用户名: 密码: 验证码:
油酸通过未折叠蛋白反应调节肠粘膜上皮细胞胆固醇转运相关蛋白的表达
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
油酸是食用油的主要成分。已有研究表明,在肠粘膜上皮细胞中,与其它脂肪酸相比,油酸是一种公认的具有强的诱导富含甘油三酯脂蛋白合成与分泌的脂肪酸,它通过促进胞膜胆固醇向内质网运输,增加胆固醇及其酯的分泌,此外,在无外源胆固醇的条件下,油酸可促进胆固醇的合成。动物实验结果表明,在高胆固醇的条件下,高浓度的油酸可降低胆固醇的吸收率,流行病学调查的结果表明,油酸具有降低血浆LDL胆固醇浓度的作用,与多不饱和脂酸一道被称为“健康脂酸”。然而,在肠粘膜上皮细胞中,油酸影响胆固醇的吸收与运输机制,目前还不清楚。
     高胆固醇血症是导致动脉粥样硬化的重要危险因子。除机体自身合成的胆固醇外,食物胆固醇是导致高胆固醇血症的重要因素,减少小肠对食物与胆汁胆固醇的吸收有利于降低血液胆固醇的水平;因此小肠在保持机体胆固醇稳态方面发挥重要作用。NPC1L1(Niemann-Pick C1-Like 1),分布在肠粘膜上皮细胞刷状缘侧,是负责胆固醇吸收的重要转运体,NPC1L1敲除的小鼠完全抵抗食物诱导的高胆固醇血症,即使用高胆固醇的食物饲养,也不会患高胆固醇血症。ABCG5/8异二聚体也分布在肠粘膜上皮细胞刷状缘侧,通过促进固醇的外排调节胆固醇的吸收。HMGCR是胆固醇合成的限速酶。部分合成与吸收的胆固醇在内质网上经酰基辅酶A:胆固醇酰基转移酶2(Acy1-Coenzyme A CholesterolAcyltransferase,ACAT2)催化形成胆固醇酯。在肠与肝中,富含甘油三酯的酯蛋白的装配与分泌,MTP(Microsomal triglyceride transfer protein)是必不可少的重要转运体。固醇调节元件结合蛋白-2(sterol regulatoryelement-binding protein-2,SREBP-2)是结合在内质网上的转录因子,经蛋白裂解活化,促进胆固醇合成与吸收基因的表达。已有文献报道,它正向调节NPC1L1、HMGCR(3-hydroxy-3-methylglutaryl-CoA reductase)的表达,负向调节MTP的表达。
     内质网是蛋白质合成、折叠,合成胆固醇及脂酸,维持钙离子稳态的重要场所。当内质网的功能受到干扰,内质网应激发生,通过内质网应激活化一系列基因的表达,增加内质网处理未折叠蛋白的能力,减少内质网应激造成的压力。已有文献报道,内质网应激通过未折叠蛋白反应(unfolded protein response,UPR)信号通路促进或抑制SREBP-2的成熟,进而调节其调控的基因的表达。近年来的研究表明,内质网应激通过未折叠蛋白反应(UPR)的不同信号通路正向或负向调节SREBP-2调控的基因表达。已有文献报道,油酸可引起肝细胞发生内质网应激,从而影响apoB100的分泌。但是,在肠粘膜上皮细胞胆固醇吸收过程中,油酸是否可引起内质网应激,进而影响胆固醇转运相关蛋白的表达,目前还不是很清楚.
     本文用肠粘膜上皮细胞CaCo-2作模型,用各种脂质微团温育细胞,探讨油酸对肠粘膜上皮细胞胆固醇吸收、转运相关蛋白表达的影响,以及油酸诱导的UPR对胆固醇关键转运蛋白的调节作用.
     用牛磺胆酸钠(TC 5mM),TC与胆固醇(CHOL 0.2mM)、TC与油酸(0.25mM,0.5mM,1.0 mM)及胆固醇(CHOL 0.2mM)、以及TC与油酸(0.25mM,0.5mM,1.0 mM)制备的脂质微团孵育CaCo-2细胞,24小时后,用RT-PCR检测NPC1L1、ABCG8、HMGCR、ACAT-2、MTP、剪切型XBP1、CHOP mRNA水平的变化,用Western Blotting检测BIP、ATF6(Activating transcription factor-6)、SREBP2、NPC1L1、ABCG8蛋白水平的变化。并利用UPR的抑制剂4-苯基丁酸(4-phenyl-butyric acid,PBA)抑制UPR,阐明UPR在调节胆固醇相关转运蛋白表达中的作用。
     实验结果显示:用不同的脂质微团孵育CaCo-2细胞,在mRNA与蛋白水平ACAT-2的表达无变化;蛋白水平SREBP-2的表达无变化;在有或无微团胆固醇的条件下,高浓度的油酸(0.5mM、1mM)增加了剪切型XBP1(X-box bindingprotein 1)mRNA的数量,增加了BIP(immunoglobulin heavy chain-bindingprotein)蛋白及CHOP(DNA-damage-inducible transcript 3)的表达,促进了ATF-6的成熟,诱发了内质网应激;在有微团胆固醇的条件下,油酸以浓度依赖的方式增加了ABCG8的表达;降低了NPC1L1、HMGCR的表达,MTP的表达显著增加;相反,在无微团胆固醇存在的条件下,油酸增加了NPC1L1、HMGCR的表达。
     用UPR的抑制剂PBA处理细胞,PBA抑制了XBP1的选择性剪接与ATF-6的成熟,消除了油酸引起的CHOP和BIP表达上调,抑制了内质网应激的发生。
     用PBA处理细胞,抑制了高浓度的油酸通过内质网应激引起的NPC1L1、HMGCR、MTP的表达变化。然而,PBA对ABCG8的表达无影响。
     总之,在有或无外源胆固醇的条件下,高浓度的油酸通过未折叠蛋白反应差异地调节肠粘膜上皮细胞NPC1L1、HMGCR、MTP的表达。在有大量外源胆固醇的条件下,高浓度的油酸通过折叠蛋白反应抑制了NPC1L1、HMGCR的表达,增加了MTP的表达。相反,在无外源胆固醇的条件下,高浓度的油酸通过折叠蛋白反应增加了NPC1L1、HMGCR的表达。
Oleic acid is a main component of dietary oil.It has been shown that Oleic acid is arecognized potent inducer to promote the synthesis and secretion oftriacylglycerol-rich lipoprotein,in which unesterified and esterified cholesterolderived from the plasma membrane were increased in intestinal mucosa epithelialcells incubated with oleic acid.Furthermore,it causes a modest increase of thesynthesis of cholesterol in the absence of micellar cholesterol.It has been reportedthat high concentration of Oleic acid decreases the percentage of cholesterolabsorption in animals fed by high amount of cholesterol.Epidemiological studies hasshown that a certain concentration of oleic acid can reduce the concentration ofplasma LDL cholesterol.So,oleic acid together with polyunsaturated fatty acid isknown as the“healthy fatty acid”.However,the mechanism for how oleic acidinflences the absorption and transport of cholesterol is not clear.
