用户名: 密码: 验证码:
电针结合重复经颅磁刺激对脑缺血大鼠星形胶质细胞激活和海马突触可塑性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
脑梗死是常见的脑血管疾病,严重危害我国中、老年人身体健康。脑梗死所致功能障碍给患者、家庭和社会带来了沉重的负担。一直以来,脑梗死后神经系统的可塑性和相关的神经康复倍受专注。探索最大限度地激活脑梗死患者大脑的对抗损伤及重塑潜能的康复方法,以使患者获得更好功能恢复,提高其生存质量显得非常有意义。
     目的
     本研究提出脑缺血后EA+rTMS治疗可活化AST,再通过后者有效地促进海马突触结构和功能的重塑,从而促进脑缺血后学习记忆功能恢复的假说,希望通过此项研究能揭示EA+rTMS治疗缺血性卒中的可能机制,为进一步的完善、丰富针灸学原理和磁刺激作用机理提供科学实验依据。
     方法
     本研究以MCAO模型为研究对象,将Wistar大鼠随机分为正常组、模型组、EA组、rTMS组和EA+rTMS组,根据不同时间点每个组又细分为7d、14d和28d组3个亚组,分别给予EA、rTMS、EA+rTMS干预。在不同时间点处死动物取材,首先采用免疫荧光标记方法观察不同时间点、不同干预后梗塞灶周围及缺血侧海马CA3区AST特异性标志物GFAP蛋白及缺血侧海马CA3区突触前膜蛋白SYN的表达,免疫组化方法考察缺血侧海马突触后膜蛋白PSD-95的时间分布规律;然后运用蛋白印迹技术定量分析不同时间点、不同组别之间缺血侧海马SYN表达的差异;最后采用Morris Water Maze实验评估脑缺血28d大鼠学习记忆功能的变化,透射电镜观察缺血侧海马CA3区突触形态结构的变化。
     结果
     1、脑缺血7d时,各组大鼠脑梗塞病灶周围及脑缺血侧海马CA3区均可见到AST的活化,主要表现为细胞胞体肥大、突起增多、荧光强度增加,3个康复干预组AST活化更加明显。14d时3个康复干预组GFAP阳性细胞进一步增多(P<0.05),28d时与14d时比较GFAP的表达减少,差异没有统计学意义。7d和28d时EA+rTMS组缺血侧海马CA3区GFAP的表达高于EA组和rTMS组(P<0.05)。
     2、脑缺血7d时,海马DG区和CA3区PSD-95蛋白的表达下降。经过14d和28d的康复干预,各组大鼠海马DG区和CA3区PSD-95蛋白的表达与模型组比较均增加,至28d时差异有统计学意义。28d时,EA+rTMS组大鼠海马CA3区PSD-95蛋白的表达高于EA组和rTMS组(P<0.05)。
     3、EA、rTMS和EA+rTMS都能显著上调3个时间点海马SYN的表达。从时间上看,随着治疗时间的增加,SYN的表达逐步上调;不同组间比较,28d时rTMS和EA+rTMS海马SYN的表达最显著。
     4、在Morris Water Maze训练的第1d-3d,5组大鼠的潜伏期均逐渐缩短,各康复干预组与模型组比较差异不明显。在训练的第4d、5d,3个康复干预组潜伏期明显降低,与模型组比较差异有统计学意义(P<0.05或P<0.01)。在测试中,模型组大鼠的逃避潜伏期比正常组明显延长;60s内跨越平台次数减少,tP/tT和dP/dT下降,均提示模型组大鼠存在一定的学习记忆功能障碍。3个康复干预组大鼠的逃避潜伏期缩短,60s内跨越平台次数增加,tP/tT和dP/dT上升,与模型组比较差异有显著性意义(P<0.05或P<0.01),提示经过康复干预之后,脑缺血大鼠的学习记忆功能明显改善。3个康复干预组间比较,EA+rTMS组大鼠的逃避潜伏期和60s内跨越平台次数与EA组和rTMS组比较差异有统计学意义(P<0.05)。
     5、模型组大鼠海马CA3区突触多为对称性突触,突触小泡明显减少,线粒体变性明显。EA组、rTMS组和EA+rTMS组突触多表现为凹型或凸型的不对称性突触,突触小泡明显增多,细胞浆内线粒体双层结构完整,线粒体内嵴清楚。突触形态图像分析统计结果显示:各组间突触间隙宽度无显著性差异。3个康复干预组PSD厚度、穿孔性突触百分率比模型组显著增加,3组间比较无显著差异。3个康复干预组CA3区突触的突触界面曲率显著增加,EA+rTMS组大于EA组和rTMS组,差异有统计学意义。
     结论
     1、EA、rTMS和EA+rTMS均可活化脑缺血大鼠梗塞灶周围和缺血侧海马CA3区AST,这种活化不是单方向的上调。
     2、随着干预时间的延长,EA、rTMS和EA+rTMS均可逐步增加脑缺血海马SYN和PSD-95的表达。
     3、EA、rTMS和EA+rTMS可提高脑缺血大鼠学习记忆功能和改善脑缺血大鼠海马突触的超微结构。
     4、EA+rTMS在促进AST活化和海马突触重塑中优于EA和rTMS。EA+rTMS提高学习记忆能力与其促进海马突触可塑性有关。
Cerebral infarction is one of common cerebral vascular diseases and a significanthealth problem in the elderly and the wrinkly in China. The dysfunctions involved in it leadto heavy burden to patients, their families and society. The plasticity of nervous systemafter ischemia and neuro-rehabilitation concerned is always the hottest issues. To recoverbetter and improve quality of life, it's very meaningful to develop rehabilitation methods toactivate brain potentials of anti-injury and remodeling after cerebral ischemia.
