用户名: 密码: 验证码:
有机电致荧光、磷光器件的性能优化与OLED封装技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有机电致发光器件具有自发光、响应快、全固态、制备工艺简单、高效率、宽视角、超薄、耐高低温、柔性等优点,被誉为第三代显示技术。但是,目前OLED的制造成本高、发光效率需进一步地提高、物理机理认识的不足,这严重地影响了OLEDs器件的在显示领域的应用步伐,针对上述问题,本论文在红光荧光器件的制备工艺和新型磷光发光器件制备及器件封装方面进行了一系列的探索性和创新性的工作,具体包括:
     1.采用正交实验法,深入细致的考察制备基于DCJTB红光OLED器件的五个主要参数包括HTL厚度、EML厚度、ETL厚度、DCJTB掺杂浓度、Rubrene掺杂浓度对OLED的亮度、效率等特性的影响。用Keithly2400、PR650及光具座搭建的测试平台测试了OLED的I~V、V~B性能,同时评价了OLED的V~η特性,优化出的红光OLED的最优结构参数是:HTL厚度为40nm、EML厚度为40nm、ETL厚度为20nm、DCJTB掺杂浓度为1 wt%、Rubrene掺杂浓度为30、vt%。按优化的参数制备出的红光OLED器件,当外加电压23.5V时,器件的亮度达到了8650cd/m~2,最高电流效率为2.58cd/A,对应的电压为6.8V。
     2.分析了磷光发光材料相对荧光材料的优势,进而详细叙述了磷光材料掺杂与荧光材料掺杂在能量转移方面原理上的不同,即F(o|¨)rster理论和Dexter理论。合成了六种新型铱金属配合物磷光材料,将其中的两种材料用于多层磷光器件的制备,优化了器件发光层的层厚和掺杂浓度,制备出了高性能的磷光器件。
     3.给出了一种是具有强的空间位阻效应的新型铂金属配合物磷光材料(ppy)pt(bcam),该材料的发光光谱的主峰为624nm,为橙红色的光;设计了勿需掺杂的发光层器件结构,简化了磷光器件的制备工艺,为磷光OLED器件的大生产提供了思路,这也是本论文创新点之一。
     4.分析了OLED器件失效的原因,提出了OLED器件失效的电解池模型,介绍了三种封装技术(常规盖板封装、真空封装及多层薄膜封装),其中,真空封装技术是我们自行提出的方案。我们采用了典型结构的OLED器件(ITO/CuPc/NPB/Alq_3/LiF/Al)进行寿命实验,分别采用三种封装技术对其进行了实际封装。并选择了钙膜腐蚀法来验证与比较三种封装技术的实际效果,得出了理想的封装方案。
Organic light-emitting diodes (OLEDs) possess many advantages, such asself-emission, fast response, full solid device, easy fabrication, high efficiency, wideview-angle, super-thin thickness. OLEDs are considered as the most ideal and potentialdisplay technology in 21~(st) century. However, currently there are also some shortcomingsto prevent it from large scale commercial application such as high fabrication cost, lowlumiance efficiency and indistinct understanding about device mechanism. Aiming atthose problems, some basic and systematic works have been performed to focus on thefabrication process to obtain high performance red fluorescent OLED device and highefficiency phosphorescent OLEDs in this work. The encapsulation technology of OLEDis also studied.
     1. The red fluorsecent OLED based on DCJTB was fabricated. There are fiveparameters affecting the properties of fluoresecent OLED and orthogonal test tableL_(16((4~5) was used to carried out the systematic study. The parameters includes: Thethickness of HTL, thickness of EML, thickness of ETL, doped concentration of DCJTB,doped concentration of Rubrene. The optimum structure for the OLED devices isITO/HIL(50nm)/HTL(40nm)/EML(40nm)/ETL(20nm)/LiF(1nm)/Al(100nm), the dopedconcentration of DCJTB & Rubrene are 1 wt%, 30 wt%, respectively. The luminance(L)-current density (J)-bias voltage (V) characteristics were recorded simultaneouslywith the measurement of a PR650 spectroscan spectrometer by combining thespectrometer with a Keithley 2400 programmable voltage-current source. Thebrightness of OLED prepared with parameters mentioned above is 8650cd/m~2 under thevoltage of 23.5v, and relative efficiency is 2.58 cd/A @ 6.8v.
     2. The advantage of organic electro-phosphorescent materials is discussedcomparing with that of organic fluorescent materials. And the differences of energytransferring mechanism in the doping status between the organic electro-phosphorescentmaterials and organic fluorescent materials are also introduced. They are the theories ofF(o|¨)rster energy transfer and Dexter energy transfer. Novel six kinds of phosphorescent materials have been designed and synthesized based Ir. two kinds of phosphorescentmaterials are choosed and relative multilayer devices are fabricated. The thickness ofEML and doping concentration of phosphorescent OLED were optimized. At the sametime the high efficiency phosphorescent OLED was fabricated.
     3. a novel phosphorescent OLEDs with pure phosphorescent materials as theemitting layer based on new materials platinum(Ⅱ) (2-phenylpyridinato-N,C2)(3-benzoyl-camphor) [(ppy)pt(bcam)] with red light emission is demonstrated. Becausethe molecular structure of this kind of phosphorescent materials has the3-benzoyl-camphor group with strong steric hindrance effect. It enormously simplifiesthe fabrication processes. The methods can be adapted to the mass production ofphosphorescent OLED; it is the one of novel idea in this dissertation.
