用户名: 密码: 验证码:
群体感应和环二鸟苷酸对铜绿假单胞菌致病因子的调节作用及其机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着抗菌药物的广泛使用,细菌耐药性越来越严重,已成为人类生存的最大危机。我国是世界上滥用抗生素最为严重的国家之一,每年约有8万人死于抗生素的泛滥使用,细菌耐药问题与其它国家相比更加严峻,专家预言,我国有可能率先进入“后抗生素时代”,亦即抗生素发现之前的时代。因此,如何解决细菌耐药的难题和研发新型抗生素已经迫在眉睫。
     铜绿假单胞菌(Pseudomonas aeruginosa,PA)是一种临床上最常见的引起严重获得性感染的条件致病菌,能伺机感染任何部位,如烧伤处伤口、角膜、尿道及肺部等,并引起细菌性心内膜炎及肠胃炎。研究表明,PA生物膜(Biofilm,BF)的形成是其产生抗生素耐药的主要诱因。生物膜是由细菌和其分泌的胞外基质在物体表面形成的高度组织化的多细胞结构,一旦形成生物膜,细菌将具有极强的抗生素耐药性(比浮游细菌高100—1000倍)。对细菌生物膜的研究将为新型抗生素的研发开辟新的途径。
     生物膜的形成受复杂的网络调控,以往的研究阐明了群体感应(QuorumSensing,QS)和细菌的第二信使环二鸟苷酸(Cyclic Diguanylic Acid,c-di-GMP)均能调控PA的BF形成。然而,目前QS和c-di-GMP之间的关系尚不清楚。本研究拟通过构建QS缺失突变株、c-di-GMP合成或降解酶过表达株,利用激光共聚焦、定量PCR等技术研究PA中QS和c-di-GMP信号通路之间的内在关系。
     构建了PAO1群体感应单缺失菌株JP1(△lasI)、PD0100(△rhlI)和双缺失菌株MW(△lasI△rhlI),通过对群体感应单缺失和双缺失菌株在运动能力、致病因子的产生和生物膜形成能力的比较,表明Rhl-QS系统对菌株影响最为明显,Rhl-QS缺失以后,菌株的运动能力降低,不能产生鼠李糖酯和绿脓菌素等致病因子。利用静态和动态两种模型评价了群体感应对生物膜的影响,结果显示在静态条件下群体感应缺失有利于生物膜形成,但是在动态模型下群体感应缺失生物膜形成减少。测定了野生型和群体感应缺失菌株对氨基糖苷类抗生素阿米卡星的敏感性,结果表明,生物膜形成后菌株的抗生素耐药性比浮游状态提高了约100倍,但是群体感应缺失对细菌的抗生素敏感性没有明显影响。
     以pMF54载体为骨架构建了组成型表达载体pMF54-A,利用绿色荧光蛋白检验了载体在PAO1中的稳定性,通过对PAO1基因组的分析选择了6个c-di-GMP合成酶基因和4个降解酶基因,目的基因重组入载体pMF54-A后转化PAO1,静态造膜显示降解酶PA2133和合成酶PA3702对菌株生物膜的形成影响最为明显。
     定量PCR显示PA2133过表达株目的基因的转录水平是野生型的270倍,而PA3702过表达株目的基因的转录是野生型的50余倍。在此基础上系统比较了二鸟苷酸环化酶和磷酸二酯酶过表达对野生型和群体感应缺失突变株运动能力、毒性因子产生、抗生素敏感性和生物膜形成能力的影响,结果表明c-di-GMP增加可以抑制野生型和Las-QS缺失突变株的运动、促进鼠李糖酯的产生,但是对于Rhl-QS缺失株和双缺失菌株,c-di-GMP的减少并不能恢复其运动能力和鼠李糖酯的产生。静态造膜结果显示,c-di-GMP的增加促进了生物膜的形成,反之则抑制生物膜的形成,这种作用是不依赖于群体感应的。细胞毒性结果表明c-di-GMP的增加可以增加菌株的毒性。在抗生素敏感性方面,虽然c-di-GMP不能改变浮游菌的抗生素敏感性,但是可以明显改变抗生素对生物膜的清除作用(MBEC),其敏感性提高了8倍之多。与内源性的c-di-GMP不同外源加入的c-di-GMP抑制了生物膜的形成,说明c-di-GMP不能自由穿越细菌的细胞膜。评价了c-di-GMP在基因水平上对群体感应信号系统的影响,以及信号分子对c-di-GMP作用的影响,结果显示,c-di-GMP增加可以从转录水平上促进Rhl-QS,但是对Las-QS没有作用,而外源加入的信号分子不能改变c-di-GMP对生物膜形成的影响。
     对群体感应和c-di-GMP影响菌株生物膜形成的机制进行了探讨,结果显示群体感应系统缺失尤其是Rhl-QS的缺失可以抑制菌株的初始黏附,但是同时群体感应缺失菌株的微克隆形成能力高于野生株;在初期阶段c-di-GMP的减少可以明显抑制细菌与介质的黏附能力,而c-di-GMP增加后不能提高菌株的黏附能力但是菌株的生存状态发生了改变,由短杆状的增殖体状态转变为细丝状的潜生体状态,随着时间的延长c-di-GMP的增加有利于细菌微克隆的形成。比较了二尿苷酸环化酶和磷酸二酯酶过表达后菌株胞外多糖、细胞表面疏水性、细胞表面黏附器官的变化,结果表明c-di-GMP增加后细胞表面的疏水性降低,多糖合成酶基因pelA和pelD的转录上调;原子力显微镜和投射电镜结果未观察到群体感应缺失和环二鸟苷酸改变对细菌表面运动器官的影响。
     综上所述,在铜绿假单胞菌中环二鸟苷酸和群体感应两条信号通路并不是完全孤立的,环二鸟苷酸能调控Rhl-QS群体感应系统,但是其对生物膜的影响并不完全依赖于群体感应。
With the widespread appearance of antibiotic-resistant bacteria, there is anincreasing demand for novel strategies to control infectious diseases. Every year morethan 80,000 Chinese die from antibiotics abuse, making China one of the worstoffenders in the word. It is presumed that we will be the first to enter the'post-antibiotic era' in comparison with other countries. Therefore, how to solve theproblem of bacterial resistance and development of new antibiotics have beenimminent.