     Objective
     A hypothesis that electroacupuncture (EA) combined with repetitive transcranialmagnetic stimulation (rTMS) can activate astrocytes (AST) which can improve synapticremodeling, and then enhance the recovery of learning and memory after cerebral ischemia,was proposed in this study. This study was designed to investigate any possible therapeuticmechanisms about EA combined with rTMS after cerebral ischemia.
     Methods
     Healthy male Wistar rats were divided into normal, model, EA, rTMS and EA +rTMS group randomly. Furthermore, rats in each group were divided into 7d, 14d and 28d,3 subgroups. Model of middle cerebral artery occlusion (MCAO) was established, followedby 7d, 14d or 28d of EA, rTMS and EA + rTMS treatment. Firstly, the expression of GFAPin periinfarct and area CA3 of the hippocampus of the ischemic cerebral hemisphere andthe expression of synaptophysin (SYN) were investigated in different time points anddifferent groups by immunofluorescence technique. The expression of postsynapticdensity-95 (PSD-95) was investigated by immunohistochemical technique. Secondly, semi-quantitative analysis of the expression of SYN in hippocampus of the ischemiccerebral hemisphere in different time points and different groups was processed by Westernblot. Finally. Morris water maze task and the ultrastructure of the synapses in area CA3 ofthe hippocampus of the ischemic cerebral hemisphere were investigated.
     Results
     1. The activation of AST in periinfarct and area CA3 of the hippocampus of theischemic cerebral hemisphere was observed at days 7 after ischemia, with manifestations ofhypertrophy somata, increased processes and increased fluorescence intensity. Moresignificant activation was detectived at three rehabilitation intervention groups. The Furtheractivation was detectived at three rehabilitation intervention groups at days 14 afterischemia (P<0.05) but the decreased expression of AST at days 28 was detectivedcompared with days 14 (P>0.05) . The EA+rTMS group was superior to the EA and rTMSgroups in the expression of AST in area CA3 of the hippocampus of the ischemic cerebralhemisphere at days 7 and 28 after ischemia.
     2. The decreased expression of PSD-95 in dentate gyrus (DG) and area CA3 of thehippocampus of the ischemic cerebral hemisphere was detectived at days 7 after ischemia.Compared with model group, the expression of PSD-95 in above zone increased at days 14and 28, especillay at days 28 with statistical differences. The EA+rTMS group was superiorto the EA and rTMS groups in the expression of PSD-95 in area CA3 of the hippocampusat days 28 after ischemia.
     3. The expression of SYN in all 3 rehabilitation intervention groups increasedsignificantlly at days of 7, 14 and 28. The longer treatment time, the more significantexpression of SYN and the expression in the EA+rTMS group was the most significant atdays of 28.
     4. The shortened latencies were detectived in all 5 groups during the first 3 days oftraining in Morris Water Maze and there were no statistical differences between 3rehabilitation intervention groups and model group. But compared with model group, the latencies of 3 rehabilitation intervention groups decreased significantly at days of 4 and 5(P<0.05 or P<0.01). In the place navigation trials, ischemia had a significant effect on watermaze learning, as demonstrated by prolonged latency in the model group compared with thenormal group. In the 3 intervention groups, the average latency was shorter than that of themodel group, especially in rats from the EA+rTMS group. In the spatial probe trials, thefrenquency of swimming across the platform site in the model group was lower than in thenomal group. After the interventions, the frequencies of the EA, rTMS and EA+rTMS ratswere significantly higher. The average frequency of EA+rTMS was significantly higherthan those of the other groups (P<0.05).
     5. In model group, most synapses in the CA3 area of the hippocampus wereasymmetric synapses, with features of few synaptic vesicles and mitochondria degeneration.With more synaptic vesicles and complete structure of the mitochondria, most synapses ofEA, rTMS and EA+rTMS group are symmetric synapses. No significant differences wereobserved in the average width of the synaptic interspaces among the five groups. MCAOdecreased the average postsynaptic density in the ischemic hemisphere. EA, rTMS orEA+rTMS allsignificantly increased the postsynaptic density compared with the modelgroup, but no significant difference was observed among the three intervention groups orbetween the intervention groups and the normal group. Similar results were founded interms of the average curvature of the synaptic interface. Ischemia was associated withreduced curvature, and each of the different interventions increased it. But on this measurethere was a significant difference between the EA+rTMS group and the other interventiongroups.
     Conclusions
     1. All EA, rTMS and EA+rTMS can activate the expression of AST in periinfarct and areaCA3 of the hippocampus of the ischemic cerebral hemisphere after ischemia. It isn'tsingle- direction activation.
     2. With the longer treatment time, EA, rTMS and EA+rTMS can gradually increase the expression of SYN and PSD-95 in the hippocampus of the ischemic cerebralhemisphere after ischemia.
     3. All three interventions can enhance learning and memory and improve synapticultrastructure in the hippocampus of the ischemic cerebral hemisphere after ischemia.
     4. EA+rTMS is superior to either EA or rTMS in the activation of AST and synapticremodeling. Enhancing learning and memory is related to improving synaptic plasticityin the hippocampus of the ischemic cerebral hemisphere after ischemia.
引文
1 Iwai M, Ikeda T, Hayashi T, et al. Temporal profile of neural stem cell proliferation in the subventricular zone after ischemia/hypoxia in the neonatal rat brain. Neurol Res, 2006, 28: 461-468.
    2 Jiang W, Gu W, Brannstrom T, et al. Cortical neurogenesis in adult rats after transient middle cerebral artery occlusion. Stroke, 2001, 32:1201-1207.