     4. The reasons of the OLED degradation were discussed, and the electrolytic cellmodel to explain the OLED degration is proposed. The three kinds of encapsulationtechnologies are also introduced; they are conventional encapsulation with backplane,vacuum encapsulation with backplane and multi-layer thin film encapsulation; amongthem, the vacuum encapsulation with backplane technology was proposed by us. OLEDdevice of classical structure with ITO/CuPc/NPB/Alq_3/LiF/Al, which was used to studyOLED degradation, is adopted. The OLED devices with three encapsulation methodshave been encapsulated, respectively. The calcium film etching method is choosed tostudy the results of three encapsulations. A good scheme through experimental testresult is obtained.
引文
[1] A. Bernanose, F. D. Pharmacie, U. D. Nancy. Electroluminescence of organic compounds. British Journal Applied Physics, 1955, 6:S54-S55
    [2] M. Pope, H. P. Kallmann, P. J. Magnante. Electroluminescence in organic crystals. Journal of Chemical Physics, 1963, 38:2042-2049
    [3] W. Helfrich, W. G. Schneider. Recombination radiation in athracene crystals. Physics Review Letter, 1965, 14:229-231
    [4] W. Helfrich, W. G. Schneider. Transient of volume-controlled current and recombination radiation in anthracene. Journal of Chemical Physics, 1966,44:2902-2909
    [5] J. Dresner. Double injection electroluminescence in anthracene. RCA Review, 1969, 30:322-334
    [6] P. S. Vincett, W. A. Barlow, R. A. Harnn, et al. Electrical conduction and low voltage blue electroluminescence in vacuum-deposited organic films. Thin Solid Films, 1982, 94:171-183
    [7] C. W. Tang, S. A. VanSlyke. Organic electroluminescent diodes. Applied Physics Letter, 1987, 51:913-915
    [8] C. Adachi, S. Tokito, T. Tsutsui, et al. Electroluminescence in organic films with three-layer structure. Japanese Journal of Applied physics, 1988, 27: L269-L271
    [9] C. Adachi, T. Tsutsui, S. Saito. Blue light-emitting organic electroluminescent devices. Appl. Phys. Lett., 1990,56:779-781
    [10] J. H. Burroughes, D. D. C. Bardley, A. R. Brown, et al. Light emitting diodes based on conjugated polymers. Nature, 1990, 347:539-541
    [11] D. Braun, A. J. Heeger. Visible light emission from semiconducting polymer diodes. Appl. Phys. Lett., 1991,58:1982-1984
    [12] M. A. Baldo, D. F. O'Brien, Y. You, et al. Highly efficient phosphorescent emission from organic electroluminescent devices. Nature, 1998, 395:151-154
    [13] C. Adachi, M. A. Baldo, M. E. Thompson, et al. Nearly 100% internal phosphorescence efficiency in an organiclight emitting device. Journal of Applied Physics, 2001, 90:5048-5051
    [14] R. J. Holmes, B. W. D'Andrade, S. R. Forrest, et al. Efficient, deep-blue organic electrophosphorescence by guest charge trapping. Appl. Phys. Lett., 2003, 83:3818-3820
    [15] C. L. Li, Y. J. Su, Y. T. Tao, et al. Yellow and red electrophosphors based on linkage isomers of phenylisoquinolinyliridium complexes: distinct differences in photophysical and electroluminescence properties. Adv. Funct. Mater., 2005, 15:387-395
    [16] S. Chew, C. S. Lee, S. T. Lee, et al. Photoluminescence and electroluminescence of a new blue-emitting homoleptic iridium complex. Appl. Phys. Lett., 2006, 88:093510 1-3
    [17] M. Cocchi, D. Virgili, C. Sabatini, et al. Highly efficient organic electroluminescent devices based on cyclometallated platinum complexes as new phosphorescent emitters. Synthetic Metals, 2004, 147:253-256
    [18] A. Tsuboyama, H. Iwawaki, M. Furugori, et al. Homoleptic Cyclometalated Iridium Complexes with Highly Efficient Red Phosphorescence and Application to Organic Light-Emitting Diode. J. Am. Chem. Soc, 2003, 125:12971-12979
    [19] S. Lamansky, P. Djurovich, D. Murphy, et al. Highly Phosphorescent Bis-Cyclometalated Iridium Complexes: Synthesis, Photophysical Characterization, and Use in Organic Light Emitting Diodes. J. Am. Chem. Soc. 2001, 123:4304-4312
    [20] S. J. Yeh, M. F. Wu, C. T. Chen, et al. New dopant and host materials for blue-light-emitting phosphorescent organic electroluminescent devices. Adv. Mater., 2005, 17:285-289
    [21] M. Ikai, F. Ishikawa, N. Aratani, et al. Enhancement of External Quantum Efficiency of Red Phosphorescent Organic Light-Emitting Devices with Facially Encumbered and Bulky PtⅡ Porphyrin Complexes. Adv. Funct. Mater., 2006, 16:515-519
    [22] G. Y. Park, Y. S. Kim, Y. K. Ha. Efficient red-emitting phosphorescent iridium(Ⅲ) complexes of fluorinated 2,4-diphenylquinolines. Thin Solid Films, 2007, 51:5090-5094
    [23] B. M. J. S. Paulose, D. K. Rayabarapu, J. P. Duan, et al. First examples of alkenyl pyridines as organic ligands for phosphorescent iridium complexes. Adv. Mater. 2004, 16:2003-2007
    [24] M. Ikai, S. Tokito, Y. Sakamoto, et al. Highly efficient phosphorescence from organic light-emitting devices with an exciton-block layer. Appl. Phys. Lett., 2001, 79:156-158
    [25] J. X. Sun, X. L. Zhu, H. J. Peng, et al. Effective intermediate layers for highly efficient stacked organic light-emitting devices. Appl. Phys. Lett., 2005, 87:093504 1-3
