用户名: 密码: 验证码:
绿僵菌海藻糖合成酶1基因克隆、表达及酶学特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
绿僵菌(Metarhizium anisopliae)是一种蝗虫病原真菌,在蝗虫生物防治中起着重要作用。作为真菌杀虫剂,除了具有直接穿透寄主体壁和持续控制等特点外,它更具有无公害、无残留、害虫不易产生抗性等优点,因而受到人们的广泛关注。目前,世界上已经有十多个商品化绿僵菌菌株登记注册,但是由于孢子的储藏和环境耐受性问题,这些产品常常不稳定,从而阻碍了绿僵菌杀虫剂的大规模应用。
     海藻糖是广泛存在于各种生物体内的抗逆境剂,通过对蛋白质等生物大分子及脂质双分子层的保护,增强了生物体对脱水、高温、低温、冻融、自由基、缺氧、高渗及有机溶剂等胁迫环境的抵抗能力,丝状真菌胞内海藻糖积累与孢子的储藏期延长呈正相关。由此可以推测,通过基因工程技术改进绿僵菌体内海藻糖代谢途径,可以提高孢子内海藻糖含量,从而延长绿僵菌孢子的储藏期,增强其环境稳定性,促进其商品化生产和应用。
     海藻糖主要生物合成途径为:以葡萄糖-6-磷酸(G-6-P)和尿嘧啶二磷酸葡萄糖( UDPG )为底物,经两步催化生成海藻糖。海藻糖-6-磷酸合成酶(trehalose-6-phosphate synthase,TPS: EC 2.4.1.15)催化UDPG和G-6-P合成为海藻糖-6-磷酸(T-6-P),随后在T-6-P磷酸酯酶(trehalose-6-phosphate phosphatase,TPP: EC 3.1.3.12)催化下,T-6-P脱去磷酸基成为海藻糖。该途径在原核细胞与真核细胞中略有差别:Escherichia coli中海藻糖由独立的两个酶(TPS和TPP)协同合成;而Saccharomyces cerevisiae中海藻糖由多酶复合体(TPS complex)合成。该复合体至少含4个亚基,包括具有TPS催化功能的TPS1亚基、具有TPP催化功能的TPS2亚基以及起调节功能的TPS3和TSL1亚基,目前发现原核细胞的TPS或真核细胞的TPS1是海藻糖合成的关键酶。大量研究证实,由于海藻糖的抗胁迫作用,如果超表达TPS/TPS1基因,将增强生物体的抗胁迫能力;若敲除TPS/TPS1则作用相反。除此之外,TPS1还展现了其它丰富的生物学功能,如影响孢子的生成及萌发、真菌的侵染能力、植物胚胎的正常发育等。TPS1还与控制进入糖酵解的糖流量及糖诱导的信号传输有关。但是,有关TPS1基因及酶的作用及机理目前还远未得到明确阐明。
     TPS1在抗胁迫环境中的重要角色及丰富的生物学功能引起了对其研究热潮,就绿僵菌而言为解决绿僵菌孢子的储藏和环境耐受性问题提供了新思路。然而令人遗憾的是,迄今为止没有有关绿僵菌TPS1基因及酶的报道,尽管它们对绿僵菌孢子抗胁迫作用及由此解决绿僵菌杀虫剂大规模应用问题上存在的潜在前景。本研究以此出发,以昆虫病原真菌绿僵菌为研究对象,分离、克隆绿僵菌TPS1基因,对基因序列特点进行分析,调查该基因在基因组中的拷贝数,并研究该基因在菌体不同发育时期的表达模式;同时利用毕赤酵母表达体系对绿僵菌TPS1进行异源表达,纯化重组蛋白,并对重组蛋白进行酶学特性分析。本研究不仅能为有关TPS1基因及酶研究领域提供一个新物种方面的补充,并且将为发展耐储、稳定、更有商业前景的基因工程真菌杀虫剂提供前期的基础研究工作。主要研究成果如下:
     (1)通过同源序列比对设计引物,利用PCR、RT-PCR、RACE等方法成功克隆了金龟子绿僵菌CQMa102 TPS1基因,并登录NCBI的GenBank,登录号为:AY954915。该基因在绿僵菌基因组以单拷贝形式存在,DNA序列含有两个内含子。cDNA序列全长1837 bp,其中包含一个1554 bp的开放阅读框、一个87 bp的5’端非编码区和一个195 bp的3’端非编码区。开放阅读框编码一个含517个氨基酸序列的蛋白。用生物信息学的方法进行分析,表明该蛋白属于葡萄糖基转移酶GTB型超家族。以同源模建法研究该TPS1蛋白空间结构,发现其具有GTB型超家族蛋白的典型结构,即具有N-和C-末端两个结构域,两个结构域之间存在着较大间隙,并且两个结构域内都存在Rossmann折叠。
     (2)调查了绿僵菌CQMa102 TPS1基因在该菌不同发育时期的表达情况。发现该基因在孢子时期未见表达, 1/4SDA液体培养3h(孢子萌发期)可见少量表达,随后表达持续增多,24h(对数生长早期)表达达到高峰,但48h(对数生长后期)表达减少,64h(稳定生长期)基本未见表达。
     (3)实现绿僵菌CQMa102 TPS1基因在毕赤酵母KM71中异源表达,并完成重组TPS1蛋白的纯化,纯化蛋白分子量约58 kDa, C-末端具有6个组氨酸标签。酶活测定证明,该重组蛋白具有TPS1的催化功能,该结果说明我们所克隆的基因其编码蛋白确为绿僵菌TPS1。此外,该表达及纯化体系将为以后的结构特性研究提供充足的酶量。
     (4)对重组TPS1蛋白的酶学特性进行了分析,发现重组TPS1酶活最适温度为40℃,在35℃-50℃条件下都具有较高的活性(具有60%以上酶活),这种较高的最适温度水平和宽范围的温度耐受现象,与TPS1在胁迫环境下扮演关键角色的作用是相适应的。重组TPS1最适pH为6.5,并且在pH5-7.5条件下都具有相对较稳定的酶活。其保持较高酶活的pH范围中包含了绿僵菌CQMa102的专性寄主——东亚飞蝗的血淋巴的pH值,该蛋白的这种pH稳定范围适于侵染环境下的酶活表达,即在真菌侵染昆虫的早期,与菌体大量合成海藻糖的需求相适应。我们的研究还证实了磷酸对重组TPS1的抑制效应,随着磷酸浓度的增加,重组蛋白的活性迅速下降;当磷酸浓度为2mM时酶活性丧失了54.6%,而10mM磷酸浓度下85%的酶活被抑制。对重组TPS1酶动力学特性的研究表明,对G-6-P和UDPG,重组蛋白都表现出典型的米式动力学特征。相应于G-6-P和UDPG,该蛋白的米式常数(Km)分别为3.9mM和9.6 mM。就葡萄糖基受体而言,重组TPS1表现出高度的底物特异性,除G-6-P外,重组TPS1对其它分别作为葡萄糖基受体的底物,包括果糖-6-磷酸、海藻糖,葡萄糖、果糖和蔗糖在内,均未表现出催化活性。
Metarhizium anisopliae, an entomopathogenic fungus, is used as commercial biological control agent of locust. As an entomopathogenic microorganism, there are many advantages in the use of the fungi such as non-residue, non-resistance and non-resurgence except for the active penetration into the host cuticle and the sustaining control for locusts. At present, there are more than 10 strains of Metarhizium anisopliae registered for commercialization. But large scale use of the fungal bio-control agents is limited partially due to the adaptability to the circumstance and the failure of conidia retaining pathogenicity during long term storage.