     Hypercholesterolemia is a significant risk factor for atherosclerosis.In addition tode novo cholesterol synthesis,cholesterol derived from the diet also contributes to theamount of cholesterol circulating in plasma.Moreover,reducing the intestinalabsorption of dietary and biliary cholesterol will decrease plasma cholesterol level.It is clear,therefore,that the intestine plays an important role in maintainingwhole-body cholesterol homeostasis.In the past few years,Niemann-Pick C1-Like1 (NPC1L1),which resides in the brush-border membrane of intestine cells,has beenidentified as a cholesterol transporter that plays an important role in the absorption ofcholesterol by intestine.The NPC1L1 null mice are completely resistant todiet-induced hypercholesterolemia and do not get hypercholesterolemia in response toa high-cholesterol diet.ABCG5 and ABCG8 also expressed on the brush-border membrane of intestine cells,which function as a heterodimer,regulate the absoptionof cholesterol by facilitating the efflux of cholesterol from absorptive cells back intothe lumen.HMGCR is the rate-limiting enzyme of cholesterol synthesis.Part ofabsorbed and synthesized cholesterol is converted to cholesterol ester by ACAT2 inendoplasmic reticulum.Microsomal triglyceride transfer protein (MTP) is absolutelyessential for the assembly and secretion of triglyceride-rich lipoproteins in theintestine and liver.Sterol regulatory element binding protein-2 (SREBP-2) is amembrane-bound transcription factor that upon proteolytic processing can activate theexpression of genes involved in cholesterol biosynthesis and uptake.It has beenshown to up-regulate the expression of NPC 1 L1 and HMGCR,and negatively regulatethe expression of MTP when SREBP-2 is actived.
     Endoplasmic reticulum(ER) is the principal site for protein synthesis and folding,biosynthesis of cholesterol and fatty acids,as well as Ca~(2+) storage and signaling.Anyperturbation that interferes with these activities leads to ER stress and activates theunfolded protein response (UPR),resulting in transcriptional activation of geneswhose products promote the capacity of ER to alleviate the stress.It has beendocumented that OA- induced hepatic ER stress inhibits the secretion ofapolipoprotein B 100.However,whether OA would induce ER stress and further affectthe expression of cholesterol transport-related proteins in the intestinal mucosaepithelial cells is not clear.
     To explore the effect of OA on the expression of cholesterol transport-relatedprotein in intestinal mucosa epithelial cell and the associated mechanism,CaCo-2cells serve as a model and were incubated with various lipid micelles in this paper.
     CaCo-2 cells were incubated with various types of micelles containing differentconcentration of oleic acid with or without 0.2mM cholesterol.Western blottinganalysis was applied to determine the protein masses of NPC1L1,ABCG8,BRP78,mature SREBP-2 and ATF6.RT-PCR was used to detect the spliced XBP1、CHOP、NPC1L1、ABCG8、HMGCR、ACAT-2、MTP mRNA.4 - phenyl-butyric acid (PBA) wasemployed to confirm whether the expression variation of cholesterol transport-relatedproteins was induced by UPR or not.
     The research indicated that both mRNA and protein expression of ACAT-2、SREBP-2 was not altered in CaCo-2 cells incubated with different lipid micelles.Inthe presence or absence of micellar cholesterol,high concentration of oleic acid(0.5mM、1mM ) increased the amount of spliced XBP lmRNA,mature ATF-6 protein,BIP protein and CHOP mRNA expression,resulting in ER stress.
     In the presence of micellar cholesterol,OA increased the expression of ABCG8protein and MTP mRNA and decreased the expression of NPC1L1 and HMGCR in aconcentration-dependent manner in CaCo-2 cells incubated with OA/CHOL.Incontrast,in the absence of micellar cholesterol,OA increased the expression ofNPC1 L1 and HMGCR in a dose-dependent manner in cells incubated with OA alone.
     Treatment of CaCo-2 cells with PBA supressed OA-induced incrases of XBP 1 andthe protein mass ofmATF6,as well as BIP and CHOP expression.