    [26] U. Takayuki, I. Masahiro, T.Tohru, et al. Full color pixel with vertical stack of individual red, green, and blue transparent organic light-emitting devices based on dye-dispersed poly(N-vinylcarbazole). Japanese Journal of Applied Physics, 2006,45:7126-7128
    [27] J. X. Sun, X. L. Zhu, H. J. Peng, et al. Bright and efficient stacked white organic light-emitting diodes. Proceedings of the Second Americas Display Engineering and Applications Conference, 2005, 397-399
    [28] H. Kanno, R. J. Holmes, Y. Sun, et al. White Stacked Electrophosphorescent Organic Light-Emitting Devices Employing MoO3 as a Charge-Generation Layer. Adv. Mater., 2006, 18:339-342
    [29] H. Kanno, N. C. Giebink, Y. Sun, et al. Stacked white organic light-emitting devices based on a combination of fluorescent and phosphorescent emitters. Appl. Phys. Lett., 2006, 89:023503 1-3
    [30] M. Pfeirffer, S. R. Forrest, K. Leo, et al. Electrophosphorescent p-i-n organic light-emitting devices for very-high-efficiency flat-panel displays. Adv. Mater., 2002, 14:1633-1636
    [31] S. Murano, M. Burghart, J. Birnstock, et al. Highly efficient white OLEDs for lighting applications. Proc. of SPIE Vol. 5937, 59370H:l-8
    [32] G. He, D. Gebeyehu, A. Werner, et al. High efficiency and low voltage p-i-n electrophosphorescent OLEDs with double-doping emission layers. Proceedings of SPIE, Vol. 5464,26-31
    [33] G. He, O. Schneider, D.n Qin, et al. Very high-efficiency and low voltage phosphorescent organic light-emitting diodes based on a p-i-n junction. J. Appl. Phys., 2004, 95:5773-5777
    [34] B. W. D'Andrade, S, R. Forrest. Effects of exciton and charge confinement on the performance of white organic p-i-n electrophosphorescent emissive excimer devices. J. Appl. Phys., 2003, 94:3101-3109
    [35] M. Pfeiffer, S. R. Forrest, X. Zhou, et al. A low drive voltage, transparent, metal-free n-i-p electrophosphorescent light emitting diode. Organic Electronics, 2003,4:21-26
    [36] R. Meerheim, K. Walzer, M. Pfeiffer, et al. Ultrastable and efficient red organic light emitting diodes with doped transport layers. Appl. Phys. Lett., 2006, 89:061111 1-3
    [37] X. Liu, D. Poitras, Y. Tao, et al. Microcavity organic light emitting diodes with double sided light emission of different colors. Journal of Vacuum Science and Technology A, 2004,22:764-767
    [38] H. J. Peng, X. L. Zhu, J. X. Sun, et al. High Efficiency Electrophosphorescent Organic Light Emitting Diodes using Semitransparent Ag as Anode. SID 2005,1066-1069
    [39] Cho Ting-Yi, Lin Chun-Liang, Wu Chung-Chih. Microcavity two-unit tandem organic light-emitting devices having a high efficiency. Appl. Phys. Lett., 2006, 88:111106 1-3
    [40] V. Bulovi(?), V. B. Khalfin, G. Gu, et al. Weak microcavity effects in organic light-emitting devices. Phys. Rev. B, 1998, 58:3730-3740
    [41] T. Y. Cho, C. L. Lin, C. C. Wu, et al. Microcavity two-unit tandem organic light-emitting devices having a high efficiency. Appl. Phys. Lett., 2006, 88:111106 1-3
    [42] H. Peng, J. Sun, X. Zhu, et al. High-efficiency microcavity top-emitting organic light-emitting diodes using silver anode. Appl. Phys. Lett., 2006, 88:073517 1-3
    [43] C. J. Lee, R. B. Pode, J. I. Han, et al. Red electrophosphorescent top emission organic light-emitting device with Ca/Ag semitransparent cathode. Appl. Phys. Lett., 2006, 89:253508 1-3
    [44] S. Chen, Y. Zhao, G. Cheng, et al. Improved light outcoupling for phosphorescent top-emitting organic light-emitting devices. Appl. Phys. Lett., 2006, 88:153517 1-3
    [45] H. Kanno, Y. Sun, S. R. Forrest. High-efficiency top-emissive white-light-emitting organic electrophosphorescent devices. Appl. Phys. Lett., 2005, 86:263502 1-3
    [46] L. Shin-Ju, U. Han-Yi, J. Fuh-Shyang. Effects of thickness of organic and multilayer anode on luminance efficiency in top-emission organic light emitting diodes. Japanese Journal of Applied Physics, 2006,45:3717-3720
    [47] D. G. Moon, R. B. Pode, C. J. Lee, et al. Efficient red electrophosphorescent top-emitting organic light-emitting devices. Materials Science and Engineering B, 2005, 121:232-237
    [48] G. Cheng, Y. Zhang, Y. Zhao, et al. Improved efficiency for white organic light-emitting devices based on phosphor sensitized fluorescence. Appl. Phys. Lett., 2006, 88:083512 1-3
    [49] B. W. D'Andrade, J. Brooks, V. Adamovich, et al. White light emission using triplet excimers in electrophosphorescent organic light-emitting devices. Adv. Mater., 2002, 14:1032-1036
    [50] B. W. D'Andrade, J. J. Brown. Organic light-emitting device luminaire for illumination applications. Appl. Phys. Lett., 2006, 88:192908 1-3
    [51] G. Schwartz, K. Fehse, M. Pfeiffer, et al. Highly efficient white organic light emitting diodes comprising an interlayer to separate fluorescent and phosphorescent regions. Appl. Phys. Lett., 2006, 89:083509 1-3
    [52] Dipti Gupta, M. Katiyar, Deepak. Various approaches to white organic light emitting diodes and their recent advancements. Optical Materials, 2006, 28:295-301
