用户名: 密码: 验证码:
循环平滑肌祖细胞在低氧性肺无肌细动脉肌化中的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
长期慢性低氧是引起肺动脉重塑(Pulmonary artery remodeling,PAR)进而导致肺动脉高压(Pulmonary hypertension,PH)的重要因素。肺无肌细动脉肌化是低氧引起的PAR的重要特征之一。既往认为,引起肺无肌细动脉肌化的机制主要是由于临近动脉的血管平滑肌细胞(Vascular smooth muscle cells,VSMC)迁移及增殖而来,但临床针对VSMC的迁移和增殖治疗效果不明显,提示尚存在其他的机制。Myocardin是血清反应因子(Serum response factor,SRF)的一种共辅助因子,参与平滑肌细胞(Smooth muscle cells,SMCs)及心肌细胞的分化,是SMCs和心肌细胞分化所必须的。用myocardin过表达载体转染纤维母细胞和干细胞均可使其表达SMCs的分子标志,且移植到心急梗死灶中的骨髓间充质干细胞(Bone marrow-derived mesenchymal stemceils,MSCs)强制表达myocardin后心功能得到明显改善,结果证实移植的MSCs在myocardin的调控下有效分化为心肌细胞。已经证实循环血液存在平滑肌祖细胞(Smooth muscle progenitor cells,SPCs)。在低氧条件下SPCs可以归巢到动脉粥样硬化斑块及缺血的肢体等病灶中并发挥生物学作用。慢性低氧不仅动员骨髓干细胞而且可诱导循环c-kit~+祖细胞参与肺动脉外膜重塑及肺动脉滋养血管的形成。鉴于以上研究基础,我们设想:在慢性低氧条件下,循环SPCs归巢至肺无肌细动脉,在myocardin的调控下分化为VSMCs从而参与了低氧性肺无肌细动脉的肌化。本研究分三个部分。
     第一部分:大鼠循环平滑肌祖细胞的分离、鉴定及分化
     目的:分离大鼠循环血液中的平滑肌祖细胞(SPCs)并鉴定其表型,为后续研究打下基础。方法:采用单核细胞集落刺激因子(M-CSF)注射法动员大鼠骨髓干细胞,第六天收集循环血液经密度梯度离心法获得单个核细胞(MNCs),用磁激活的细胞分选法(MACS)分离具有CXCR4~+/PDGFRβ~+表型的祖细胞。采用富含PDGF-BB的培养液常规条件下诱导祖细胞分化,用细胞免疫荧光,RT-PCR,Western blot检测分化细胞的SMCs表型标记物,透射电镜检测分化细胞的超微结构从而判断分离的祖细胞的SMCs分化潜能;低氧(1%O_2)条件下培养上述祖细胞,观察祖细胞的SMCs分化情况,用细胞免疫荧光,RT-PCR,Western blot检测分化细胞的SMCs表型标记物,透射电镜检测分化细胞的超微结构从而判断低氧诱导的分化细胞是否为典型的SMCs。结果:从G-CSF动员的大鼠外周血液MNCs中成功分离出具有CXCR4~+/PDGFRβ~+表型的祖细胞,FCM证实纯度达93.7%,细胞免疫荧光证实祖细胞表达CXCR4及PDGFRβ。经富含PDGF-BB的无血清培养液诱导后,CXCR4~+/PDGFRβ~+祖细胞发生了典型的形态学变化,从小、圆形细胞转变为多角形、梭型细胞,细胞长满后具有SMCs的“峰谷”特征;免疫荧光、RT-PCR及western blot检测到分化细胞表达α-SMA,SM22α,calponin及SM-MHC,透射电镜证实分化细胞具有肌丝、密体,密斑等SMCs超微结构;低氧条件下,CXCR4~+/PDGFRβ~+祖细胞具有和PDGF-BB诱导下相似的形态学变化;免疫荧光、RT-PCR及Western blot检测到分化细胞表达α-SMA,SM22α,calponin及SM-MHC,透射电镜亦证实分化细胞具有肌丝、密体,密斑等SMCs超微结构。结论:大鼠循环CXCR4+~/PDGFRβ~+祖细胞为平滑肌祖细胞,体外低氧可诱导其分化为成熟的SMCs。
     第二部分:Myocardin在CXCR4~+/PDGFRβ~+祖细胞体外SMC分化中的表达及作用
     目的:检测Myocardin在CXCR4~+/PDGFRβ~+祖细胞分化过程中的表达,探讨干扰myocardin后对CXCR4~+/PDGFRβ~+祖细胞分化为SMCs的影响。方法:以慢病毒质粒pGCSIL-GFP为基础构建针对myocardin mRNA靶点的慢病毒干扰质粒(lentivirus-GFP-shMyocd)及阴性对照质粒(lentivirus-GFP-NC);用有效靶点的myocardin慢病毒干扰质粒转染CXCR4+~/PDGFRβ~+祖细胞获得稳定表达,将稳定转染干扰病毒的祖细胞置于低氧条件下诱导分化,用RT-PCR及western blot检测不同时间点分化细胞内的myocardin及SMCs分化标志基因的表达。结果:成功构建滴度为1×10~9TU/ml的lentivirus-GFP-shMyocd和5×10~9TU/ml的lentivirus-GFP-NC干扰病毒。RT-PCR及western blot证实刚分离的CXCR4~+/PDGFRβ~+祖细胞不表达myocardin,PDGF-BB和低氧诱导后7天后表达myocardin,14天达到峰值,21天分化细胞成熟时其表达下降。用lentivirus-GFP-shMyocd预转染CXCR4~+/PDGFRβ~+祖细胞后再将细胞置于低氧条件下分化,RT-PCR及western blot结果显示lentivirus-GFP-shMyocd质粒有效减低了低氧所诱导的myocardin表达,敲减后的祖细胞中SMCs分化标记基因表达趋势与myocardin表达下降趋势相一致。结论:体外低氧诱导CXCR4~+/PDGFRβ~+祖细胞中myocardin的表达介导了祖细胞向SMCs分化。
     第三部分:Myocardin调控CXCR4~+/PDGFRβ~+ SPCs参与低氧性肺无肌细动脉肌化
     目的:探讨慢性低氧是否诱导循环平滑肌祖细胞(SPCs)归巢至肺无肌细动脉以及该归巢的SPCs在低氧诱导的肺无肌细动脉肌化中的作用。方法:GFP转基因C57BL6/J小鼠骨髓细胞移植到经过亚致死量~(60)Co照射的Wt C57BL6/J小鼠以形成骨髓细胞嵌合小鼠,嵌合成功的小鼠低氧(10%O_2)饲养4wk,采用激光共聚焦显微镜观察肺动脉上GFP荧光的分布,western blot分析肺组织内GFP蛋白的表达;用慢病毒干扰质粒转染CXCR4~+/PDGFRβ~+ SPC形成稳定表达细胞,将该稳定转染的SPCs经颈静脉输入Wistar大鼠。经6wk低氧后检测大鼠平均肺动脉压(mPAP),处死大鼠取出肺组织,免组织化学染色检测肺血管α-SMA表达,结合弹力纤维染色判断肺动脉肌化程度,测定大鼠肌化血管壁的平均厚度;显微切割肌化血管并经定量PCR检测肌化肺动脉中myocardin mRNA的表达;同时冰冻切片经免疫荧光标记VEVSMC的α-SMA,激光共聚焦显微镜下观察α-SMA的表达及定位,结合GFP的表达情况判断输入的SPCs在肌化动脉上的定位及分化情况。结果:骨髓细胞嵌合小鼠经4wk低氧后观察到肺血管中具有较多的GFP信号,western blot亦证实嵌合小鼠低氧下较常氧条件下肺组织内GFP蛋白显著增加。Wistar大鼠经6wk低氧后,mPAP、肺动脉肌化程度及肌化血管平均厚度明较常氧组升高。接受SPCs输注低氧大鼠较未接受SPCs输注大鼠其mPAP、肺动脉肌化程度、肌化血管平均厚度均高于单纯低氧组。显微镜下见SPCs输注低氧大鼠肌化动脉壁见GFP阳性细胞,部分细胞同时α-SMA阳性。接受lentivirus-GFP-shMyocd转染SPCs低氧大鼠其mPAP、肺动脉肌化程度、肌化动脉平均厚度较lentivirus-GFP-NC转染SPCs低氧大鼠明显减低。最后,对显微切割分离的肌化肺动脉组织myocardin mRNA定量分析表明,输注转染lentivirus-GFP-shMyocd的SPCs低氧大鼠肌化肺动脉myocardinmRNA较转染对照质粒祖细胞低氧大鼠及单纯输注祖细胞低氧大鼠均显著下降,并与其mPAP及肌化程度变化相一致。结论:低氧诱导归巢到肺动脉的CXCR4~+/PDGFRβ~+SPCs表达myocardin并调控其分化为VSMCs从而参与低氧性肺无肌细动脉肌化。
     结论:
     结合前面三部分的结果,我们认为:低氧能诱导循环CXCR4~+/PDGFRβ~+的SPCs归巢至肺无肌细动脉并促进归巢的SPCs表达myocardin;在myocardin的介导下归巢的SPCs进而分化为VSMC。该过程可能在低氧性肺无肌细动脉的肌化过程中起重要作用。
Chronic hypoxia is one of the key elements which lead to pulmonary artrial remodeling(PAR) and pulmonary hypension (PH), and the muscularization of non-muscular pulmonaryarteriole is one of the most important characteristics of hypoxia-induced PAR. It is reportedthat the source of new formation of vascular smooth muscle cells (VSMC) in muscularizednon-muscular pulmonary arterioles is due to the migration and proliferation from theadjecent pulmonary arteries (PA), however, the effects of clinical treatments targeting onthe VSMCs migration and proliferation are not encouraging, suggesting that there underliesother mechanisms. Myocardin is a co-activitor of serum response factor (SRF) involved insmooth muscle cells (SMCs) and cardiac myocyte differentiation. Transfection thefibroblast and stem cells with myocardin over-expression vectors enabled them to expressthe molecular markers of SMCs, and transplantation of bone marrow-derived mesenchymalstem cells (MSCs) with forced-expression of myocardin to the infarcted area improved thecardiac function, and further results revealed that transplantated MSC effectivelydifferentiated