用户名: 密码: 验证码:
Toll样受体激动剂和RNA干预技术对HPV 6b/11型感染的抑制作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
尖锐湿疣(Condyloma acuminatum,CA)是我国发病率最高的性传播疾病之一,临床上顽固难治,极易复发,严重危害患者的身心健康,寻求理想的治疗和预防手段迫在眉睫。人乳头瘤病毒(Human papillomavirus,HPV)是尖锐湿疣的病原体,其中6型和11型是CA的主要致病型别,相对于肿瘤相关的高危型HPV,主要感染皮肤和外生殖器粘膜,被称为低危型或皮肤型HPV。HPV感染常不能有效激发机体免疫应答以清除病毒感染,是HPV感染难治的主要原因。如何有效抑制病毒复制,激发机体特异性抗HPV免疫应答是控制或清除HPV感染的关键。HPV早期基因E7是主要致病基因之一,可引起宿主细胞增殖周期改变,并下调抑癌基因表达,诱导细胞恶性转化,因而是HPV感染防治研究的理想靶点。本研究以E7基因或蛋白为研究基础,从调节宿主抗病毒特异性细胞免疫、和特异性沉默主要致病基因两个方面进行HPV感染的干预实验,以期为CA等低危型HPV感染相关疾病的防治研究提供一定的实验依据。
     Toll样受体(Toll like receptors,TLRs)能特异性识别病原微生物进化过程中保守的病原相关分子模式(pathogen-associated molecular patterns,PAMPs),启动天然免疫应答并继而激活获得性免疫反应。通过激活某些TLR信号通路,可促进Th0细胞(Th,T helper,辅助性T细胞)向Th1分化,调节T细胞亚群Th1/Th2、Tc1/Tc2的平衡,促进抗原特异性细胞毒性T淋巴细胞(cytotoxic T lymphocyte,CTL,Tc)的活性,有利于病毒感染细胞的清除。本研究以人外周血单核细胞来源的树突状细胞(monocyte-derived dendritic cells,mdDCs)负载HPV 11 E7抗原HLA-A~*0201限制性CTL优势表位肽(以下简称E7多肽),以不同TLR激动剂诱导其成熟,分析其对mdDCs的表型、细胞因子分泌水平及其对T淋巴细胞的活化作用的影响。结果显示,所研究的TLR激动剂均能促进mdDCs功能分化及成熟,促进负载E7多肽的mdDCs(以下简称E7-mdDCs)分泌IL-12,尤以TLR3的激动剂聚肌胞苷酸(polyinosinicacid-polycytidylic acid,PIC)和TLR4的激动剂脂多糖(lipopolysaccharide,LPS)刺激作用最强,而TLR7的激动剂咪喹莫特及TLR9的激动剂胞嘧啶鸟嘌呤核苷酸序列(cytidylyl phosphate guanosine oligoneuleotid,CpG ODN)的作用相对较弱。PIC诱导的E7-mdDCs能促使CD4~+初始T细胞分泌高水平IFN-γ,作用明显强于LPS、咪喹莫特及CpG ODN组。此外,LPS和PIC诱导的E7-mdDCs可提高T淋巴细胞分泌IFN-γ、IL-2、TNF-α的水平以及分泌IFN-γ、IL-2的T淋巴细胞频数,并显著增强E7特异性CTL活性,作用明显高于另两个激动剂咪喹莫特和CpG ODN。结果提示TLR激动剂可上调HPV11 E7 CTL表位肽诱导的特异性免疫应答,进而有利于控制或清除HPV 11型感染细胞。而在进一步基于mdDCs的多肽疫苗研究中,TLR3和TLR4的激动剂可能成为有效的疫苗佐剂。
     特异性HPV疫苗在预防HPV感染方面显示了高保护率,但对于免疫抑制的患者仍效果不佳,因为它们在这类患者体内仍无法激发有效的免疫保护应答,因而可能需从清除病毒本身的角度来进行干预。RNA干扰(RNA interference,RNAi)指双链RNA在生物细胞内对序列特异性mRNA表达的抑制作用,具特异性和高效性,因而作为一种重要的基因沉默技术被广泛应用于基因功能研究及疾病机制和防治研究中。本文在表达HPV6b或11型E7基因的小鼠黑素瘤细胞株BL6-B16和小鼠荷瘤模型中研究siRNA(small interfering RNA)和shRNA(small hairpin RNA)质粒表达载体对HPV基因早期基因E6、E7表达的沉默作用。特异性siRNA二聚体或shRNA质粒表达载体分别转染靶细胞HPV6bE7/B16和HPV11E7/B16,分析其在转染后不同时间、及不同转染剂量下对细胞内靶基因mRNA表达的影响。表达HPV6b或11型E7基因的荷瘤小鼠模型则以瘤内注射或尾静脉注射法导入阳离子脂质体负载的siRNA或shRNA质粒表达载体,注射3次后检测肿瘤组织内靶基因mRNA的表达。检测方法为实时荧光定量PCR。体外实验结果表明,siRNA及shRNA质粒表达载体均可在体外高效特异地抑制HPV6b和11型E7基因的表达,且其干预作用存在一定的量效性和时效性。SiRNA- HPV6b/11 E7的最佳作用浓度为25-50 nmol/L,shRNA质粒表达载体pU6-sh6b/11 E7的最佳作用浓度为0.2-0.4μg/ml,靶基因表达抑制率均于72h达到最高(60%-80%),抑制效果可持续96h。动物实验结果表明,siRNA及shRNA质粒表达载体分别以瘤内注射或尾静脉注射法导入小鼠模型,可明显抑制肿瘤内E7基因的表达,且瘤内注射较尾静脉注射效果更明显,瘤内注射对靶基因表达的抑制效率可达50%以上。结果提示siRNA及shRNA质粒表达载体在体外培养细胞及小鼠体内均可有效特异地抑制HPV6b/11 E7基因的表达,提示RNAi技术可通过对HPV6b/11 E7基因的特异性沉默干预HPV6b/11病毒蛋白的合成、抑制蛋白功能进而影响病毒复制乃至病毒播散。该技术将有利于CA等低危型HPV感染疾病的控制。
     结论:本研究不仅提示TLR激动剂(尤其是TLR3的激动剂PIC和TLR4的激动剂LPS)可能作为有效的免疫佐剂应用于HPV多肽-DCs疫苗研究,以有效控制或清除HPV感染细胞,还提示两种RNAi策略在体外培养细胞和动物模型中诱导的特异性6b/11型E7基因沉默可能通过抑制HPV病毒的复制而有利于控制疾病发展和传播,从免疫学治疗策略及基因治疗策略两个方面为低危型HPV感染相关性疾病尤其是CA的防治研究提供了一定的实验依据。
Condyloma acuminatum(CA) is one of the most common sexually transmitted diseases. The complete cure is difficult to achieve because of its high recurrence.CA-related emotional distress and economic burdens have been noticed,thus there is a serious need for effective strategies to prevent or treat CA.Human papilloma virus(HPV) infection is the cause of CA.The types 6 and 11,as compared to the carcinoma-related "high-risk HPVs",are "low-risk HPVs" which are usually involved in skin and mucosal genitalia, so as to be responsible for most of CA.Since the insufficient elicitation of immune protection due to the impaired systemic or local immunity in persistent HPV infections, it is difficult to elimimate HPV-infected cells efficiently.Thus,how to inhibit the viral replication and how to raise the efficient immune responses,especially the specific cytotoxic T lymphocyte(CTL) activity,against HPVs by host remains a research emphasis.Early gene E7 of HPVs plays a crucial role in cell proliferation,induction and maintenance of malignant transformation of HPV-associated lesions.Therefore,the E7 gene or antigen represents an ideal target for development of therapies against HPVs. The current research based on E7 gene or antigen is focused on the modulation of specific anti-viral cellular immunity,as well as the specific silence of E7 gene expression.It may provide laboratory evidences on the prophylaxis and treatment of low-risk HPV infection-related diseases such as CA.