     Pseudomonas aeruginosa (PA) is an opportunistic pathogen and it is a commoncause of serious hospital acquired infection. Infections can occur in any part of thebody, such as the wounds of bum, cornea, urinary tract and the lungs, etc. It is saidthat biofilm formation is the mean reason of antibiotic resistance. Biofilm is amulticellular, matrix-enclosed assemblies formed by bacteria and extracellular matrix(ECM). Once the biofilm formed, the antibiotic resistance will be increased more than100-1000 folds. Therefore, the interference of biofilm formation is of greatsignificance for the research and development of new antimicrobial drugs.
     Bacterial biofilm formation is controlled by complex net work. In the previousstudy, quorum sensing and the second messenger Cyclic-di-GMP have been reportedto relevant for biofilm formation. But the relationship of quorum sensing andC-di-GMP is unclear and this is the aim of our study. In this thesis, quorum sensingdeficient strain and C-di-GMP overexpression or degradation strain were used tostudy the relationship between both.
     The moving motility, virulence production and biofilm formation ability of quorumsensing mutant strains JP1 (△lasI) , pDO100 (△rhlI) , and MW (△lasI△rhlI)were compared. The result indicated that the effect of Rhl-QS is more importantcompared with Las-QS. Rhl-QS dificient strain has lost the moving motility,rhamnolipid and pyocyanin production ability. Static and flow-cell models were used to investigate the effect of quorum sensing on biofilm formation. Contrast to flow-cellmodel, quorum sensing muatnt strain showed increased biofilm formation ability instatic condition. Biofilm formtion had increased the antibiotic resistance for about 100folds, but their was no obvious difference between the wild type and the quorumsensing mutant strain.
     A constitutive expression vector pMF-54A was constructed for constitutive expressof Diguanylate Cyclases (DGC) and Phosphodiesterases (PDE) and its stability was testedwith green fluorescent protein gene. After a full analysis of the whole genome ofPseudomonas aeruginosa PAO1, six proteins with GGDEF domain and four proteinswith EAL domain were chosen for next study. Target genes were recombinant intopMF-54A and transformed into PAO1. Static biofilm evaluation indicated thatphosphodiesterase PA2133 and diguanylate cyclase PA3702 significantly influence thebiofilm formation ability.
     Real time PCR analysis indicated that the transcription level increased 270 folds forPA2133 and 50 folds for PA3702. The virulence production, moving motility andbiofilm formation of wild type and quorum sensing muant strain with thoseoverexpress of PDE or DGC were observed. The results showed that the increase ofc-di-GMP inhibibited the moving motility of PAO1 and JP1 but improve theproduction of rhamnolipid. While the decrease of c-di-GMP can't restore the movingmotility and rhamnolipid production of both pDO100 and MW. In the static model,c-di-GMP increase the biofilm formation independent of quorum sensing.Furthermore, the increase of c-di-GMP level had improved the toxity of the strain.C-di-GMP can't change the antibiotic sensitivity of planktonic bacteria but theminimum biofilm eleberate concentration (MBEC) decreased for more than eightfolds after the transformation of PDE. Exogenous c-di-GMP inhibit the biofilmformation of PAO1. Real time PCR result indicated that c-di-GMP improved bothRhlI and RhlR transcription but there was no effect for LasI and LasR.
     The mechanisms of quorum sensing and c-di-GMP on biofilm formation wereinvestigated. The results indicated that quorum sensing deficiency strain, especiallyfor Rhl-QS deficient, inhibited the initial attachment but the microclone formation ability increased with long term incubation. The decrease of c-di-GMP cansignificantly inhibit the attachment ability, while the increase of c-di-GMP can'timprove the attachment. Strains with overexpress of DGC changed from vegetativegrowth phase to cryptic growth phase and with the elongation of the incubation timethey formed more microclones compared to wild type. We also evaluated the effect ofc-di-GMP on the exopolysaccharide production, hydophobicity and the cell surfacemotion organs. The result indicated that the hydrophobicity decreased, while thetranscription level of polysaccharide production gene pelA and pelD increased, withthe increase of c-di-GMP. Atomic Force Microscope and Transmission ElectronMicroscope observation doesn't show any differences in the motion organs.