    [53] V. Maiorano, E. Perrone, S. Carallo, et al. White, phosphorescent, wet-processed, organic light-emitting diode, on a window-glass substrate. Synthetic Metals, 2005, 151:147-151
    [54] Y. Sun, N. C. Giebink, H. Kanno, et al. Management of singlet and triplet excitons for efficient white organic light-emitting devices. Nature, 2006, 440:908-912
    [55] D. Qin, Y. Tao. White organic light-emitting diode comprising of blue fluorescence and red phosphorescence. Appl. Phys. Lett., 2005, 86:113507 1-3
    [56] S. K. Lee, D. H. Hwang, B. J. Jung, et al. The fabrication and characterization of single-component polymeric white-light-emitting diodes. Adv. Funct. Mater., 2005,15:1647-1655
    [57] J. Bisquert, G. Garcia-Belmonte, (?). Pitarch, et al. Negative capacitance caused by electron injection through interfacial states in organic light-emitting diodes. Chemical Physics Letters, 2006,422:184-191
    [58] I. M. Chan, F. C. Hong. Improved performance of the single-layer and double-layer organic light emitting diodes by nickel oxide coated indium tin oxide anode. Thin Solid Films, 2004, 450:304-311
    [59] X. Xu, G. Yu, Y. Liu, et al. Electrode modification in organic light-emitting diodes. Displays, 2006, 27:24-34
    [60] A. Nakamura, T. Tada, M. Mizukami, et al. Efficient electrophosphorescent polymer light-emitting devices using a Cs/Al cathode. Appl. Phys. Lett., 2004, 84:130-132
    [61] H. Houili, E. Tuti(?), L. Zuppiroli, et al. Charge transport across organic-organic interfaces in organic light-emitting diodes. Synthetic Metals, 2006, 156:1256-1261
    [62] W. Br(?)tting, E. Buchwald, G. Egerer, et al. Charge carrier injection and transport in PPV light emitting devices. Synthetic Metals, 1997, 84:677-678
    [63] P. E. Burrows, S. R. Forrest. Electroluminescence from trap-limited current transport in vacuum deposited organic light emitting devices. Appl. Phys. Lett., 1994, 64:2285-2287
    [64] T. Ogawa, D. Cho, K. Kaneko, et al. Numerical analysis of the carrier behavior of organic light-emitting diode: comparing a hopping conduction model with a SCLC model. Thin Solid Films, 2003,438-439:171-176
    [65] J. Chen, D. Ma. Investigation of charge-carrier injection characteristics in NPB/Alq_3 heterojunction devices. Chemical Physics, 2006, 325:225-230
    [66] J. Staudigel, M. Sto"(?)el, F. Steuber, et al. A quantitative numerical model of multilayer vapor-deposited organic light emitting diodes. Journal of Applied Physics, 1999, 86:3895-3910
    [67] Beat Ruhstaller, Tilman Beierlein, Heike Riel, et al. Simulating Electronic and Optical Processes in Multilayer Organic Light-Emitting Devices. IEEE Journal of selected topics in quantum electronics, 2003, 9:723-731
    [68] D. Wang , J. Shen. A theoretical model for carrier transport in disordered organic materials. Synthetic Metals, 2000, 349-351
    [69 Beat Ruhstaller, Tilman Beierlein, Heike Riel, et al. Simulating Electronic and Optical Processes in Multilayer Organic Light-Emitting Devices. Synthetic Metals, 2000, 349-351
    [70] J. Bisquert, G. Garcia-Belmonte, (?). Pitarch, et al. Negative capacitance caused by electron injection through interfacial states in organic light-emitting diodes. Chemical Physics Letters, 2006,422:184-191
    [71] P. E. Burrows, S. R. Forrest. Electroluminescence from trap-limited current transport in vacuum deposited organic light emitting devices. Appl. Phys. Lett., 1994, 64:2285-2287
    [72] W. Br(?)tting, E. Buchwald, G. Egerer, et al. Charge carrier injection and transport in PPV lightm emitting devices. Synthetic Metals, 1997, 84:677-678
    [73] J. Chen, D. Ma. Investigation of charge-carrier injection characteristics in NPD/Alq_3 heterojunction devices. Chemical Physics, 2006, 325:225-230
    [74] T. Ogawa, D. Cho, K. Kaneko, et al. Numerical analysis of the carrier behavior of organic light-emitting diode: comparing a hopping conduction model with a SCLC model. Thin Solid Films, 2003, 438-439:171-176
    [75] H. Riel, W. Brutting, T. Beierlein, et al. Influence of space charges on the current-voltage characteristic of organic light-emitting devices. Synthetic Metals, 2000:303-306
    [76] H. Houili, E. Tuti(?), L. Zuppiroli, et al. Charge transport across organic-organic interfaces in organic light-emitting diodes. Synthetic Metals, 2006, 156:1256-1261
    [77] B. K. Crone, I. H. Campbell, P. S. Davids, et al. Device physics of single layer organic light-emitting diodes. Journal of Applied Physics, 1999, 86:5767-5774
    [78] M. Cocchi, D. Virgili, C. Sabatini, et al. Highly efficient organic electroluminescent devices based on cyclometallated platinum complexes as new phosphorescent emitters. Synthetic Metals, 2004, 147:253-256
    [79] G. He, D. Gebeyehu, A. Werner, et al. High efficiency and low voltage p-i-n electrophosphorescent OLEDs with double-doping emission layers. Proceedings of SPIE, Vol. 5464,26-31
    [80] Adaehi C,Tokito S,Tsutsui T, et al., Organic electroluminescent device with three-layer strueture. JPn. J. appi. phys, 1988, 27(4): L713-L715.
    [81] Tang, C. W.; VanSlyke, S. A.; Chen, C. H. J. Appl. Phys. 1989, 85, 3610.
