Spectrom., 2005, 16: 333-339.
    [47]贾韦韬,吴慧霞, 陆豪杰,等.聚甲基丙烯酸甲酯固定化碳纳米管作为MALDI基质的研究[J].化学学报,2008,66:1681-1686.
    [48] Wei, J., Buriak, J. M., Siuzdak, G. Desorption-ionization mass spectrometry on porous silicon. [J]. Nature, 1999,401: 243-246.
    [49] Lewis, W. G., Shen, Z. X., Finn, M. G., et al. Desorption/ionization on silicon (DIOS) mass spectrometry: background and applications. [J]. Int. J. Mass Spectrom., 2003,226: 107-116.
    [50]Guo,Z.,He,L.A binary matrix for background suppression in MALDI-MS of small molecules.[J].Anal.Bioanal.Chem.2007,387:1939-1944.
    [51]Smirnov,I.P,Zhu,X.,Taylor,T.,et al.Suppression of alpha-cyano-4-hydroxycinnamic acid matrix clusters and reduction of chemical noise in MALDI-TOF mass spectrometry.[J].Anal.Chem.2004,76:2958-2965.
    [52]Kim,J.S.,Kim,J.Y.,Kim,H.J.Suppression of matrix clusters and enhancement of peptide signals in MALDI-TOF mass spectrometry using nitrilotriacetic acid.[J].Anal.Chem.,2005,77:7483-7488.
    [53]Yang,X.F.,Wu,H.P.,Kobayashi,T.,et al.Enhanced ionization of phosphorylated peptides during MALDI TOF mass spectrometry.[J].Anal.Chem.2004,76:1532-1536.
    [54]Kjellstrolm,S.,Jensen,O.N.Phosphoric acid as a matrix additive for MALDI MS analysis of phosphopeptides and phosphoproteins.[J].Anal.Chem.2004,76,5109-5117.
    [55]Asara,J.M.,Allison,J.Enhanced detection of phosphopeptides in matrix- assisted laser desorption/ionization mass spectrometry using ammonium salts.[J].J.Am.Soc.Mass Spectrom.1999,10:35-44.
    [56]Zaia,J.Mass spectrometry of oligosaccharides.[J].Mass.Spectrom.Rev.,2004,23:161-227.
    [57]Harvey,D.J.Matrix-assisted laser desorption/ionization mass spectrometry of carbohydrates.[J].Mass.Spectrom.Rev.,1999,18:349-450.
    [58]Snovida,S.I.,Perreault,H.A.2,5-dihydroxybenzoic acid/N,N-dimethylaniline matrix for the analysis of oligosaccharides by matrix-assisted laser desorption/ionization mass Spectrometry.[J].Rapid Commun.Mass Spectrom.2007,21:3711-3715.
    [59]Fukuyama,Y,Nakaya,S.,Yamazaki,Y,et al.Ionic liquid matrixes optimized for MALDI-MS of sulfated/sialylated/neutral oligosaccharides and glycopeptides.[J].Anal.Chem.,2008,80:2171-2179.
    [60]Schiller,J.,Suss,R.,Arnhold,J.et al.Matrix-assisted laser desorption and ionization time-of-flight (MALDI-TOF) mass spectrometry in lipid and phospholipid research.[J].Prog.Lipid Res.,2004,43:449-488.
    [61]Stubiger,G.,Belgacem,O.Analysis of lipids using 2,4,6-trihydroxyaceto- phenone as a matrix for MALDI mass spectrometry.[J].Anal.Chem.,2007,79:3206-3213.
    [62]Estrada,R.,Yappert,M.C.Alternative approaches for the detection of various phospholipid classes by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.[J].J.Mass Spectrom.,2004,39:412-422.
    [63]Janek,K.,Wenschuh,H.,Bienert,M.,et al.Phosphopeptide analysis by positive and negative ion matrix-assisted laser desorption/ionization mass spectrometry.[J].Rapid Commun.Mass Spectrom.2001,15:1593-1599.
    [64]Zhu,Y.F.,Taranenko,N.I.,Airman,S.L.,et al.The study of 2,3,4-trihydroxy- acetophenone and 2,4,6-trihydroxyacetophenone as matrices for DNA detection in matrix-assisted laser desorption ionization time-of-flight mass spectrometry [J].Rapid Commun.Mass Spectrom.1996,10:383-388.
    [65]Lou,X.W.,Buijtenen,J.,Bastiaansen,J.Characterization of some synthetic Ru and Ir complexes by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.[J].J.Mass Spectrom.2005;40:654-660.
    [66]Wyatt,M.R,Havard,S.,Stein,B.K.Analysis of transition-metal acetylacetonate complexes by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.[J].Rapid Commun.Mass Spectrom.2008,22:11-18.
    [1] Pacholski, M. L., Winograd, N. Imaging with mass spectrometry. [J]. Chem. Rev., 1999, 99: 2977-3005.
    [2] Stoeckli, M., Chaurand, P., Hallahan, D. E., et al. Imaging mass spectrometry: A new technology for the analysis of protein expression in mammalian tissues. [J]. Nature Med., 2001, 7: 493-496.
    [3] Chaurand, P., Schwartz, S. A., Caprioli, R. M. Imaging Mass Spectrometry: A new tool to investigate the spatial organization of peptides and proteins in mammalian tissue sections. [J]. Curr. Opin. Chem. Biol., 2002, 6: 676-681.
    [4] Chaurand, P., Schwartz, S. A., Caprioli, R. M. Profiling and imaging of proteins in tissue sections by MS. [J]. Anal. Chem.,2004, 76: 86-93.