into cardiac myocytes under the regulation of myocardin. It is reported thatthere exits smooth muscle progenitor cells (SPCs) in the circulation, and the SPCs mayhome to atherosclerosis (AS) plaques and ischemic lesions in the limbs under hypoxicconditions. Moreover, chronic hypoxia mobilized the stem cells to the peripheralcirculation and induced the circulating c-kit~+ progenitor cells to the pulmonary arteryadventitial remodeling and formation of vasa vasorum in the PA. Based on the observationmentioned above, we speculate that the circulating SPCs home to the wall of PA under hypoxia, and sequently differentiate into VSMCs under the control of myocardin, whichlead to the muscularization of non-muscular pulmonary arterioles. This study was dividedinto three parts.
     PartⅠ:Isolation, Identification and Differentiation of Rat Circulating Smooth MuscleProgenitor Cells
     Objective: To isolate the rat circulating smooth muscle progenitors cells (SPCs) and toidentify its phenotypes, by which to make preparation for the following studies. Methods:Wistar rats were intraperitoneally injected with G-CSF for consecutive five days, and theMNCs were isolated from circulating blood by density gradient centrifugation overFicoll-paque (1.077g/ml) on the 6th day, then the magnet-activated cell sorting (MACS)was used to separate the CXCR4~+/PDGFRβ~+ progenitor cells from the MNCs. After thedifferentiation of the CXCR4~+/PDGFRβ~+ progenitor cells were induced byPDGF-BB-enriched medium or hypoxia(1%O_2), immunofluorescence, RT-PCR andwestern blot were used to detect the SMCs markers, and TEM was performed to examinethe ultrastructures of differentiated cells. Results: the CXCR4~+/PDGFRβ~+ progenitor cellswere separated successfully from the circulating MNCs of G-CSF mobilized rats, and itspurity reached to 93.7% by FCM. Results of immunofluroscence revealed that theprogenitor cells expressed CXCR4 and PDGFRβ. After induced by PDGF-BB, theprogenitor cells underwent the morphological changes which turned from small round cellsinto polygon and spindle-like cells and showed a "hilly valley" appearance that of VSMCswhen it was confluent. The results of immunofluorescence, RT-PCR and western blotshowed that theα-SMA, SM22α, calponin and SM-MHC were potive forPDGF-BB-induced differentiated cells, and the myofilaments, dense bodies, dense patcheswere observed in the differentiated cells by TEM. When the progenitor cells cultured under hypoxia condition, the cells underwent the morphological changes similar with thePDGF-BB-induced differentiated cells. Furthermore, the markers of VSMCs includingα-SMA, SM22α, calponin and SM-MHC were occurred in hypoxia-induced differentiatedcells as well as the ultrastructural structures of VSMCs were showed by TEM. Conclusion:the rat circulating CXCR4~+/PDGFRβ~+ progenitor cells are a real subpopulation of SPCs,and hypoxia contributes to its differentiation into SMCs in vitro.
     PartⅡ:
     Expression and Contribution of Myocardin in the Differentiation ofCXCR4~+/PDGFRβ~+ Progenitor Cell into SMCs in vitro
     Objective: To detect the expression of myocardin in the differentiated CXCR4~+/PDGFRβ~+progenitor cells and to investigate the contribution of myocardin in the differentiation of theCXCR4~+/PDGFRβ~+ progenitor cells into SMCs in vitro. Methods: The lentivirusinterfering vectors targeting rat myocardin mRNA (lentivirus-GFP-shMyocd) and thenegative control lentivirus interfering vector (lentivirus-GFP-NC) were constructed withthe lentiviral plasmid pGCSIL-GFP. After the CXCR4~+/PDGFRβ~+ progenitor cells wereinduced to differentiate into SMCs by PDGF-BB and hypoxia respectively,immunofluscence, RT-PCR and western blot were performed to detect the myocardinexpression; finally, the CXCR4~+/PDGFRβ~+ progenitor cells were pre-transducted with thelentivirus interfering vectors by diffenent timepoints before hypoxia, and then RT-PCR andwestern blot were adopted to examine myocardin and SMCs markers expression. Results:the lentivirus-GFP-shMyocd and lentivirus-GFP-NC RNAi plasmids were constructedsuccessfully, and its tite reached to 1×10~9 TU/ml and 5×10~9 TU/ml, respectively. The resultsof RT-PCR and western blot revealed that the freshly isolated CXCR4~+/PDGFRβ~+progenitor cells did not express myocardin, while induced by PDGF-BB or hypoxia, themyocardin began to express on day 7, and reached to the peak level on day 14 while decreased on day 21. Pre-treatment the CXCR4~+/PDGFRβ~+ progenitor cells withlentivirus-GFP-shMyocd suppressed the hypoxia-induced expression of myocardin, andfollowing the down-regulation of SMCs markers,α-SMA, SM22α, calponin and SM-MHCat the mRNA and protein levels. Conclusion" hypoxia-induced expression of myocardin inthe CXCR4~+/PDGFRβ~+ progenitor cells gorvers the SMC differentiation of progenitor cellsin vitro.