    [82] CH.Chen, J.Shi, K.P.Klubek, US Patent 5908,581(1999)
    [83] B.-J. Jung et al. Pure-Red Dye for Organic Electroluminescent Devices:Bis-Condensed DCM Derivatives, Adv. Funct. Mater. P.430, No. 6, December (2001)
    [84] Nakayama T, Tsutsui T ; Enhancement in 1-D optical resonator devices with organic films [J]. Synthetic Metals, 1997, 91; 57-59.
    [85] Lee. S. T, Yu J, Peng J, etal. Electron-transport properties of rare earth chelates in organic electroluminescent devices [J] Synthetic Metals, 1997, 91: 271-273.
    [86] Kido Jun j I, Hayase Hiromich I, Hongawa Kenich I, etal. Bright red light-emitting organic electroluminescent devices having a europium complex as an emitter [J] ]Appl. Phys. Ltt.,1994, 65 (17) 2124- 2126
    [87] N.Komiya, R.Nishikawa, et al. Proc. of 10~(th) Int. Workshop on inorg. And org. EL, p.347,Dec.7-4, 2000, Hamamatsu.
    [88] C. H. Chen, C. W. Tang, in Proc. 2nd Int. Symp. on the Chemistry of Functional Dyes 1992, p.536.
    [89] Hamada Yu ji, Kanno Hiroshi, Tsujioka Tsuyoshi, et al. Red organic light-emitting diodes using an emitting assist dopant [J].Appl.Phy s. Lett.1999, 75(12): 1682-1684
    [90] Bouche C M, Barny PLe, Facoetti H, et al. Energy transfer from a naphthalimide functionalized side chain polymer towards DCM used as a dopant molecule [J].Appl. Phys. Lett., 1998, 73 (7): 879-881.
    [91] C. H. Chen, C. W. Tang, J. Shi, K. P. Klubek, Macromol. Symp. 1997, 125, 49. b) C. H. Chen,K. P. Klubek, J. Shi, US Patent 5 908 581, 1999.
    [92] Li, Jiuyan, Liu Di, et al; A new family of isophorone-based dopants for red organic electroluminescent devices; Chemistry of Materials, v 15, n 7, p 1486-1490, April 8, 2003
    [93] 正交试验设计法编写组著.正交试验设计法.上海:上海科技出版社,1975,15-35
    [94] 北京大学数学系试验设计组.正交试验法.北京:科学普及出版社,1979,30-52
    [95] J. Wang, J. Cheng, H. Lin, et al. Optimization method for transparent conducting oxide films prepared by DC magnetron sputtering. Proc. of SPIE Vol.6149, 2006, 614928 1-5
    [96] 王军,林慧,杨刚,等.直流磁控溅射ITO薄膜的正交试验分析.半导体光电,2007,129:68-71
    [97] Jianmin shi, C W Tang. Doped organic electroluminescent devices with improved stablity. Appl.Phys. Lett. 1997, 70, 1665-1667
    [98] M. A. Baldo, S. Lamansky, P. E. Burrows, M. E. Thompson, S. R. Forrest, Appl.Phys. Lett. 1999, 11, 3709;
    [99] A, Brembilla, D.Roizoard, P. Lochon., Syntheti communications, 1990, 20(21), 3379
    [100] Y. H. Song, S. J. Yeh, C. T. Chen, Y. Chi, C. S. Liu, J. K. Yu, Y. H. Hu, P. T. Chou, S. M. Peng,G.. H. Lee, Adv. Funct. Mater., 2004, 14(12), 1221;
    [101] C. Berti, M. Colonna, L. Greci, L. Marchetti, J. Hetercycl. Chem., 1979, 16, 17;
    [102] E. W. Neuse, M. S. Loonat, Macromol., 1983, 16, 128;
    [103] I. R. Laskar, T. M.Chen, Chem.Mater., 2004, 16(1), 111;
    [104] W. S. Huang, J. T. Lin, C. H. Chien, Y. T. Yao, S. S. Sun, Y. S. Wen, 2004, 16(2), 2480;
    [105] M. A. Baldo, S. Lamansky, P. E. Burrows, et al. Very high-efficiency green organic light-emitting devices based on electrophosphorescence. Appl. Phys. Lett., 1999, 75:4-6
    [106] I. Kosan, Jpn. Kokai Tokkyo Kohn, Jp 07-26254 (95 026 254)
    [107] Baldo M A, O'Brien F D, You Y, Shoustikov A, Sibley S, Thompson M E, Forrest S R.Nature 1998, 395, [151]
    [108] 黄春辉,李富友,黄岩谊.光电功能超薄膜.北京大学出版社,2001
    [109] H. Vestweber, J. Pommerehne, R. Sander, et al. Majority carrier injection from ITO anodes into organic light emitting diodes based upon polymer blends. Synthetic Metals, 1995,68:263-268
    [110] I. H. Campbell, P. S. Davids, D. L. Smith, et al. The Schottky Energy Barrier Dependence of Charge Injection in Organic Light-Emitting Diodes. Appl. Phys. Lett., 1998, 72:1863-1865
    [111] S. M. Sze, physics of Semiconductor Devices (Wiley, New York, 1981)
    [112] E. H. Rhoderick and R. H. Willams, Metal-Semiconductor-contacts (Clarendon, Oxford,1988)
    [113] S. Karg, M. Meier, and W. Riess, J. App. Phys. 82, 1951,1997
    [114] M. St(o|¨)βel, J. Staudigel, F. Steuber, et al. Space-charge-limited electron currents in 8-hydroxyquinoline aluminum. Appl. Phys. Lett., 2000, 76:115-117
    [115] B.ruhstaller, A. Caterr, S. Barth. Transient and steady-state behavior of space charges in multilayer organic light-emitting diodes. Journal of Applied Physics, 2001,89, 4575-4590.