     All in all, the two signal pathway was not completely isolated. The secondmessenger c-di-GMP can regulate Rhl-QS quorum sensing but its effect on biofilmformation was only partially depended on quorum sensing.
引文
1. Costerton J W, Stewart P S, Greenberg E P. Bacterial biofilms: a common cause of persistent infections [J]. Science, 1999, 284(5418):1318-1322.
    2. Stephens C. Microbiology: breaking down biofilms [J]. Curr Biol, 2002,12(4):R132-134.
    3. Eberhard A, Burlingame A L, Eberhard C, Kenyon G L, Nealson K H, Oppenheimer N J. Structural identification of autoinducer of Photobacterium fischeri luciferase [J].Biochemistry, 1981,20(9):2444-2449.
    4. Nealson K H, Platt T, Hastings J W. Cellular control of the synthesis and activity of the bacterial luminescent system [J]. J Bacteriol, 1970,104(1):313-322.
    5. Shadel G S, Devine J H, Baldwin T O. Control of the lux regulon of Vibrio fischeri [J]. J Biolumin Chemilumin, 1990, 5(2):99-106.
    6. Miller M B and Bassler B L. Quorum sensing in bacteria [J]. Annu Rev Microbiol, 2001, 55:165-199.
    7. Whitehead N A, Barnard A M, Slater H, Simpson N J, Salmond G P. Quorum-sensing in Gram-negative bacteria [J]. FEMS Microbiol Rev, 2001,25(4):365-404.
    8. Fuqua W C, Winans S C, Greenberg E P. Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators [J]. J Bacteriol, 1994,176(2):269-275.
    9. Gintsburg A L, Il'ina T S, Romanova Iu M. ["Quorum sensing" or social behavior of bacteria] [J]. Zh Mikrobiol Epidemiol Immunobiol, 2003(5):86-93.
    10. Andersson R A, Eriksson A R, Heikinheimo R, Mae A, Pirhonen M, Koiv V, Hyytiainen H, Tuikkala A, Palva E T. Quorum sensing in the plant pathogen Erwinia carotovora subsp. carotovora: the role of expR(Ecc) [J]. Mol Plant Microbe Interact, 2000,13(4):384-393.
    11. Thomson N R, Crow M A, McGowan S J, Cox A, Salmond G P. Biosynthesis of carbapenem antibiotic and prodigiosin pigment in Serratia is under quorum sensing control [J]. Mol Microbiol, 2000, 36(3):539-556.
    12. Von Bodman S B, Bauer W D, Coplin D L. Quorum sensing in plant-pathogenic bacteria[J]. Annu Rev Phytopathol, 2003, 41:455-482.
    13. Dong Y H, Xu J L, Li X Z, Zhang L H. AiiA, an enzyme that inactivates the acylhomoserine lactone quorum-sensing signal and attenuates the virulence of Erwinia carotovora [J]. Proc Natl Acad Sci U S A, 2000,97(7):3526-3531.
    14. Dong Y H, Wang L H, Xu J L, Zhang H B, Zhang X F, Zhang L H. Qucnching quorum-sensing-dependent bacterial infection by an N-acyl homoserine lactonase [J]. Nature, 2001,411(6839):813-817.
    15. Lin Y H, Xu J L, Hu J, Wang L H, Ong S L, Leadbetter J R, Zhang L H. Acyl-homoserine lactone acylase from Ralstonia strain XJ12B represents a novel and potent class of quorum-quenching enzymes [J]. Mol Microbiol, 2003,47(3):849-860.
    16. Schauder S and Bassler B L. The languages of bacteria [J]. Genes Dev, 2001, 15(12):1468-1480.
    17. Diggle S P, Winzer K, Chhabra S R, Worrall K E, Camara M, Williams P. The Pseudomonas aeruginosa quinolone signal molecule overcomes the cell density-dependency of the quorum sensing hierarchy, regulates rhl-dependent genes at the onset of stationary phase and can be produced in the absence of LasR [J]. Mol Microbiol,2003, 50(1):29-43.
    18. McGrath S, Wade D S, Pesci E C. Dueling quorum sensing systems in Pseudomonas aeruginosa control the production of the Pseudomonas quinolone signal (PQS) [J]. FEMS Microbiol Lett, 2004, 230(1):27-34.
    19. Deziel E, Lepine F, Milot S, He J, Mindrinos M N, Tompkins R G, Rahme L G. Analysis of Pseudomonas aeruginosa 4-hydroxy-2-alkylquinolines (HAQs) reveals a role for 4-hydroxy-2-heptylquinoline in cell-to-cell communication [J]. Proc Natl Acad Sci U S A,2004,101(5): 1339-1344.
    20. Lepine F, Milot S, Deziel E, He J, Rahme L G Electrospray/mass spectrometric identification and analysis of 4-hydroxy-2-alkylquinolines (HAQs) produced by Pseudomonas aeruginosa [J]. J Am Soc Mass Spectrom, 2004,15(6):862-869.
    21. Sturme M H, Kleerebezem M, Nakayama J, Akkermans A D, Vaugha E E, de Vos W M. Cell to cell communication by autoinducing peptides in gram-positive bacteria [J]. Antonie Van Leeuwenhoek, 2002, 81(1-4):233-243.