     Toll like receptors(TLRs) recognize pathogen-associated molecular patterns (PAMPs ) for early recognition of microbial invasion and thus play a key role in innate immunity and subsequently in adaptive immunity.The activation of several TLR signals could benefit the ThO cells differentiating into Th1 cells,so as to repair the Th1/Th2 or Tc1/Tc2 imbalance,and to promote pathogen-specific CTL responses.Thus TLR activation may benifit the elimination of HPV-infected cells.To analyze the substantial effects of TLR agonists as adjuvants of a HPV protein vaccine regimen,we studied the ability of various TLR agonists to modulate the maturation and the cytokine production of HPV 11 E7 protein HLA-A*0201 stricted CTL epitope(E7 peptide) -loaded monocyte-derived dendritic cells(mdDCs),and the ability of mdDCs to further enhance Th1 responses and E7-specific CTL activity.The results showed all the studied TLR agonists,especially TLR3 agonist(polyinosinic acid-polycytidylic acid,PIC) and TLR4 agonist(lipopolysaccharide,LPS),could promote the maturation and IL-12 production of E7-loaded mdDCs(E7-mdDCs).The effect of TLR7 agonist(imiquimod) and TLR9 agonist(cytidylyl phosphate guanosine oligoneuleotid,CpG ODN) were relatively weak.PIC-induced E7-mdDCs were much more effective than the other three agonists in enhancing the IFN-γsecretion of CD4~+ naive cells.Additionally,the E7-mdDCs stimulated with LPS or PIC increased the level of IFN-y,IL-2,and TNF-αsecreted by effector T cells,and increased the frequencies of the IFN-γ- or the IL-2-secreting T cells,as well as the E7-specific CTL activity.However,as compared with LPS and PIC,the effects of imiquimod and CpG ODN were relatively poor.These data indicated that TLR agonists might favour the elimination of HPV-infected cells within CA lesions through the enhanced immune responses induced by E7 peptide-vaccine.Both the agonists of TLR3 and TLR4 might be potent adjuvants in the further research of mdDCs-based vaccine regimens against CA.
     RNA interference(RNAi) is the process by which double-stranded RNA directs sequence-specific degradation of messenger RNA in animal and plant cells.The process is highly efficient and specific.RNAi is now established as an important biological strategy for gene silencing.It has been applied in dissection of gene function, mechanism and therapeutic research of various diseases.Here we introduced RNAi into HPV research and asked if small interfering RNA(siRNA) duplex and small hairpin RNA(shRNA)-expressing vector can be employed to silence exogenous HPV gene expression in mouse melanoma cells BL6-B16 or in mouse model expressing HPV 6b or 11 E7 gene.Cells were transfected with siRNA or siRNA-expressing vector and harvested at different time points,or be transfected with various doses of siRNA or siRNA-expressing vector.The target gene expression was analyzed with Real-time PCR. The mice were received three repeated intratumoral or intravenous injection of siRNAs or siRNA-expressing vectors with cationic liposomes,and the E7 gene expression was also analyzed.The in-vitro results showed that both siRNA and siRNA-expressing vector significantly reduced the mRNA expression of HPV6b E7 and HPV 11E7 in a moderate dose-dependent and time-dependent manner.SiRNAs and shRNA-expressing vector reduced the mRNA levels of HPV 6b E7 or HPV 11 E7 to 60%- 80%with an optimal dosage of 25-50 nmol/L(siRNAs) and 0.2μg/ml -0.4μg/ml(shRNA-expressing vectors),respectively.The optimal time is 72 h,and the inhibitory effect sustained for at least 96h.The in-vivo experiment showed that the delivery of siRNA or siRNA-expressing vector in mice induced a moderate inhibitory effect of targeted gene expression in tumor tissues.The intratumoral injection was more effective as compared to the intravenous injection.And E7 mRNA expression in tumor models was reduced up to 50%after three I.T.injections.Our findings indicated that both RNAi approaches could specifically silence the gene expression of HPV6b/11 E7 in vitro and in vivo. RNAi may present another potential vehicle to handle HPV6b/11-related diseases such as CA,through the functional interference of E7 protein and the inhibition of the viral replication.
     Conclusion:Taken together,the project not only indicated that TLRs agonists might be applied as adjuvants in further research on peptide-DCs vaccine regimens to eliminate HPV-infected cells,but also suggested that the potent specific inhibition of E7 gene expression might benefit the inhibition of HPV viral replication the suppression of CA progress and dissenmination.This project provided evidences on both immunotherapy strateigies and gene-therapy strateigies for CA management.It will be helpful to the development of new approaches for low-risk HPV infectious diseases, especially for CA.
引文
1.M Schiffman,R Herrero,R DeSalle,A Hildesheim,S Wacholder,AC Rodriguez,MC Bratti,et al.The carcinogenicity of human papillomavirus types reflects viral evolution.Virology 2005;337:76-84.