    3 Iwai M, Sato K, Omori N, et al. Three steps of neural stem cells development in gerbil dentate gyms after transient ischemia. J Cereb Blood Flow Metab, 2002, 22:411-419.
    4 赵桂梅,吴家幂.局灶性脑缺血再灌注损伤对成年大鼠脑内源性神经干细胞的影响.放射免疫学杂志,2008,21:742-744.
    5 Ullian EM, Harris BT, Wu A, et al. Schwann cells and astrocytes induce synapse formation by spinal motor neurons in culture. Mol Cell Neurosci, 2004, 25,241-251.
    6 胡荣,吴贵喜,杨忠,等.大鼠星形胶质细胞在突触形成中的作用及机制.解剖学报,2005,36:225-230.
    7 Christopherson KS, Ullian EM, Stokes CC, et al. Thrombospondins are astrocyte-secreted proteins that promote CNS synaptogenesis. Cell, 2005, 120: 421-433.
    8 Liauw J, Hoang S, Choi M, et al. Thrombospondins 1 and 2 are necessary for synaptic plasticity and functional recovery after stroke. Cereb Blood Flow Metab. 2008, 28: 1722-1732.
    9 Lee JD, Chon JS, Jeong HK, et al. The cerebrovascular response to traditional acupuncture after stroke. Neuroradiology, 2003, 45: 780-784.
    10 Zhao JG, Cao CH, Liu CZ, et al. Effect of acupuncture treatment on spastic states of stroke patients. Neurol Sci, 2009, 276: 143-147.
    11 Liu W, Mukherjee M, Sun C, et al. Electroacupuncture may help motor recovery in chronic stroke survivors: a pilot study. Rehabil Res Dev, 2008, 45: 587-595.
    12 Kim EH, Kim YJ, Lee HJ, et al. Acupuncture increases cell proliferation in dentate gyrus after transient global ischemia in gerbils. Neurosci Lett, 2001, 297:21-24.
    13 OU YW, Han L, Da CD, et al. Influence of acupuncture upon expressing levels of basic fibroblast growth factor in rat brain following focal cerebral. Neurol Res. 2001, 20: 47-50
    14 Chuang CM. Hsieh CL, Li TC. et al. Acupuncture stimulation at Baihui acupoint reduced cerebral infarct and increased dopamine levels in chronic cerebral hypoperfusion and ischemia-reperfusion injured sprague-dawley rats. Am J Chin Med. 2007, 35:779-791.
    15 Ren L. Zhang WA, Fang NY. The influence of electro-acupuncture on neural plasticity in acute cerebral infarction. Neurol Res, 2008, 30: 985-989.
    16 Inzitari D. Di Carlo A. Pracucci G, et al. Incidence and determinants of poststroke dementia as defined by an informant interview method in a hospital-based stroke registry. Stroke, 1998, 29: 2087-2093.
    17 邵瑛,赖新生.宫育卓.电针对血管性痴呆大鼠血浆和脑组织生长抑素、β-内啡肽含量及学习记忆能力的影响.针刺研究,2008.33:89-93.
    18 Liu CZ, Yu JC, Zhang XZ. et al. Acupuncture prevents cognitive deficits and oxidative stress in cerebral multi-infarction rats. Neurosci Lett, 2006, 393:45-50.
    19 Yozbatiran N. Alonso-Alonso M. See J, et al. Safety and behavioral effects of high-frequency repetitive transcranial magnetic stimulation in stroke. Stroke, 2009, 40:309-312.
    20 M(?)lly J, Dinya E. Recovery of motor disability and spasticity in post-stroke after repetitive transcranial magnetic stimulation (rTMS). Brain Research Bulletin, 2008, 76: 388-395.
    21 Kim YH, You SH. Ko MH, et al. repetitive transcranial magnetic stimulation-induced corticomotor excitability and associated motor skill acquisition in chronic stroke. Stroke, 2006, 37: 1471-1476.
    22 Khedr EM, Abo-Elfetoh N, Rothwell JC. Treatment of post-stroke dysphagia with repetitive transcranial magnetic stimulation. Acta Neurol Scand, 2009,119:155-161.
    23 Naeser MA, Martin PI, Nicholas M, et al. Improved picture naming in chronic aphasia after TMS to part of right Broca's area: an open-protocol study. Brain Lang, 2005, 93:95-105.
    24 Sole-Padulles C, Bartres-Faz D, Junque C, et al. Repetitive transcranial magnetic stimulation effects on brain function and cognition among elders with memory dysfunction. A randomized sham controlled study. Cereb Cortex, 2006, 16:1487-1493.
    25 Wood ER, Dudchenko PA, Eichenbaum H. The global record of memory in hippocampal neuronal activity. Nature, 1999, 397:613-616.
    26 Schendan HE, Searl MM, Melrose RJ, et al .An fMRI study of the role of the medial temporal lobe in implicit and explicit sequence learning. Neuron, 2003, 37:1013-1025.
    1 Teresita LB, Julie W, Magdalena W, et al. Astrocytic changes in the hippocampus and functional recovery after cerebral ischemia are facilitated by rehabilitation training. Behav Brain Res, 2006, 171: 17-25.
    2 Redet JL, Malhotro SK, Privat A. Reactive astrocytes: cellular and molecular cues to biological function. Trends Neurosci, 1997, 20: 570-577.
    3 廖维靖,刘淑红,范明,等.线栓阻断大鼠大脑中动脉制作缺血性脑损伤模型的改良.中华物理医学与康复杂志,2002,24:349-352.