     PartⅢ:
     Contribution of Myocardin-Regulated Differentiation of SPCs in Hypoxia-InducedMuscularization of Non-muscular Pulmonary Arterioles
     Objective: To investigate whether chronic hypoxia induce the circulating SPCs to home tothe pulmonary artery as well as the role of homed SPCs in the hypoxia-inducedmuscularization of non-muscular pulmonary arterioles. Methods: the bone marrow cells(BMC) chimeric mice were created by transplantating the BMCs from GFP transgenicC57BL6/J mice to the sub-lethal ~(60)Co irradiated WT C57BL6/J mice, and the chimericmice were subjected to hypoxia (10%O_2) for 4 wk, the distribution of GFP signal andexpression of GFP were examined by laser scanning confocal microscopy and western blotanalysis respectively. After transducted the CXCR4~+/PDGFRβ~+ SPCs with or without thelentivirus, the SPCs were infused to wistar rats via jugular veins. The mPAP was detectedafter 6 wk of hypoxia and then the lungs were exteriorized, the muscularization degree wasassessed by immunohistrochemistrical staining ofα-SMA and elastic fiber staining; themean wall thickness of muscularized pulmonary arterioles was measured. The myocardinmRNA expression in muscularized pulmonary arterioles was analysized by Q-PCR on RNAisolated from laser capture microdissection-separated arterioles. At the same time, thedistribution and differentiation of infused SPCs were examined by immunoflurescentstaining ofα-SMA on froze sections. Results" There occured obvious GFP signals in the PA of the BMCs chemiric mice after 4 wk of hypoxia, and the result of western blot furtherconfirmed that the GFP protein was significantly detected in hypoxic BMCs chemiric micethan normoxic chemiric mice. In anothor 6wk of hypoxia wistar rat model, the meanpalmonary arties pressue (mPAP), muscularization degree of alveolus arterioles and themean wall thickness of muscularized arterioles were greater than that of normoxic rats. TheGFP~+ cells were located in the muscularized arterioles of the rats infused with theprogenitor cells, and parts of them wereα-SMA positive. Morover, the muscularizationdegree of alveolus arterioles, the mean wall thickness of muscularized arterioles and eventhe mPAP of the rats infused with lentivirus-GFP-shMyocd-transducted-progenitor cellswere decreased than the rats infused with lentivirus-GFP-NC-transducted progenitor cells.Finally, the myocardin mRNA in muscularized arterioles of the rats infused withlentivirus-GFP-shMyocd-transducted-progenitor cells was down-regulated than the ratsinfused with lentivirus-GFP-NC-transducted progenitor cells or the hypoxic rats infusedwith progenitor cell, which were parallelled with the changes of mPAP. Conclusion:Hypoxia induces SPCs to home to the pulmonary artery and to express myocardin. Thehomed SPCs differentiate into VSMC under the control of myocardin, and thusparticipating in the hypoxia-induced muscularization of non-muscular pulmonary arterioles.
     Conclusion:
     Taken together, the present study was the first report to show that hypoxia can induce theCXCR4~+/PDGFRβ~+ SPCs to locate in the alveolar arterioles and differentiate into SMCs, inwhich myocardin up-regulation was involved, contributing to the muscularization ofalveolar arterioles, eventually leading to the PVR and PAH.
引文
1. Hirschi KK, Majesky MW. Smooth muscle stem cells. Anat Rec A Discov Mol Cell Evol Biol, 2004; 276(1): 22-33.
    2. Sata M, Saiura A, Kunisato A, Tojo A, Okada S, Tokuhisa T, Hirai H, Makuuchi M, Hirata Y, Nagai R. Hematopoietic stem cells differentiate into vascular cells that participate in the pathogenesis of atherosclerosis [J]. Nat Med, 2002. 8: 403-409.
    3. Shimizu K, Sugiyama S, Aikawa M, Fukumoto Y, Rabkin E, Libby P, Mitchell R. Host bone-marrow cells are a source of donor intimal smooth muscle-like cells in murine aortic transplant arteriopathy [J]. Nat Med, 2001; 7: 738-741.
    4. Hillebrands J, Klatter F, van den Hurk B, Popa E, Nieuwenhuis P, Rozing J. Origin of neointimal endothelium and alpha-actinpositive smooth muscle cells in transplant arteriosclerosis [J]. J Clin Invest, 2001; 107: 1411-1422.
    5. Simper D, Stalboerger P, Panetta C, Wang S, Caplice N. Smooth muscle progenitor cells in human blood [J]. Circulation, 2002; 106: 1199-1204.
    6. Saiura A, Sata M, Hirata Y, Nagai R, Makuuchi M. Circulating smooth muscle progenitor cells contribute to atherosclerosis [J]. Nat Med, 2001; 7(4): 382-3.
    7. Rodriguez-Menocal L, St-Pierre M, Wei Y, Khan S, Mateu D, Calfa M, Rahnemai-Azar AA, Striker G, Pham SM, Vazquez-Padron RI. The origin of post-injury neointimal cells in the rat balloon injury model [J]. Cardiovasc Res. 2009; 81(1):46-53.
    8. Tanaka K, Sata M, Natori T, Kim-Kaneyama JR. Nose K, Shibanuma M, Hirata Y, Nagai R. Circulating progenitor cells contribute to neointimal formation in nonirradiated chimeric mice [J]. FASEB J, 2008; 22(2):428-36.
    9. Masataka Sata. Circulating Vascular Progenitor Cells Contribute to Vascular Repair, Remodeling, and Lesion Formation [J]. Trends Cardiovasc Med, 2003; 3: 49-253.
    10. Chunsheng Liu, Karl A. Nath, Zvonimir S. Katusic, Noel M. Caplice. Smooth Muscle Progenitor Cells in Vascular Disease [J]. Trends Cardiovasc Med, 2004; 14:288-293.
    11. Wright JL, Levy RD, Churg A. Pulmonary hypertension in chronic obstructive pulmonary disease: current theories of pathogenesis and their implications for treatment. Thorax, 2005; 60(7):605-609.
    12. Cheever KH. An overview of pulmonary arterial hypertension: risks, pathogenesis, clinical manifestations, and management [J]. J Cardiovasc Nurs, 2005; 20(2): 108-116;quiz 117-108.
    13. Stiebellehner L, Frid MG, Reeves JT, Low RB, Gnanasekharan M, Stenmark KR. Bovine distal pulmonary arterial media is composed of a uniform population of well-differentiated smooth muscle cells with low proliferative capabilities [J]. Am J Physiol Lung Cell Mol Physiol, 2003; 285(4):L819-28.
    14. Stenmark KR, Fagan KA, Frid MG. Hypoxia-induced pulmonary vascular remodeling: cellular and molecular mechanisms [J]. Circ Res, 2006; 99(7):675-91.
    15. Zernecke A, Schober A, Bot I, von Hundelshausen P, Liehn EA, Mopps B, Mericskay M, Gierschik P, Biessen EA, Weber C. SDF-lalpha/CXCR4 axis is instrumental in neointimal hyperplasia and recruitment of smooth muscle progenitor cells [J]. Circ Res, 2005; 96(7):784-91.
    16. Karshovska E, Zagorac D, Zernecke A, Weber C, Schober A. A small molecule CXCR4 antagonist inhibits neointima formation and smooth muscle progenitor cell mobilization after arterial injury [J]. J Thromb Haemost, 2008; 6(10): 1812-5.
    17. Jacoub JF, Suryadevara U, Pereyra V, Col(?)n D, Fontelonga A, Mackintosh FR, Hall SW, Ascens(?)o JL. Mobilization strategies for the collection of peripheral blood progenitor cells: Results from a pilot study of delayed addition G-CSF following chemotherapy and review of the literature [J]. Exp Hematol, 2006; 34(11): 1443-50.
    18. Lehrke S, Mazhari R, Durand D J, Zheng M, Bedja D, Zimmet JM, Schuleri KH, Chi AS, Gabrielson KL, Hare JM. Aging impairs the beneficial effect of granulocyte colony-stimulating factor and stem cell factor on post-myocardial infarction remodeling [J]. Circ Res, 2006; 99(5): 553-60.
    19. To LB, Haylock DN, Simmons PJ, Juttner CA. The biology and clinical uses of blood stem cells [J]. Blood, 1997; 89: 2233-2258.