    2.Scheurer ME,Tortolero-Luna G,Adler-Storthz K.Human papillomavirus infection:biology,epidemiology,and prevention.Int J Gynecol Cancer.2005;15(5):727-46.
    3.Insinga RP,Dasbach EJ,Myers ER.The health and economic burden of genital warts in a set of private health plans in the United States.Clin Infect Dis 2003;36:1397-403.
    4.Wiley D,Masongsong E.Human papillomavirus:the burden of infection.Obstet Gynecol Surv 2006;61:S3-14.
    5.Calore EE,Nadal SR,Manzione CR,Cavaliere MJ,de Almeida LV,Villa LL.Expression of Ki-67 can assist in predicting recurrences of low-grade anal intraepithelial neoplasia in AIDS.Dis Colon Rectum 2001;44:534-537.
    6.de la Fuente SG,Ludwig KA,Mantyh CR.Preoperative immune status determines anal condyloma recurrence after surgical excision.Dis Colon Rectum 2003;46:367-73..
    7.JA Kahna,David I Bernstein.Human papillomavirus vaccines and adolescents.Curr Opin Obstet Gynecol 2005;17:476-482.
    8.Marcio O.Lasaro and Hildegund CJ.Ertl.Human papillomavirus-associated cervical cancer:Prophylactic and therapeutic vaccines.Gene Ther Mol Biol,2004,8:291-306.
    9.Frazer IH.Prevention of cervical cancer through papillomavirus vaccination.Nat Rev Immunol.2004,4(1):46-54.
    10.Pinto LA,Castle PE,Roden RB,Harro CD,Lowy DR,Schiller JT,Wallace D,Williams M,Kopp W,Frazer IH,Berzofsky JA,Hildesheim A.HPV-16 L1 VLP vaccine elicits a broad-spectrum of cytokine responses in whole blood.Vaccine.2005;23(27):3555-64.
    11.Hung CF,Monie A,Alvarez RD,Wu TC.DNA vaccines for cervical cancer:from bench to bedside.Exp Mol Med.2007;39(6):679-89.
    12.Kaufmann AM,Nieland JD,Jochmus I,et al.Vaccination trial with HPV16 L1E7 chimeric virus-like particles in women suffering from high grade cervical intraepithelial neoplasia (CIN 2/3).Int J Cancer.2007;121(12):2794-800.
    13.Netea MG,Van der Meer JWM,Sutmuller RP,Adema GJ,Kullberg BJ.From the Th1Th2 paradigm towards a Toll-like receptor / T-helper bias.Antimicrob Agents Chemother,2005,49:3991-3996.
    14.Pulendran B.Modulating vaccine responses with dendritic cells and Toll-like receptors.Immunol Rev,2004,199:227-250.
    15.Pasare C,Medzhitov R.Toll pathway-dependent blockade of CD4 CD25 T cell-mediated suppression by dendritic cells.Science,2003,299:1033-1036.
    16.Kubo T,Hatton RD,01iver J,Liu X,Elson CO,Weaver CT.Regulatory T cell suppression and anergy are differentially regulated by proinflammatory cytokines produced by TLR-activated dendritic cells.J Immunol,2004,173:7249-7258.
    17.Lewkowicz P,Lewkowicz N,Sasiak A,Tchorzewski H.Lipopolysaccharide activated CD4~+ CD25~+ T regulatory cells inhibit neutrophil function and promote their apoptosis and death.J Immunol,2006,177:7155-7163.
    18.CrellinNK,Garcia RV,Hadisfar O,Allan SE,Steiner TS,Levings MK.Human CD4~+ T cells express TLR5 and its ligand flagellin enhances the suppressive capacity and expression of F0XP3 in CD4~+CD25~+T regulatory cells.J Immunol,2005(175):8051-8059.
    19.G Peng,Z Guo,Y Kiniwa,K Voo,W Peng,T Fu,D Y.Wang,Y Li,HY.Wang,RF Wang.Toll-like receptor 8-mediated reversal of CD4~+ regulatory T cell function.Science,2005,309:1380-1384.
    20.Hemmi H,Kaisho T,Takeda K,Akira S.The roles of Toll-like receptor 9,MyD88,and DNA-dependent protein kinase catalytic subunit in the effects of two distinct CpG DNAs on dendritic cell subsets.J Immunol 2003,170:3059-3064.
    21.Tae-Yoon Kim,Han-Jeong Myoung,Ji-Hyun Kim,In-Sung Moon,Tai-Gyu Kim,Woong-Shick Ahn,Jeong-Im Sin.Both E7 and CpG-Oligodeoxynucleotide Are Required for Protective Immunity against Challenge with Human Papillomavirus 16 (E6/E7) Immortalized Tumor Cells:Involvement of CD4+ and CD8+ T Cells in Protection.Cancer Res,2002,62:7234-7240.
    22.Tai-Gyu Kim,Chang-Hyun Kim,Eun Ha Won,Su Mi Bae,Woong-Shick Ahn,Jae-Bok Park,Jeong-Im Sin.CpG-ODN-stimulated dendritic cells act as a potent adjuvant for E7 protein delivery to induce antigen-specific antitumour immunity in a HPV 16 E7-associated animal tumour model.Immunology,2004,112:117-125.
    23.Yi-Fang Chen,Chih-Wei Lin,Yeou-Ping Tsao,Show-Li Chen.Cytotoxic-T-lymphocyte human papillomavirus type 16 E5 peptide with CpG-Oligodeoxynucleotide can eliminate tumor growth in C57BL/6 Mice.J Viol,2004(78):1333-1343.
    24.Erkek E,Basar H,Bozdogan O,Emeksiz MC.Giant condyloma acuminata of Buschke-Lowenstein:successful treatment with a combination of surgical excision,oral acitretin and topical imiquimod.Clin Exp Dermatol.2008 Oct 30.
    25.Winters U,Daayana S,Lear JT,et al.linical and immunologic results of a phase Ⅱ trial of sequential imiquimod and photodynamic therapy for vulval intraepithelial neoplasia.Clin Cancer Res.2008 Aug 15;14(16):5292-9.
    26.Schofer H.Evaluation of imiquimod for the therapy of external genital and anal warts in comparison with destructive therapies.Br J Dermatol.2007;157 Suppl 2:52-5.
    27.Wille-Reece U,Flynn BJ,Lore K,Koup RA,Kedl RM,Mattapallil JJ,Weiss WR,Roederer M,Seder RA.HIV Gag protein conjugated to a Toll-like receptor 7/8 agonist improves the magnitude and quality of Th1 and CD8+ T cell responses in nonhuman primates.PNAS,2005(102):15190-15194.