    [5] Caldwell, R. L., Caprioli, R. M. Tissue profiling by mass spectrometry: a review of methodology and applications. [J]. Mol. Cell. Proteomics, 2005,4: 394-401.
    [6] Chaurand, P., Norris, J. L., Cornett, D. S. et al. New developments in profiling and imaging of proteins from tissue sections by MALDI mass spectrometry. [J]. J. Proteome Res., 2006, 5: 2889-2900.
    [7] Mcdonnell, L. A., Heeren, R. M. A. Imaging mass spectrometry. [J]. Mass Spectrom. Rev., 2007, 26: 606-643.
    [8] Goodwin, R. J. A., Pennington, S. R., Pitt, A. R. Protein and peptides in pictures: imaging with MALDI mass spectrometry. [J]. Proteomics, 2008, 8: 3785-3800.
    [9] 许彬,魏开华,张学敏,等.生物组织的基质辅助激光解吸电离质谱成像新进展[J].军事医学科学院院刊,2006,30:189-192.
    [10] 刘念,魏开华,张学敏,等.临床质谱学的最新进展:质谱成像方法及其应用[J].中国仪器仪表,2007,10:76-80.
    [11] Schwartz, S. A., Reyzer, M. L., Caprioli, R. M. Direct tissue analysis using matrix-assisted laser desorption/ionization mass spectrometry: Practical aspects of sample preparation. [J]. J. Mass Spectrom., 2003, 38: 699-708.
    [12] Lemaire, R., Desmons, A. Tabet, J.C., et al. Direct analysis and maldi imaging of formalin-fixed, paraffin-embedded tissue sections. [J]. J. Proteome Res., 2007,6:1295-1305.
    [13] Sugiura, Y., Shimma, S. Setou, M. Two-step matrix application technique to improve ionization efficiency for MALDI in imaging MS. [J]. Anal. Chem., 2006, 78: 8227-8235.
    [14] Baluya, D. L., Garrett, T. J. Yost, R. A. Automated MALDI matrix deposition method with inkjet printing for imaging mass spectrometry. [J]. Anal. Chem., 2007, 79: 6862-6867.
    [15] Jurchen, J. C., Rubakhin, S. S. Sweedler, J. V. MALDI-MS Imaging of features smaller than the size of the laser beam. [J]. J. Am. Soc. Mass Spectrom., 2005, 16: 1654-1659.
    [16] Tusher, V. G. Tibshirani, R., Chu, G. Significance analysis of microarrays applied to the ionizing radiation response. [ J ]. Proc. Natl. Acad. Sci., 2001, 98: 5116-5121.
    [17] Hedenfalk, I. Duggan, D., Chen, Y. et al. Gene expression profiles in hereditary breast cancer. [J]. N. Engl. J. Med., 2001, 344: 539-548.
    [18] Shyr, Y., Kim, K. M. Weighted flexible compound covariate method for classifying microarray data. In: A practical approach to microarray data analysis [M]. Norwell, MA, USA: Kluwer Academic Publishers, 2003, 186-200.
    [19] Everitt, B. S. Cluster analysis. [M]. New York: Halsted Press, 1993,278-279.
    [20] Caprioli, R. M., Farmer, T., Bgile, J. Molecular imaging of biological samples: localization of peptides and proteins using MALDI-TOF MS. [J]. Anal. Chem., 1997,69:4751-4760.
    [21] Yanagisawa, K., Shyr, Y., Xu, B. J. et al. Proteomic patterns of tumour subsets in NSCLC. [J]. Lancet, 2003, 362: 433-439.
    [22] Chaurand, P., Fouchecourt, S., Dague, B. B., et al. Profiling and imaging proteins in the mouse epididymis by imaging mass spectrometry proteomics. [J]. 2003,3:2221-2239.
    [23] Schwartz, S. A., Weil, R. J., Johnson, M. D. et al. Protein profiling in brain tumors using mass spectrometry: feasibility of a new technique for the analysis of protein expression. [J]. Clin. Cancer Res., 2004,10: 981-987.
    [24] Rohner, T. C. Staab, D., Stoeckli, M. MALDI mass spectrometric imaging of biological tissue sections. [J]. Mech. Ageing Dev., 2005,126: 177-185.
    [25] Chaurand, P., Rahman, M. A., Hunt, T. et al. Monitoring mouse prostate development by profiling and imaging mass spectrometry. [J]. Mol. Cell. Proteomics, 2008, 7: 411-423.
    [26] 刘念,刘锋,许彬.生物组织质谱成像方法的建立及其在微波辐射后大鼠海马组织的蛋白组分析中的应用[J].分析化学,2008,36:421-425.
    [27] Jackson, S. N., Wang, H. Y., Woods, A. S. et al. Direct Tissue analysis of phospholipids in rat brain using MALDI-TOFMS and MALDI-Ion-Mobility- TOFMS.[J].J.Am.Soc.Mass Spectrom.,2005,16:133-138.
    [28]Bunch,J.,Clench,M.R.,Richards,D.S.Determination of pharma ceutical compounds in skin by imaging matrix-assisted laser desorption/ionization mass spectrometry.[J].Rapid Commun.Mass Spectrom.,2004,18:3051-3060.
    [29]Skold,K.,Svensson,M.,Nilsson,A.et al.Decreased striatal levels of PEP-19 following MPTP lesion in the mouse.[J].J.Proteome Res.,2006,5:262-269.
    [30]Hsieh,Y.,Casale,R.,Fukuda,E.Matrix-assisted laser desorption/ionization imaging mass spectrometry for direct measurement of clozapine in rat brain tissue.[J].Rapid Commun.Mass Spectrom.,2006,20:965-972.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700