     Trehalose, an important component in fungal spores, is a disaccharide which protects against several environmental stresses, such as heat, desiccation, salt, cold, freeze thawing, radical, hypoxia and organic solvent by its protection for protein and bimolecular lamellar lipid membrane. Moreover, there is a strong correlation between intracellular trehalose accumulation and prolonged storage time of conidia from filamentous fungi. So it can be speculated that increasing trehalose content in conidia, prolonging conidial storage time and enhancing its environmental stability may be feasible through changing trehalose metabolism pathway by the application of genetic engineering.
     The main pathway for trehalose biosynthesis is the condensation reaction of UDP-glucose (UDPG) and glucose-6-phosphate (G-6-P) to give trehalose-6-phosphate (T-6-P) catalyzed by T-6-P synthase (TPS: EC 2.4.1.15), which is the key enzyme for biosynthesis of the disaccharide. Subsequently T-6-P is dephosphorylated to trehalose by a specific T-6-P phosphatase (TPP: EC 3.1.3.12) (2, 6). In Escherichia coli, trehalose is synthesized by the two separate enzymes, encoded by the genes otsA and otsB, respectively. This is different from Saccharomyces cerevisiae, in which trehalose is synthesized by a multisubunit complex (designated as TPS complex). The TPS complex is composed at least by four subunits TPS1 with TPS activity; TPS2 with TPP activity, and regulatory subunits of TPS3/TSL1. TPS1/TPS plays a key role in the biosynthesis of trehalose. Based on the protection from trehalose, many researches showed that the overexpression of TPS1 gene would enhance the resistence of the host to the abiotic stresses while the disruption of the gene decreased the resistence. In addition, TPS1 has showed abundant biological funtions, such as its effects on conidiogenesis, spore germination, plant embryo development and pathogenesis of fungi. Moreover, TPS1 also involved in the control of the influx of sugar into glycosis and the sugar induced signalling. However, It should be noted that the function and its mechanism of TPS1 gene and enzyme are far from illumination by now.
     TPS1 inspired great insterest of researchers by its key role in the resistence on abiotic stresses and abundant biological functions. For M. anisopliae, TPS1 raised a new idea to solve the problems in the shelf time and the stress resistence to the enviroment. Unfortunately, no report is available on the TPS1 gene and the corresponding enzyme properties in the fungi so far, despite their potential importance for the stress resistance of the spore. Thus, the fungi become the focus of our research. We tried to clone the TPS1 gene in the fungi, analyze its sequence properties, investigated its copy number in the fungi`s genome and study its expression at different development stages. Futhermore, the TPS1 was heterogenously expressed in yeast Pichia pastoris expression system. The recombinant protein was purified and the properties of the purified protein was analyzed. The results attained from the studies above would not only provide more knowledge to the functions of TPS1, but also provide an essential work for the development of more storable, more stable, and more business perspective fungi pesticide by genetic engineering. The main results are as follows:
     1) The TPS1 gene was cloned successfully from M. anisopliae CQMa102 by PCR, RT-PCR and RACE. The cDNA and its deduced protein sequences were deposited in GenBank (accession number AY954915). The gene existed one copy in the fungi`s genome, and its DNA sequence contained two introns. The 1837-bp cDNA sequence contained an 1554-bp single open reading frame encoded a protein of 517 amino acids, an 87-bp 5’untranslated region and an 195-bp 3’untranslated region. Analysis of the amino acid sequences by computer using the NCBI database and BLAST revealed that the TPS1 belonged to glycosyltransferase_GTB_type superfamily. The three-dimensional structure of the protein was constructed by homology modeling method, and the typical structure of the proteins in GTB_type superfamily was found also in the TPS1. As GTB proteins, TPS1 of M. anisopliae also had distinct N- and C- terminal domains each containing a typical Rossmann fold. There was a cleft to separate the two domains.
     2) By the investigation on the TPS1 gene expression at different development stages of M. anisopliae CQMa102, it could be found that no expression could be detected in spores, a small amount of expression could be detected after incubated 3h (the spore germination) in 1/4SDA liquid and then increased continously until 24h (the early exponential growth), the expression decreased at 48h (the later exponential growth) and could hardly be detected at 64h (the stationary growth).
     3) M. anisopliae CQMa102 TPS1 was expressed heterogenously in Pichia pastoris KM71, and the recombinant protein was purified. The purified protein was≈58 kDa with a (His)6 tag at C-terminal. The TPS1catalytic function of the recombinant protein approved the accuracy of our work in the gene cloning. It should be noted that the expression system will provide sufficient amounts of recombinant TPS1 for future structural characterization of the protein.
     4) The properties of recombinant TPS1 were examined. The optimal temperature was 40°C and the protein reserved nice activity in 35-50°C(more than 60% activity). The optimal pH was about 6.5 and the the protein reserved nice activity in pH5-7.5. The high optimal temperature and the broadly active temperature and pH range should be adaptable to the key role of TPS1 in the resistence to abiotic stresses. The pH range reserved nice activity contain the pH of the fungi`s host, locust in which the pH of its hemolymph is 6.0, so the active pH range of the recombinant protein should be adaptable to the essential catalytic function at the early stage of the infection on locusts. Phosphate was confirmed its inhibition to the activity of the recombinant protein, the activity decreased rapidly as the concentrations of phosphate increased. The Km value of recombinant TPS1 for UDP-glucose and glucose-6-phosphate was 9.6 mM and 3.9 mM, respectively, and the enzyme was highly specific to glucose-6-phosphate for glucosyl acceptor,
引文
单志萍,孟妤,姜文侯. 2001.丝状真菌三孢布拉酶DNA的提取研究[J].生物技术, 11: 5-6.
    蒋琳,马承铸. 2000.生物农药研究进展[J].上海农业学报, 16:73-77.
    李保平,宋国庆,李国有. 1999.绿僵菌油剂防治荒漠草原蝗虫的田间试验[J].中国草地, 5: 53-56, 74.
    李增智,樊美珍. 2000.真菌生物技术与真菌杀虫剂的发展[C].见:喻子牛主编.微生物农药及其产业化.北京:科学出版社,115-121.
    林华峰. 1998.虫生真菌研究进展[J].安徽农业大学学报,25:251-254.
    刘清浪,陈瑞屏,吴若光,黄金水,丁泌,柯玉铸,陈炳铨,岑炳沾,张景宁. 1999.应用生物防
    治棉蝗及星天牛—沿海防护林木麻黄病虫害综合控制技术研究报告[J].昆虫天敌, 21: 98-105.
    刘世贵,朱文,杨志荣,葛绍荣,何小仪,袁兴,张丽珠. 1995.一株蝗虫病原菌的分离和鉴定[J].微生物学报, 35: 86-90.
    刘晓东,赵善欢. 1995.印楝素对昆虫的毒力作用机制[J].华南农业大学学报, 17: 118-122.