    28.Wille-Reece U,Wu CY,Flynn BJ,Kedl RM,Seder RA.Immunization with HIV-1 Gag protein conjugated to a TLR7/8 agonist results in the generation of HIV-1 Gag-specific Thl and CD8+ T cell responses.J Immunol,2005 (174):7676-7683.
    29.Teshima R,Okunuki H,Sato Y,Akiyama H,Maitani T,Sawada J.Effect of oral administration of CpG ODN-OVA on WBB6F1-W/Wv mice.Allergol Int.2006(55):43-48.
    30.Shirota H,Sano K.Hirasawa N,Terui T,Ohuchi K,Hattori T,Shirato K,Tamura G.Novel Roles of CpG Oligodeoxynucleotides as a Leader for the Sampling and Presentation of CpG-Tagged Antigen by Dendritic Cells.J Immunol,2001(167):66-74.
    31.Xu Y,Zhu KJ,Chen XZ,Lu ZM,Cheng H.Mapping of cytotoxic T lymphocytes epitopes in E7 antigen of human papillomavirus type 11.Arch Dermatol Res.2008;300(5):235-42.
    32.Arany I,Tyring SK.Status of local cellular immunity in interferon-responsive and-nonresponsive human papillomavirus-associated lesions.Sex Transm Dis 1996,23:475-480
    33.Coccia EM,Severa M,Giacomini E,et al.Viral infection and Toll-like receptor agonists induce a differential expression of type I and lambda interferons in human plasmacytoid and monocyte-derived dendritic cells.Eur J Immunol 2004,34:796-805
    34.Hung CF,Ma B,Monie A,et al.Therapeutic human papillomavirus vaccines:current clinical trials and future directions.Expert Opin Biol Ther 2008,8:421-439
    35.Frazer IH,Tindle RW,Fernando GJP,et al.Safety and immunogenicity of HPV16 E7/Algammulin.In:Tindle RW,editor.Vaccines for Human Papillomavirus Infection and Anogenital Disease.Austin Texas:RG Landes Company;1999,pp 91-104
    36.Goldstone SE,Palefsky JM,Winnett MT,et al.Activity of HspE7,a novel immunotherapy,in patients with anogenital warts.Dis Colon Rectum 2002,45:502-527
    37.Tsai V,Kawashima I,Keogh E,et al.In vitro immunization and expansion of antigen-specific cytotoxic T lymphocytes for adoptive immunotherapy using peptide-pulsed dendritic cells.Crit.Rev.Immunol.1998,18,65-75.
    38.Manickam A,Sivanandham M,Tourkova IL.Immunological role of dendritic cells in cervical cancer.Adv Exp Med Biol.2007;601:155-62.
    39.Ferrara A,Norm M,Sehr P..et al.Dendritic cell-based tumor vaccine for cervical cancer Ⅱ:results of a clinical pilot study in 15 individual patients.J Cancer Res Clin Oncol.2003;129(9):521-30.
    40.Santin AD,Bellone S,Palmieri M,et al.HPV16/18 E7-pulsed dendritic cell vaccination in cervical cancer patients with recurrent disease refractory to standard treatment modalities.Gynecol Oncol.2006;100(3):469-78.
    41.Medzhitov R,Preston-Hurlburt P,Janeway CA Jr.A human homologue of the Drosophila Toll protein signials activation of adaptive immunity.Nature.1997 Jul 24;388(6640):394-397.
    42.Krieg AM.CpG motifs in bacterial DNA and their immune efcets.Annu Rev Immunol 2002,20:709-760.
    43.Ohashi K,Burkart V,Flohe S,et al.Cutting edge:heat shock protein 60 is a putative endogenousligond Of the toll-like receptor-4 complex.J Immunol 2000,164(2):558-561.
    44.Dunne A,O' Neill LAJ.The interleukin-1 receptor / toll-like receptor superfamily:signal transduction during inflamation and host defense.Science'STKE,2003(171):re3-3.
    45.Matsuguchi T,Masuda A,Sugimoto K,et al.JNK-interacting protein 3 associates with toll-like receptor 4 and is involved in LPS-mediated JNK activation.EMBO J,2003,22(17):4455-4464.
    46.Katherine AF,Sarah MM,kerrie LF,et al.JKK epsilon and TBK1 are essential component of the IRF3 signaling pathway.Nat Immunol 2003,4(5):491-496.
    47.Shamm S,TenOever BR,Grandvaux N,et al.Triggering the interferon antiviral response through an ikk-related pathway.Science,2003,300:1148-1151.
    48.Mota F,Rayment N,Chong S,et al.The antigen-presenting environment in normal and human papillomavirus (HPV)-related premalignant cervical epithelium.Clin Exp Immunol 1999,116:33-40
    49.Barratt-Boyes SM,Kao H,Finn OJ.Chimpanzee dendritic cells derived in vitro from blood monocytes and pulsed with antigen elicit specific immune responses in vivo.J.Immunolther 1998,21:142-148
    50.Morel AS,Quaratino S,Douek DC.Split activity of interleukin-10 on antigen capture and antigen presentation by human dendritic cells:definition of a maturative step.Eur J Immunol 1997,27:26-34
    51.De Gruijl TD,Bontkes HJ,Walboomers JMM,et al.Differential T helper cell responses to human papillomavirus type 16 E7 related to viral clearance or persistence in patients with cervical neoplasia:a longitudinal study.Cancer Res 1998,58:1700-1706
    52.Haase C,Jorgensen TN,Michelsen BK.Both exogenous and endogenous interleukin-10 affects the maturation of bone-marrow-derived dendritic cells in vitro and strongly influences T-cell priming in vivo.Immunology 2002,107:489-499.
    53.enn CN,Sanchez DJ,Ochoa MT,et al.TLR activation of Langerhans cell-like dendritic cells triggers an antiviral immune response.J Immunol 2006,177:298-305
    1.Daling JR,Weiss NS,Hislop TG,et al.Sexual practices,sexually transmitted diseases,and the incidence of anal cancer.N.Engl.J.Med.,317:973-977,1987.
    2.Melbye M,Cote TR,Kessler L,et al.High incidence of anal cancer among AIDS patients.The AIDS/Cancer Working Group.Lancet,343:636-639,1994.
    3.Frisch M,Glimelius B,van den Brule AJ,et al.Sexually transmitted infection as a cause of anal cancer.N.Engl.J.Med.,337:1350-1358,1997.