    4 Zea Longa E, Weinstein PR, Carlson S, et al. Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke, 1989, 20: 84-91.
    5 李忠仁.实验针灸学.第一版,北京:中国中医药出版,2003.327-329.
    6 严稽文,黄其林.星形胶质细胞条件培养液对缺氧损伤神经元的保护作用.神经解剖学杂志,2007,23:277-282.
    7 Araque A, Parpura V, Sanzgizi RP, et al. Tripartite synapses: glia, the unacknowledg-ed partne. Trends Neurosci, 1999, 22:208-215.
    8 Benarroch EE. Neuron - astrocyte interactions: partnership for normal function and diease in the central nervous system. Mayo Clin Proc, 2005, 80:1326-1338.
    9 Fellin T, Sul J Y, D'Ascenzo M, et al. Bidirectional astrocyte -neuron communication: the many roles of glutamate and ATP. Novartis Found Symp, 2006, 276:208-217.
    10 Kang J, Jiang L, Goldman SA, et al. Astrocyte-mediated potentiation of inhibitory synaptic transmission. Nat Neurosci, 1998, 1:683-692.
    11 Rochon D, Rousse I, Robitaile R. Synapse-glia interactions at the mammalian neuromuscular junction. Neurosci, 2001, 21: 3819-3829.
    12 Liu QS, Xu Q, Kang J, et al . Astrocyte activation of presynaptic metabotropic glutamate receptors modulates hippocampal inhibitory synaptic transmission. Neuron Glia Biol, 2004, 1: 307-316.
    13 杨晓运,李智,秦绿叶等.星型胶质细胞和神经元之间谷氨酸.谷氨酰胺的代谢偶联.生理科学进展,2003,34:350-352.
    14 Ullian EM, Sapperstein SK, Christopherson KS, et al. Control of Synapse Number by Glia. Science, 2001, 291:657-661.
    15 Ullian EM, Harris BT, Wu A, et al. Schwann cells and astrocytes induce synapse formation by spinal motor neurons in culture. Mol Cell Neurosci, 2004, 25:241-251.
    16 胡荣,吴喜贵,杨忠,等.大鼠星形胶质细胞在突触形成中的作用及机制.解剖学报,2005,36:225-230.
    17 Christopherson KS, Ullian EM, Stokes CC, et al. Thrombospondins are astrocyte-secreted proteins that promote CNS synaptogenesis. Cell, 2005, 120:421-433.
    18 Liauw J, Hoang S. Choi M, et al. Thrombospondins 1 and 2 are necessary for synaptic plasticity and functional recovery after stroke. Cereb Blood Flow Metab. 2008, 28:1722-1732.
    19 谭来勋,孙圣刚,张双国.等.脑梗死大鼠运动训练后星形胶质细胞与突触和运动功能的变化.中华物理医学与康复杂志,2005,27:581-584.
    20 陆敏,张苏明,常立英,等.不同强度康复训练对脑缺血再灌注大鼠运动功能和胶质纤维酸性蛋白表达的影响.中华物理医学与康复杂志,2007,29:76-79.
    21 Keiner S, Wurm F. Kunze A. et al. Rehabilitative therapies differentially alter proliferation and survival of glial cell populations in the perilesional zone of cortical infarcts. Glia, 2008, 56:516-527.
    22 Briones TL, Woods J. et al Wadowska M, Astrocytic changes in the hippocampus and functional recovery after cerebral ischemia are facilitated by rehabilitation training. Behav Brain Res. 2006, 171:17-25.
    23 方燕南,黄海威,陶玉倩,等.电刺激对大鼠脑梗塞康复中星形细胞与神经元的影响.中国中西医结合杂志,2002,22:531-533.
    1 Joca SR, Guimar(?)es FS, Del-Bel E. Inhibition of nitric oxide synthase increases synaptophysin mRNA expression in the hippocampal formation of rats. Neurosci Lett, 2007, 421:72-76
    2 Pavlov SP, Grosheva M, Streppel M, et al. Manually-stimulated recovery of motor function after facial nerve injury requires intact sensory input. Exp Neurol, 2008, 211: 292-300
    3 叶灵静,徐晓虹,王亚民,等.丰富环境对脑缺血大鼠突触界面结构修饰和PSD-95基因表达的影响.心理学报,2008,40:709-716.
    4 廖维靖,刘淑红,范明,等.线栓阻断大鼠大脑中动脉制作缺血性脑损伤模型的改良.中华物理医学与康复杂志,2002,24:349-352.
    5 Zea Longa E, Weinstein PR, Carlson S, et al. Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke, 1989,20:84-91.
    6 李忠仁.实验针灸学.第一版,北京:中国中医药出版,2003.327-329.
    7 Janh R, Schiebler W, Quimet C, et al. A -38000 Dalton membrane protein(p38) present in synaptic vesicle. Proc Natl Acad Sci USA, 1985, 82:4137-4141.
    8 Thompson SN, Gibson TR, Thompson BM, et al. Relationship of calpain-mediated proteolysis to the expression of axonal and synaptic plasticity markers following traumatic brain injury in mice. Exp Neurol, 2006, 201: 253-265.
    9 Sun D, McGinn MJ, Zhou Z, et al. Anatomical integration of newly generated dentate granule neurons following traumatic brain injury in adult rats and its association to cognitive recovery. Exp Neurol, 2007, 204: 264-272.
    10 Janz R, S(i|¨)dhof TC, Hammer RE, et al. Essention roles in synaptic plascity for synaptogyrin I and synaptophysin. Neuron, 1999, 24: 687-700.