     UPR inhibitor PBA diminished the effect of OA-induced UPR on the expression ofNPC1L1,HMGCR and MTP mentioned above in cells incubated OA/CHOL or OAalone.
     In a word,in the presence or absence of micellar cholesterol,the expression ofNPC1L1、HMGCR、MTP was diffenently regulaged by oleic acid-inducedendoplasmic reticulum stress in CaCo-2 cells.In the presence of micellar cholesterol,OA-induced UPR increased MTP expression and decreased the expression ofNPC1L1 and HMGCR in a concentration-dependent manner in CaCo-2 cellsincubated with OA/CHOL.In contrast,in the absence of micellar cholesterol,OA-induced UPR increased the expression of NPC1L1 and HMGCR in adose-dependent manner in cells incubated with OA alone.
引文
1.Wilson MD, Rudel LL: Review of cholesterol absorption with emphasis on dietary and biliary cholesterol. J Lipid Res 1994, 35(6):943-955.
    2.Gylling H, Miettinen TA: The effect of cholesterol absorption inhibition on low density lipoprotein cholesterol level. Atherosclerosis 1995, 117(2):305-308
    3 Dashti N, Smith EA, Alaupovic P: Increased production of apolipoprotein B and its lipoproteins by oleic acid in Caco-2 cells. J Lipid Res 1990,31(1):113-123.
    4.Field FJ, Albright E, Mathur SN: Regulation of triglyceride-rich lipoprotein secretion by fatty acids in CaCo-2 cells. J Lipid Res 1988, 29(11):1427-1437.
    5.Field FJ, Born E, Mathur SN: Triacylglycerol-rich lipoprotein cholesterol is derived from the plasma membrane in CaCo-2 cells. J Lipid Res 1995, 36(12):2651-2660.
    6.Waterman E, Lockwood B: Active components and clinical applications of olive oil. Altern Med Rev 2007, 12(4):331-342.
    7.Kris-Etherton PM, Pearson TA, Wan Y, Hargrove RL, Moriarty K, Fishell V, Etherton TD: High-monounsaturated fatty acid diets lower both plasma cholesterol and triacylglycerol concentrations. Am J Clin Nutr 1999, 70(6):1009-1015.
    8.Fonolla J, Lopez-Huertas E, Machado FJ, Molina D, Alvarez I, Marmol E, Navas M, Palacin E, Garcia-Valls MJ, Remon B et at Milk enriched with "healthy fatty acids" improves cardiovascular risk markers and nutritional status in human volunteers. Nutrition 2009, 25(4):408-414.
    9.Parks JS, Crouse JR: Reduction of cholesterol absorption by dietary oleinate and fish oil in African green monkeys. J Lipid Res 1992, 33(4):559-568.
    10.Altmann SW, Davis HR, Jr., Zhu LJ, Yao X, Hoos LM, Tetzloff G, Iyer SP, Maguire M, Golovko A, Zeng M et at Niemann-Pick C1 Like 1 protein is critical for intestinal cholesterol absorption. Science 2004, 303(5661):1201-1204.
    11.Davis HR, Jr., Zhu LJ, Hoos LM, Tetzloff G, Maguire M, Liu J, Yao X, Iyer SP, Lam MH, Lund EG et al: Niemann-Pick Cl Like 1 (NPC1L1) is the intestinal phytosterol and cholesterol transporter and a key modulator of whole-body cholesterol homeostasis. J Biol Chem 2004, 279(32):33586-33592.
    12.Garcia-Calvo M, Lisnock J, Bull HG, Hawes BE, Burnett DA, Braun MP, Crona JH, Davis HR, Jr., Dean DC, Detmers PA et al: The target of ezetimibe is Niemann-Pick C1-Like 1 (NPC1L1). Proc Natl Acad Sci USA 2005,102(23):8132-8137.
    13.Iyer SP, Yao X, Crona JH, Hoos LM, Tetzloff G, Davis HR, Jr., Graziano MP, Altmann SW: Characterization of the putative native and recombinant rat sterol transporter Niemann-Pick Cl Like 1 (NPC1L1) protein. Biochim Biophys Acta 2005,1722(3):282-292.
    14.Davies JP, Scott C, Oishi K, Liapis A, Ioannou YA: Inactivation of NPC1L1 causes multiple lipid transport defects and protects against diet-induced hypercholesterolemia. J Biol Chem 2005, 280(13):12710-12720.
    15.Repa JJ, Buhman KK, Farese RV, Jr., Dietschy JM, Turley SD: ACAT2 deficiency limits cholesterol absorption in the cholesterol-fed mouse: impact on hepatic cholesterol homeostasis. Hepatology 2004, 40(5):1088-1097.
    16.Howies PN, Carter CP, Hui DY: Dietary free and esterified cholesterol absorption in cholesterol esterase (bile salt-stimulated lipase) gene-targeted mice. J Biol Chem 1996, 271(12):7196-7202.
    17.Weng W, Li L, van Bennekum AM, Potter SH, Harrison EH, Blaner WS, Breslow JL, Fisher EA: Intestinal absorption of dietary cholesteryl ester is decreased but retinyl ester absorption is normal in carboxyl ester lipase knockout mice. Biochemistry 1999, 38(13):4143-4149.
    18 Mathur SN, Born E, Murthy S, Field FJ: Microsomal triglyceride transfer protein in CaCo-2 cells: characterization and regulation. J Lipid Res 1997, 38(1):61-67.
    19. Wetterau JR, Lin MC, Jamil H: Microsomal triglyceride transfer protein. Biochim Biophys Acta 1997,1345(2): 136-150.
    20 Hazard SE, Patel SB: Sterolins ABCG5 and ABCG8: regulators of whole body dietarysterols. Pflugers Arch 2007, 453(5):745-752.