    4.de la Fuente SG,Ludwig KA,Mantyh CR.Preoperative immune status determines anal condyloma recurrence after surgical excision.Dis Colon Rectum 2003;46:367-73.
    5.Herrera S,Correa LA,Wolff JC,et al.Effect of imiquimod in anogenital warts from HIV-positive men.J Clin Virol 2007;39:210-4.
    6.Villa LL,Costa RL,Petta CA,et al.Prophylactic quadrivalent human papillomavirus (types 6,11,16,and 18) LI virus-like particle vaccine in young women:a randomised double-blind placebo-controlled multicentre phase Ⅱ efficacy trial.Lancet Oncol 2005;6:271-8.
    7.Fire A,Xu S,Montgomery,et al.Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans.Nature 1998;391:806-811.
    8.Tabara H,Grishok A,Mello CC,et al.RNAi in C.elegans:soaking in the genome sequence.Science,1998,282:430-431.
    9.Sharp PA,Zamore PD.RNA interference.Science,2000,287:2431-2433.
    10.Zamore PD.Ancient pathways programmed by small RNAs.Science 2002;296:1265-1269.
    11.Hammond SM,Bernstein E,Beach D.An RNA-directed nuclease mediates posttranscriptional gene silencing in Drosophila cells.Nature 2000;404:293-296.
    12.Hammond S M,Bernstein E,Beach D,et al.An RNA-directed nuclease mediates posttranscription algene silencing in Drosophila cells.Nature,2000,404(6775):293-296.
    13.Bernstein E,Caudy AA,Hammond SM,et al.Role for a bidentate ribonuclease in the initiation step of RNA interference.Nature,2001,409(6818):363-366.
    14.Yang D,Lu H,Erickson JW.Evidence that processed small dsRNAs may mediate sequence-specific mRNA degradation during RNAi in Drosophila embryos.CurrBio,2000,10(19):1191-1200.
    15.Irie N,Sakai N,Ueyama T,et al.Subtype-and species-specific knockdown of PKC using short interfering RNA.Biochem and Biophys Res Commun 2002;298:738-743.
    16.Elbashir SM,Harborth J,Weber K,et al.Analysis of gene functiong in somatic mammalian cells using small interring RNAs.Methods 2002;26:199-213.
    17.Takahashi Y,Nishikawa M,Kobayashi N,et al.Gene silencing in primary and metastatic tumors by small interfering RNA delivery in mice:Quantitative analysis using melanoma cells expressing firefly and sea pansy luciferases.J Controlled Release 2005;105:332-343.
    18.DiPaolo JA,Alvarez-Salas LM.Advances in the development of therapeutic nucleic acids against cervical cancer.Expert Opin Biol Ther 2004;4:1251-1264.
    19.Gitlin L.Short interference RNA confers intracellular antiviral immunity in human cells.Nature 2002;418:430-434.
    20.Jacque JM,Triques K,Stevenson M.Modulation of HIV-1 replication by RNA interference.Nature 2002;418:435-438.
    21.Dave RS,et al.Antiviral effects of human immunodeficiency virus type 1-specific small interfering RNAs against targets conserved in select neurotropic viral strains.J Virol 2004;78:13687-13696.
    22.Kitabwalla M,Ruprecht RM.RNA interference-a new weapon against HIV and beyond.N Engl J Med 2002;347:1364-1367.
    23.Qin XF,An DS,Chen IS,et al.Inhibiting HIV-1 infection in human T cells by lentiviral-mediated delivery of small interfering RNA against CCR5.Proc Natl Acad Sci U S A 2003;100:183-188.
    24.Martinez MA,Gutierrez A,Armand-Ugon M,et al.Suppression of chemokine receptor expression by RNA interference allows for inhibition of HIV-1 replication.AIDS 2002;16:2385-2390.
    25.Coburn GA,Cullen BR.Potent and specific inhibition of human immunodeficiency virus type 1 replication by RNA interference.J Virol 2002;76:9225-9231.
    26.Wu J,Nandamuri KM,et al.Inhibition of hepatitis viral replication by siRNA.Expert Opin Biol Ther 2004,4:1649-1659.
    27.Wang Z,et al.Inhibition of severe acute respiratory syndrome virus replication by small interfering RNAs in mammalian cells.J Virol 2004;78:7523-7527.
    28.Rossi JL,Gissmann L,Jansen K,et al.Assembly of human papillomavirus type 16 pseudovirions in Saccharomyces cerevisiae.Hum Gene Ther 2000;11:1165-1176.
    29.Stephen TO,et al.Roles of the E6 and E7 Proteins in the Life Cycle of Low-Risk Human Papillomavirus Type 11.J Virol 2004;78:2620-2626.
    30.Yamato K,Fen J,Kobuchi H,et al.Induction of cell death in human papillomavirus 18-positive cervical cancer cells by E6 siRNA.Cancer Gene Ther 2005;38:1358-1362.
    31.Koivusalo R,Krausz E,Helenius H,et al.Chemotherapy compounds in cervical cancer cells primed by reconstitution of p53 function after short interfering RNA-mediated degradation of human papillomavirus 18 E6 mRNA:opposite effect of siRNA in combination with different drugs.Mol Pharmacol 2005;68:372-382.
    32.Gu W,Putral L,Hengst K,et al.Inhibition of cervical cancer cell growth in vitro and in vivo with lentiviral-vector delivered short hairpin RNA targeting human papillomavirus E6 and E7 oncogenes.Cancer Gene Ther 2006;13:1023-32.
    33.Davoes R,Hicks R,Crook T,et al.Human papillomavirus type 16 E7 associates with a histone H1 kinase and with p107 through sequences necessary for transformation.J Virol 1993;67:2521-18.
    34.Zerfass-Thome K,Zwerschke W,Mannhardt B,et al.Inactivation of the cdk inhibitor p27KIPl by the human papillomavirus type 16 E7 oncoprotein.Oncogene 1996;13:2323-30.
    35.Barmar P,Payne E,McMillan NA.The human papillomavirus E7 protein is able to inhibit the antiviral and anti-growth functions of interferon-alpha.Virology 2000;277:411-9.
    36.Jiang M,Miller J.Selective silencing of viral gene expression in HPV-positive human cervical carcinoma cells treated with siRNA,a primer of RNA interference.Oncogene 2002;21:6041-8.
    37.Reynolds A,Leake D,et al.Rational siRNA design for RNA interference.Nat Biotechnol,2004 22:326-330.