    22. Lazazzera B A. The intracellular function of extracellular signaling peptides [J]. Peptides, 2001,22(10):1519-1527.
    23. Mayville P, Ji G, Beavis R, Yang H, Goger M, Novick R P, Muir T W. Structure-activity analysis of synthetic autoinducing thiolactone peptides from Staphylococcus aureus responsible for virulence [J]. Proc Natl Acad Sci U S A, 1999, 96(4):1218-1223.
    24. Surette M G, Miller M B, Bassler B L. Quorum sensing in Escherichia coli, Salmonella typhimurium, and Vibrio harveyi: a new family of genes responsible for autoinducer production [J]. Proc Natl Acad Sci U S A, 1999,96(4):1639-1644.
    25. Joyce E A, Bassler B L, Wright A. Evidence for a signaling system in Helicobacter pylori: detection of a luxS-encoded autoinducer [J]. J Bacteriol, 2000,182(13):3638-3643.
    26. Chen X, Schauder S, Potier N, Van Dorsselaer A, Pelczer I, Bassler B L, Hughson F M. Structural identification of a bacterial quorum-sensing signal containing boron [J]. Nature, 2002,415(6871):545-549.
    27. Xavier K B and Bassler B L. LuxS quorum sensing: more than just a numbers game [J]. Curr Opin Microbiol, 2003,6(2):191-197.
    28. Callahan S M and Dunlap P V. LuxR- and acyl-homoserine-lactone-controlled non-lux genes define a quorum-sensing regulon in Vibrio fischeri [J]. J Bacteriol, 2000,182(10):2811-2822.
    29. Cha C, Gao P, Chen Y C, Shaw P D, Farrand S K. Production of acyl-homoserine lactone quorum-sensing signals by gram-negative plant-associated bacteria [J]. Mol Plant Microbe Interact, 1998,11(11):1119-1129.
    30. Kirwan J P, Gould T A, Schweizer H P, Bearden S W, Murphy R C, Churchill M E. Quorum-sensing signal synthesis by the Yersinia pestis acyl-homoserine lactone synthase YspI [J]. J Bacteriol, 2006,188(2):784-788.
    31. Van Houdt R, Moons P, Hueso Buj M, Michiels C W. N-acyl-L-homoserine lactone quorum sensing controls butanediol fermentation in Serratia plymuthica RVH1 and Serratia marcescens MG1 [J]. J Bacteriol, 2006,188(12):4570-4572.
    32. Wang Y, Dai Y, Zhang Y, Hu Y, Yang B, Chen S. Effects of quorum sensing autoinducer degradation gene on virulence and biofilm formation of Pseudomonas aeruginosa [J]. Sci China C Life Sci, 2007, 50(3):385-391.
    33. Hentzer M, Wu H, Andersen J B, Riedel K, Rasmussen T B, Bagge N, Kumar N, Schembri M A, Song Z, Kristoffersen P, Manefield M, Costerton J W, Molin S, Eberl L, Steinberg P, Kjelleberg S, Hoiby N, Givskov M. Attenuation of Pseudomonas aeruginosa virulence by quorum sensing inhibitors [J]. Embo J, 2003,22(15):3803-3815.
    34. Schaber J A, Hammond A, Carty N L, Williams S C, Colmer-Hamood J A, Burrowes B H, Dhevan V, Griswold J A, Hamood A N. Diversity of biofilms produced by quorum-sensing-deficient clinical isolates of Pseudomonas aeruginosa [J]. J Med Microbiol, 2007,56(Pt 6):738-748.
    35. Mukherjee A, Cui Y, Liu Y, Dumenyo C K, Chatterjee A K. Global regulation in Erwinia species by Erwinia carotovora rsmA, a homologue of Escherichia coli csrA: repression of secondary metabolites, pathogenicity and hypersensitive reaction [J]. Microbiology, 1996, 142(Pt 2):427-434.
    36. Manefield M, Welch M, Givskov M, Salmond G P, Kjelleberg S. Halogenated furanones from the red alga, Delisea pulchra, inhibit carbapenem antibiotic synthesis and exoenzyme virulence factor production in the phytopathogen Erwinia carotovora [J]. FEMS Microbiol Lett, 2001,205(1):131-138.
    37. Manefield M, Rasmussen T B, Henzter M, Andersen J B, Steinberg P, Kjelleberg S, Givskov M. Halogenated furanones inhibit quorum sensing through accelerated LuxR turnover [J]. Microbiology, 2002,148(Pt 4):1119-1127.
    38. Nasser W, Bouillant M L, Salmond G, Reverchon S. Characterization of the Erwinia chrysanthemi expI-expR locus directing the synthesis of two N-acyl-homoserine lactone signal molecules [J]. Mol Microbiol, 1998,29(6):1391-1405.
    39. Mathesius U, Mulders S, Gao M, Teplitski M, Caetano-Anolles G, Rolfe B G, Bauer W D. Extensive and specific responses of a eukaryote to bacterial quorum-sensing signals [J]. Proc Natl Acad Sci U S A, 2003,100(3):1444-1449.
    40. Loh J, Pierson E A, Pierson L S, 3rd, Stacey G, Chatterjee A. Quorum sensing in plant-associated bacteria [J]. Curr Opin Plant Biol, 2002, 5(4):285-290.