    21.Hui DY, Howies PN: Molecular mechanisms of cholesterol absorption and transport in the intestine. Semin Cell Dev Biol 2005,16(2): 183-192.
    22.Berge KE, Tian H, Graf GA, Yu L, Grishin NV, Schultz J, Kwiterovich P, Shan B, Barnes R, Hobbs HH: Accumulation of dietary cholesterol in sitosterolemia caused by mutations in adjacent ABC transporters. Science 2000, 290(5497):1771-1775.
    23.Edwards PA, Tabor D, Kast HR, Venkateswaran A: Regulation of gene expression by SREBP and SCAP. Biochim Biophys Acta 2000, 1529(1-3):103-113.
    24.Horton JD, Goldstein JL, Brown MS: SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. J Clin Invest 2002,109(9): 1125-1131.
    25.Klopotek A, Hirche F, Eder K: PPAR gamma ligand troglitazone lowers cholesterol synthesis in HepG2 and Caco-2 cells via a reduced concentration of nuclear SREBP-2. Exp Biol Med (Maywood) 2006, 231(8): 1365-1372
    26.Alrefai WA, Annaba F, Sarwar Z, Dwivedi A, Saksena S, Singla A, Dudeja PK, Gill RK: Modulation of human Niemann-Pick C1-like 1 gene expression by sterol: Role of sterol regulatory element binding protein 2. Am J Physiol Gastrointest Liver Physiol 2007, 292(1):G369-376.
    27.Sato R, Miyamoto W, Inoue J, Terada T, Imanaka T, Maeda M: Sterol regulatory element-binding protein negatively regulates microsomal triglyceride transfer protein gene transcription. J Biol Chem 1999, 274(35):24714-24720.
    28.Lee JN, Ye J: Proteolytic activation of sterol regulatory element-binding protein induced by cellular stress through depletion of Insig-1. J Biol Chem 2004, 279(43):45257-45265.
    29.Colgan SM, Tang D, Werstuck GH, Austin RC: Endoplasmic reticulum stress causes the activation of sterol regulatory element binding protein-2. Int J Biochem Cell Biol 2007, 39(10): 1843-1851.
    30.Outinen PA, Sood SK, Pfeifer SI, Pamidi S, Podor TJ, Li J, Weitz JI, Austin RC: Homocysteine-induced endoplasmic reticulum stress and growth arrest leads to specific changes in gene expression in human vascular endothelial cells. Blood 1999, 94(3):959-967.
    31.Werstuck GH, Lentz SR, Dayal S, Hossain GS, Sood SK, Shi YY, Zhou J, Maeda N, Krisans SK, Malinow MR et al: Homocysteine-induced endoplasmic reticulum stress causes dysregulation of the cholesterol and triglyceride biosynthetic pathways. J Clin Invest 2001,107(10):1263-1273.
    32.Harding HP, Zhang Y, Khersonsky S, Marciniak S, Scheuner D, Kaufman RJ, Javitt N, Chang YT, Ron D: Bioactive small molecules reveal antagonism between the integrated stress response and sterol-regulated gene expression. Cell Metab 2005, 2(6):361-371.
    33.Zeng L, Lu M, Mori K, Luo S, Lee AS, Zhu Y, Shyy JY: ATF6 modulates SREBP2-mediated lipogenesis. EMBO J 2004, 23(4):950-958.
    34.Patil C, Walter P: Intracellular signaling from the endoplasmic reticulum to the nucleus: the unfolded protein response in yeast and mammals. Curr Opin Cell Biol 2001, 13(3):349-355.
    35.Ye J, Rawson RB, Komuro R, Chen X, Dave UP, Prywes R, Brown MS, Goldstein JL: ER stress induces cleavage of membrane-bound ATF6 by the same proteases that process SREBPs. Mol Cell 2000, 6(6): 1355-1364.
    36.Shen J, Chen X, Hendershot L, Prywes R: ER stress regulation of ATF6 localization by dissociation of BiP/GRP78 binding and unmasking of Golgi localization signals. Dev Cell 2002, 3(1):99-111.
    37.Sriburi R, Jackowski S, Mori K, Brewer JW: XBP1: a link between the unfolded protein response, lipid biosynthesis, and biogenesis of the endoplasmic reticulum. J Cell Biol 2004, 167(1):35-41.
    38.Leclerc D, Rozen R: Endoplasmic reticulum stress increases the expression of methylenetetrahydrofolate reductase through the IRE1 transducer. J Biol Chem 2008, 283(6):3151-3160.
    39.Schroder M: Endoplasmic reticulum stress responses. Cell Mol Life Sci 2008, 65(6):862-894.
    40.Wang XZ, Ron D: Stress-induced phosphorylation and activation of the transcription factor CHOP (GADD153) by p38 MAP Kinase. Science 1996, 272(5266):1347-1349.
    41.Sriburi R, Jackowski S, Mori K, Brewer JW: XBP1: a link between the unfolded protein response, lipid biosynthesis, and biogenesis of the endoplasmic reticulum. J Cell Biol 2004,167(1):35-41.
    42.Feng B, Yao PM, Li Y, Devlin CM, Zhang D, Harding HP, Sweeney M, Rong JX, Kuriakose G, Fisher EA et al: The endoplasmic reticulum is the site of cholesterol-induced cytotoxicity in macrophages. Nat Cell Biol 2003, 5(9):781-792.
    43.Ota T, Gayet C, Ginsberg HN: Inhibition of apolipoprotein B100 secretion by lipid-induced hepatic endoplasmic reticulum stress in rodents. J Clin Invest 2008,118(l):316-332.