    20. Cottler-Fox MH, Lapidot T, Petit I, Kollet O, DiPersio JF, Link D, Devine S. Stem cell mobilization[J]. Hematology (Am Soc Hematol Educ Program), 2003; 1: 419-437.
    21. Kuang D, Zhao X, Xiao G, Ni J, Feng Y, Wu R, Wang G. Stem cell factor/c-kit signaling mediated cardiac stem cell migration via activation of p38 MAPK [J]. Basic Res Cardiol, 2008; 103(3): 265-273.
    22. Beltrami AP, Barlucchi L, Torella D, Baker M, Limana F, Chimenti S, Kasahara H, Rota M, Musso E, Urbanek K, Leri A, Kajstura J, Nadal-Ginard B, Anversa P. Adult cardiac stem cells are multipotent and support myocardial regeneration[J]. Cell, 2003; 114(6): 763-776.
    23. Naume B, Nonstad U, Steinkjer B, Funderud S, Smeland E, Espevik T. Immunomagnetic isolation of NK and LAK cells[J], J Immunol Methods, 1991; 136(1): 1-9.
    24.庄俊玲,王良利,游泳,龚非力,邹萍.国产免疫磁珠分离细胞的方法学研究及初步应用[J].临床血液学杂志,2000,13(2):73-74.
    25. Mayr M, Zampetaki A, Sidibe A, Mayr U, Yin X, De Souza AI, Chung YL, Madhu B, Quax PH, Hu Y, Griffiths JR, Xu Q. Proteomic and metabolomic analysis of smooth muscle cells derived from the arterial media and adventitial progenitors of apolipoprotein E-deficient mice[J]. Circ Res, 2008; 102(9): 1046-1056.
    26. Thom SR, Bhopale VM, Velazquez OC, Goldstein LJ, Thom LH, Buerk DG. Stem cell mobilization by hyperbaric oxygen[J]. Am J Physiol Heart Circ Physiol, 2006, 290(4): H1378-H1386.
    27.郑成刚,朱亚静,杭小华,庞亚飞,钱文慧,赵黎明,衣洪杰,刘青乐.高压氧动员外周血造血干细胞的初步临床观察[J].第二军医大学学报,2007,28(9):1038-1039.
    28.仇惠英,吴德沛,孙爱宁,常伟荣,金正明,苗瞄,唐晓文,沈益明,傅(王争)(王争).MAG方案对恶性血液病患者造血干细胞动员作用的研究[J].中华血液学杂志,2004, 25(8):462-465.
    29.章卫平,王健民,童书鹏,宋献民,钱宝华,周虹,李红梅,丁晓勤.健康供者外周血造血干细胞动员的临床研究[J].第二军医大学学报,2002,23:939 942.
    30.杨玉花,王良绪,赵昕.自体外周血造血干细胞移植治疗多发性骨髓瘤12例临床疗效观察[J].中华血液学杂志,1998,19(11):590-591.
    31.李红华,刘厚奇,刘太华,汤淑萍,熊俊,惠宁。人胚胎间充质干细胞向平滑肌细胞定向分化标志蛋白的选择[J].第二军医大学学报,2004,25(8):822-826.
    32. Owens GK. Regulation of differentiation of vascular smooth muscle cells [J]. Physiol Rev, 1995, 75(3): 487-517.
    33. Satoh K, Fukurnoto Y, Nakano M, Sugimura K, Nawata J, Demaehi J, Karibe A, Kagaya Y, Ishii N, Sugamura K, Shirnokawa H. Statin ameliorates hypoxia-induced pulmonary hypertension associated with down-regulated stromal cell-derived factor-1 [J]. Cardiovasc Res, 2008; 81(1): 226-234.
    1. Shanahan CM, Weissberg PL, Metcalfe JC. Isolation of gene markers of differentiated and proliferating vascular smooth muscle cells [J]. Circ Res. 1993; 73: 193-204.
    2.李红华,刘厚奇,刘太华,汤淑萍,熊俊,惠宁.人胚胎间充质干细胞向平滑肌细胞定向分化标志蛋白的选择[J].第二军医大学学报,2004,25(8):822-826.
    3. Owens GK. Regulation of differentiation of vascular smooth muscle cells [J]. Physiol Rev. 1995, 75(3): 487-517.
    4. Yoshida T, Owens GK. Molecular determinants of vascular smooth muscle cell diversity [J]. Circ Res 2005; 96(3): 280-291.
    5. Wang D, Chang PS, Wang Z, Sutherland L, Richardson JA, Small E, Krieg PA, Olson EN. Activation of cardiac gene expression by myocardin, a transcriptional cofactor for serum response factor [J]. Cell. 2001; 105(7): 851-62.
    6. Wang Z, Wang DZ, Hoekemeyer D, McAnally J, Nordheim A, Olson EN. Myocardin and ternary complex factors compete for SRF to control smooth muscle gene expression [J]. Nature. 2004; 428(6979): 185-9.
    7. Hauschka SD. Myocardin. a novel potentiator of SRF-mediated transcription in cardiac muscle[J]. Mol Cell. 2001 Jul; 8(1): 1-2.
    8. Chen J, Kitchen CM, Streb JW, Miano JM. Myocardin: a component of a molecular switch for smooth muscle differentiation [J]. J Mol Cell Cardiol. 2002; 34(10): 1345-56.
    9. Wang Z, Wang DZ, Pipes GC, Olson EN. Myocardin is a master regulator of smooth muscle gene expression [J]. Proc Natl Acad Sci USA. 2003; 100(12): 7129-34.
    10. Du KL, Ip HS, Li J, Chen M, Dandre F, Yu W, Lu MM, Owens GK, Parmacek MS. Myocardin is a critical serum response factor cofactor in the transcriptional program regulating smooth muscle cell differentiation [J]. Mol Cell Biol. 2003; 23(7): 2425-37.
    11. Yoshida T, Sinha S, Dandr(?) F, Wamhoff BR, Hoofnagle MH, Kremer BE, Wang DZ, Olson EN, Owens GK. Myocardin is a key regulator of CArG-dependent transcription of multiple smooth muscle marker genes [J]. Circ Res. 2003; 92(8): 856-64.
    12. Owens GK, Kumar MS, Wamhoff BR. Molecular regulation of vascular smooth muscle cell differentiation in development and disease [J]. Physiol Rev. 2004; 84(3): 767-801.
    13. Yoshida T, Kawai-Kowase K, Owens GK. Forced expression of myocardin is not sufficient for induction of smooth muscle differentiation in multipotential embryonic cells [J]. Arterioscler Thromb Vasc Biol. 2004; 4(9): 1596-601.
    14. van Tuyn J, Kna(a|¨)n-Shanzer S, van de Watering MJ, de Graaf M, van der Laarse A, Schalij MJ, van der Wall EE, de Vries AA, Atsma DE. Activation of cardiac and smooth muscle-specific genes in primary human cells after forced expression of human myocardin [J]. Cardiovasc Res. 2005; 67(2): 245-55.
    15.李燕,瞿智玲,黄冠,孟寒,余俊,阮秋蓉.Myocardin在骨髓间充质干细胞向平滑肌细胞分化过程中的表达[J].中华病理学杂志,2008;37(10):680-686.
    16. Li J, Zhu X, Chen M, Cheng L, Zhou D, Lu MM, Du K, Epstein JA, Parmacek MS. Myocardin-related transcription factor B is required in cardiac neural crest for smooth muscle differentiation and cardiovascular development[J]. Proc Natl Acad Sci USA, 2005, 102, 8916-8921.
    17. Zhu P, Huang L, Ge X, Yan F, Wu R, Ao Q. Transdifferentiation of pulmonary arteriolar endothelial cells into smooth muscle-like cells regulated by myocardin involved in hypoxia-induced pulmonary vascular remodelling [J]. Int d Exp Pathol, 2006; 87(6): 463-474.