    41. Wood D W, Gong F, Daykin M M, Williams P, Pierson L S, 3rd. N-acyl-homoserine lactone-mediated regulation of phenazine gene expression by Pseudomonas aureofaciens 30-84 in the wheat rhizosphere [J]. J Bacteriol, 1997,179(24):7663-7670.
    42. Teplitski M, Robinson J B, Bauer W D. Plants secrete substances that mimic bacterial N-acyl homoserine lactone signal activities and affect population density-dependent behaviors in associated bacteria [J]. Mol Plant Microbe Interact, 2000,13(6):637-648.
    43. Fray R G, Throup J P, Daykin M, Wallace A, Williams P, Stewart G S, Grierson D. Plants genetically modified to produce N-acylhomoserine lactones communicate with bacteria [J]. Nat Biotechnol, 1999,17(10): 1017-1020.
    44. Anand S K and Griffiths M W. Quorum sensing and expression of virulence in Escherichia coli O157:H7 [J]. Int J Food Microbiol, 2003,85(1-2):1-9.
    45. Balaban N, Stoodley P, Fux C A, Wilson S, Costerton J W, Dell'Acqua G. Prevention of staphylococcal biofilm-associated infections by the quorum sensing inhibitor RIP [J]. Clin Orthop Relat Res, 2005(437):48-54.
    46. Suga H and Smith K M. Molecular mechanisms of bacterial quorum sensing as a new drug target [J]. Curr Opin Chem Biol, 2003, 7(5):586-591.
    47. Hentzer M, Riedel K, Rasmussen T B, Heydorn A, Andersen J B, Parsek M R, Rice S A, Eberl L, Molin S, Hoiby N, Kjelleberg S, Givskov M. Inhibition of quorum sensing in Pseudomonas aeruginosa biofilm bacteria by a halogenated furanone compound [J]. Microbiology, 2002,148(Pt 1):87-102.
    48. Karaolis D K, Cheng K, Lipsky M, Elnabawi A, Catalano J, Hyodo M, Hayakawa Y, Raufman J P. 3',5'-Cyclic diguanylic acid (c-di-GMP) inhibits basal and growth factor-stimulated human colon cancer cell proliferation [J]. Biochem Biophys Res Commun, 2005,329(1):40-45.
    49. Ross P, Weinhouse H, Aloni Y, Michaeli D, Weinberger-Ohana P, Mayer R, Braun S, de Vroom E, van der Marel G A, van Boom J H, Benziman M. Regulation of cellulose synthesis in Acetobacter xylinum by cyclic diguanylic acid [J]. Nature, 1987, 325(6101):279-281.
    50. Amikam D and Benziman M. Cyclic diguanylic acid and cellulose synthesis in Agrobacterium tumefaciens [J]. J Bacteriol, 1989,171(12):6649-6655.
    51. Tal R, Wong H C, Calhoon R, Gelfand D, Fear A L, Volman G, Mayer R, Ross P, Amikam D, Weinhouse H, Cohen A, Sapir S, Ohana P, Benziman M. Three cdg operons control cellular turnover of cyclic di-GMP in Acetobacter xylinum: genetic organization and occurrence of conserved domains in isoenzymes [J]. J Bacteriol, 1998, 180(17):4416-4425.
    52. Galperin M Y. Bacterial signal transduction network in a genomic perspective [J]. Environ Microbiol, 2004,6(6):552-567.
    53. Romling U, Gomelsky M, Galperin M Y. C-di-GMP: the dawning of a novel bacterial signalling system [J]. Mol Microbiol, 2005, 57(3):629-639.
    54. Galperin M Y, Natale D A, Aravind L, Koonin E V. A specialized version of the HD hydrolase domain implicated in signal transduction [J]. J Mol Microbiol Biotechnol, 1999,1(2):303-305.
    55. Galperin M Y, Nikolskaya A N, Koonin E V. Novel domains of the prokaryotic two-component signal transduction systems [J]. FEMS Microbiol Lett, 2001,1(2):303-305.
    56. Chan C, Paul R, Samoray D, Amiot N C, Giese B, Jenal U, Schirmer T. Structural basis of activity and allosteric control of diguanylate cyclase [J]. Proc Natl Acad Sci U S A, 2004, 101(49):17084-17089.
    57. Christen B, Christen M, Paul R, Schmid F, Folcher M, Jenoe P, Meuwly M, Jenal U. Allosteric control of cyclic di-GMP signaling [J]. J Biol Chem, 2006,281(42):32015-32024.
    58. Dow J M, Fouhy Y, Lucey J F, Ryan R P. The HD-GYP domain, cyclic di-GMP signaling, and bacterial virulence to plants [J]. Mol Plant Microbe Interact, 2006,19(12):1378-1384.
    59. Rao F, Yang Y, Qi Y, Liang Z X. Catalytic mechanism of cyclic di-GMP-specific phosphodiesterase: a study of the EAL domain-containing RocR from Pseudomonas aeruginosa [J]. J Bacteriol, 2008,190(10):3622-3631.
    60. Christen M, Christen B, Folcher M, Schauerte A, Jenal U. Identification and characterization of a cyclic di-GMP-specific phosphodiesterase and its allosteric control by GTP [J]. J Biol Chem, 2005, 280(35):30829-30837.