    11 Stroemer RP. Kent TA. Hulsebosch CE. et al. Neocortical neural sprouting synaptogenesis and behavioral recovery after neocortical infarction in rats. Stroke. 1995.26: 2135-2144.
    12 Stroemer RP, Kent TA. Hulsebosch CE. Increase in synaptophysin immunoreactivity following cortical infarction. Neurosci Lett. 1992.147: 21-24.
    13 Martinez G. Di Giacomo C, Carnazza ML. et al. MAP2. synaptophysin immunostaining in rat brain and behavioral modifications after cerebral postischemic reperfusion. Dev Neurosci. 1997, 19: 457-464.
    14 黄如训,张艳,方燕南,等.大鼠脑梗死后运动功能可塑性物质基础及发生机制.中华医学杂志.2000.80:769-772.
    15 Yi W. Xu NG, Wang GB. Experimental study on effects of electro-acupuncture in improving synaptic plasticity in focal cerebral ischemia rats. Zhongguo Zhong Xi Yi Jie He Za Zhi, 2006. 26: 710-714.
    16 Min R, Qin C. Zhao ZW, et al. Effect of APP17 peptide on the expression of synaptic associated protein in amyloid precursor protein transgenic mice. Chin Pharm acol Bull, 2006.22: 710-714.
    17 Migaud M, Charlesworth P, Dempster M, et al. Enhanced long-term potentiation and impaired learning in mice with mutant postsynaptic density-95 protein. Nature, 1998. 396: 433-439.
    18 Nithianantharajah J, Levis H, Murphy M. Environmental enrichment results in cortical and subcortical changes in levels of synaptophysin and PSD-95 proteins. Neurobiol Learn Mem, 2004, 81: 200-210
    19 Xu X, Ye L, Ruan Q. Environmental enrichment induces synaptic structural modification after transient focal cerebral ischemia in rats. Exp Biol Med (Maywood). 2009, 234: 296-305.
    20 Sole-Padulles C, Bartres-Faz D, Junque C, et at. Repetitive transcranial magnetic stimulation effects on brain function and cognition among elders with memory dysfunction. A randomized sham controlled study. Cereb Cortex. 2006, 16: 1487-1493.
    21 Kim YH, You SH, Ko MH, et al. Repetitive transcranial magnetic stimulation-induced corticomotor excitability and associated motor skill acquisition in chronic stroke. Stroke, 2006, 37:1471-1476.
    22 罗任,闫兵,何利雷.电针刺激对血管性痴呆大鼠学习记忆能力及大脑NO含量的影响.中国康复医学杂志,2007,22:500-502.
    23 邵瑛,赖新生,宫育卓.电针对血管性痴呆大鼠血浆和脑组织生长抑素、β-内啡肽含量及学习记忆能力的影响.针刺研究,2008,33:89-93.
    24 彭力,黄晓琳,韩肖华,等.电针结合经颅磁刺激对脑缺血大鼠学习记忆功能及神经干细胞的影响.中华物理医学与康复杂志,2008,30:598-602
    25 王佩,王维平,王海祥.尼莫地平对癫痫大鼠海马突触后致密物95表达的影响.中国药理学通报,2008,24:399-402.
    26 韩肖华,黄晓琳,王熠钊,等.电针结合经颅磁刺激对脑缺血大鼠学习记忆功能的影响.中国康复医学杂志,2009(已录用)
    1 Lo YL, Cui SL, Fook Chong S. The effect of acupuncture on motor cortex excitability and plasticity. Neuroscience Letter, 2005, 384:145-149.
    2 Khedr EM, Ahmed MA, Fathy N, et al. Therapeutic trial of repetitive transcranial magnetic stimulation after acute ischemic stroke. Neurology, 2005, 65: 466-468.
    3 彭力,黄晓琳,韩肖华,等.电针结合经颅磁刺激对脑缺血大鼠神经干细胞增殖和电跳台的影响.中国中医急症,2008,17:206-208.
    4 Milner B, Squire LR, Kandel ER. Cognitive neuroscience and the study of memory. Neuron, 1998.20: 445-468.
    5 Wood ER, Dudchenko PA. Eichenbaum H. The global record of memory in hippocampal neuronal activity. Nature, 1999. 397:613-616
    6 Schendan HE, Searl MM. Melrose RJ. et al. An fMRI study of the role of the medial temporal lobe in implicit and explicit sequence learning. Neuron. 2003, 37:1013-1025.
    7 廖维靖,刘淑红,范明,等.线栓阻断大鼠大脑中动脉制作缺血性脑损伤模型的改良.中华物理医学与康复杂志,2002,24:349-352.
    8 Zea Longa E, Weinstein PR, Carlson S, et al. Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke. 1989,20:84-91.
    9 李忠仁.实验针灸学.第一版,北京:中国中医药出版,2003.327-329.
    10 Guldner FH, Ingham CA. Increase in postsynaptic density material in optic target neurons of the rat suprachiasmatic nucleus after bilateral enucleation. Neurosci Lett.1980,17: 27-31.
    11 Jones DG. Synaptic plasticity and perforated synapses: their relevance for an understanding of abnomap synaptic organization. APMIS Suppl, 1993, 40: 25-34.
    12 Morris R. Spatial Localization does not Require Cues. Learning and motivation, 1981. 12: 239-260.
    13 Yun YJ, Lee B, Hahm DH, et al. Neuroprotective effect of palmul-chongmyeong-tang on ischemia-induced learning and memory deficits in the rat.Biol Pharm Bull, 2007, 30: 337-342.
    14 Set h L, Robert S. Factors affecting the hippocampal BOLD response during spatial memory. Behav Brain Res, 2008, 187: 433-441.