    刘晓建,李卫民,李淑君,张刚应,王扬. 2001.应用绿僵菌及其复合剂防治青海荒原蝗虫试验初报[J].青海草业, 10: 13-15.
    马莺,刘巧红. 2008.海藻糖的生物合成及相关酶系[J].中国甜菜糖业, 1: 24-28.
    彭国雄,李洪海,王中康. 2003.杀蝗绿僵菌油剂防治东亚飞蝗田间试验[J].中国虫生真菌研究与应用, 5: 119-123.
    邱式邦. 1994. 1993年非洲利用绿僵菌油剂防治蝗虫和蚱蜢的试验结果[J].中国生物防治, 10: 186.
    牟禹,何晶,付凤玲,李晚忱. 2007.转酿酒酵母海藻糖合成酶基因( TPS1)玉米植株的获得[J]. 核农学报, 21: 430-435.
    陆庆光,邓春光,陈长风. 1996.应用绿僵菌防治东亚飞蝗田间试验[J].昆虫天敌, 18: 147-150.
    陆庆光,邓春剩,张爱文. 1993.四种不同绿僵菌菌株对东亚飞蝗毒力的初步观察[J].生物防治通报, 9: 187.
    罗于洋,李青丰,金花,王树森. 2002.我国生物农药应用研究的现状及展望[J].内蒙古草业, 14: 25-26.
    王丽英,严毓骅,董雁军. 1987.蝗虫微孢子虫对东亚飞蝗及蒙、新草原蝗虫的感染试验[J].北京农业大学学报, 13: 495-462.
    王丽英,严毓骅,管致和. 1990.蝗虫微孢子虫对东亚飞蝗的实验感染[J].昆虫学报, 33:121-123.
    魏文娟,任炳忠. 2002.我国蝗虫的生物防治技术及研究进展[J].北华大学学报, 3: 481-484, 490.
    张龙. 1999.蝗虫微孢子虫及其在蝗害治理中的作用[J].生物学通报, 34: 11-12.
    张泽华,高松,张刚应,王扬,杨宝东,张卓然,郑双悦,王梦龙. 2000.应用绿僵菌油剂防治内蒙草原蝗虫的效果[J].中国生物防治, 16: 49-52.
    赵恢武,陈杨坚,胡鸢雷,高音,林忠平. 2000.干旱诱导性启动子驱动的海藻糖-6-磷酸合酶基因载体的构建及转基因烟草的耐旱性[J].植物学报, 42: 616-619.
    朱文,杨志荣,葛绍荣,侯若彤,刘世贵,汪志刚. 1995.苏云金杆菌防治草地蝗虫的研究[J]. 西南农业学报, 8: 61-64.
    周则迅,袁汉英,何炜. 2000.乙肝病毒表面抗原SA-28融合基因在酵母中的组成型表达[J].复旦学报(自然科学版),39: 264-268.
    (美)F.奥斯伯,R. E.金斯顿,J. G.塞德曼著.颜子颖,王海林译. 1998.精编分子生物学实验指南[M].第1版.北京:科学出版社.
    Adler M. and Lee G. 1999. Stability and surface activity of lactate dehydrogenase in spray-dried trehalose [J]. J. Pharm. Sci., 88: 199-208.
    Allison S. D., Chang B., Randolph T. W. and Carpenter J. F. 1999. Hydrogen bonding between sugar and protein is responsible for inhibition of dehydration-induced protein unfolding [J]. Arch. Biochem. Biophys., 365: 289-298.
    Alvarez-Peral F. J., Zaragoza O., Pedren Y. and Argüelles J. C. 2002. Protective role of trehalose during severe oxidative stress caused by hydrogen peroxide and the adaptive oxidative stress response in Candida albicans [J]. Microbiology., 148: 2599-2606.
    Arisan-Atac I., Wolschek M. F. and Kubicek C. P. 1996. Trehalose-6-phosphate synthase A affects citrate accumulation by Aspergillus niger under conditions of high glycolytic flux [J]. FEMS Microbiol. Lett., 140: 77-83.
    Arnold K., Bordoli L., Kopp J., and Schwede T. 2006. The SWISS-MODEL Workspace: A web-based environment for protein structure homology modelling. Bioinformatics., 22: 195-201.
    Avonce N., Leyman B., Mascorro-Gallardo J. O., Van Dijck P., Thevelein J. M. and Iturriaga G. 2004. The Arabidopsis trehalose-6-P synthase AtTPS1 gene is a regulator of glucose, abscisic acid, and stress signaling [J]. Plant. Physiol., 136: 3649-3659.
    Banaroudj N., Lee D. H. and Goldberg A. L. 2001. Trehalose accumulation during cellular stress protects cells and cellular proteins from damage by oxygen radicals [J]. J. Biol. Chem., 276: 24261-24267.
    Bańuelos M., Gancedo C. and Gancedo J. M. 1977. Activation by phosphate of yeast phosphofructokinase [J]. J. Biol. Chem., 252: 6394-6398.
    Bateman R. 1997. The development of a mycoinsecticide for the control of locusts and grasshoppers. International Institute of Biological Control (UK) [J]. Outlook on Agriculture, 26: 13-18.
    Beattie G. M., Crowe J. H., Lopez A. D. Cirulli V., Ricordi C. and Hayek A. 1997. Trehalose: a cryoprotectant that enhances recovery and preserves function of human pancreatic islets after long-term storage [J]. Diabetes., 46: 519-523.
    Becker A., Schl?eder P., Steele J. E. and Wegener G. 1996. The regulation of trehalose metabolism in insects [J]. Experientia., 52: 433-439.
    Bell W., Klaassen P., Ohnacker M., Boller T., Herweijer M., Schoppink P., Vanderzee P. and Wiemken, A. 1992. Characterization of the 56-kDa subunit of yeast trehalose-6-phosphate synthase and cloning of its gene reveal its identity with the product of CIF1, a regulator of carbon catabolite inactivation [J]. Eur. J. Biochem., 209: 951-959.
    Bell W., Sun W., Hohmann S., Wera S., Reinders A., Virgilio C. D., Wiemken A. and Thevelein J. M. 1998. Composition and functional analysis of the Saccharomyces cerevisiae trehalose synthase complex [J]. J. Biol. Chem., 273: 33311-33319.
    Bidochka M. J. 2001. Monitoring the fate of biocontrol fungi [C]. In Butt T. M., Jackson C. and Morgan N. (eds.). fungal biocontrol agents: progress, problems and potential. CAB International, Wallingford, United Kingdom, 193-218.
    Birch G. G. 1963. Trehalose [C]. In: Wolfrom M. L. and Tyson R. S. (eds.). Advances in Carbohydrate Chemistry. Academic Press, New York, 18: 201-225.
    Blázquez M. A., Lagunas R., Gancedo C. And Gancedo J. M. 1993. Trehalose-6-phosphate, a new regulator of yeast glycolysis that inhibits hexokinases [J]. FEBS Lett., 329: 51-54.
    Blázquez M. A, Stucka R., Feldmann H. and Gancedo C. 1994. Trehalose-6-P synthase is dispensable for growth on glucose but not for spore germination in Schizosaccharomyces pombe [J]. J. Bacteriol., 176: 3895-3902.