    18. Pipes GC, Sinha S, Qi X, Zhu CH, Gallardo TD, Shelton J, Creemers EE, Sutherland L, Richardson JA, Garry DJ, Wright WE, Owens GK, Olson EN. Stem cells and their derivatives can bypass the requirement of myocardin for smooth muscle gene expression [J]. Dev Biol. 2005; 288(2): 502-13.
    19. Hammond SM, Bernstein E, Beach D, Hannon GJ. An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells [J]. Nature, 2000; 404(6775): 293-6.
    20. Brummelkamp TR, Bernards R, Agami R. A system for stable expression of short interfering RNAs in mammalian cells [J]. Science, 2002; 296(5567): 550-3.
    21.周炜,冯进波,王旭平,姜虹,刘春喜,王荣,丁士芳.特异性针对小鼠VEGFa基因的siRNA慢病毒载体的构建[J].山东大学学报(医学版),2008,46(12):1153-7.
    22.主鸿鹄,徐开林.慢病毒载体的改进及其在血液病基因治疗中的应用[J].中华实验血液学杂志,2003;11(2):208-212
    23. Berezhna SY, Supekova L, Supek F, Schultz PG, Deniz AA. siRNA in human cells selectively localizes to target RNA sites [J]. Proc Natl Acad Sci U S A, 2006; 103(20): 7682-7.
    24. Elbashir SM, Lendeckel W, Tuschl T. RNA interference is mediated by 21- and 22-nucleotide RNAs [J]. Genes Dev. 2001; 15(2): 188-200.
    25. Matveeva O, Nechipurenko Y, Rossi L, Moore B, Saetrom P, Ogurtsov AY, Atkins JF, Shabalina SA. Comparison of approaches for rational siRNA design leading to a new efficient and transparent method [J]. Nucleic Acids Res. 2007; 35(8): e63.
    26. Semizarov D, Frost L, Sarthy A, Kroeger P, Halbert DN, Fesik SW. Specificity of short interfering RNA determined through gene expression signatures [J]. Proc Natl Acad Sci USA. 2003; 100(11): 6347-52.
    27. Westerhout EM, Berkhout B. A systematic analysis of the effect of target RNA structure on RNA interference [J]. Nucleic Acids Res. 2007; 35(13): 4322-30.
    28. Kurachi S, Koizumi N, Sakurai F, Kawabata K, Sakurai H, Nakagawa S, Hayakawa T, Mizuguchi H. Characterization of capsid-modified adenovirus vectors containing heterologous peptides in the fiber knob, protein IX, or hexon [J]. Gene Ther. 2007; 14(3): 266-74.
    29. Shevach EM. CD4 + CD25 + suppressor T cells: more questions than answers [J]. Nat Rev Immunol, 2002, 2 (6): 389-400.
    30. Cordelier P, Strayer DS. Using gene delivery to protect HIV-susceptible CNS cells: inhibiting HIV replication in microglia [J]. Virus Res, 2006, 118(1-2): 87-97.
    31.黄云剑,赵景宏,杨唐俊,张金海,蔡文琴.Smad6和Smad7基因腺相关病毒载体的构建及其表达[J].细胞与分子免疫学杂志,2004,20(3):274-277.
    32.史艳侠,韩文杰,彭柔君,张景航,黄慧强,姜文奇.使用FLAG标签肽及慢病毒载体共同筛选小鼠foxp3基因RNA干扰的有效靶点[J].中山大学学报(医学科学版), 2007,28(6):641-645.
    1. Stenmark KR, Fagan KA, Frid MG. Hypoxia-induced pulmonary vascular remodeling: cellular and molecular mechanisms [J]. Circ Res, 2006; 99(7): 675-91.
    2. Jones R, Reid L. Vascular Remodeling in Clinical and Experimental Pulmonary Hypertensions [M]. London: Portland Press; 1995.
    3. Reid L, Davies P. Control of Cell Proliferation in Pulmonary Hypertension [M]. Vol 38. New York: Marcel Dekker Inc; 1989.
    4. Stenmark KR, Davie N, Frid M, Gerasimovskaya E, Das M. Role of the adventitia in pulmonary vascular remodeling[J]. Physiology (Bethesda), 2006; 21: 134-145.
    5. Belknap JK, Orton EC, Ensley B, Tucker A, Stenmark KR. Hypoxia increases bromodeoxyuridine labeling indices in bovine neonatal pulmonary arteries [J]. Am J Respir Cell Mol Biol, 1997; 16: 366-371.
    6.Stenmark KR, Mecham RP. Cellular and molecular mechanisms of pulmonary vascular remodeling [J]. Annu Rev Physiol, 1997; 59:89-144.
    7.Dempsey EC, Frid MG, Aldashev AA, Das M, Stenmark KR. Heterogeneity in the proliferative response of bovine pulmonary artery smooth muscle cells to mitogens and hypoxia: importance of protein kinase C [J]. Can J Physiol Pharmacol, 1997;75(7):936-44.
    8.Wohrley JD, Frid MG, Moiseeva EP, Orton EC, Belknap JK, Stenmark KR. Hypoxia selectively induces proliferation in a specific subpopulation of smooth muscle cells in the bovine neonatal pulmonary arterial media[J]. J Clin Invest, 1995;96(1):273-81.
    9.Stiebellehner L, Frid MG, Reeves JT, Low RB, Gnanasekharan M, Stenmark KR. Bovine distal pulmonary arterial media is composed of a uniform population of well-differentiated smooth muscle cells with low proliferative capabilities [J]. Am J Physiol Lung Cell Mol Physiol, 2003;285(4):L819-28.
    10.Short M, Nemenoff RA, Zawada WM, Stenmark KR, Das M. Hypoxia induces differentiation of pulmonary artery adventitial fibroblasts into myofibroblasts [J]. Am J Physiol Cell Physiol, 2004; 286:C416-C425.
    11.Sartore S, Chiavegato A, Faggin E, Franch R, Puato M, Ausoni S, Pauletto P. Contribution of adventitial fibroblasts to neointima formation and vascular remodeling: from innocent bystander to active participant[J]. Circ Res, 2001;89:1111-1121.
    12.Stenmark KR, Gerasimovskaya E, Nemenoff RA, Das M. Hypoxic activation of adventitial fibroblasts: role in vascular remodeling [J]. Chest, 2002; 122(6 Suppl): 326S-334S.
    13.Yamagishi S, Imaizumi T. Pericyte biology and diseases [J]. Int J Tissue React, 2005; 27:125-135.
    14.Frid MG, Brunetti JA, Burke DL, Carpenter TC, Davie NJ, Reeves JT, Roedersheimer MT, van Rooijen N, Stenmark KR. Hypoxia-induced pulmonary vascular remodeling requires recruitment of circulating mesenchymal precursors of a monocyte/macrophage lineage[J].Am J Pathol, 2006; 168: 659-669.
    15. Davie NJ, Crossno JT Jr, Frid MG, Hofmeister SE, Reeves JT, Hyde DM, Carpenter TC, Brunetti JA, McNiece IK, Stenmark KR. Hypoxia-induced pulmonary artery adventitial remodeling and neovascularization: contribution of progenitor cells [J]. Am J Phvsiol Lung Cell Mol Physiol, 2004; 286: L668-L678.
    16. Hayashida K, Fujita J, Miyake Y, Kawada H, Ando K, Ogawa S, Fukuda K. Bone marrow-derived cells contribute to pulmonary vascular remodeling in hypoxia-induced pulmonary hypertension [J]. Chest, 2005; 127(5): 1793-8.
    17. Hermann PC, Huber SL, Herrler T, von Hesler C, Andrassy J, Kevy SV, Jacobson MS, Heeschen C. Concentration of bone marrow total nucleated cells by a point-of-care device provides a high yield and preserves their functional activity [J]. Cell Transplant, 2008; 16(10): 1059-69.