    44.Vilatoba M, Eckstein C, Bilbao G, Smyth CA, Jenkins S, Thompson JA, Eckhoff DE, Contreras JL: Sodium 4-phenylbutyrate protects against liver ischemia reperfusion injury by inhibition of endoplasmic reticulum-stress mediated apoptosis. Surgery 2005, 138(2):342-351.
    45.Ozcan U, Yilmaz E, Ozcan L, Furuhashi M, Vaillancourt E, Smith RO, Gorgun CZ, Hotamisligil GS: Chemical chaperones reduce ER stress and restore glucose homeostasis in a mouse model of type 2 diabetes. Science 2006, 313(5790):1137-1140
    46.J: Mathur SN, Watt KR, Field F Regulation of intestinal NPCILI expression by dietary fish oil and docosahexaenoic acid. J Lipid Res 2007, 48(2):395-404.
    47.Hauser H, Howell K, Dawson RM, Bowyer DE: Rabbit small intestinal brush border membrane preparation and lipid composition. Biochim Biophys Acta 1980, 602(3):567-577.
    48 Field FJ, Albright E, Mathur SN: Regulation of cholesterol esterification by micellar cholesterol in CaCo-2 cells. J Lipid Res 1987, 28(9): 1057-1066.
    49 Turley SD, Dietschy JM: Sterol absorption by the small intestine. Curr Opin Lipidol 2003,14(3):233-240.
    50.Ikonen E: Mechanisms for cellular cholesterol transport: defects and human disease. Physiol Rev 2006, 86(4): 1237-1261.
    51.Field FJ, Born E, Murthy S, Mathur SN: Regulation of sterol regulatory element-binding proteins by cholesterol flux in CaCo-2 cells. J Lipid Res 2001, 42(10):1687-1698.
    1.Radhakrishnan A, Sun LP, Kwon HJ, Brown MS, and Gold- stein JL. Direct binding of cholesterol to the purified membrane region of SCAP: mechanism for a sterol-sensing domain. Mol Cell 15:259-268, 2004.
    2.Tabas I. Consequences of cellular cholesterol accumulation: basic concepts and physiological implications. J Clin Invest 110: 905-911, 2002
    3.Chang TY, Chang CC, and Cheng D. Acyl-coenzyme A: choles-terol acyltransferase.Annu Rev Biochem 66:613-638,1997.
    4.Chang TY, Chang CC, Lin S, Yu C, Li BL, and Miyazaki A. Roles of acyl-coenzyme Axholesterol acyltransferase-1 and -2. Curr Opin Lipidol 12: 289 -296, 2001
    5.Altmann SW, Davis HR Jr, Zhu LJ, Yao X, Hoos LM, Tetzloff G, Iyer SP, Maguire M, Golovko A, Zeng M, Wang L, Murgolo N, and Graziano MP. Niemann-Pick C1 Like 1 protein is critical for intestinal cholesterol absorption. Science 303: 1201-1204,2004.
    6.Garcia-Calvo M, Lisnock J, Bull HG, Hawes BE, Burnett DA, Braun MP, Crona JH, Davis HR Jr, Dean DC, Detmers PA, Graziano MP, Hughes M, Macintyre DE, Ogawa A, O'Neill K A, Iyer SP, Shevell DE, Smith MM, Tang YS, Makarewicz AM, Ujjainwalla F, Altmann SW, Chapman KT, and Thornberry NA. The target of ezetimibe is Niemann-Pick C1-Like 1 (NPC1L1). Proc Natl Acad Sci USA 102: 8132-8137, 2005.
    7.Graf GA, Li WP, Gerard RD, Gelissen I, White A, Cohen JC, and Hobbs HH. Coexpression of ATP-binding cassette proteins ABCG5 and ABCG8 permits their transport to the apical surface. J Clin Invest 110: 659-669, 2002.
    8.Fielding CJ and Fielding PE. Molecular physiology of reverse cholesterol transport.J Lipid Res 36: 211-228, 1995.
    9.Kruit JK, Plosch T, Havinga R, Boverhof R, Groot PH, Groen AK, and Kuipers F. Increased fecal neutral sterol loss upon liver X receptor activation is independent of biliary sterol secretion in mice. Gastroenterology 128: 147-156, 2005.
    10.Kosters A, Jirsa M, and Groen AK.Genetic background of cholesterol gallstone disease. Biochim Biophys Acta 1637: 1-19,2003.
    11.Graf GA, Yu L, Li WP, Gerard R, Tuma PL, Cohen JC, and Hobbs HH. ABCG5 and ABCG8 are obligate heterodimers for protein trafficking and biliary cholesterol excretion. J Biol Chem278: 48275-48282, 2003.
    12.Beaven SW and Tontonoz P. Nuclear receptors in lipid metabo- lism: targeting the heart of dyslipidemia. Annu Rev Med 57:313-329, 2006.
    13.Spencer TA, Li D, Russel JS, Collins JL, Bledsoe RK, Consler TG, Moore LB, Galardi CM, McKee DD, Moore JT, Watson MA, Parks DJ, Lambert MH, and Willson TM.Pharmacophore analysis of the nuclear oxysterol receptor LXR alpha. J Med Chem 44:886-897, 2001.
    14.Bose H, Lingappa VR, and Miller WL.Rapid regulation of ste- roidogenesis by mitochondrial protein import. Nature 417: 87-91,2002.
    15.Compagnone NA and Mellon SH. Neurosteroids: biosynthesis and function of these novel neuromodulators. Front Neuroendo-crinol 21:1-56, 2000.