    38.Elbashir SM,Harborth J,Weber K,et al.Analysis of gene functiong in somatic mammalian cells using small interfing RNAs.Methods 2002;26:199-213.
    39.Bumcrot D;Manoharan M;Koteliansky V;Sah DW.RNAi therapeutics:a potential new class of pharmaceutical drugs.Nat Chem Biol 2006;2:711-719.
    40.de Fougerolles A;Vomlocher HP,Maraganore,J;Lieberman,J.Interfering with disease:a progress report on siRNA-based therapeutics.Nat.Rev.Drug Discov.2007;6:443-453.
    41.Leung RK;Whittaker PA.RNA interference:from gene silencing to gene-specific therapeutics.Pharmacol Ther 2005;107:222-239.
    42.Xie FY;Woodle MC;Lu PY.Harnessing in vivo siRNA delivery for drug discovery and therapeutic development.Drug Discov Today 2006;11:67-73.
    43.Aagaard L;Rossi JJ.RNAi therapeutics:principles,prospects and challenges.Adv Drug Deliv Rev.2007;59:75-86.
    44.Martin SE;Caplen NJ.Applications of RNA interference in mammalian systems.Annu Rev Genomics Hum Genet 2007;8:81-108.
    45.Snyder LL,Esser JM,Pachuk CJ,et al.Vector design for liver-specific expression of multiple interfering RNAs that target hepatitis B virus transcripts.Antiviral Res.2008;80(1):36-44.
    46.Ludwig LB.RNA silencing and HIV:a hypothesis for the etiology of the severe combined immunodeficiency induced by the virus.Retrovirology.2008 11;5:79.
    47.Baron M,Davignon JL.Inhibition of IFN-gamma-induced STATl tyrosine phosphorylation by human CMV is mediated by SHP2.J Immunol.200815;181(8):5530-6
    48.Akerstrom S,Mirazimi A,Tan YJ.Inhibition of SARS-CoV replication cycle by small interference RNAs silencing specific SARS proteins,7a/7b,3a/3b and S.Antiviral Res.2007;73(3):219-27.
    49.Huang B,Mao CP,Peng S,Hung CF,Wu TC.RNA interference-mediated in vivo silencing of fas ligand as a strategy for the enhancement of DNA vaccine potency.Hum Gene Ther.2008;19(8):763-73.
    50.Gu W,Putral L,McMillan N.siRNA and shRNA as anticancer agents in a cervical cancer model.Methods Mol Biol.2008;442:159-72
    51.Courtete J,Sibler AP,Zeder-Lutz G,et al.Suppression of cervical carcinoma cell growth by intracytoplasmic codelivery of anti-oncoprotein E6 antibody and small interfering RNA.Mol Cancer Ther.2007;6(6):1728-35.
    52.Niu XY,Peng ZL,Wang H.Inhibitory effect of RNA interference on expression of HPV 16E6 oncogene in cervical cell line CaSki.Ai Zheng 2004;23:1257-1262.
    53.Yu JY,DeRuiter SL,Turner DL.RNA interference by expression of short-interfering RNAs and hairpin RNAs in mammalian cells.Proc Natl Acad Sci USA 2002;99:6047-6052.
    54.Zheng X,Feng B,Chen G,et al.Preventing renal ischemia-reperfusion injury using small interfering RNA by targeting complement 3 gene.Am J Transplant.2006 6(9):2099-108.
    55.Zeng Y,Cullen B R.RNA interference in human cells is restricted to the cytoplasm.RNA 2002:8:855-860.
    56.Stein P,Svoboda P,Anger M et al.RNAi:mammalian oocytes do it without RNA-dependent RNA polymerase.RNA 2003:9:187-192.
    57.Arrighi J F,Pion M,Wiznerowicz M et al.Lentivirus-mediated RNA interference of DC-SIGN expression inhibits human immunodeficiency virus transmission from dendritic cells to T cells.J Virol 2004:78:10848-10855.
    58.Schomber T,Kalberer C P,Wodnar F A et al.Gene silencing by lentivirus-mediated delivery of siRNA in human CD34+ cells.Blood 2004:103:4511-4513.
    59.Templeton SN.Liposomal delivery of nucleic acids in vivo.DNA Cell Biol 2002:21:859-867.
    60.Mouldy S,Dag RS.Cationic liposome-mediated delivery of siRNAs in adult mice.Biochem and Biophys Res Commun 2003:312:1220-1225.
    61.Amarzguioui M,Peng Q,Wiiger MT,et al.Ex vivo and in vivo delivery of anti-tissue factor short interfering RNA inhibits mouse pulmonary metastasis of B16 melanoma cells.Clin Cancer Res 2006;12:4055-61.
    62.Yuki T,Makiya N,Naoki K,et al.Gene silencing in primary and metastatic tumors by small interfering RNA delivery in mice:Quantitative analysis using melanoma cells expressing firefly and sea pansy luciferases.J Controlled Release 2005;105:332-343.
    63.Oliveira DM,Goodel MA,et al.Transient RNA interference in hematopoietic progenitors with functional consequences.Genesis 2003;36:203-208.
    64.Liu N,Ding H,Vanderheyden JL,et al.Radiolabeling small RNA with technetium-99m for visualizing cellular delivery and mouse biodistribution.Nucl Med Biol 2007;34:399-404.
    65.Kennerdell JR,Carthew RW.Use of dsRNA-mediated geneticinterference to demonstrate that frizzled and frizzled 2 act in thewingless pathway.Cell 1998;95:1017-26.
    66.Dalby B,Cates S,Harris A,et al.Advanced transfection with Lipofectamine 2000 reagent:primary neurons,siRNA,and high-throughput applications.Methods 2004;33:95-103.
    67.Takahashi Y,Nishikawa M,Takakura Y.Suppression of tumor growth by intratumoral injection of short hairpin RNA-expressing plasmid DNA targeting beta-catenin or hypoxia-inducible factor 1 alpha.J Control Release 2006;116:90-5.
    68.Stein U,Walther W,Stege A,et al.Complete In Vivo Reversal of the Multidrug Resistance Phenotype by Jet-injection of Anti-MDRl Short Hairpin RNA-encoding Plasmid DNA.Mol Ther 2008;16:178-86.
    1.Fire A,et al.Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans.Nature.1998;391:806-811.
    2.Bumcrot D;Manoharan M;Koteliansky V;Sah DW.RNAi therapeutics:a potential new class of pharmaceutical drugs.Nat Chem Biol 2006;2:711-719.