    18. Davies JQ, Gordon S. Isolation and culture of murine macrophages [J]. Methods Mol Biol, 2005; 290: 91-103.
    19. Xu M, Uemura R, Dai Y, Wang Y, Pasha Z, Ashraf M. In vitro and in vivo effects of bone marrow stem cells on cardiac structure and function [J]. J Mol Cell Cardiol, 2007; 42(2): 441-8.
    20. #12
    21.王皓 汪涛.云芝糖肽对受照小鼠骨髓移植的影响[J].苏州医学院学报,1997;17(5): 828-830.
    22. Zhu P, Huang L, Ge X, Yan F, Wu R, Ao Q. Transdifferentiation of pulmonary arteriolar endothelial cells into smooth muscle-like cells regulated by myocardin involved in hypoxia-induced pulmonary vascular remodelling [J]. Int J Exp Pathol. 2006; 87(6): 463-474.
    23. Dopp JM, Moran J J, Abel NJ, Wiegert NA, Cowgill JB, Olson EB, Sims JJ. Influence of intermittent hypoxia on myocardial and hepatic P-glycoprotein expression in a rodent model [J]. Pharmacotherapy, 2009; 29(4): 365-72.
    24.张鸿,张洪玉,庞宝森,夏成青,牛淑洁,马力,毛燕龄,辛萍,黄秀霞,张海燕. 氨茶碱对慢性间断低氧大鼠气道炎症及肺组织氧化损伤拮抗作用的探讨[J].中国 病理生理杂志, 2005,21(2):394-397.
    25.Bai X, Huang M, Wu J, Huang X, Yan L, Lu Y, Wang S, Xu G, Zhou J, Ma D. Development and characterization of a novel method to analyze global gene expression profiles in endothelial cells derived from primary tissues[J]. Am J Hematol, 2008 ;83(1):26-33
    26.Lockman K, Hinson JS, Medlin MD, Morris D, Taylor JM, Mack CP. Sphingosine 1-phosphate stimulates smooth muscle cell differentiation and proliferation by activating separate serum response factor co-factors[J]. J Biol Chem, 2004;279(41):42422-30.
    27.Marini F, Pozzato C, Andreetta V, Jansson B, Arban R, Domenici E, Carboni L. Single exposure to social defeat increases corticotropin-releasing factor and glucocorticoid receptor mRNA expression in rat hippocampus[J]. Brain Res, 2006; 1067(1):25-35.
    28.Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C (T)) Method [J]. Methods, 2001; 25(4):402-8.
    29.Arias-Stella J, Saldana M. The terminal portion of the pulmonary arterial tree in people native to high altitudes [J]. Circulation, 1963; 28:915-925.
    30.Cheever KH.An overview of pulmonary arterial hypertension: risks, pathogenesis, clinical manifestations, and mangement [J]. J Cardiovasc Nurs, 2005; 20(2): 108-116;quiz 117-118.
    31.Minamino T, Christou H, Hsieh CM, Liu Y, Dhawan V, Abraham NG, Perrella MA, Mitsialis SA, Kourembanas S. Targeted expression of heme oxygenase-1 prevents the pulmonary inflammatory and vascular responses to hypoxia [J]. Proc Natl Acad Sci U S A, 2001; 98(15): 8798-8803.
    32.Chen J, Kitchen CM, Streb JW, Miano JM. Myocardin: a component of a molecular switch for smooth muscle differentiation [J]. J Mol Cell Cardiol, 2002; 34(10): 1345-56.
    33.Du KL, Ip HS, Li J, Chen M, Dandre F, Yu W, Lu MM, Owens GK, Parmacek MS Myocardin is a critical serum response factor cofactor in the transcriptional program regulating smooth muscle cell differentiation[J]. Mol Cell Biol, 2003; 23(7):2425-2437.
    34. Grauss RW, van Tuyn J, Steendijk P, Winter EM, Pijnappels DA, Hogers B, Gittenberger-De Groot AC, van der Geest R, van der Laarse A, de Vries AA, Schalij MJ, Atsma DE. Forced myocardin expression enhances the therapeutic effect of human mesenchymal stem cells after transplantation in ischemic mouse hearts [J]. Stem Cells, 2008; 26(4): 1083-93.
    35.王关嵩,钱桂生.低氧肺血管重构的分子机制研究概况及展望[J].第三军医大学学报,2009;31(93):3-5.
    36. B(a|¨)rtsch P, Mairb(a|¨)url H, Maggiorini M, Swenson ER. Physiological aspects of high-altitude pulmonary edema [J]. J Appl Physiol, 2005; 98(3): 1101-10.
    37. Dehnert C, Berger MM, Mairb(a|¨)url H, B(a|¨)rtsch P. High altitude pulmonary edema: a pressure-induced leak [J]. Respir Physiol Neurobiol, 2007; 158(2-3): 266-73.
    38. Fadini GP, Schiavon M, Cantini M, Baesso I, Facto M, Miorin M, Tassinato M, de Kreutzenberg SV, Avogaro A, Agostini C. Circulating progenitor cells are reduced in patients with severe lung disease[J]. Stem Cells, 2006; 24(7): 1806-13.
    39. Celia G, Bellotto F, Tona F, Sbarai A, Mazzaro G, Motta G, Fareed J. Plasma markers of endothelial dysfunction in pulmonary hypertension [J]. Chest, 2001; 120: 1226-1230.
    40. Peinado VI, Santos S, Ram(?)rez J, Roca J, Rodriguez-Roisin R, Barber(?) JA. Response to hypoxia of pulmonary arteries in chronic obstructive pulmonary disease: An in vitro study [J]. Eur Respir J, 2002; 20: 332-338.
    41. Budhiraja R, Tuder RM, Hassoun PM. Endothelial dysfunction in pulmonary hypertension [J]. Circulation, 2004; 109(2): 159-165.
    42.敖启林,朱朋成,葛小娜,卢玮,何惠华.低氧诱导肺动脉内皮细胞间质细胞衍生因子-1的表达及其调控机制[J].中华病理学杂志,2006;35(9):560-561.
    43. Nervi B, Link DC, DiPersio JF. Cytokines and hematopoietic stem cell mobilization [J]. J Cell Biochem, 2006; 99(3): 690-705.
    1. Kuwano K, Bosken CH, Pare PD, Bai TR, Wiggs BR, Hogg JC. Small airways dimensions in asthma and in chronic obstructive pulmonary disease [J]. Am Rev Respir Dis, 1993; 148: 1220-1225.
    2. Li X, Wilson JW. Increased vascularity of the bronchial mucosa in mild asthma [J]. Am J Respir Crit Care Med,1997; 156: 229-233,
    3. Virchow R. Uber dies Standpunkte in den Wissenschaftlichen Medizin [J]. Virchows Arch, 1847;1: 1-19.
    4. Endrys J, Hayat N, Cherian G. Comparison of bronchopulmonary collaterals and collateral blood flow in patients with chronic thromboembolic and primary pulmonary hypertension [J]. Heart, 1997;78: 171-176.
    5. Keller FS, Rosch J, Loflin TG, Nath PH, McElvein RB. Nonbronchial systemic collateral arteries: significance in percutaneous embolotherapy for hemoptysis [J]. Radiology, 1987; 164: 687-692.
    6. H(?)nze J, Weissmann N, Grimminger F, Seeger W, Rose F. Cellular and molecular mechanisms of hypoxia-inducible factor driven vascular remodeling [J]. Thromb Haemost, 2007; 97(5):774-87.
    7. Davie NJ, Crossno JT Jr, Frid MG, Hofmeister SE, Reeves JT, Hyde DM, Carpenter TC, Brunetti JA, McNiece IK, Stenmark KR. Hypoxia-induced pulmonary artery adventitial remodeling and neovascularization: contribution of progenitor cells [J]. Am J Physiol Lung Cell Mol Physiol, 2004;286: L668-L678.
    8. Rabinovitch M. Pathobiology of pulmonary hypertension. Extracellular matrix [J]. Clin Chest Med, 2001 ;22: 433-449.
    9. Jones R, Reid L. Vascular Remodeling in Clinical and Experimental Pulmonary Hypertensions [M]. London: Portland Press; 1995.