    [116] P.E. Burrows, Z. Shen, V. Bulovic, et al. Relationship between electroluminescence and current transport in organic heterojunction light-emitting devices. Journal of Applied Physics,1996, 79:7991-8006
    [117] R.H. Fowler, L. Nordheim. Electron mission in intense electric fields. Proc. R. Soc. London Ser. A, 1928, 119:173-181
    [118] 黎威志.有机电致发光器件性能优化及影响因素的研究:[博士学位论文].成都:电子科技大学,2007,34-41
    [119] M.A. Lampert. Simplified theory of space-charge-limited currents in an insulator with traps.Physics Review, 1956, 103:1648-1656
    [120] S. Toyoshima, K. Kuwabara, T. Sakurai, et al. Electronic structure of bathocuproine on metal studied by ultraviolet photoemission spectroscopy. Japanese Journal of Applied Physics, 2006,45:L995-L997
    [121] M. A. Baldo, D. F. O' Brien, M. E. Thompson, et al. Excitonic singlet-triplet ratio in a semiconducting organic thin film. Phys. Rev. B, 1999, 60:14422-14428
    [122] C. W. Tang, S.A.Van, Slyke. Organic electroluminescent diodes.Appl.Phys.Lett,1987,Vol.51,No.15:913-915
    [123] Jeong-Woo Choia,~*, Joo Sung Kima, Se Yong Oha, Hee-Woo Rheea.Degradation effect of polymer hole transport layer on organicelectroluminescence device performance Thin Solid Films 363 (2000) 271-274
    [124] Do L. M, Han E. M, FujihiraM. 1994 International Workshop on EL, Digest of Technical Paper, China, p.92.
    [125] C. Adachi, S. Tokito, T. Tsutsui and S. Saito, Jpn. J. Appl. Phys. Part 2, 1988, 27, L269
    [126] R. S. Kumar.~*, Mark Auch, Eric Ou, Guenther Ewald, Chua Soo Jin Low moisture permeation measurement through polymer substrates for organic light emitting devices Thin Solid Films 417 (2002) 120-126
    [127] C. Adachi, S. Tokito, T. Tsutsui and S. Saito, Jpn. J. Appl. Phys. Part 2, 1988, 27, L713
    [128] J. H. Burroughs, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Machay, R. H. Friend, P.L. Burn, A. B. Holmes, Nature, 1990, 347, 539
    [129] C. Hosokawa, M. Eida, M. Matsuura, K. Fukuoka, H. Nakamura, T. Kusumoto, Synth. Met.,1997, 91, 3
    [130] 卢云志, 有机电致发光材料的设计合成与EL性能的研究。(博士学位论文), 成都:四川大学化学院, 2000
    [131] R. Schlar, B. A. Parkinson, P. A. Lee, K. W. Nebesny, G. Jabour, B. Kippelen, N.Peyghambarian, N. R. Armstrong, J. Appl. Phys., 1998, 84,6729
    [132] Park, Sang-Hee Ko; Oh, Jiyoung; Hwang, Chi-Sun; Lee, Jeong-Ik; Yang, Yong Suk; Chu, Hye Yong. Ultrathin film encapsulation of an OLED by ALD Electrochemical and Solid-State Letters, v 8, n 2, p H21-H23, 2005
    [133] Buseman-Williams, Janine; Frischknecht, Kyte D.; Hubert, Matt D.; Saafir, Ameen K.; Tremel,James D. Flat-plate encapsulation solution for OLED displays using a printed getter. Journal of the Society for Information Display, v 15, n 2, p 103-112, February 2007
    [134] Moro, L.M.; Chu, X.; Hirayama, H.; Krajewski, T.; Visser, R.J. A Mass Manufacturing Process for Barix encapsulation of OLED displays: A reduced number of dyads, higher throughput and 1.5 mm edge seal. Proceedings of International Meeting on Information Display, v 2006, p 317-320, 2006, Proceedings of 2006 6th Intemaional Meeting on Information Display and the 5th Internationa] Display Manufacturing Conference - Digest of Technical Papers
    [135] Kidokoro, A.; Kitamura, K.; Koide, N.; Kato, Y. Reliable OLED device covered with film encapsulation. I DW '07 - Proceedings of the 14th International Display Workshops, v 1, p 245-248, 2007, I DW '07 - Proceedings of the 14th International Display Workshops
    [136] Hemerik, Marcel; Van Erven, Rob; Vangheluwe, Rik; Yang, James; Van Rijswijk, Tom; Winters, Rogier; Van Rens, Bas. Lifetime of thin-film encapsulation and its impact on OLED device performance. Digest of Technical Papers - SID International Symposium, v 37, n 4, p 1546-1549, 2006, Society for Information Display - 44th International Symposium, Seminar, and Exhibition, SID 2006 - International Symposium Digest of Technical Papers
    [137] Abanshin, Nikolay P.; Zhukov, Nikolay D.; Zimin, Igor A.; Kuznechikhin, Andrey V.; Mhitarjan, Pomeo V. OLED: Perfection of the "know-how" and increase in longevity. Proceedings of SPIE - The International Society for Optical Engineering, v 6637, 2007, XV International Symposium on Advanced Display Technologies
    [138] Wong, F.L.; Fung, M.K.; Tao, S.L.; Lai, S.L.; Tsang, W.M.; Kong, K.H.; Choy, W.M.; Lee, C.S.; Lee, S.T. Long-lifetime thin-film encapsulated organic light-emitting diodes. Journal of Applied Physics, v 104, n 1,2008
    [139] Lifka, H.; Rosink, J.J.W.M.; Van Esch, H.A. PECVD as an effective tool for thin film encapsulation of OLED displays. International Display Manufacturing Conference and Exhibition, IDMC'05, p 388-389, 2005, Proceedings of the International Display Manufacturing Conference and Exhibition, IDMC'05