    61. Schmidt A J, Ryjenkov D A, Gomelsky M. The ubiquitous protein domain EAL is a cyclic diguanylate-specific phosphodiesterase: enzymatically active and inactive EAL domains [J]. J Bacteriol, 2005,187(14):4774-4781.
    62. Jenal U and Malone J. Mechanisms of cyclic-di-GMP signaling in bacteria [J]. Annu Rev Genet, 2006, 40:385-407.
    63. Amikam D and Galperin M Y. PilZ domain is part of the bacterial c-di-GMP binding protein [J]. Bioinformatics, 2006,22(1):3-6.
    64. Ramelot T A, Yee A, Cort J R, Semesi A, Arrowsmith C H, Kennedy M A. NMR structure and binding studies confirm that PA4608 from Pseudomonas aeruginosa is a PilZ domain and a c-di-GMP binding protein [J]. Proteins, 2007, 66(2):266-271.
    65. Alm R A, Bodero A J, Free P D, Mattick J S. Identification of a novel gene, pilZ, essential for type 4 fimbrial biogenesis in Pseudomonas aeruginosa [J]. J Bacteriol, 1996, 178(1):46-53.
    66. Maharaj R, May T B, Wang S K, Chakrabarty A M. Sequence of the alg8 and alg44 genes involved in the synthesis of alginate by Pseudomonas aeruginosa [J]. Gene, 1993, 136(1-2):267-269.
    67. Mejia-Ruiz H, Guzman J, Moreno S, Soberon-Chavez G, Espin G. The Azotobacter vinelandii alg8 and alg44 genes are essential for alginate synthesis and can be transcribed from an algD-independent promoter [J]. Gene, 1997,199(1-2):271-277.
    68. Tamayo R, Pratt J T, Camilli A. Roles of cyclic diguanylate in the regulation of bacterial pathogenesis [J]. Annu Rev Microbiol, 2007,61:131-148.
    69. Sudarsan N, Lee E R, Weinberg Z, Moy R H, Kim J N, Link K H, Breaker R R. Riboswitches in eubacteria sense the second messenger cyclic di-GMP [J]. Science, 2008, 321(5887):411-413.
    70. Weinberg Z, Barrick J E, Yao Z, Roth A, Kim J N, Gore J, Wang J X, Lee E R, Block K F, Sudarsan N, Neph S, Tompa M, Ruzzo W L, Breaker R R. Identification of 22 candidate structured RNAs in bacteria using the CMfinder comparative genomics pipeline [J].Nucleic Acids Res, 2007,35(14):4809-4819.
    71. Taylor B L and Zhulin I B. PAS domains: internal sensors of oxygen, redox potential, and light [J]. Microbiol Mol Biol Rev, 1999, 63(2):479-506.
    72. Hurley J H. GAF domains: cyclic nucleotides come full circle [J]. Sci STKE, 2003, 2003(164):PEI.
    73. Lai T H, Kumagai Y, Hyodo M, Hayakawa Y, Rikihisa Y. Anaplasma phagocytophilum PleC Histidine Kinase and PleD Diguanylate Cyclase Two-Component System and Role of Cyclic Di-GMP in Host-cell Infection [J]. J Bacteriol, 2008.
    74. Waters C M, Lu W, Rabinowitz J D, Bassler B L. Quorum sensing controls biofilm formation in Vibrio cholerae through modulation of cyclic di-GMP levels and repression of vpsT [J]. J Bacteriol, 2008,190(7):2527-2536.
    75. Hammer B K and Bassler B L. Distinct sensory pathways in Vibrio cholerae El Tor and classical biotypes modulate cyclic dimeric GMP levels to control biofilm formation [J]. J Bacteriol, 2009,191(1):169-177.
    76. Rahman M, Simm R, Kader A, Basseres E, Romling U, Mollby R. The role of c-di-GMP signaling in an Aeromonas veronii biovar sobria strain [J]. FEMS Microbiol Lett, 2007, 273(2):172-179.
    77. Kim Y K and McCarter L L. ScrG, a GGDEF-EAL protein, participates in regulating swarming and sticking in Vibrio parahaemolyticus [J]. J Bacteriol, 2007, 189(11):4094-4107.
    78. Kazmierczak B I, Lebron M B, Murray T S. Analysis of FimX, a phosphodiesterase that governs twitching motility in Pseudomonas aeruginosa [J]. Mol Microbiol, 2006, 60(4):1026-1043.
    79. Li T N, Chin K H, Liu J H, Wang A H, Chou S H. XC1028 from Xanthomonas campestris adopts a PilZ domain-like structure without a c-di-GMP switch [J]. Proteins, 2008.
    80. Huang B, Whitchurch C B, Mattick J S. FimX, a multidomain protein connecting environmental signals to twitching motility in Pseudomonas aeruginosa [J]. J Bacteriol,2003,185(24):7068-7076.
    81. D'Argenio D A, Calfee M W, Rainey P B, Pesci E C. Autolysis and autoaggregation in Pseudomonas aeruginosa colony morphology mutants [J]. J Bacteriol, 2002, 184(23):6481-6489.
    82. Hickman J W, Tifrea D F, Harwood C S. A chemosensory system that regulates biofilm formation through modulation of cyclic diguanylate levels [J]. Proc Natl Acad Sci U S A, 2005,102(40): 14422-14427.