    Bonini B. M., Van Vaeck C., Larsson C., Gustafsson L., Ma P., Winderickx J., Van Dijck P. and Thevelein J. M. 2000. Expression of Escherichia coli otsA in a Saccharomyces cerevisiae tps1 mutant restores trehalose 6-phosphate levels and partly restores growth and fermentation with glucose and control of glucose influx into glycolysis [J]. Biochem. J., 350: 261-268.
    Bradford M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding [J]. Analytical Biochemistry., 72: 248-253.
    Brierley R. A., Bussineau C., Kosson R., Melton A. and Siegel R. S. 1990. Development of recombinant Pichia pastoris expressing the heterologous gene bovine lysozyme [J]. Biochem.Eng., 589: 350-362.
    Cabib E. and Leloir L. F. The biosynthesis of trehalose phosphate [J]. J. Biol. Chem. 1958, 231: 259-275.
    Candy D. J. and Kilby B. A. 1958. Site and mode of trehalose biosynthesis in the locust [J]. Nature., 183: 1584-1595.
    Cardoso F. S., Castro R. F., Borges N. and Helena S. 2007. Biochemical and genetic characterization of the pathways for trehalose metabolism in Propionibacterium freudenreichii, and their role in stress response [J]. Microbiology, 153: 270-280.
    Carpenter J. F. and Crowe J. F. 1989. An infrared spectroscopic study of the interactions of carbohydrates with dried proteins [J]. Biochemistry. 28: 3916-3922.
    Chaudhuri P., Basu A. and Ghosh A. K. 2008. Aggregation dependent enhancement of trehalose-6-phosphate synthase activity in Saccharomyces cerevisiae [J]. BBA-Gen. Subjects., 1780: 289-297.
    Chen Q., Behar K. L., Xu T., Fan C. and Haddad G. G.. 2002. Role of trehalose phosphate synthase in anoxia tolerance and development in Drosophila melanogaster [J]. J. Biol. Chem., 277: 3274-3279.
    Chen Q., Behar K. L., Xu T., Fan C., and Haddad G. G.. 2003. Expression of Drosophila trehalose-phosphate synthase in HEK-293 Cells increases hypoxia tolerance [J]. J. Biol. Chem., 278: 49113-49118.
    Chen Q. and Haddad G. G. 2004. Role of trehalose phosphate synthase and trehalose during hypoxia: from flies to mammals [J]. J. Exp. Biol., 207: 3125-3129.
    Choi B. K., Bobrowicz P., Davidson R. C., Hamilton S. R., Kung D. H., Li H., Miele R. G., Nett J. H., Wildt S. and Gerngross T. U. 2003. Use of combinatorial genetic libraries to humanize N-linked glycosylation in the yeast Pichia pastoris [J]. Proc Natl. Acad. Sci. USA, 100: 5022-5027.
    Colaco C. A. L. S. and Roser B. 1995. Trehalose-a multifunctional additive for food preservation [C]. In: Mathlouthi M. (eds.). Food Packaging and Preservation. Blackie Professional, London: 123-140.
    Crowe J. H. 2007. Trehalose as a“chemical chaperone”: fact and fantasy [J]. Adv. Exp. Med. Biol., 594: 143-158.
    Crowe J. H. and Crowe L. M. 1990. Lyotropic effects of water on phospholipids [C]. In: Franks F. (eds.). Water science reviews. Cambridge University Press, Cambridge, England, 1-23.
    Crowe J. H. and Crowe L. M. 2000. Preservation of mammalian cells-learning nature’s tricks [J]. Nat. Biotechnol.,18: 145-146.
    Crowe J. H., Crowe L. M., Carpenter J. F., Rudolph A. S., Wistrom C. A., Spargo B. J. and Anchordoguy T. J. 1988. Interactions of sugars with membranes [J]. Biochim. Biophys. Acta., 947: 367-384.
    Crowe J. H,, Crowe L. M., Oliver A. E., Tsvetkova N., Wolkers W. and Tablin F. 2001. The trehalose myth revisited: introduction to a symposium on stabilization of cells in the dry state [J]. Cryobiology, 43: 89-105.
    Crowe J. H., Tablin F., Wolkers W. F., Gousset K., Tsvetkova N. M. and Ricker J. 2003. Stabilization of membranes in human platelets freeze-dried with trehalose [J]. Chem. Phys. Lipids., 122: 41-52.
    Crowe L. M. and Crowe J. H. Trehalose and dry dipalmitoyl phosphatidylcholine revisited [J]. Biochim. Biophys. Acta. 1988, 946: 193-201.
    Daoust R. A. and Roberts D.W. 1983. Studies on the prolonged storage of Metarhizium anisopliae conidia: effect of temperature and relative humidity on conidial viability and virulence against mosquitoes [J]. J. Invertebr. Pathol., 41: 143-150.
    De Castro A. G., Bredholt H., Strom A. R. and Tunnacliffe A. 2000. Anhydrobiotic engineering of gram-negative bacteria [J]. Appl. Environ. Microbiol., 66: 4142-4144.
    De Smet K. A., Weston A., Brown I. N., Young D. B. and Robertson B. D. 2000. Three pathways for trehalose biosynthesis in mycobacteria [J]. Microbiol., 146: 199-208.
    De Virgilio C., Bürckert N., Bell W., Jen? P., Boller T. and Wiemken A. 1993. Disruption of TPS2, the gene encoding the 100 kDa subunit of the trehalose-6-phosphate synthase/phosphatase complex in Saccharomyces cerevisiae, causes accumulation of trehalose-6-phosphate and loss of trehalose-6-phosphate phosphatase activity [J]. Eur. J. Biochem., 212: 315-323.
    De Virgilio C., Hottinger T., Dominiguez J., Boller T. and Wiemken A. 1994. The role of trehalose synthesis for the acquisition of thermotolerance in yeast [J]. Eur. J. Biochem., 219: 179-186.
    Dijck P. V., Mascorro-Gallardo J.O., Bus M. D., Royackers K., Iturriaga G. and Thevelein J. M. 2002. Truncation of Arabidopsis thaliana and Selaginella lepidophylla trehalose-6-phosphate synthase unlocks high catalytic activity and supports high trehalose levels on expression in yeast [J]. Biochem. J., 366: 63-71.
    Driver F., Milner R. J. and Trueman J. W. H. 2000. A taxonomic revision of Metarhizium based on sequence analysis of ribosomal DNA [J]. Mycol. Res., 104: 135-151.
    Duong T., Barrangou R., Russell W. M. and Klaenhammer T. R. 2006. Characterization of the tre locus and analysis of trehalose cryoprotection in Lactobacillus acidophilus NCFM [J]. Appl. Environ. Microb., 72: 1218-1225.
    Eastmond P. J. and Graham I. A. 2003. Trehalose metabolism: a regulatory role fortrehalose-6-phosphate? [J]. Curr. Opin. Plant. Biol., 6: 231-235.
    Eastmond P. J., Van Dijken A. J., Spielman M., Kerr, A., Tissier A. F., Dickinson H. G., Jones J. D., Smeekens S. C. and Graham I. A. 2002. Trehalose-6-phosphate synthase 1, which catalyses the first step in trehalose synthesis, is essential for Arabidopsis embryo maturation [J]. Plant. J., 29: 225-235.