    [140] Huang, Jian-Ji; Su, Yan-Kuin; Chang, Ming-Hua; Hsteh, Tsung-Eong; Huang, Bohr-Ran; Wang, Shun-Hsi; Chen, Wen-Ray; Tsai, Yu-Sheng; Hsieh, Huai-En; Liu, Mark O.; Juang, Fuh-Shyang Lifetime improvement of organic light emitting diodes using LiF thin film and UV glue encapsulation . Japanese Journal of Applied Physics, Part 1: Regular Papers and Short Notes and Review Papers, v 47, n 7 PART 1, p 5676-5680, July 11, 2008
    [141] Granstrom, J.; Swensen, J.S.; Moon, J.S.; Rowell, G.; Yuen, J.; Heeger, A.J. Encapsulation of organic light-emitting devices using a perfluorinated polymer. Applied Physics Letters, v 93, n 19,2008
    [142] T. F(?)rster. Mechanisms of energy transfer. Comprehensive Biochemistry, 1967, 22:61-80
    [143] M. Born, J. R. Oppenheimer. Quantum theory of molecules. Ann. Phys., 1927, 84: 457-484
    [144] T. F(?)rster. Zwischenmolekular energiewanderung und fluoreszenze. Ann. Phys. (Leipzip), 1948,2:55-75
    [145] Vadim N. Savvate'ev, Aharon V. Yakimov, and Dan Davidov, Roman M. Pogreb, Ronny Neumann, Yair Avny. Degradation of nonencapsulated polymer-based light-emitting diodes:Noise and morphology, Appl. Phys. Lett. 71 (23), 8 December 1997
    [146] Scott, J. C., Kaufman, J. H., Brock, P. J.,DiPietro, J. R. and Goitia, J. A. : J. Appl. Phys., 79- 545(1996), 27
    [147] Fenter, P., Schreiber, F., Bulivic, V. and Forrest, S. R.: Chem. Phys. Lett., 277(1997), 521
    [148] Vestweber, H. and Rie(?), W. : Synth. Met., 91(1997),181
    [149] Lee, S. T., Gao, Z. Q. and Hung, L. S. : Appl. Phys.Lett., 75-10(1999), 1404
    [150] Gautier, E., Lorin, A., Nanzi, J. M., Schalchli, A.,Benattar, J. J. and Vital, D. : Appl. Phys. Lett., 69-8(1996), 1071
    [151] Sakaguchi, Y., Tada, H., Tanaka, T., Kitazume, E.,Mori, K., Kawashima, S. and Suzuki, J. : Soc. For Inform. Display 2002 Int. Symp. Digest of Tech. Pap., 33(2002), 42.3
    [152] P. E. Burrows, V. Bulovic, S. R. Forrest, L. S. Sapochak, D. M. McCarty, and M. E. Thompson.. Reliability and degradation of organic light emitting devices. Appl. Phys. Lett. 65 (23), 5 December 1994
    [153] Charton, C.; Schiller, N.; Fahland, M.; Hollander, A.; Wedel, A.; Noller, K. Development of high barrier films on flexible polymer substrates. Thin Solid Films, v 502, n 1-2, p 99-103, April 28, 2006, Selected Papers from the 5th International Conference on Caotings on Glass (ICCG5)
    [154] Taga, Yasuno(?)i; Akedo, Kunio. Passivation films on organic film substrates designed for organic electroluminescence device. Shinku/Joumal of the Vacuum Society of Japan, v 50, n 12, p 735-738, 2007
    [155] Morii, Katsuyuki; Kawase, Takeo; Inoue, Satoshi. High efficiency and stability in air of the encapsulation-free hybrid organic-inorganic light-emitting diode. Applied Physics Letters, v 92, n 21, 2008
    [156] Tzen, C. K.; Shen, W. J.; Wang, H. C.; Su, C.F.; Wu, C. C.; Lu, C. C.; Tzen, J. C.; Su, C. Y.; Tang, S.J. High transparency and low operation voltage top emission organic light emitting devices with thin film encapsulation. Digest of Technical Papers - SID International Symposium, v 37, n 2, p 972-974, 2006, Society for Information Display - 44th International Symposium, Seminar, and Exhibition, SID 2006 - International Symposium Digest of Technical Paper
    [157] Chakaroun, Mahmoud; Ratier, Bernard; Moliton, Andr(?). Modelling of organic device cathode obtained by ion beam assisted deposition. IECON Proceedings (Industrial Electronics Conference), p 4905-4909, 2006, IECON 2006 - 32nd Annual Conference on IEEE Industrial Electronics
    [158] Li, Xin; Zhang, Fang-Hui; Wang, Xiu-Feng; Zhang, Zhi-Gang; Zhang, Hong-Ke. Influence of Te thin film encapsulation layer on lifetime of OLEDs. Weixi Jiagong Jishu/Microfabrication Technology, n 3, p 18-20+29, June 2008
    [159] Logothetidis, Stergios. Flexible organic electronic devices: Materials, process and applications .Materials Science and Engineering B: Solid-State Materials for Advanced Technology, v 152, n 1-3, p 96-104, August 25, 2008
    [160] Han, Jin-Woo; Kang, Hee-Jin; Kim, Jong-Hwan; Seo, Dae-Shik. Effects of defects in SiO2 thin films prepared on polyethylene terephthalate by high-temperature E-beam deposition. Japanese Journal of Applied Physics, Part 2: Letters, v 45, n 29-32, p L827-L829, August 11, 2006
    [161] Katsuyuki, Morii; Masayuki, Omoto; Ishida, Masaya; Graetzel, Michael. Enhanced hole injection in a hybrid organic-inorganic light-emitting diode. Japanese Journal of Applied Physics, v 47, n 9 PART 1, p 7366-7368, September 2008
    [162] Liao, Jung-Yu; Liu, Pei-Ching; Yeh, Yu-Hsin; Tseng, Mei-Rurng. A gas barrier film composed of SiO2/A12O3 multilayers on flexible substrates. Proceedings of SPIE - The International Society for Optical Engineering, v 6655, 2007, Organic Light Emitting Materials and Devices XI