    16.Simons K and Ikonen E. How cells handle cholesterol. Science 290: 1721-1726, 2000.
    17.Abildayeva K, Jansen PJ, Hirsch-Reinshagen V, Bloks VW, Bakker AH, Ramaekers FC, De Vente J, Groen AK, Welling- ton CL, Kuipers F, and Mulder M. 24(S)-Hydroxycholesterol participates in a liver X receptor-controlled pathway in astrocytes that regulates Apolipoprotein E-mediated cholesterol efflux.J Biol Chem.In press. 18. Maxfield FR and Wustner D. Intracellular cholesterol transport.J Clin Invest 110: 891-898,2002.
    19.Maxfield FR and Tabas I. Role of cholesterol and lipid organiza- tion in disease. Nature 438:612-621,2005.
    20.Heino S, Lusa S, Somerharju P, Ehnholm C, Olkkonen VM, and Ikonen E. Dissecting the role of the Golgi complex and lipid rafts in biosynthetic transport of cholesterol to the cell surface. Proc Natl Acad Sci USA 97:8375-8380, 2000.
    21.Lusa S, Heino S, and Ikonen E. Differential mobilization of newly synthesized cholesterol and biosynthetic sterol precursors from cells. J Biol Chem 278: 19844 -19851, 2003.
    22.Grundy SM. Absorption and metabolism of dietary cholesteroI.Annu Rev Nutr 3: 71-96, 1983.
    23.Matter K, Whitney JA, Yamamoto EM, and Mellman I. Com- mon signals control low density lipoprotein receptor sorting in endosomes and the Golgi complex of MDCK cells. Cell 74:1053-1064, 1993.
    24.Hussain MM, Maxfield FR, Mas-Oliva J, Tabas I, Ji ZS, Inner- arity TL, and Mahley RW.Clearance of chylomicron remnants by the low density lipoprotein receptor-related protein/alpha 2-mac- roglobulin receptor. J Biol Chem 266: 13936 -13940, 1991.
    25.Steck TL, Ye J, and Lange Y. Probing red cell membrane choles- terol movement with cyclodextrin. Biophys J 83: 2118-2125, 2002.
    26.Simons K and Vaz WL. Model systems, lipid rafts, and cell mem- branes. Annu Rev Biophys Biomol Struct 33:269-295, 2004.
    27.Parton RG, Hanzal-Bayer M, and Hancock JF. Biogenesis of caveolae: a structural model for caveolin-induced domain forma- tion. J Cell Sci 119: 787-796, 2006.
    28.Gelissen IC, Harris M, Rye KA, Quinn C, Brown AJ, Kockx M, Cartland S, Packianathan M, Kritharides L, and Jessup W. ABCA1 and ABCG1 synergize to mediate cholesterol export to apoA-I. Arterioscler Thromb Vasc Biol 26:534-540,2006.
    29.Harder CJ, Vassiliou G, McBride HM, and McPherson R. He- patic SR-BI-mediated cholesteryl ester selective uptake occurs with unaltered efficiency in the absence of cellular energy. J Lipid Res 47:492-503, 2006.
    30.Dietschy JM and Turley SD.Control of cholesterol turnover in the mouse.J Biol Chem 277: 3801-3804, 2002.
    31.Meir KS and Leitersdorf E. Atherosclerosis in the apolipopro- tein-E-deficient mouse: a decade of progress. Arterioscler Thromb Vasc Biol 24: 1006 -1014, 2004.
    32.De Winther MP, van Dijk KW, Havekes LM, and Hofker MH.Macrophage scavenger receptor class A: a multifunctional receptor in atherosclerosis. Arterioscler Thromb Vasc Biol20: 290-297, 2000.
    33.Out R, Hoekstra M, Spijkers JA, Kruijt JK, van Eck M, Bos IS, Twisk J, and Van Berkel TJ. Scavenger receptor class B type I is solely responsible for the selective uptake of cholesteryl esters from HDL by the liver and the adrenals in mice.J Lipid Res 45:2088-2095, 2004.
    34.Gu X, Kozarsky K, and Krieger M. Scavenger receptor class B, type Ⅰ-mediated [~3H]cholesterol efflux to high and low density lipoproteins is dependent on lipoprotein binding to the receptor. J Biol Chem 275: 29993-30001, 2000.
    35.Trigatti B, Rayburn H, Vinals M, Braun A, Miettinen H, Pen- man M, Hertz M, Schrenzel M, Amigo L, Rigotti A, and Krieger M. Influence of the high density lipoprotein receptor SR-BI on reproductive and cardiovascular pathophysiology. Proc Natl Acad Sci USA 96:9322-9327, 1999.
    36.Van Eck M, Bos IS, Hildebrand RB, Van Rij BT, and Van Berkel TJ. Dual role for scavenger receptor class B, type I on bone marrow-derived cells in atherosclerotic lesion development. Am J Pathol 165: 785-794,2004.
    37.Li D and Mehta JL.Antisense to LOX-1 inhibits oxidized LDL- mediated upregulation of monocyte chemoattractant protein-1 and monocyte adhesion to human coronary artery endothelial cells. Circulation 101: 2889-2895, 2000.
    38.Ohmori R, Momiyama Y, Nagano M, Taniguchi H, Egashira T,Yonemura A, Nakamura H, Kondo K, and Ohsuzu F. An oxi- dized low-density lipoprotein receptor gene variant is inversely associated with the severity of coronary artery disease.Clin Car- diol 27:641-644, 2004.