    3.de Fougerolles A;Vornlocher HP,Maraganore,J;Lieberman,J.Interfering with disease:a progress report on siRNA-based therapeutics.Nat Rev Drug Discov 2007;6:443-453.
    4.Leung RK;Whittaker PA.RNA interference:from gene silencing to gene-specific therapeutics.Pharmacol Ther2005;107:222-239.
    5.Xie FY;Woodle MC;Lu PY.Harnessing in vivo siRNA delivery for drug discovery and therapeutic development.Drug Discov Today 2006;11:67-73.
    6.Aagaard L;Rossi JJ.RNAi therapeutics:principles,prospects and challenges.Adv Drug Deliv Rev.2007;59:75-86.
    7.Martin SE;Caplen NJ.Applications of RNA interference in mammalian systems.Annu Rev Genomics Hum Genet 2007;8:81-108.
    8.Liu G;Wong-Staal F;Li QX.Development of new RNAi therapeutics.Histol Histopathol.2007;22:211-217.
    9.Beltinger C,et al.Binding,uptake,and intracellular trafficking of phosphorothioate-modfied oligodeoxynucleotides.J Clin Invest 1995;94:1814-1823.
    10.Beale G,et al.Gene silencing nucleic acids designed by scanning arrays:anti-EGFR activity of siRNA,ribozyme and DNA enzymes targeting a single hybridization-accessible region using the same delivery system.J Drug Target 2003;11:449-456.
    11.Jackson AL,et al.Position-specific chemical modification of siRNAs reduces off-target transcript silencing.RNA 2006;12:1197-1205.
    12.Schwarz DS,et al.Asymmetry in the assembly of the RNAi enzyme complex.Cell 2003;115:199-208.
    13.Khvorova A;Reynolds A;Jayasena SD.Functional siRNAs and miRNAs exhibit strand bias.Cell.2003;115:209-216.
    14.Reynolds A,et al.Rational siRNA design for RNA interference.Nat Biotechnol.2004;22:326-330.
    15.Hughes MD;Hussain M;Nawaz Q;Sayyed P;Akhtar S.The cellular delivery of antisense oligonucleotides and ribozymes.Drug Discov Today 2001;6:303-315.
    16.Braasch DA,et al.Biodistribution of phosphodiester and phosphorothioate siRNA.Bioorg.Med Chem Lett 2004;14:1139-1143.
    17.Santel A,et al.A novel siRNA-lipoplex technology for RNA interference in the mouse vascularendothelium.Gene Ther.2006;13:1222-1234.
    18.Gilmore IR;Fox SP;Hollins AJ;Akhtar S.Delivery strategies for siRNA-mediated gene silencing.Current Drug Deliv.2006;3:147-155.
    19.Akhtar S;Benter I.Toxicogenomics of non-viral drug delivery systems for RNAi:Potential impact on siRNA-mediated gene silencing activity and specificity.Adv.Drug Deliv Rev 2007;59:164-182.
    20.Takei Y;Kadomatsu K;Yuzawa Y;Matsuo S;Muramatsu T.A small interfering RNA targeting vascular endothelial growth factor as cancer therapeutics.Cancer Res.2004;64:3365-3370.
    21.Iyer AK;Khaled G.;Fang J;Maeda H.Exploiting the enhanced permeability and retention effect for tumor targeting.Drug Discov.Today.2006;11:812-818.
    22.van de Water FM,et al.Intravenously administered short interfering RNA accumulates in the kidney and selectively suppresses gene function in renal proximal tubules.Drug Metab Dispos.2006;34:1393-1397.
    23.Lewis DL;Wolff J A.Systemic siRNA delivery via hydrodynamic intravascular injection.Adv Drug Deliv Rev 2007;59:115-123.
    24.Giladi H,et al.Small interfering RNA inhibits hepatitis B virus replication in mice.Mol Ther 2003;8:769-776.
    25.Klein C,et al.Inhibition of hepatitis B virus replication in vivo by nucleoside analogues and siRNA.Gastroenterology.2003;125:9-18.
    26.Morrissey DV,et al.Activity of stabilized short interfering RNA in a mouse model of hepatitis B virus replication.Hepatology.2005;41:1349-1356.
    27.Golzio M;Mazzolini L;Moller P;Rols MP;Teissie J.Inhibition of gene expression in mice muscle by in vivo electrically mediated siRNA delivery.Gene Ther.2005;12:246-251.
    28.Arrighi JF,Pion M,Wiznerowicz M et al.Lentivirus-mediated RNA interference of DC-SIGN expression inhibits human immunodeficiency virus transmission from dendritic cells to T cells.J Virol 2004:78:10848-10855.
    29.Schomber T,Kalberer C P,Wodnar F A et al.Gene silencing by lentivirus-mediated delivery of siRNA in human CD34+ cells.Blood 2004:103:4511-4513.
    30.Li Y,Li H,Yao G,Li W,et al.Inhibition of telomerase RNA (hTR) in cervical cancer by adenovirus-delivered siRNA.Cancer Gene Ther.2007;14(8):748-55.
    31.Martin SE;Caplen NJ.Applications of RNA interference in mammalian systems.Annu.Rev.Genomics Hum.Genet.2007;8:81-108.
    32.Soutschek J,et al.Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs.Nature.2004;432:173-178.
    33.Moore V;Dunnion D;Irwin WJ;Akhtar S.Interactions of hydrophobic oligonucleotide conjugates with the dipeptide transporter in Caco-2 cells.Biochem.Pharmacol.1997;53:1223-1228.
    34.Li W;Szoka FC,Jr.Lipid-based nanoparticles for nucleic acid deliver y.Pharm.Res.2007,24:438-449.
    35.Sorensen DR;Leirdal M;Sioud M.Gene silencing by systemic delivery of synthetic siRNAs in adult mice.J Mol Biol.2003;327:761-766.
    36.Verma UN;Surabhi RM;Schmaltieg A;Becerra C;Gaynor RB.Small interfering RNAs directed against beta-catenin inhibit the in vitro and in vivo growth of colon cancer cells.Clin Cancer Res.2003;9:1291-1300.
    37.Arnold AS,et al.Specific betal-adrenergic receptor silencing with small interfering RNA lowers high blood pressure and improves cardiac function in myocardial ischemia.J Hypertens.2007;25:197-205.
    38.Morrissey DV,et al.Potent and persistent in vivo anti-HBV activity of chemically modified siRNAs.Nat Biotechnol.2005;23:1002-1007.