    15 陈罗西,郭玲玲,李亮.Morris圆形水迷宫的应用及其相关检测指标分析.辽宁中医药大学学报,2008,10:55-57
    16 尹军样,田金洲,程龙,等.MCAO模型大鼠学习记忆特征.中国行为医学科学,2006,15:197-199.
    17 王慧鹃,李陈莉,赵秀丽,等.大鼠脑缺血后突触超微结构的变化.解剖学杂志,2003,26:587-590.
    18 Briones TL, Suh E, Jozsa L, et al. Changes in number of synapses and mitochondria in presynaptic terminals in the dentate gyrus following cerebral ischemia and rehabilitation training. Brain Res, 2005, 1033:51-57.
    19 Briones TL, Suh E, Hattar H, et al. Dentate gyrus neurogenesis after cerebral ischemia and behavioral training. Biol Res Nurs, 2005, 6:167-179.
    20 Briones TL, Suh E, Jozsa L, et al.Behaviorally- induced ultrastructural plasticity in the hippocampal region after cerebral ischemia.Brain Res, 2004, 997:137-146.
    21 Bartolomeis A, Fiore G. Postsynaptic density scaffolding proteins at excitatory synapse and disorders of synaptic plasticity: implications for human behavior pathologies. Int Rev Neurobiol, 2004, 59: 221-254.
    22 Baron MK, Boeckers TM, Vaida B, et al. An architectural frame-work that may lie at the core of the postsynaptic density. Science, 2006, 311: 531-535.
    23 Geinisman Y, Detoledo-Morrell L, Morrell F, et al. Synapse restructuring associated with the maintenance phase of hippocampal long-term potentiation. J Comp Neurol. 1996, 368: 413-423.
    24 谢冬玲,朱丽芳,刘惠宇,等.头皮针治疗对脑卒中患者康复期认知功能的影响.中国康复医学杂志,2007,22:834-835.
    25 楚佳梅,包烨华,邹超.头穴久留针对血管性痴呆病人认知和生活能力及P300的影响.针刺研究,2008,33:334-338.
    26 张辉,李立.脑卒中早期应用电针治疗对偏瘫患者运动功能的影响.中国康复理论与实践,2008,14:824-825.
    27 邵瑛,赖新生,宫育卓,等.电针对血管性痴呆大鼠血浆和脑组织生长抑素、β-内啡肽含量及学习记忆能力的影响.针刺研究,2008,33:98-102.
    28 刘喆,赖新生.电针对局灶性脑缺血成年大鼠内源性神经干细胞增殖的影响.中国康复医学杂志,2007,22:218-224.
    29 韩肖华.黄晓琳,郭铁成,等.电针对脑缺血大鼠碱性成纤维细胞生长因子和血管生成素及其受体表达的影响.中华物理医学与康复杂志.2006.28:581-583.
    30 彭力,黄晓琳,韩肖华,等.电针结合经颅磁刺激对脑缺血大鼠学习记忆功能及神经干细胞的影响.中华物理医学与康复杂志,2008,30:598-602.
    31 Wang SJ, Omori N, Li F, et al. Potentiation of Akt and suppression of caspase-9 activations by electroacupuncture after transient middle cerebral artery occlusion in rats. Neuroscience Lett, 2002, 331: 115-118.
    32 Zhang TS. Yang L. Hu R. et al. Effect of electroacupuncture on the contents of excitatory amino acids in cerebral tissue at different time courses in rats with cerebral ischemia and reperfusion injury. Zhen Ci Yan Jiu, 2007, 32:234-236.
    33 李卫东,邓春雷.电针对血管性痴呆大鼠学习记忆与皮层nNOS表达的影响.针灸临床杂志,2008,24:40-42.
    34 Sun N, Zou X. Shi J. et al. Electroacupuncture regulates NMDA receptor NR1 subunit expression via PI3-K pathway in a rat model of cerebral ischemia-reperfusion. Brain Res, 2005, 1064: 98-107.
    35 Ou YW, Han L, Da CD, et al. Influence of acupuncture upon expressing levels of basic fibroblast growth factor in rat brain following focal cerebral ischemia-evaluated by time-resolved fluorescence immunoassay. Neurol Res, 2001, 23:47-50.
    36 黄晓琳,韩肖华,郭铁成等.电针联合经颅磁刺激对急性脑缺血大鼠VEGF及其受体Flk-1表达的影响.中华物理医学与康复杂志,2004,26:581-584.
    37 Yozbatiran N, Alonso-Alonso M, See J, et al. Safety and behavioral effects of high-frequency repetitive transcranial magnetic stimulation in stroke. Stroke, 2009, 40: 309-312.
    38 朱镛连.脑的可塑性与功能再组.中华内科杂志,2000.30:567-568.
    39 杨雅琴,刑德利,赵性泉,等.经颅磁刺激对急性脑梗死患者运动功能的影响.中国康复理论与实践,2005.7:516-517.
    40 Sander D, Meyer BU, R(o|¨)richt S, et al. Increase of posterior cerebral artery blood flow velocity during threshold repetitive magnetic stimulation of the human visual cortex: hints for neuronal activation without cortical phosphenes. Electroencephalogr Clin Neurophysiol, 1996, 99: 473-478.
    41 Zheng XM. Regional cerebral blood flow changes in drugresistant depressed patients following treatment with transcranial magnetic stimulation: a statistical parametric mapping analysis.Psychiatry Res, 2000, 100: 75-80.
    42 王晓明,谢建平,黄慧,等.正常人重复经颅磁刺激后脑血流速度的变化.临床神经电生理学杂志,2003,12:202-203.