    39.London E and Brown DA. Insolubility of lipids in Triton X-100: physicaloriginand relationship to sphingolipid/cholesterol mem- brane domains (rafts). Biochim Biophys Acta 1508: 182-195, 2000.
    40.Cohen AW, Hnasko R, Schubert W, and Lisanti MP.Role of caveolae and caveolins in health and disease. Physiol Rev 84: 1341-1379, 2004.
    41.Ikonen E, Heino S, and Lusa S. Caveolins and membrane cho- lesterol. Biochem Soc Trans. 32:121-123, 2004.
    42.Frank PG, Lee H, Park DS, Tandon NN, Scherer PE, and Lisanti MP. Genetic ablation of caveolin-1 confers protection against atherosclerosis. Arterioscler Thromb Vasc Biol 24:98-105,2004.
    43.Reinhart MP, Billheimer JT, Faust JR, and Gaylor JL.Subcel-lular localization of the enzymes of cholesterol biosynthesis and metabolism in rat liver. J Biol Chem 262:9649-9655, 1987.
    44.Prattes S, Horl G, Hammer A, Blaschitz A, Graier WF, Sattler W, Zechner R, and Steyrer E. Intracellular distribution and mo- bilization of unesterified cholesterol in adipocytes: triglyceride droplets are surrounded by cholesterol-rich ER-like surface layer structures. J Cell Sci 113: 2977-2989, 2000.
    45.Davies JP, Scott C, Oishi K, Liapis A, and Ioannou YA. Inac- tivation of NPC1L1 causes multiple lipid transport defects and protects against diet-induced hypercholesterolemia. J Biol Chem.280: 12710-12720, 2005.
    46.Yu L, Bharadwaj S, Brown JM, Ma Y, Du W, Davis MA, Michaely P, Liu P, Willingham MC, and Rudel LL. Cholesterol- regulated translocation of NPC1L1 to the cell surface facilitates free cholesterol uptake. J Biol Chem 281: 6616-6624, 2006.
    47.Cohen JC, Pertsemlidis A, Fahmi S, Esmail S, Vega GL, Grundy SM, and Hobbs HH. Multiple rare variants in NPC1L1 associated with reduced sterol absorption and plasma low-density lipoprotein levels. Proc Natl Acad Sci USA103: 1810-1815,2006.
    48.Goldstein JL, Hobbs HH, and Brown MS. Familial hypercholesterolemia.In: The Metabolic and Molecular Bases of Inherited Disease (6th ed.), edited by Scriver CR, Beaudet AL, Sly WS, and Valle D. New York: McGraw-Hill, 1995, p. 1981-2030.
    49.Silver DL, Wang N, Xiao X, and Tall AR. High density lipopro- tein (HDL) particle uptake mediated by scavenger receptor class B type 1 results in selective sorting of HDL cholesterol from protein and polarized cholesterol secretion. J Biol Chem276:25287-25293,2001.
    50.Maxwell KN and Breslow JL. Proprotein convertase subtilisin kexin 9: the third locus implicated in autosomal dominant hyper- cholesterolemia. Curr Opin Lipidol 16:167-172, 2005.
    51.Slack J. Risks of ischaemic heart-disease in familial hyperlipopro- teinaemic states. Lancet 2: 1380-1382, 1969.
    52.Heath KE, Gahan M, Whittall RA, and Humphries SE. Low- density lipoprotein receptor gene (LDLR) world-wide website in familial hypercholesterolaemia: update, new features and mutation analysis. Atherosclerosis. 154: 243-246,2001.
    53.Marais AD, Firth JC, Bateman ME, Byrnes P, Martens C, and Mountney J. Atorvastatin: an effective lipid-modifying agent in familial hypercholesterolemia. Arterioscler Thromb Vasc Biol 17:1527-1531, 1997.
    54.Garcia CK, Wilund K, Arca M, Zuliani G, Fellin R, Maioli M, Calandra S, Bertolini S, Cossu F, Grishin N, Barnes R, Cohen JC, and Hobbs HH. Autosomal recessive hypercholesterolemia caused by mutations in a putative LDL receptor adaptor protein. Science 292: 1394-1398, 2001.
    55.Mishra SK, Keyel PA, Hawryluk MJ, Agostinelli NR, Watkins SC, and Traub LM. Disabled-2 exhibits the properties of a cargo- selective endocytic clathrin adaptor. EMBO J 21: 4915-4926, 2002.
    56.Arca M, Zuliani G, Wilund K, Campagna F, Fellin R, Bertolini S, Calandra S, Ricci G, Glorioso N, Maioli M, Pintus P, Carru C, Cossu F, Cohen J, and Hobbs HH. Autosomal recessive hypercholesterolaemia in Sardinia, Italy, and mutations in ARH: a clinical and molecular genetic analysis. Lancet 359: 841-847, 2002.
    57.Anderson RA, Byrum RS, Coates PM, and Sando GN.Mutations at the lysosomal acid cholesteryl ester hydrolase gene locus in Wolman disease. Proc Natl Acad Sci USA 91:718-2722, 1994.
    58.Du H, Heur M, Duanmu M, Grabowski GA, Hui DY, Witte DP, and Mishra J. Lysosomal acid lipase-deficient mice: depletion of white and brown fat, severe hepatosplenomegaly, and shortened life span. J Lipid Res 42: 489-500, 2001.
    59.Liscum L and Faust JR. Low density lipoprotein (LDL)-mediated suppression of cholesterol synthesis and LDL uptake is defective in Niemann-Pick type C fibroblasts. J Biol Chem 262:17002-17008,1987.