    10. Reid L, Davies P. Control of Cell Proliferation in Pulmonary Hypertension [M]. Vol 38. New York: Marcel Dekker Inc; 1989.
    11. Stenmark KR, Davie N, Frid M, Gerasimovskaya E, Das M. Role of the adventitia in pulmonary vascular remodeling [J]. Physiology (Bethesda), 2006; 21:134-145.
    12. Durmowicz AG, Hofmeister S, Kadyraliev TK, Aldashev AA, Stenmark KR. Functional and structural adaptation of the yak pulmonary circulation to residence at high altitude [J]. JAppl Physiol, 1993; 74:2276 -2285.
    13. Stenmark KR, Durmowicz AG, Dempsey EC. Modulation of Vascular Wall Cell Phenotype in Pulmonary Hypertension [M]. London: Portland Press; 1995.
    14. Harris P, Heath D. The Pulmonary Circulation at High Altitude [M]. 3rd ed. New York: Churchill Livingstone; 1986.
    15. Kobs RW, Chesler NC. The mechanobiology of pulmonary vascular remodeling in the congenital absence of Enos [J]. Biomech Model Mechanobiol, 2006, 5(4): 217-25.
    16. Kobs RW, Muvarak NE, Eickhoff JC, Chesler NC Linked mechanical and biological aspects of remodeling in mouse pulmonary arteries with hypoxia-induced hypertension[J]. Am J Physiol Heart Circ Physiol, 2005; 288:H1209-H1217.
    17. Stiebellehner L, Frid MG, Reeves JT, Chesler NC. Bovine distal pulmonary arterial media is composed of a uniform population of well-differentiated smooth muscle cells with low proliferative capabilities [J]. Am J Physiol Lung Cell Mol Physiol, 2003;285:L819-L828.
    18. Sartore S, Chiavegato A, Faggin E, Franch R, Puato M, Ausoni S, Pauletto P. Contribution of adventitial fibroblasts to neointima formation and vascular remodeling: from innocent bystander to active participant [J]. Circ Res, 2001; 89:1111-1121.
    19. Jones R, Jacobson M, Steudel W. alpha-Smooth-muscle actin and microvascular precursor smooth-muscle cells in pulmonary hypertension [J]. Am J Respir Cell Mol Biol, 1999; 20:582-594.
    20. Sobin SS, Tremer HM, Hardy JD, Chiodi HP. Changes in arteriole in acute and chronic hypoxic pulmonary hypertension and recovery in rat [J]. J Appl Physiol, 1983; 55:1445-1455.
    21. Davie NJ, Crossno JT Jr, Frid MG, Hofmeister SE, Reeves JT, Hyde DM, Carpenter TC, Brunetti JA, McNiece IK, Stenmark KR. Hypoxia induced pulmonary artery adventitial remodeling and neovascularization: contribution of progenitor cells [J]. Am J Physiol Lung Cell Mol Physiol 2004; 286:L668 -L678.
    22. Frid MG, Brunetti JA, Burke DL, Carpenter TC, Davie NJ, Reeves JT, Roedersheimer MT, van Rooijen N, Stenmark KR. Hypoxia-induced pulmonary vascular remodeling requires recruitment of circulating mesenchymal precursors of a monocyte/macrophage lineage [J] Am J Pathol, 2006; 168: 659-669.
    23. Jones R, Capen D. Circulating monocytic cells (MCs) and restoration of capillaries lost from the alveolar-capillary membrane [J]. FASEB J, 2006; 20(4): (Abstracts 7.1-485.10)
    24. Jones RC, Jacobson M. Angiogenesis in the hypertensive lung: response to ambient oxygen tension [J]. Cell Tissue Res, 2000; 300:263-284.
    25. Shimizu K, Sugiyama S, Aikawa M, Fukumoto Y, Rabkin E, Libby P, Mitchell RN. Host bone-marrow cells are a source of donor intimal smooth-muscle-like cells in murine aortic transplant arteriopathy [J]. Nat Med, 2001; 7:738-741.
    26. Saiura A, Sata M, Hirata Y, Nagai R, Makuuchi M. Circulating smooth muscle progenitor cells contribute to atherosclerosis [J]. Nat Med, 2001; 7:382-383.
    27. Sata M, Saiura A, Kunisato A, Tojo A, Okada S, Tokuhisa T, Hirai H, Makuuchi M, Hirata Y, Nagai R. Hematopoietic stem cells differentiate into vascular cells that participate in the pathogenesis of atherosclerosis [J]. Nat Med, 2002; 8,403-409.
    28. Davie NJ, Crossno JT Jr, Frid MG, Hofmeister SE, Reeves JT, Hyde DM, Carpenter TC, Brunetti JA, McNiece IK, Stenmark KR. Hypoxia-induced pulmonary artery adventitial remodeling and neovascularization: contribution of progenitor cells [J]. Am J Physiol Lung Cell Mol Physiol, 2004; 286: L668-L678.
    29. Hayashida K, Fujita J, Miyake Y, Kawada H, Ando K, Ogawa S, Fukuda K. Bone Marrow-Derived Cells Contribute to Pulmonary Vascular Remodeling in Hypoxia-Induced Pulmonary Hypertension [J]. Chest, 2005; 127:1793-1798.
    30. Zhao YD, Courtman DW, Deng Y, Kugathasan L, Zhang Q, Stewart DJ. Rescue of monocrotaline-induced pulmonary arterial hypertension using bone marrow-derived endothelial-like progenitor cells: efficacy of combined cell and eNOS gene therapy in established disease [J]. Circulation Research, 2005; 96: 442-50.
    31. Asahara T, Masuda H, Takahashi T, Kalka C, Pastore C, Silver M, Kearne M, Magner M, Isner JM. Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization [J]. Circ Res, 1999; 85: 221-228.
    32. Simper D, Stalboerger PG, Panetta CJ, Wang S, Caplice NM. Smooth muscle progenitor cells in human blood [J]. Circulation, 2002; 106: 1199-1204.
    33. Abe R, Donnelly SC, Peng T, Bucala R, Metz CN. Peripheral blood fibrocytes: differentiation pathway and migration to wound sites [J]. J Immunol, 2001, 166(12): 7556-7562.
    34. Hu Y, Zhang Z, Torsney E, Afzal AR, Davison F, Metzler B, Xu Q. Abundant progenitor cells in the adventitia contribute to atherosclerosis of vein grafts in ApoE-deficient mice[J].J Clin Invest, 2004; 113, 1258-1265.
    35. Desplat V, Faucher JL, Mahon FX, Dello SP, Praloran V, and Ivanovic Z. Hypoxia modifies proliferation and differentiation of CD34 (+) CML cells [J]. Stem Cells, 2002; 20: 347-354.
    36. Lapidot T and Petit I. Current understanding of stem cell mobilization: the roles of chemokines, proteolytic enzymes, adhesion molecules, cytokines, and stromal cells [J]. Exp Hematol, 2002; 30: 973-981.
    37. Minamino T, Christou H, Hsieh CM, Liu Y, Dhawan V, Abraham NG, Perrella MA, Mitsialis SA, Kourembanas S. Targeted expression of heme oxygenase-1 prevents the, pulmonary inflammatory and vascular responses to hypoxia [J]. Proc Natl Acad Sci U S A. 2001; 98: 8798-8803.
    38. Madjdpour C, Jewell UR, Kneller S, Ziegler U, Schwendener R, Booy C, Klausli L, Pasch T, Schimmer RC, Beck-Schimmer B. Decreased alveolar oxygen induces lung inflammation [J]. Am J Physiol Lung Cell Mol Physiol, 2003; 284:L360 -L367.
    39. Zampetaki A, Minamino T, Mitsialis SA, Kourembanas S. Effect of heme oxygenase-1 overexpression in two models of lung inflammation [J]. Exp Biol Med (Maywood), 2003; 228:442- 446.