    39.Geisbert TW,et al.Postexposure protection of guinea pigs against a lethal ebola virus challenge isconferred by RNA interference.J Infect Dis 2006;193:1650-1657.
    40.Pirollo KF,et al.Materializing the potential of small interfering RNA via a tumor-targeting nanodelivery system.Cancer Res.2007;67:2938-2943.
    41.Chien PY,et al.Novel cationic cardiolipin analogue-based liposome for efficient DNA and small interfering RNA delivery in vitro and in vivo.Cancer Gene Ther.2005;12:321-328.
    42.Pal A,et al.Systemic delivery of RafsiRNA using cationic cardiolipin liposomes silences Raf-1 expression and inhibits tumor growth in xenograft model of human prostate cancer.Int J Oncol.2005;26:1087-1091.
    43.Omidi Y,et al.Toxicogenomics of non-viral vectors for gene therapy:a microarray study of lipofectin-and oligofectamine-induced gene expression changes in human epithelial cells.J Drug Target.2003;11:311-323.
    44.Massaro D;Massaro GD;Clerch LB.Noninvasive delivery of small inhibitory RNA and other reagents to pulmonary alveoli in mice..Am.J.Physiol.Lung Cell Mol.Physiol.2004;287:L1066-L1070.
    45.Soloman R,Gabizon AA.Clinical pharmacology of liposomal anthracyclines:focus on pegylated liposomal Doxorubicin.Clin Lymphoma Myeloma.2008;8(1):21-32.
    46.Udhrain A,Skubitz KM,Northfelt DW.Pegylated liposomal doxorubicin in the treatment of AIDS-related Kaposi's sarcoma.Int J Nanomedicine.2007;2(3):345-52.
    47.Semple SC,et al.Immunogenicity and rapid blood clearance of liposomes containing polyethylene glycol-lipid conjugates and nucleic acid.J.Pharmacol.Exp.Ther.2005;312:1020-1026.
    48.Aigner A.Delivery systems for the direct application of siRNAs to induce RNA interference (RNAi) in vivo.J.Biomed.Biotechnol.2006;2006:71659.
    49.Kichler A.Gene transfer with modified polyethylenimines.J.Gene Med.2004;6(Suppl.1):S3-S10.
    50.Kircheis R;Wightman L;Wagner E.Design and gene delivery activity of modified polyethylenimines.Adv Drug Deliv Rev.2001;53:341-358.
    51.Ge Q,et al.Inhibition of influenza virus production in virus-infected mice by RNA interference.Proc Natl Acad Sci USA.2004;101:8676-8681.
    52.Urban-Klein B;Werth S:Abuharbeid S;et al.RNAi-mediated gene-targeting through systemic application of polyethylenimine (PEI)-complexed siRNA in vivo.Gene Ther.2005;12:461-466.
    53.Tomalia DA;Reyna LA;Svenson S.Dendrimers as multi-purpose nanodevices for oncology drug delivery and diagnostic imaging.Biochem Soc Trans 2007;35:61-67.
    54.Yoo H;Sazani P;Juliano RL.PAMAM dendrimers as delivery agents for antisense oligonucleotides.Pharm.Res.1999;16:1799-1804.
    55.Hollins AJ;Omidi Y;Benter IF;Akhtar S.Toxicogenomics of drug delivery systems:Exploiting delivery system-induced changes in target gene expression to enhance siRNA activity..J.Drug Target.2007;15:83-88.
    56.Song E,et al.Antibody mediated in vivo delivery of small interfering RNAs via cell-surface receptors.Nat.Biotechnol.2005;23:709-717.
    57.Minakuchi Y,et al.Atelocollagen-mediated synthetic small interfering RNA delivery for effective gene silencing in vitro and in vivo.Nucleic Acids Res.2004;32:el09.
    58.Takei Y;Kadomatsu K;Yuzawa Y;Matsuo S;Muramatsu TA.Small interfering RNA targeting vascular endothelial growth factor as cancer therapeutics.Cancer Res.2004;64:3365-3370.
    59.Takeshita F,et al.Efficient delivery of small interfering RNA to bone-metastatic tumors by using atelocollagen in vivo.Proc.Natl.Acad.Sci.U.S.A.2005;102:12177-12182.
    60.Heidel JD,et al.Administration in non-human primates of escalating intravenous doses of targeted nanoparticles containing ribonucleotide reductase subunit M2 siRNA.Proc.Natl.Acad.Sci.U.S.A.2007;104:5715-5721.
    61.Liu S.Radiolabeled multimeric cyclic RGD peptides as integrin alphavbeta3 targeted radiotracers for tumor imaging.Mol.Pharm.2006;3:472-487.
    62.Schiffelers RM,et al.Cancer siRNA therapy by tumor selective delivery with ligand-targeted sterically stabilized nanoparticle.Nucleic Acids Res.2004;32:el49.
    63.Meade BR;Dowdy SF.Exogenous siRNA delivery using peptide transduction domains/cell penetrating peptides.Adv.Drug Deliv.Rev.2007;5 9:134-140.
    64.Kumar P,et al.Transvascular delivery of small interfering RNA to the central nervous system..Nature.2007;448:39-43.
    65.Pardridge WM.shRNA and siRNA delivery to the brain.Adv.Drug Deliv.Rev.2007;59:141-152.
    66.McNamara JO,et al.Cell type-specific delivery of siRNAs with aptamer-siRNA chimeras,Nat.Biotechnol.2006;24:1005-1015.
    67.Howard KA,et al.RNA interference in vitro and in vivo using a novel chitosan/siRNA nanoparticle system.Mol.Ther.2006;14:476-484.
    68.Judge AD,et al.Sequence-dependent stimulation of the mammalian innate immune response by synthetic siRNA.Nat.Biotechnol.2005;23:457-462.
    69.Zimmermann TS,et al.RNAi-mediated gene silencing in non-human primates.Nature.2006;441:111-114.
    70.Bai J,Cederbaum AI.Adenovirus-mediated expression of CYP2E1 produces liver toxicity in mice.Toxicol Sci.2006;91(2):365-71.
    71.Suzuki H,Tamai N,Habu Y,Chang MO,Takaku H.Suppression of hepatitis C virus replication by baculovirus vector-mediated short-hairpin RNA expression.FEBS Lett.2008 3;582(20):3085-9.
    72.Vandenberghe LH,Wilson JM.AAV as an immunogen.Curr Gene Ther.2007;7(5):325-33.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700