    43 Feng HL, Yan L, Guan YZ, et al. Effects of transcranial magnetic stimulation on motor cortical excitability and neurofunction after cerebral ischemia-reperfusion injury in rats. Chin Med Sci J. 2005, 20:226-230.
    44 Khedr EM, Ahmed MA, Fathy N, et al. Therapeutic trial of repetitive transcranial magnetic stimulation after acute ischemic stroke. Neurology, 2005, 65:466-468.
    45 张小乔,梅元武,刘传玉.经颅磁刺激对脑梗死大鼠皮质c-Fos和BDNF表达的影响.中华物理医学与康复杂志,2006;28:86-89.
    46 M(?)lly J, Dinya E. Recovery of motor disability and spasticity in post-stroke after repetitive transcranial magnetic stimulation (rTMS). Brain Res Bull, 2008, 76: 388-395.
    47 Kim YH, You SH, Ko MH, et al. Repetitive transcranial magnetic stimulation-induced corticomotor excitability and associated motor skill acquisition in chronic stroke. Stroke, 2006, 37, 1471-1476.
    48 Khedr EM, Abo-Elfetoh N, Rothwell JC. Treatment of post-stroke dysphagia with repetitive transcranial magnetic stimulation. Acta Neurol Scand, 2009, 119: 155-161.
    49 Naeser MA, Martin PI, Nicholas M, et al. hnproved picture naming in chronic aphasia after TMS to part of right Broca's area: an open-protocol study. Brain Lang, 2005, 93: 95-105.
    50 Sole-Padulles C. Bartres-Faz D. Junque C, et al. Repetitive transcranial magnetic stimulation effects on brain function and cognition among elders with memory dysfunction. A randomized sham controlled study. Cereb Cortex, 2006, 16:1487-1493.
    51 黄晓琳,韩肖华.电针结合经颅磁刺激对脑缺血大鼠VEGF164 mRNA和CD31表达的影响.中华物理医学与康复杂志,2006,28:10-13.
    1 杨期东.神经病学(七年制教材).北京:人民卫生出版社.2001:118.
    2 Morgen K. Kaclom N, Sawaki A, et al. Kinematic specificity of cortical reorganization associated with motortraining. Neuroimage, 2004, 21:1182-1187.
    3 Rossini PM, Calautti C. Pauri F. et al. Post- stroke plasitic reorganization in the adult brain. Lancet Neurol, 2003.2: 493-502.
    4 Lapash Daniels CM, Ayers KL, Finley AM,et al. Axon sprouting in adult mouse spinal cord after motor cortex stroke. Neurosci Lett, 2009, 450:191-195.
    5 Seitz RJ, Azari NP, Knorr U, et al. The role of diaschisis in stroke recovery. Stroke, 1999, 30: 1844-1850.
    6 朱镛连.脑卒中康复与神经康复机制.中国康复理论与实践,2003,9:129-132.
    7 Li WL, Yu SP, Ogle ME, et al. Enhanced neurogenesis and cell migration following focal ischemia and peripheral stimulation in mice. Dev Neurobiol, 2008, 68:1474-1486.
    8 Vernadakis A. Glia-neuron intercommunications and synaptic plasticity. Prog Neurobiol, 1996, 49: 185-214.
    9 缪鸿石.中枢神经系统(CNS)损伤后功能恢复的理论(二).中国康复理论与实践,1996,1-5.
    10 Rijntjes M. Mechanisms of recovery in stroke patients with hemiparesis or aphasia: new insights, old questions and the meaning of therapies. Curr Opin Nenuol, 2006, 19:76-83.
    11 Warburton EC, Glover CP, Massey PV, et al. cAMP responsive element-binding protein phosphorylation is necessary for perirhinal long-term potentiation and recognition memory. Neurosci, 2005, 25: 6296-6303.
    12 HassiotisM, Ashwell KW, Marotte LR, et al. GAP-43 Immunoreactivity in the brain of the developing and adult wallaby (Macropuseugenii). Anat Embryol, 2002, 206: 97-118.
    13 杨东波,李永利,杨立庄,等.神经干细胞移植治疗大鼠脑缺血再灌注损伤实验研究.中华神经外科疾病研究杂志,2006,5:434-437.
    14 刘广义.大鼠脑缺血再灌注损伤后GAP-43及IGF-1在神经系统中的表达.中华神经外科疾病研究杂志,2008,7:322-325.
    15 Devor M, Wall PD. Effect of peripheral nerve injury on receptive fields of cells in the cat spinal cord. J Comp Neurol, 1981, 199:277-291.
    16 缪鸿石,主编.康复医学理论与实践.上海:上海科学技术出版社,2000,86-87.
    17 杨敏,李涛,余茜.运动训练对脑梗死大鼠行为学及突触形态结构参数的影响.中国康复医学杂志,2007,22:24-27.
    18 M(u|¨)ller HD, Neder A, Sommer C, et al. Different postischemic protein expression of the GABA(A) receptor alpha2 subunit and the plasticity-associated protein MAP1B after treatment with BDNF versus G-CSF in the rat brain. Restor Neurol Neurosci, 2009, 27: 27-39.
    19 吴毅,刘罡.神经系统可塑性的理论研究与实践,中华物理医学与康复杂志,2007,29:284-286.
    20 南登崑,主编.康复医学.北京:人民卫生出版社,第4版.2008,39.
    21 Hai J, Li ST, Lin Q, et al. Vascular endothelial growth factor expression and angiogenesis induced by chronic cerebral hypoperfusion in rat brain. Neurosurgery, 2003, 53:963-972.