    60.Davies JP and Ioannou YA. Topological analysis of Niemann- Pick C1 protein reveals that the membrane orientation of the putative sterol-sensing domain is identical to those of 3-hydroxy-3-methylglutaryl-CoA reductase and sterol regulatory element bind- ing protein cleavage-activating protein. J Biol Chem 275: 24367-24374, 2000.
    61.Friedland N, Liou HL, Lobel P, and Stock AM. Structure of a cholesterol-binding protein deficient in Niemann-Pick type C2 dis- ease. Proc Natl Acad Sci USA 100: 2512-2517,2003.
    62.Lachmann RH, te Vruchte D, Lloyd-Evans E, Reinkensmeier G, Sillence DJ, Fernandez-Guillen L, Dwek RA, Butters TD, Cox TM, and Platt FM. Treatment with miglustat reverses the lipid-trafficking defect in Niemann-Pick disease type C. Neurobiol Dis 16:654-658, 2004.
    63.Choi HY, Karten B, Chan T, Vance JE, Greer WL, Heidenreich RA, Garver WS, and Francis GA. Impaired ABCA1-dependent lipid efflux and hypoalphalipoproteinemia in human Niemann-Pick type C disease. J Biol Chem 278: 32569-32577, 2003.
    64.Nicholls SJ, Rye KA, and Barter PJ. High-density lipoproteins as therapeutic targets. Curr Opin Lipidol 16: 345-349, 2005.
    65.Bodzioch M, Orso E, Klucken J, Langmann T, Bottcher A, Diederich W, Drobnik W, Barlage S, Buchler C, Porsch-Ozcu- rumez M, Kaminski WE, Hahmann HW, Oette K, Rothe G, Aslanidis C, Lackner KJ, and Schmitz G The gene encoding ATP-binding cassette transporter 1 is mutated in Tangier disease. Nat Genet 22:347-351, 1999.
    66.Neufeld EB, Stonik JA, Demosky SJ Jr, Knapper CL, Combs CA, Cooney A, Comly M, Dwyer N, Blanchette-Mackie J, Remaley AT, Santamarina-Fojo S, and Brewer HB Jr. The ABCA1 transporter modulates late endocytic trafficking: insights from the correction of the genetic defect in Tangier disease. J Biol Chem 279: 15571-15578, 2004.
    67.Tanaka AR, Abe-Dohmae S, Ohnishi T, Aoki R, Morinaga G, Okuhira K, Ikeda Y, Kano F, Matsuo M, Kioka N, Amachi T, Murata M, Yokoyama S, and Ueda K. Effects of mutations of ABCA1 in the first extracellular domain on subcellular trafficking and ATP binding/hydrolysis. J Biol Chem 278: 8815-8819, 2003.
    68.Aiello RJ, Brees D, and Francone OL. ABCA1-deficient mice: insights into the role of monocyte lipid efflux in HDL formation and inflammation. Arterioscler Thromb Vasc Biol 23:972-980, 2003.
    69.Berge KE, Tian H, Graf GA, Yu L, Grishin NV, Schultz J, Kwiterovich P, Shan B, Barnes R, and Hobbs HH. Accumula- tion of dietary cholesterol in sitosterolemia caused by mutations in adjacent ABC transporters. Science 290: 1771-1775, 2000.
    70.Lutjohann D, Bjorkhem I, Beil UF, and von Bergmann K.Sterol absorption and sterol balance in phytosterolemia evaluated by deuterium-labeled sterols: effect of sitostanol treatment. J Lipid Res 36:1763-1773, 1995.
    71.Porter FD.Human malformation syndromes due to inborn errors of cholesterol synthesis. Curr Opin Pediatr 15:607-613, 2003.
    72.Dubrac S, Lear SR, Ananthanarayanan M, Balasubramaniyan N, Bollineni J, Shefer S, Hyogo H, Cohen DE, Blanche PJ, Krauss RM, Batta AK, Salen G, Suchy FJ, Maeda N, and Erickson SK. Role of CYP27A in cholesterol and bile acid metab- olism. J Lipid Res 46:76-85,2005.
    73.Pullinger CR, Eng C, Salen G, Shefer S, Batta AK, Erickson SK, Verhagen A, Rivera CR, Mulvihill SJ, Malloy MJ, and Kane JP. Human cholesterol 7alpha-hydroxylase (CYP7A1) defi- ciency has a hypercholesterolemic phenotype. J Clin Invest 110:109-117, 2002.
    74.Tsujishita Y and Hurley JH. Structure and lipid transport mech- anism of a StAR-related domain. Nat Struct Biol 7:408-414, 2000.
    75.Wetterau JR, Aggerbeck LP, Bouma ME, Eisenberg C, Munck A, Hermier M, Schmitz J, Gay G, Rader DJ, and Gregg RE. Absence of microsomal triglyceride transfer protein in individuals with abetalipoproteinemia.Science 258: 999-1001, 1992.
    76.Aridor M, Fish KN, Bannykh S, Weissman J, Roberts TH,Lippincott-Schwartz J, and Balch WE. The Sarl GTPase coor- dinates biosynthetic cargo selection with endoplasmic reticulum export site assembly. J Cell Biol 152: 213-229, 2001.
    77.Kastelein J. What future for combination therapies? Int J Clin Pract Suppl 134: 45-50, 2003.
    78.Katzov H, Chalmers K, Palmgren J, Andreasen N, Johansson B, Cairns NJ, Gatz M, Wilcock GK, Love S, Pedersen NL, Brookes AJ, Blennow K, Kehoe PG, and Prince JA. Genetic variants of ABCA1 modify Alzheimer disease risk and quantitative traits related to beta-amyloid metabolism. Hum Mutat 23: 358 -367, 2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700