    83. Romling U. Characterization of the rdar morphotype, a multicellular behaviour in Enterobacteriaceae [J]. Cell Mol Life Sci, 2005,62(11): 1234-1246.
    84. Lim B, Beyhan S, Meir J, Yildiz F H. Cyclic-diGMP signal transduction systems in Vibrio cholerae: modulation of rugosity and biofilm formation [J]. Mol Microbiol, 2006, 60(2):331-348.
    85. Beyhan S, Odell L S, Yildiz F H. Identification and characterization of cyclic diguanylate signaling systems controlling rugosity in Vibrio cholerae [J]. J Bacteriol, 2008, 190(22):7392-7405.
    86. Nakhamchik A, Wilde C, Rowe-Magnus D A. Cyclic-di-GMP regulates extracellular polysaccharide production, biofilm formation, and rugose colony development by Vibrio vulnificus [J]. Appl Environ Microbiol, 2008, 74(13):4199-4209.
    87. Kirillina O, Fetherston J D, Bobrov A G, Abney J, Perry R D. HmsP, a putative phosphodiesterase, and HmsT, a putative diguanylate cyclase, control Hms-dependent biofilm formation in Yersinia pestis [J]. Mol Microbiol, 2004, 54(1):75-88.
    88. Chung I Y, Choi K B, Heo Y J, Cho Y H. Effect of PEL exopolysaccharide on the wspF mutant phenotypes in Pseudomonas aeruginosa PA14 [J]. J Microbiol Biotechnol, 2008, 18(7): 1227-1234.
    89. Newell P D, Monds R D, O'Toole G A. LapD is a bis-(3',5')-cyclic dimeric GMP-binding protein that regulates surface attachment by Pseudomonas fluorescens Pf0-1 [J]. Proc Natl Acad Sci U S A, 2009.
    90. Yan W, Qu T, Zhao H, Su L, Yu Q, Gao J, Wu B. The effect of c-di-GMP (3'-5'-cyclic diguanylic acid) on the biofilm formation and adherence of Streptococcus mutans [J]. Microbiol Res, 2009.
    91. Karaolis D K, Rashid M H, Chythanya R, Luo W, Hyodo M, Hayakawa Y. c-di-GMP (3'-5'-cyclic diguanylic acid) inhibits Staphylococcus aureus cell-cell interactions and biofilm formation [J]. Antimicrob Agents Chemother, 2005, 49(3): 1029-1038.
    92. Holland L M, O'Donnell S T, Ryjenkov D A, Gomelsky L, Slater S R, Fey P D, Gomelsky M, O'Gara J P. A staphylococcal GGDEF domain protein regulates biofilm formation independently of cyclic dimeric GMP [J]. J Bacteriol, 2008,190(15):5178-5189.
    93. Tischler A D and Camilli A. Cyclic diguanylate regulates Vibrio cholerae virulence gene expression [J]. Infect Immun, 2005, 73(9):5873-5882.
    94. Paul R, Weiser S, Amiot N C, Chan C, Schirmer T, Giese B, Jenal U. Cell cycle-dependent dynamic localization of a bacterial response regulator with a novel di-guanylate cyclase output domain [J]. Genes Dev, 2004,18(6):715-727.
    95. Amikam D, Steinberger O, Shkolnik T, Ben-Ishai Z. The novel cyclic dinucleotide 3'-5' cyclic diguanylic acid binds to p21ras and enhances DNA synthesis but not cell replication in the Molt 4 cell line [J]. Biochem J, 1995,311 (Pt 3):921-927.
    96. Steinberger O, Lapidot Z, Ben-Ishai Z, Amikam D. Elevated expression of the CD4 receptor and cell cycle arrest are induced in Jurkat cells by treatment with the novel cyclic dinucleotide 3',5'-cyclic diguanylic acid [J]. FEBS Lett, 1999, 444(1):125-129.
    97. Murray T S and Kazmierczak B I. FlhF is required for swimming and swarming in Pseudomonas aeruginosa [J]. J Bacteriol, 2006,188(19):6995-7004.
    98. Clark G T, Koyano K, Nivichanov A. Case-based learning for orofacial pain and temporomandibular disorders [J]. J Dent Educ, 1993, 57(11):815-820.
    99. Patriquin G M, Banin E, Gilmour C, Tuchman R, Greenberg E P, Poole K. Influence of quorum sensing and iron on twitching motility and biofilm formation in Pseudomonas aeruginosa [J]. J Bacteriol, 2008,190(2):662-671.
    100. Kasana R C, Salwan R, Dhar H, Dutt S, Gulati A. A rapid and easy method for the detection of microbial cellulases on agar plates using gram's iodine [J]. Curr Microbiol, 2008,57(5):503-507.
    101. Zhu H, Bandara R, Conibear T C, Thuruthyil S J, Rice S A, Kjelleberg S, Givskov M, Willcox M D. Pseudomonas aeruginosa with lasI quorum-sensing deficiency during corneal infection [J]. Invest Ophthalmol Vis Sci, 2004, 45(6):1897-1903.
    102. Kohler T, van Delden C, Curty L K, Hamzehpour M M, Pechere J C. Overexpression of the MexEF-OprN multidrug efflux system affects cell-to-cell signaling in Pseudomonas aeruginosa [J]. J Bacteriol, 2001,183(18):5213-5222.