    40. Frid MG, Brunetti JA, Burke DL, Carpenter TC, Davie NJ, Reeves JT, Roedersheimer MT, van Rooijen N, Stenmark KR. Hypoxia-induced pulmonary vascular emodeling requires recruitment of circulating mesenchymal precursors of a monocyte/ macrophage lineage [J]. Am J Pathol, 2006; 168: 659-669.
    41. Metz CN. Fibrocytes: a unique cell population implicated in wound healing [J]. Cell Mol Life Sci, 2003; 60: 1342-1350.
    42 Phillips RJ, Burdick MD, Hong K, Lutz MA, Murray LA, Xue YY, Belperio JA, Keane MP, Strieter RM. Circulating fibrocytes traffic to the lungs in response to CXCL12 and mediate fibrosis [J]. J Clin Invest, 2004; 114: 438- 446.
    43. Quan TE, Cowper SE, Bucala R. The role of circulating fibrocytes in fibrosis [J]. Curr Rheumatol Rep, 2006; 8:145-150.
    44. Sutherland RM. Tumor hypoxia and gene expression implications for malignant progression and therapy [J]. Acta Oncol, 1998; 37(6):567-74.
    45. Iyer NV, Kotch LE, Agani F, Leung SW, Laughner E, Wenger RH, Gassmann M, Gearhart JD, Lawler AM, Yu AY, Semenza GL. Cellular and developmental control of O_2 homeostasis by hypoxia-inducible factor la [J]. Genes Dev, 1998; 12:149- 62.
    46. Kelly BD, Hackett SF, Hirota K, Oshima Y, Cai Z, Berg-Dixon S, Rowan A, Yan Z, Campochiaro PA, Semenza GL. Cell type-specific regulation of angiogenic growth factor gene expression and induction of angiogenesis in nonischemic tissue by a constitutively active form of hypoxia-inducible factor 1 [J]. Circ Res, 2003; 93:1074-81.
    47. Ceradini DJ, Kulkarni AR, Callaghan MJ, Callaghan MJ, Tepper OM, Bastidas N, Kleinman ME, Capla JM, Galiano RD, Levine JP, Gurtner GC. Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1[J]. Nat Med, 2004; 10: 858-64.
    48. Ferrara N. VEGF: an update on biological and therapeutic aspects [J]. Curr Opin Biotechnol 2000; 11: 617-624
    49. Lyden D, Hattori K, Dias S, Costa C, Blaikie P, Butros L, Chadburn A, Heissig B, Marks W, Witte L, Wu Y, Hicklin D, Zhu Z, Hackett NR, Crystal RG, Moore MA, Hajjar KA, Manova K, Benezra R, Rafii S. Impaired recruitment of bone-marrow-derived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth [J]. Nat Med, 2001; 7: 1194-201.
    50. Errol S. Wijelath, Salman Rahman, Jacqueline Murray. Fibronectin promotes VEGF-induced CD34 cell differentiation into endothelial cells [J]. J Vasc Surg, 2004; 39: 655-60.
    51. Asahara T, Masuda H, Takahashi T, Kalka C, Pastore C, Silver M, Kearne M, Magner M, Isner JM. Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization [J]. Circ Res, 1999; 85: 221-228.
    52. Spinella F, Rosano L, Di Castro V, Natali PG, Bagnato A. Endothelin-1 induces vascular endothelial growth factor by increasing hypoxia-inducible factor-1 in ovarian carcinoma cells [J]. J Biol Chem, 2002; 277:27850-27855.
    53. Peled A, Grabovsky V, Habler L, Sandbank J, Arenzana-Seisdedos F, Petit I, Ben-Hur H, Lapidot T, Alon R. The chemokine SDF-1 stimulates integrinmediated arrest of CD34 (+) cells on vascular endothelium under shear flow [J]. J Clin Invest, 1999; 104:1111-1199.
    54. Ratajczak MZ, Majka M, Kucia M, Drukala J, Pietrzkowski Z, Peiper S, Janowska-Wieczorek A. Expression of functional CXCR4 by muscle satellite cells and secretion of SDF-1 by muscle-derived fibroblasts is associated with the presence of both muscle progenitors in bone marrow and hematopoietic stem/progenitor cells in muscles[J]. Stem Cells, 2003; 21: 363-371.
    55. Ceradini DJ, Kulkarni AR, Callaghan MJ, Tepper OM, Bastidas N, Kleinman ME, Capla JM, Galiano RD, Levine JP, Gurtner GC. Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1[J]. Nat Meal, 2004; 0: 858-864.
    56. Semenza GL. Targeting HIF-1 for cancer therapy [J]. Nat Rev Cancer, 2003; 3: 721-732.
    57. Sweeney E, Lortat-Jacob H, Priestley G, Nakamoto B, Papayannopoulou T. Sulfated polysaccharides increaseplasma levels of SDF-1 in monkeys and mice: involvement in mobilization of stem/progenitor cells [J]. Blood, 2002; 99: 44-51
    58.程德云,关键,夏秀琼,张永,苏巧俐.低氧大鼠肺组织核因子κB表达的变化[J].四川大学学报(医学版),2006;37(4):611-613.
    59.敖启林,熊密,郝春荣,王迪浔.低氧时NFκB和P53在大鼠肺动脉平滑肌细胞增殖和凋亡中的变化[J].华中科技大学学报(医学版),2002;31(1):4-6.
    60. Da Silva CA, Heilbock C, Kassel O, Frossard N. Transcription of stem cell factor (SCF) is potentiated by glucocorticoids and interleukin-1 through concerted regulation of a GRE-like and an NF-B response element [J]. The FASEB Journal, 2003; 17: 2334-37
    61. Erlinge, D. Extracellular ATP: a growth factor for vascular smooth muscle cells [J]. Gen Pharmacol, 1998: 3, 1-8.
    62. Van daele P, Van Coevorden A, Roger PP, Roger PP, Boeynaems JM. Effects of adenine nucleotides on the proliferation of aortic endothelial cells [J]. Circ Res, 1992; 70, 82-90.
    63. Gerasimovskaya EV, Ahmad S, White CW, Jones PL, Carpenter TC, Stenmark KR. Extracellular ATP is an autocrine/paracrine regulator of hypoxia-induced adventitial fibroblast growth: signaling through extracellular signal-regulated kinase-1/2 and the Egr-1 transcription factor [J]. J Biol Chem, 2002; 277, 44638-44650.
    64. Seye CI, Yu N, Gonzalez FA, Weisman GA. The P2Y2 nucleotide receptor mediates vascular cell adhesion molecule-1 expression through interaction with VEGF receptor-2 (KDR/Flk-1) [J].J Biol Chem, 2004; 279, 35679-35686.
    65. Novak I. ATP as a signaling molecule: the exocrine focus [J]. Physiol Sci, 2003; 18: 12-17.
    66. Lazarowski ER, Boucher RC, Harden TK. Mechanisms of release of nucleotides and integration of their action as P2X- and P2Y-receptor activating molecules [J]. Mol Pharmacol, 2003; 64:785-795.
    67. Burnstock, G Purinergic signaling and vascular cell proliferation and death [J]. Arterioscler Thromb Vasc Biol, 2002; 22:364-373.
    68. George J, Goldstein E, Abashidze A, Wexler D, Hamed S, Shmilovich H, Deutsch V, Miller H, Keren G, Roth A. Erythropoietin promotes endothelial progenitor cell proliferative and adhesive properties in a PI 3-kinase-dependent manner [J]. Cardiovascular Research, 2005; 68: 299 - 306.
    69. Faber JE, Szymeczek CL, Salvi SS, Zhang H. Enhanced alpha 1-adrenergic trophic activity in pulmonary artery of hypoxic pulmonary hypertensive rats [J]. Am J Physiol Heart Circ Physiol, 2006; 291(5):H2272-81.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700