    Ekesi S., Maniania N. K. and Lux S. A. 2003. Effect of soil temperature and moisture on survival and infectivity of Metarhizium anisopliae to four tephritid fruit fly puparia [J]. J. Invertebr. Pathol., 83: 157-167.
    Elbein A. D. 1974. The metabolism ofα,α-trehalose [C]. In: Tipson R. S. and Horton D. (eds.). Advances in Carbohydrate Chemistry and Biochemistry. Academic Press, New York, 30: 227-256.
    Elbein A. D. and Mitchell M. 1973. Levels of glycogen and trehalose in Mycobacterium smegmatis and the purification and properties of the glycogen synthetase [J]. J. Bacteriol., 113: 863-873.
    Elbein A. D., Pan Y. T., Pastuszak I. and Carroll D. 2003. New insights on trehalose: a multifunctional molecule [J]. Glycobiology., 13: 17R-27R.
    Fillinger S., Chaveroche M. K., Van Dijck P., De Vries R., Ruijter G., Thevelein J. and Enfert C. 2001. Trehalose is required for the acquisition oftolerance to a variety of stresses in thefilamentous fungus Aspergillus nidulans [J]. Microbiology., 147: 1851-1862.
    Fiol D. F. and Salerno G. L. 2005. Trehalose synthesis in Euglena gracilis (Euglenophyceae) occurs through an enzyme complex [J]. J. Phycol., 41: 812-818.
    Foster A. J., Jenkinson J. M. and Talbot N. J. 2003. Trehalose synthesis and metabolism are required at different stages of plant infection by Magnaporthe grisea [J]. EMBO. J., 22: 225-235.
    Fran?ois J. and Hers H. G. 1988. The control of glycogen metabolism in yeast: A kinetic study of the two forms of glycogen synthase and of glycogen phosphorylase and an investigation of their interconversion in a cell-free extract [J]. Eur. J. Biochem., 174: 561-567.
    Franks F. 1990. Freeze-drying: from empiricism to predictability [J]. Cryo-Lett., 11: 93-110.
    Fran?ois J., Schaftingen E. V. and Hers H. G. 1988. Characterization of phospho-fructokinase 2 and of enzymes involved in the degradation of fructose 2, 6-bisphosphate in yeast [J]. Eur. J. Biochem., 171: 599-608.
    Gadd G. M., Chalmers K. and Reed R. H. 1987. The role of trehalose in dehydration resistance of Saccharomyces cerevesiae [J]. FEMS Microbiol. Lett., 48: 249-254.
    Garg A. K., Kim J. K., Owens T. G., Ranwala A. P., Choi Y. D., Kochian L. V. and Wu R. J. 2002. Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses [J]. Proc. Natl. Acad. Sci. USA., 99: 15898-15903.
    Gibson R. P., Turkenburg J. P., Lloyd R. M., Charnock S. J. and Davies G. J. 2002. Insights into trehalose synthesis provided by the structure of the retaining glucosyltransferase OtsA [J]. Chem. Biol., 9:1337-1346.
    Goddijn O. and Smeekens S. 1998. Sensing trehalose biosynthesis in plants [J]. Plant. J., 14: 143-146.
    Goddijn O. J. M. and Van Dun K. 1999. Trehalose metabolism in plants [J]. Trends. Plant. Sci., 4: 315-319.
    Goddijn O. J. M., Verwoerd T. C., Voogd E., Krutwagen R. W., De Graaf P. T., Van Dun K., Poels J., Ponstein A. S., Damm B. and Pen J. 1997. Inhibition of trehalase activity enhances trehalose accumulation in transgenic plants [J]. Plant. Physiol., 113:181-190.
    Godon C., Lagniel G., Lee J., Buhler J. M., Kieffer S., Perrot M., Boucherie H., Toledano M. B. and Labarre J. 1998. The H2O2 stimulon in Saccharomyces cerevisiae [J]. J. Biol. Chem., 273: 22480-22489.
    Green J. L. and Angell C. A. 1989. Phase relations and vitrification in saccharide-water solutions and the trehalose anomaly [J]. J. Phys. Chem., 93: 2880-2882.
    Hallsworth J. E. and Magan N. 1995. Manipulation of intracellular glycerol and erythritol enhances germination of conidia at low water availablity [J]. Microbiology., 141: 1109-1115.
    Hedgecock S., Moore D., Higgins P.M. and Prior C. 1995. Influence of moisture content on temperature tolerance and storage of Metarhizium flavoviride in an oil formulation. Biocontrol [J]. Sci. Technol., 5: 371-377.
    Hengge-Aronis R., Klein W., Lange R., Rimmele M. and Boos W. 1991. Trehalose synthesis genes are controlled by the putative sigma factor encoded by rpoS and are involved in stationary-phase thermotolerance in Escherichia coli [J]. J. Bacteriol., 173: 7918-7924.
    Henry J. E. and Oma E. A. 1981. Pest control by Nosema locustae, a pathogen of grasshoppers and crickets [C]. In: Burges H.D. (eds.). Microbial Control of Pests and Plant Diseases. Academic Press, 573-586.
    Hohmann S., Neves M. J., De Koning W., Alijo R., Ramos J. and Thevelein J. M. 1993. The growth and signaling defects of the ggs1(fdp1/byp1) deletion mutant on glucose are suppressed by a deletion of the gene encoding hexokinase [J]. Curr. Genetics., 23: 281-289.
    Hong T.D., Jenkins N.E., Ellis R.H. and Moore D. 1998. Limits to the negative logarithmic relationship between moisture content and longevity in conidia of Metarhizium flavoviride [J]. Ann. Bot-London., 81: 625-630.
    Hottiger T., Schmutz P. and Wiemken A. 1987. Heat-induced accumulation and futile cycling of trehalose in Saccharomyces cerevisiae [J]. J. Bacteriol., 169: 5518-5522.
    Howells A. M., Bullifent H. L., Dhaliwal K., Griffin K., De Castro A. G., Frith G., Tunnacliffe A. and Titball R. W. 2002. Role of trehalose biosynthesis in environmental survival and virulence of Salmonella enterica serovar typhimurium [J]. Res. Microbiol., 153: 281-287.
    Huang D., Wilson W. A. and Roach P. J. 1997. Glucose-6-P control of glycogen synthase phosphorylation in yeast [J]. J. Biol. Chem., 272: 22495-22501.
    Hwang J. S., Yamada K., Honda A., Nakade K. and Ishihama A. 2000. Expression of functional influenza virus RNA polymerase in the methylotrophic yeast Pichia pastoris [J]. J. Virol., 74: 4074-4084.
    Kaasen I., Falkenberg P., Styrvold O. B. and Strom A. R. 1992. Molecular cloning and physical mapping of the otsBA genes, which encode the osmoregulatory trehalose pathway of Escherichia coli: evidence that transcription is activated by katF (AppR) [J]. J. Bacteriol., 174: 889-898.
    Kandror O., De Leon A. and Goldberg A. L. 2002. Trehalose synthesis is induced upon exposure of Escherichia coli to cold and is essential for viability at low temperatures [J]. Proc. Natl. Acad. Sci. USA., 99: 9727-9732.