    103. Grossowicz N, Hayat P, Halpern Y S. Pyocyanine biosynthesis by Pseudomonas aeruginosa [J]. J Gen Microbiol, 1957,16(3):576-583.
    104. Frank L H and Demoss R D. On the biosynthesis of pyocyanine [J]. J Bacteriol, 1959, 77(6):776-782.
    105. Diggle S P, Stacey R E, Dodd C, Camara M, Williams P, Winzer K. The galactophilic lectin, LecA, contributes to biofilm development in Pseudomonas aeruginosa [J]. Environ Microbiol, 2006, 8(6): 1095-1104.
    106. Franklin M J, Chitnis C E, Gacesa P, Sonesson A, White D C, Ohman D E. Pseudomonas aeruginosa AlgG is a polymer level alginate C5-mannuronan epimerase [J]. J Bacteriol, 1994,176(7): 1821-1830.
    107. Ukuku D O and Fett W F. Relationship of cell surface charge and hydrophobicity to strength of attachment of bacteria to cantaloupe rind [J]. J Food Prot, 2002,65(7): 1093-1099.
    108. Ukuku D O and Fett W F. Effects of cell surface charge and hydrophobicity on attachment of 16 Salmonella serovars to cantaloupe rind and decontamination with sanitizers [J]. J Food Prot, 2006, 69(8): 1835-1843.
    109. Vasseur P, Soscia C, Voulhoux R, Filloux A. PelC is a Pseudomonas aeruginosa outer membrane lipoprotein of the OMA family of proteins involved in exopolysaccharide transport [J]. Biochimie, 2007, 89(8):903-915.
    110. Lee V T, Matewish J M, Kessler J L, Hyodo M, Hayakawa Y, Lory S. A cyclic-di-GMP receptor required for bacterial exopolysaccharide production [J]. Mol Microbiol, 2007, 65(6):1474-1484.
    111. Remminghorst U and Rehm B H. In vitro alginate polymerization and the functional role of Alg8 in alginate production by Pseudomonas aeruginosa [J]. Appl Environ Microbiol, 2006,72(1):298-305.
    112. Oglesby L L, Jain S, Ohman D E. Membrane topology and roles of Pseudomonas aeruginosa Alg8 and Alg44 in alginate polymerization [J]. Microbiology, 2008, 154(Pt 6):1605-1615.
    113. O'Toole G A and Kolter R. Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development [J]. Mol Microbiol, 1998,30(2):295-304.
    114. Pratt L A and Kolter R. Genetic analysis of Escherichia coli biofilm formation: roles of flagella, motility, chemotaxis and typeⅠpili [J]. Mol Microbiol, 1998, 30(2):285-293.
    115. Wall D and Kaiser D. Type Ⅳ pili and cell motility [J]. Mol Microbiol, 1999,32(1):1-10.
    116. Klausen M, Heydorn A, Ragas P, Lambertsen L, Aaes-Jorgensen A, Molin S, Tolker-Nielsen T. Biofilm formation by Pseudomonas aeruginosa wild type, flagella and type Ⅳ pili mutants [J]. Mol Microbiol, 2003, 48(6): 1511-1524.
    117. Matz C, Bergfeld T, Rice S A, Kjelleberg S. Microcolonies, quorum sensing and cytotoxicity determine the survival of Pseudomonas aeruginosa biofilms exposed to protozoan grazing [J]. Environ Microbiol, 2004, 6(3):218-226.
    118. Olsson J, van der Heijde Y, Holmberg K. Plaque formation in vivo and bacterial attachment in vitro on permanently hydrophobic and hydrophilic surfaces [J]. Caries Res, 1992,26(6):428-433.
    119. Dang H and Lovell C R. Bacterial primary colonization and early succession on surfaces in marine waters as determined by amplified rRNA gene restriction analysis and sequence analysis of 16S rRNA genes [J]. Appl Environ Microbiol, 2000,66(2):467-475.
    120. Gehrke T, Hallmann R, Kinzler K, Sand W. The EPS of Acidithiobacillus ferrooxidans-a model for structure-function relationships of attached bacteria and their physiology [J]. Water Sci Technol, 2001,43(6):159-167.
    121. Vasseur P, Vallet-Gely I, Soscia C, Genin S, Filloux A. The pel genes of the Pseudomonas aeruginosa PAK strain are involved at early and late stages of biofilm formation [J]. Microbiology, 2005,151(Pt 3):985-997.
    122. Davey M E and Duncan M J. Enhanced biofilm formation and loss of capsule synthesis: deletion of a putative glycosyltransferase in Porphyromonas gingivalis [J]. J Bacteriol, 2006,188(15):5510-5523.
    123. Dheilly A, Linossier I, Darchen A, Hadjiev D, Corbel C, Alonso V. Monitoring of microbial adhesion and biofilm growth using electrochemical impedancemetry [J]. Appl Microbiol Biotechnol, 2008,79(1): 157-164.
    124. Tang X, Flint S H, Brooks J D, Bennett R J. Factors affecting the attachment of micro-organisms isolated from ultrafiltration and reverse osmosis membranes in dairy processing plants [J]. J Appl Microbiol, 2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700