    [163] Lo, Shih-Chun; Anthopoulos, Thomas D.; Namdas, Ebinazar B.; Burn, Paul L.; Samuel, Ifor D.W. Encapsulated cores: Host-free organic light-emitting diodes based on solution-processible electrophosphorescent dendrimers . Advanced Materials, v 17, n 16, p 1945-1948, August 18, 2005
    [164] Yang, Yong Suk; Chu, Hye Yong; Lee, Jeong-Ik; Park, Sang-Hee Ko; Hwang, Chi Sun; Chung, Sung Mook; Do, Lee-Mi; Kim, Gi Heon; Ko, Jun-Bin. Lifetime and electric characteristics of encapsulated organic light-emitting devices. Japanese Journal of Applied Physics, Part 1: Regular Papers and Short Notes and Review Papers, v 45, n 10 A, p 7766-7770, October 15, 2006
    [165] Moro, L. L. M.; Rutherford, N.; Chu, X.; Visser, R. J.; Graf, G. C; Gross, M.E.; Bennet,W.Barix multilayer barriers: A key enabler for protecting OLED displays and flexible organic devices. Proceedings of International Meeting on Information Display, v 1, p 616-619, 2006, 2005 International Meeting on Information Display - Digest of Technical Papers - Proceedings of the 5th International Meeting on Information Display
    [166] Hergert, Steffen; Linkor, Max; Korny, Markus; Fruehauf, Norbert. Process development and accurate low-cost characterization for OLED sealants by using a calcium test Journal of the Society for Information Display, v 15, n 6, p 421-429, June 2007
    [167] J. S. Kim, P. K. H. Ho, N. C. Greenham, et al. Electroluminescence emission pattern of organic light-emitting diodes implications for device efficiency calculations. J. Appl. Phys., 2000, 88:1073-1081
    [168] C. Adachi, M. A. Baldo, S. R. Forrest, et al. High-efficiency organic electrophosphorescent devices with tris(2-phenylpyridine)iridium doped into electron-transporting materials. Appl. Phys. Lett., 2000, 77:904-906
    [169] G. He, M. Pfeiffer, K. Leo, et al. High-efficiency and low-voltage p-i-n electrophosphorescent organic light-emitting diodes with double-emission layers. Appl. Phys. Lett., 2004, 85:3911-3913
    [170] C. Adachi, M. A. Baldo, S. R. Forrest. Electroluminescence mechanisms in organic light emitting devices employing a europium chelate doped in a wide energy gap bipolar conducting host. J. Appl. Phys., 2000, 87:8049-8055
    [171] M. A. Baldo, C. Adachi, S. R. Forrest. Transient analysis of organic electrophosphorescence Ⅱ. Transient analysis of triplet-triplet annihilation. Phys. Rev. B, 2000, 62:10967-10977
    [172] J. Kalinowski, W. Stampor, J. Mezyk, etal. Quenching effects in organic electrophosphorescence. Phys. Rev. B, 2002, 66: 235321 1-15
    [173] S. Reineke, K. Walzer, K. Leo. Triplet-exciton quenching in organic phosphorescent light-emitting diodes with Ir-based emitters. Phys. Rev. B 2007, 75: 125328 1-13
    [174] J. Hao, Z. Deng, S. Yang. Relationship between exciton recombination zone and applied voltage in organic light-emitting diodes. Display, 2006, 27:108-111
    [175] G. Lei, L. Wang, Y. Qiu. Multilayer organic electrophosphorescent white light-emitting diodes without, exciton-blocking layer. Appl. Phys. Lett. 2006, 88:103508-103511
    [176] X. Gong, J. C. Ostrowski, D. Moses, et al. High-Performance Polymer-Based Electrophosphorescent Light Emitting Diodes. Journal of Polymer Science, 2003, 41:2691-2705
    [177] W. Chang, A. T. Hu, D. K. Rayabarapu, et al. Color tunable phosphorescent light-emitting diodes based on iridium complexes with substituted 2-phenylbenzothiozoles as the cyclometalated ligands. Journal of Organometallic Chemistry, 2004, 689:4882-4888
    [178] C. L. Li, Y. J. Su, Y. T. Tao, et al. Yellow and red electrophophors based on linkage isomers of pheylisoquinolinyliridium complexes: distinct differences in photophysical and electroluminescence properties. Advanced Functional Materials, 2005,15:387-395
    [179] G. Zhang, H. Guo, Y. Chuai, et al. Synthesis and luminescence of a new phosphorescent iridium(Ⅲ) pyrazine complex. Materials Letters, 2005, 59:3002-3006
    [180] H. W. Hong, T. M. Chen. Effect of substituents on the photoluminescent and electroluminescent properties of substituted cyclometalated iridium(Ⅲ) complexes. Materials Chemistry and Physics, 2007, 101:170-176
    [181] W. Wong, G. Zhou, X. Yu, et al. Amorphous diphenylaminofluorene -functionalized iridium complexes for high-efficiency electrophosphorescent light-emitting diodes. Advanced functional materials, 2006, 16:838-846
    [182] H. Xia, L. He, M. Zhang, et al. Efficient electrophosphorescence from low-cost copper(Ⅰ) complex. Optical Materials, 2007, 29:667-671

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700