    Kassa A., Stephan D., Vidal S. and Zimmermann G. 2004. Production and processing of Metarhizium anisopliae var. acridum submerged conidia for locust and grasshopper control [J]. Mycol. Res., 108: 93-100.
    Killick K. A. 1979. Trehalose 6-phosphate synthase from Dictyostelium discoideum: partial purification and characterization of the enzyme fromyoung sorocarps [J]. Arch. Biochem. Biophys., 196: 121-133.
    Kong X. D., Liu Y., Gou X. J., Zhang H. Y., Wang X. P. and J Zhang. 2001. Directed evolution of operon of trehalose-6-phosphate synthase/phosphatase from Escherichia coli [J]. Biochem. Biophys. Res. Commun., 280: 396-400.
    Kwon H. B., Yeo E. T., Hahn S. E., Bae S. C., Kim D. Y. and Byun M. O. 2003. Cloning and characterization of genes encoding trehalose-6-phosphate synthase (TPS1) and trehalose-6-phosphate phosphatase (TPS2) from Zygosaccharomyces rouxii [J]. FEMS Yeast Research., 3: 433-440.
    Lammli,U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227: 680-685.
    Lee J. S., Hai T., Pape H. and Suh J. W. 2008. Three trehalose synthetic pathways in the acarbose-producing Actinoplanes sp. SN223/29 and evidence for the TreY role in biosynthesis of component C [J]. Appl. Microbiol. Biotechnol., 80: 767-778.
    Leekumjorn S. and Sum A. K. 2008. Molecular dynamics study on the stabilization of dehydratedlipid bilayers with glucose and trehalose [J]. J. Phys. Chem. B., 112: 10732-10740.
    Leopold. A. C. Membranes, metabolism, and dry organisms [M]. Cornell University Press, Ithaca, NY. 1986: 1-377.
    Leyman B., Van Dijck P. and Thevelein J. M. 2001. An unexpected plethora of trehalose biosynthesis genes in Arabidopsis thaliana [J]. Trends. Plant. Sci., 6: 510-513.
    Liu H. J., Li Q., Liu D. H. and Zhong J. J. 2006. Impact of hyperosmotic condition on cell physiology and metabolic flux distribution of Candida krusei [J]. Biochem. Eng. J., 28: 92-98.
    Lomer C.J., Bateman R.P., Johnson D.L. Langewald J. and Thomas M. 2001. Biological control of locusts and grasshoppers [J]. Annu. Rev. Entomol., 46: 667-702.
    Londesborough. J. and Vuorio. O. 1991. Trehalose-6-phosphate synthase/phosphatase complex from bakers' yeast: purification of a proteolytically activated form [J]. J. Gen. Microbiol., 137: 323-330.
    Londesborough J. and Vuorio O. E. 1993. Purification of trehalose synthase from baker’s yeast. Its temperature-dependent activation by fructose-6-phosphate and inhibition by phosphate [J]. Eur. J. Biochem., 216: 841-848.
    Lucero P., Pe?alver E., Moreno E. and Lagunas R. 2000. Internal trehalose protects endocytosis from inhibition by ethanol in Saccharomyces cerevisiae [J]. Appl. Environ. Microbiol., 66: 4456-4461.
    Madin K. A. C. and Crowe J. H. 1975. Anhydrobiosis in nematodes: carbohydrate and lipid metabolism during dehydration [J]. J. Exp. Zool., 193: 335-342.
    Makihara F., Tsuzuki M., Sato K., Masuda S., Nagashima K. V. P., ABO M. and Okubo A. 2005.
    Role of trehalose synthesis pathways in salt tolerance mechanism of Rhodobacter sphaeroides f. sp. denitrificans IL1061 [J]. Arch. Microbiol., 184: 56-65.
    Marchler-Bauer A., Anderson J.B., Derbyshire M.K., DeWeese-Scott C., Gonzales N. R., Gwadz M., Hao L., He S., Hurwitz D. I., Jackson J. D.., Ke Z., Krylov D., Lanczycki C. J., Liebert C. A., Liu C., Lu F., Lu S., Marchler G. H., Mullokandov M., Song J.S., Thanki N., Yamashita R. A., Yin J. J., Zhang D. and Bryant S. H. 2007. CDD: a conserved domain database for interactive domain family analysis [J]. Nucleic Acids Res., 35: 237-240.
    Márquez-Escalante J. A., Figueroa-Soto C. G. and Valenzuela-Soto E. M. 2006. Isolation and partial characterization of trehalose 6-phosphate synthase aggregates from Selaginella lepidophylla plants [J]. Biochimie., 88: 1505-1510.
    Mazzobre M. F. and Buera M. D. P. 1999. Combined effects of trehalose and cations on thermal resistance ofβ-galactosidase in freeze-dried systems [J]. BBA-Gen. Subjects., 1473: 337-344.
    McIntyre H. J., Davies H., Hore T. A., Miller S. H., Dufour J. P. and Ronson C. W. 2007. Trehalosebiosynthesis in Rhizobium leguminosarum bv. trifolii and its role in desiccation tolerance [J]. Appl. Environ. Microb., 73: 3984- 3992.
    Miller D. P., Anderson R. E. and De Pablo J. J. 1998. Stabilization of lactate dehydrogenase following freeze thawing and vacuum-drying in the presence of trehalose and borate [J]. Pharmaceut. Res., 15: 1215-1221.
    Miller D. P., De Pablo J. J. and Corti H. 1997. Thermophysical properties of trehalose and its concentrated aqueous solutions [J]. Pharmaceut. Res., 14: 578-590.
    Milner R. J. 2000. Current status of Metarhizium as a mycoinsecticide in Australia. Biocontrol News and Information [J]., 21: 2 47N -250N.
    Milner R.J., Lim R.P. and Hunter D.M. 2002. Risks to the aquatic ecosystem from the application of Metarhizium anisopliae for locust control in Australia [J]. Pest. Manag. Sci., 58: 718-723.
    Moffat J., Huang D. and Andrews B. 2000. Functions of Pho85 cyclin-dependent kinases in budding yeast [J]. Prog. Cell Cycle. Res, 4: 97-106.
    Moore D., Bateman R.P., Carey M. and Prior C. 1995. Long-term storage of Metarhizium flavoviride conidia in oil formulations for the control of locusts and grasshoppers [J]. Biocont. Sci. Technol., 5: 193-199.
    Muralirangan M.C. 1992. Biocontrol of grasshopper a review. Phytophaga (Madras) [J]., 4: 33-46. Murphy T. A. and Wyatt G. R. 1965. The enzymes of glycogen and trehalose and synthesis in silk moth fat body [J]. J. Biol. Chem., 240: 1500-1508.
    Nakada T., Maruta K., Tsusaki K., Kubota M., Chaen H., Sugimoto T., Kurimoto M. and Tsujisaka Y. 1995. Purification and properties of a novel enzyme, maltooligosyl trehalose synthase, from Arthrobacter sp. Q36 [J]. Biosci. Biotech. Biochem., 59: 2210-2214.
    Nicolaus B., Gambacorta A., Basso A. L., Riccio R., DeRosa M. and Grant W. D. 1988. Trehalose in Archaebacteria systems [J]. Appl. Microbiol., 10: 215-217.