    22 Bellomo M, Adamo EB, Deodato B, et al. Enhancement of expression of vascular endothelial growth factor after adeno- associated virus gene transfer is associated with improvement of brain ischemia injury in the gerbil. Pharmacol Res. 2003.48: 309-317.
    23 Sun FY. Guo X.Molecular and cellular mechanisms of neuroprotection by vascular endothelial growth factor. J Neurosci Res, 2005,79:180-184.
    24 栗世方,王任直,李桂林.血管内皮生长因子治疗脑缺血实验研究进展.中国科学院学报,2005,27:115-119.
    25 黄晓琳,韩肖华.电针结合经颅磁刺激对脑缺血大鼠VEGF164 mRNA和CD31表达的影响.中华物理医学与康复杂志,2006,28:10-13.
    26 刘传玉,梅元武,张小乔.运动训练对大鼠局灶性脑缺血后微血管新生的影响.中国康复医学杂志,2006,21:53-56.
    27 Ding YH, Luan XD, Li J, et al. Exercise-induced overexpression of angiogenic factors and reduction of ischemia/reperfusion injury in stroke. Curr Neurovasc Res. 2004, 1: 411-420.
    28 马向阳,贾子善,槐雅萍.探索学习对局灶性脑梗死大鼠梗死灶周围Flk-1、VEGF表达的影响,中国康复医学杂志,2009,24:219-221.
    29 Zhang M, Ma YF, Gan JX, et al. Basic fibroblast growth factor alleviates brain injury following global ischemia reperfusion in rabbits. J Zhejiang Univ Sci B, 2005, 6: 637-643.
    30 Williams AJ, Dave JR, Tortella FC. Neuroprotection with the proteasome inhibitor MLN519 in focal ischemic brain injury: relation to nuclear factor kappaB (NF-kappaB), inflammatory gene expression, and leukocyte infiltration. Neurochem Int, 2006, 49: 106-112.
    31 汪薇,张立新,张志强.不同物理因子对大鼠脑缺血再灌注损伤的保护作用的研究,中国康复医学杂志,2008,23:694-696.
    32 Zhang RL, Zhang ZG, ZhangL, et al. Proliferation and differentiation of progenitor cells in the cortex and the subventricular zone in the adult rat after focal cerebral ischemia. Neuroscience, 2001, 105: 33-41.
    33 Zhang B, Wang RZ. Lian ZG, et al. Experimental study on plasticity of proliferated neural stem cells in adult rats after cerebral infarction. Chin Med Sci, 2006, 21: 84-88.
    34 Arvidsson A, Collin T, Kirik D, et al. Neuronal rep lacement from endogenous precursors in the adult brain after stroke. NatMed, 2002, 8: 963-970.
    35 Lichtenwalner R J, Parent JM. Adult neurogenesis and the ischemic forebrain. J Cereb Blood Flow Metab, 2006, 26: 1-20.
    36 Teramoto T, Qiu J, Plumier J C, et al. EGF amplifies the replacement of parvalbumin expressing striatal interneurons after ischemia. J Clin Invest, 2003, 111: 1125-1132.
    37 Wada K, Sugimori H, Bhide P G, et al. Effect of basic fibroblast growth factor treatment on brain progenitor cells after permanent focal ischemia in rats. Stroke, 2003, 34: 2722-2728.
    38 Leker RR, Soldner F, Velasco I, et al. Long-lasting regeneration after ischemia in the cerebral cortex. Stroke, 2007, 38:153-161.
    39 Schabitz WR, Steigleder T, Cooper-Kuhn CM, et al. Intravenous brain-derived neurotrophic factor enhances poststroke sensorimotor recovery and stimulates neurogenesis. Stroke, 2007, 38:2165-2172.
    40 Ploughman M, Windle V, Maclellan CL, et al. Brain-derived neurotrophic factor contributes to recovery of skilled reaching after focal ischemia in rats.Stroke, 2009, 40: 1490-1495.
    41 Sun Y, Jin K, Xie L, et al. VEGF-induced neuroprotection, neurogenesis, and angiogenesis after focal cerebral ischemia. J Clin Invest, 2003, 111:1843-1851.
    42 赵振强,罗勇.电针对大鼠局灶脑缺血/再灌注后神经上皮干细胞蛋白表达的影响.中国中西医结合杂志,2006,26:20-24.
    43 刘喆,赖新生.电针对局灶性脑缺血成年大鼠内源性神经干细胞增殖的影响.中国康复医学杂志,2007,22:218-224.
    44 彭力,黄晓琳,韩肖华,等.电针结合经颅磁刺激对脑缺血大鼠神经干细胞增殖和电跳台的影响.中国中医急症,2008,17:206-208.
    45 余小河,杨于嘉,王霞.高压氧对缺氧缺血性脑损伤新生大鼠内源性神经干细胞和髓鞘的保护作用.中国当代儿科杂志,2006,8:33-37.
    46 黄艳君,罗勇.电刺激小脑顶核对大鼠局灶脑缺血再灌注后脑内神经干细胞增殖的影响.中国康复医学杂志,2008,23:211-215.
    47 Olstorn H, Moe MC, Roste GK, et al. Transplant of stem cells from the adult human brain to the adult rat brain. Neurosurgery, 2007, 60:1089-1099.
    48 Ishibashi S, Sakaguchi M. human neural stern/progenitor cells, expanded in long-term neurosphere culture, promote functional recovery after focal ischemia in Mongolian gerbils. J Neurosci Res, 2004, 78:215-223.
    49 Liu Z, Li Y, Zhang X, et al. Contralesional axonal remodeling of the corticospinal system in adult rats after stroke and bone marrow stromal cell treatment. Stroke, 2008, 39:2571-2577.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700