    Noubhani A., Bunoust O., Rigoulet M. and Thevelein J. M. 2000. Reconstitution of ethanolic fermentation in permeabilized spheroplasts of wildtype and trehalose-6-phosphate synthase mutants of the yeast Saccharomyces cerevisiae [J]. Eur. J. Biochem., 267: 4566-4576.
    Paiva C. L. and Panek A. D. 1996. Biotechnological applications of the disaccharide trehalose [J]. Biotechnology Annual Reviews., 2: 293-314.
    Pan Y. T., Carroll J. D. and Elbein A. D. 2002. Trehalose-phosphate synthase of Mycobacterium tuberculosis:Cloning, expression and properties of the recombinant enzyme [J]. Eur. J. Biochem., 269: 6091-6100.
    Paul M., Pellny T. and Goddijn O. 2001. Enhancing photosynthesis with sugar signals [J]. Trends. Plant. Sci., 6: 197-200.
    Pereira M. D., Eleutherio E. C. and Panek A. D. 2001. Acquisition of tolerance against oxidative damage in Saccharomyces cerevisiae [J]. BMC. Microbiol., 1: 11.
    Price R.E., Bateman R.P., Brown H.T. and Muller E.J. 1997. Aerial spray trials against brown locust (Locustanapardalina Walker) nymphs in South Africa using oil-based formulations of Metarhizium flavoiride [J]. Crop. Protection., 16: 345-351.
    Prior C. and Greatheas D.J. 1989. Biology control of locust: the potential for the exploitation of pathogens [J]. FAO Plant Protection Bulletin., 37: 151-163.
    Prior C., Lomer C. J., Herren H., Paraso A., Kooyman C. and Smit J. J. 1992. The IIBC/IITA/DFPV collaborative research programme on the biological control of locusts and grasshoppers. In: Biological Control of Locusts and Grasshoppers [M]. CAB International, Wallingford, 8-18.
    Rangel D. E. N., Braga G. U. L., Flint S. D., Anderson A. J. and Roberts D. W. 2004. Variations in UV-B tolerance and germination speed of Metarhizium anisopliae conidia produced on insects and artificial substrates [J]. J. Invertebr. Pathol., 87: 77-83.
    Reinders A., Burckert N., Hohmann S., Thevelein J. M., Boller T., Weimken A. and De Virgilio C. 1997. Structural analysis of the subunits of the trehalose-6-phosphate synthase/phosphatase complex in Saccharomyces cerevisiae and their function during heat shock [J]. Mol. Microbiol., 24: 687-695.
    Reinders A., Burckert N., Boller T., Wiemken A. and De Virgilio C. 1998. Saccharomyces cerevisiae cAMP-dependent protein kinase controls entry into stationary phase through the Rim15p protein kinase [J]. Gen. Dev., 12: 2943-2955.
    Richards A. B., Krakowka S., Dexter L. B., Schmid H., Wolterbeek A. P. M., Waalkens-Berendsen D. H., Shigoyuki A. and Kurimoto M. 2002. Trehalose: a review of properties, history of use and human tolerance, and results of multiple safety studies [J]. Food. Chem. Toxicol., 40: 871-898.
    Romero C., Bellés J. M., VayáJ. L., Serrano R. and Culiá?ez-MaciàF. A. 1997. Expression of the yeast trehalose-6-phosphate synthase gene in transgenic tobacco plants: Pleiotropic phenotypes include drought tolerance [J]. Planta., 201: 293-297.
    Romero C., Cutanda M. C., Cortina C. and Culiá?ez-MaciàF. A. 2003. Plant environmental stress response by trehalose biosynthesis [J]. Res. Trends. Curr. Top. Plant. Biol., 3: 73-88.
    Roos Y. 1993. Melting and glass transitions of low molecular weight carbohydrates [J]. Carbohyd. Res., 238: 39-48.
    Rosseau P., Halvorson H. O., Bulla L. A. JR, and Jullan G. S. 1972. Germination and outgrowth of single spores of Saccharomyces cerevesiae viewed by scanning electron and phase contrast microscopy [J]. J. Bacteriol., 109: 1232-1238.
    Roth R. and Sussman M. 1966. Trehalose synthesis in the cellular slime mold Dictyosteliumdiscoideum. Biochim [J]. Biophys. Acta., 122: 225-231.
    Rudolph A. S., Chandrasekhar E., Gaber B. P. and Nagumo M. 1990. Molecular modeling of saccharide-lipid interactions [J]. Chem. Phys . Lipids., 53: 243-261.
    Ruijter G. J. G., Panneman H., Van Den Broeck H. C., Bennett J. M. and Visser J. 1996.
    Characterisation of the Aspergillus nidulans frA1 mutant: hexose phosphorylation and apparent lackof involvement of hexokinase in glucose repression [J]. FEMS. Microbiol. Lett., 139: 223-228.
    Saleki-Gerhardt A. and Zografi G. 1994. Non-isothermal crystallization of sucrose from the amorphous state [J]. Pharmaceut. Res., 11: 1166-1173.
    Sambrook J., Fritsch E. F. and Maniatis T. 1989. Molecular Cloning: A Laboratory Manual, 2nd ed [M]. New York: Cold Spring Harbor Laboratory Press.
    Schluepmann H., Dijken A. and Smeekens S. 2001. Trehalose-6-phosphate is necessary for Arabidopsis embryogenesis [C]. American Society of Plant Biologists, Meeting. Abstract No. 979.
    Schwede T, Kopp J, Guex N, and Peitsch M. C. 2003. SWISS-MODEL: an automated protein homology-modeling server [J]. Nucleic Acids Res., 31: 3381-3385.
    Seo H. S., Koo Y. J., Lim J. Y., Song J. T., Kim C. H., Kim J. K., Lee J. S. and Choi Y. D. 2000. Characterization of a bifunctional enzyme fusion of trehalose-6-phosphate synthetase and trehalose-6-phosphate Phosphatase of Escherichia coli [J]. Appl. Environ. Microbiol., 66: 2484-2490.
    Siegei R. S. 1989. Methylotroyphic yeast Pichia pastour produced in high cell density fermentation with high cell yields as vehicle for recombinant protein production [J]. Biotechnol. and Bioeng., 34: 403-404.
    Sieglaff D. H., Pereira R. M. and Capinera J. L. 1998. Microbial control of Schistocerca americana (Orthoptera: Acrididae ) by Metarhizium flavoviride (Deuteromycotina): instar dependent mortality and efficacy of ultra low volume application under greenhouse conditions [J]. J. Econ. Entomol., 91: 76-85.
    Silva Z., Alarico S., Nobre A., Horlacher R., Marugg J., Boos W., Mingote A. I. and Da Costa M. S. 2003. Osmotic adaptation of Thermus thermophilus RQ-1: lesson from a mutant deficient in synthesis of trehalose [J]. J. Bacteriol., 185: 5943-5952.
    Silva Z., Alarico S., Da Costa M. S. 2005. Trehalose biosynthesis in Thermus thermophilus RQ-1: biochemical properties of the trehalose-6-phosphate synthase and trehalose-6-phosphate phosphatase[J]. Extremophiles., 9:29-36.
    Silva-Udawatta M. N. D. and Cannon J. F. 2001. Roles of trehalose phosphate synthase in yeastglycogen metabolism and sporulation [J]. Mol. Microbiol., 40: 1345-1356.
    Singer M. A. and Lindquist S. 1998a . Thermotolerance in Saccharomyces cerevesiae: the yin and yang of trehalose [J]. TIB. Tech., 16: 460-468.
    Singer M. A. and Lindquist S. 1998b. Multiple effects on protein folding in vitro and in vivo [J]. Mol. Biol., 1: 639-648.
    Soto T., Fernández J., Vicente-Soler J., Cansado J. and Gacto M. 1999. Accumulation of trehalose by overexpression of tps1, Coding for trehalose-6-phosphate synthase, causes increased resistance to multiple stresses in the fission yeast Schizosaccharomyces pombe [J]. Appl. Environ Microb., 65: 2020-2024.
    Steinbock F., Choojun S., Held I., Roehr M. and Kubicek C. P. 1994. Characterization and regulatory properties of a single hexokinase from the citric acid accumulating fungus Aspergillus niger [J]. Biochim. Biophys. Acta., 1200: 215-223.
    Sussich F., Princivalle F. and Cesàro A. 1999. The interplay of the rate of water removal in the dehydration ofα,α-trehalose [J]. Carbohydr. Res., 322: 113-119.
    Sussich F., Skopec C., Brady J. and Cesàro A. 2001. Reversible dehydration of trehalose and anhydrobiosis: from solution state to an exotic crystal? [J]. Carbohydr. Res., 334: 165-176. Sussman A. S. and Lingappa B. T. 1959. Role of trehalose in ascaspores of Neurospora tetrasperma[J]. Science., 130: 1343.
    Su W., Mertens J. A., Kanamaru K., Campbell W. H. and Crawford N. M. 1997. Analysis of wide-type and mutant plant nitrate reductase expressed in the methylotrophic yeast Pichia pastoris[J]. Plant Physiol., 115: 1135-1143.
    Termont S., Vandenbroucke K., Iserentant D., Neirynck S., Steidler L., Remaut E. and Rottiers P. 2006. Intracellular accumulation of trehalose protects Lactococcus lactis from freeze-drying damage and bile toxicity and increases gastric acid resistance [J]. Appl. Environ Microb., 70: 7694-7700.
    Teusink B., Walsh M. C., Van Dam K. and Westerhoff H. V. 1998. The danger of metabolic pathways with turbo design [J]. Trends. Biochem. Sci., 23: 162-169.
    Thevelein J. M. 1984. Regulation of trehalose metabolism in fungi [J]. Microbiol. Rev., 48: 42-59.
    Thevelein J. M. 1988. Regulation of trehalose activity by phosphorylation-dephosphorylation during developmental transitions in fungi [J]. Exp. Mycol., 12: 1-12.
    Thevelein J. M. 1992. The RAS-adenylate cyclase pathway and cell cycle control in Saccharomyces cerevesiae [J]. Antonie Leewenhoek., 62: 109-130.
    Thevelein J. M. and Hohmann S. 1995. Trehalose synthase: guard to the gate of glycolysis in yeast?[J]. Trends. Biochem. Sci., 20: 3-10.
    Valenzuela-Soto E. M., Márquez-Escalante J. A., Iturriaga G. and Figueroa-Soto C. G. 2004.
    Trehalose 6-phosphate synthase from Selaginella lepidophylla: purification and properties [J]. Biochem. Bioph. Res. Co., 313: 314-319.
    Van Aelst L., Hohmann S., Bulaya B., De Koning W., Sierkstra L., Neves M. J., Luyten K., Alijo R., Ramos J. and Cocceti P. 1993. Molecular cloning of a gene involved in glucose sensing in the yeast Saccharomyces cerevisiae [J]. Mol. Microbiol., 8: 927-943.
    Vandercammen A., Fran?ois J. and Hers H. 1989. Characterization of trehalose-6-phosphate synthase and trehalose-6-phosphate phosphatase of Saccharomyces cerevisiae [J]. Eur. J. Biochem., 182: 613-620.
    Vogel G., Fiehnm O., Jean-Richard-dit-Bressel L., Boller T., Wiemken A., Aeschbacher R. A. and Wingler A. 2001. Trehalose metabolism in Arabidopsis: occurrence of trehalose and molecular cloning and characterization of trehalose-6-phosphate synthase homologues [J]. J. Exp. Bot., 52: 1817-1826.
    Vuorio O. E., Kalkkinen N. and John Londesborough J. 1993. Cloning of two related genes encoding the 56-kDa and 123-kDa subunits of trehalose synthase from the yeast Succhuronzyces cerevisiue [J]. Eur. J. Biochem., 216: 849-861.
    Winderickx J., Winde J. H. D., Crauwels M., Hino A., Hohmann S., Dijck P. V. and Thevelein J. M. 1996. Regulation of genes encoding subunits of the trehalose synthase complex in Saccharomyces cerevesiae: Novel variations of STRE-mediated transcription control [J]. Mol. Gen. Genet., 252: 470-482.
    Wolf A., Kr?mer R. and Morbach S. 2003. Three pathways for trehalose metabolism in Corynebacterium glutamicum ATCC13032 and their significance in response to osmotic stress [J]. Mol. Microbiol., 49: 1119-1134.
    Wolkers W. F., Walker N. J., Tablin F. and Crowe J. H. 2001. Human platelets loaded with trehalose survive freeze-drying [J]. Cryobiol., 42: 79-87.
    Wolschek M. F. and Kubicek C. P. 1997. The flamentous fungus Aspergillus niger contains two “differentially regulated”trehalose-6-phosphate synthase-encoding genes, tpsA and tpsB [J]. J Biol. Chem., 272: 2729-2735.
    Yeo E. T., Kwon H. B., Han S. E., Ryu J. C. And Byu M. O. 2000. Genetic engineering of drought resistant potato plants by introduction of the trehalose-6-phosphate synthase 1 (TPS1) gene from Saccharomyces cerevisiae [J]. Mol. Cells., 10: 263-268.
    Zacharuk R. Y. 1971. Fine structure of the fungus Metarhizium anisopliae infecting three species of larval Elateridae (Coleoptera). IV. Development within the host [J]. Can. J. Microbiol., 17: 525-529.
    Zaragoza O., Blazquez M. A. and Gancedo C. 1998. Disruption of the Candida albicans TPS1 gene encoding trehalose-6-phosphate synthase impairs formation of hyphae and decreases Infectivity [J]. J. Bacteriol., 180: 3809-3815.
    Zentella R., Mascorro-Gallardo J. O., Van Dijck P., Folch-Mallol J., Bonini B., VanVaeck C., Gaxiola R., Covarrubias A. A., Nieto-Sotelo J., Thevelein J.M. and Iturriaga, G. 1999. A Selaginella lepidophylla trehalose-6-phosphate synthase complements growth and stress-tolerance defects in a yeast tps1 mutant [J]. Plant Physiol., 119: 1473-1482.
    Zhou R., Kroczyńska B. and Miernyk J. A. 2000. Expression of the Arabidopsis thaliana AtJ2 cochaperone protein in Pichia pastoris [J]. Protein Expr. Purif., 19: 253-258.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700