用户名: 密码: 验证码:
蝶蛹金小蜂毒液分子特性及其调控寄主分子机理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
寄生蜂携带毒液、多分DNA病毒、类病毒颗粒、畸形细胞等寄生因子,以抑制寄主细胞或体液免疫,以及调控寄主生长发育来保证其后代在寄主体内或体外成功发育。这些寄生因子因具有特殊的生理功能,若能结合现代生物技术,以这些活性物质为资源研制新型生防制剂或转基因作物,将为害虫生物防治开辟新的途径。为此,寄生蜂与寄主相互作用关系的研究一直以来是昆虫生理生化和生物防治领域的研究热点。这些研究旨在揭示寄生蜂寄生因子的本质及其调控寄主的机制,为这些资源的利用奠定基础。目前,对多分DNA病毒和类病毒颗粒生化与分子特性的研究已相当多,如近10种寄生蜂携带的多分DNA病毒已得到全基因组测序,从中获得了众多基因资源。然而,就毒液而言,现仅有为数不多的组分被鉴定。在寄生蜂调控寄主的机制方面,很大程度上仅是生理生化层面的研究,很少有寄生蜂调控寄主分子机制的研究。此外,在寄生蜂与寄主相互作用关系的研究中,涉及的寄生蜂主要限于茧蜂科Braconidae和姬蜂科Ichneumonidae,且多限于卵-幼虫期或幼虫期寄生蜂。有鉴于此,本研究以菜粉蝶Pieris rapae(鳞翅目Lepidoptera:粉蝶科Pieridae)的蛹期优势内寄生蜂蝶蛹金小蜂Pteromalus puparum(膜翅目Hymenoptera:金小蜂科Pteromalidae)(仅携带毒液一种寄生因子)为研究对象,在本实验室对蝶蛹金小蜂毒液生化特性及其调控寄主生理生化机制有过较详细研究的基础上,开展了蝶蛹金小蜂毒液分子特性及其调控寄主分子机理的研究。
     1蝶蛹金小蜂毒液分子特性
     (1)蝶蛹金小蜂毒器官形态结构。利用光镜和电镜技术研究了蝶蛹金小蜂毒器官形态结构,并利用电泳和免疫组化技术研究了毒液在毒器官中的合成。蝶蛹金小蜂毒器官由毒腺和毒囊构成,并附着有杜氏腺。毒腺由基膜层、分泌细胞层、导管细胞层和内膜层组成。基膜层和内膜层,薄而光滑。分泌细胞层,毒腺组织的主要部分,分泌细胞内含粗糙型内质网、分泌囊泡、末端附器、分泌颗粒、液泡等细胞器,其末端附器有导管和毒腺腔体连通,用于收集毒腺分泌物。导管细胞层,导管细胞内细胞器种类较少,仅有分泌囊泡,细胞核比分泌细胞的细胞核小了很多。毒囊由肌肉鞘层、上皮细胞层和内膜层由外向内依次排列组成。肌肉鞘层,肌纤丝纵向有序排列,不交错。上皮细胞层,其细胞核大而长形。内膜层,薄,均匀而光滑。电泳和免疫组化结果表明,和毒囊一样,毒腺中也存在毒液蛋白,毒液主要在毒腺中合成,最后贮存在毒囊中。
     (2)蝶蛹金小蜂毒液蛋白质组学分析。双向电泳结果显示,蝶蛹金小蜂毒液中主要有55个蛋白质点,等电点集中在4-7之间,分子量主要在25-66.2 kDa之间。所有蛋白质点经质谱鉴定,获得了钙网蛋白、精氨酸激酶、丝氨酸蛋白酶、热激蛋白70等4个毒液蛋白。
     (3)蝶蛹金小蜂毒器官cDNA文库的构建及EST序列分析。文库原始滴度为1.6×10~6cfu,重组率为90.65%,外源插入片段在0.5-2.5 kb之间。对文库进行小规模随机测序,共得到256条高质量序列,其中仅有72条序列得到基因注释,说明蝶蛹金小蜂毒器官中的大部分基因为新基因。经EST分析,获得了蝶蛹金小蜂毒液酸性磷酸酶和丝氨酸蛋白酶的部分基因序列。另外,还获得一个病毒结构蛋白基因,开放阅读框(ORF)为2619 bp,编码873 aa,预测分子量为97.6 kDa,由分子量为28 kDa、31 kDa、28 kDa和9.6 kDa的4个衣壳蛋白组成。系统进化分析表明,该病毒与Black queen cell virus的进化程度最近,属于具致病性的双顺反子病毒科Dicistroviridae,蟋蟀麻痹病毒属Cripavirus。
     (4)蝶蛹金小蜂毒液钙网蛋白基因的克隆及分析。该毒液蛋白基因全长为1685 bp,ORF为1212 bp,编码404 aa,预测分子量为42.57 kDa,pI为4.31,与菜粉蝶微红盘绒茧蜂Cotesia rubecula毒液钙网蛋白的相似性为69%。
     (5)蝶蛹金小蜂毒液精氨酸激酶基因的克隆及表达。该毒液蛋白基因全长为1828 bp,ORF为1068 bp,编码356 aa,预测分子量为39.9 kDa,pI为8.89,与背湾沟蛛蜂Cyphononyxdorsalis毒液精氨酸激酶的相似性高达92%。利用pET-32a表达载体,成功对该毒液蛋白基因进行了原核表达。
     (6)蝶蛹金小蜂毒液酸性磷酸酶基因的克隆及分析。克隆到该蜂毒液酸性磷酸酶基因全长为1378 bp,ORF为1215 bp,编码405 aa,预测分子量为39.9 kDa,pI为8.89,与丽蝇蛹集金小蜂Nasoniavitripennis、意大利蜜蜂Apis mellifera、赤拟谷盗Tribolium castaneum、埃及伊蚊Aedes aegypti和黑腹果蝇Drosophila melanogaster的酸性磷酸酶相似性分别为88%、41%、31%、30%和29%。以p-NPP(p-pnitrophenyl phosphate,p-NPP)为底物分析蝶蛹金小蜂毒液酸性磷酸酶生化特性,明确其最适pH和温度分别为4.8和45℃,酶活性能被NaF抑制。在毒腺分泌细胞中,酸性磷酸酶分布在细胞核和分泌囊泡上。RT-PCR分析表明,蝶蛹金小蜂毒液酸性磷酸酶基因在毒器官中的转录具有时相性。该毒液蛋白在毒器官内的含量也随发育时间变化而改变,并与其基因转录模式一致。
     (7)蝶蛹金小蜂毒液碱性磷酸酶基因的克隆及分析。利用5-溴-4-氯-3-吲哚基-磷酸盐和氮蓝四唑染色方法,在蝶蛹金小蜂毒器官中发现有碱性磷酸酶存在。超微结构研究也发现碱性磷酸酶分布在毒腺分泌细胞的细胞核和分泌囊泡上。以p-NPP(p-pnitrophenylphosphate,p-NPP)为底物分析蝶蛹金小蜂毒液碱性磷酸酶生化特性,发现温度和二价金属离子都能影响其酶活性。克隆得到蝶蛹金小蜂毒液碱性磷酸酶基因全长为2645 bp,ORF为1623 bp,编码541 aa,预测分子量为59.83 kDa,pI为6.98,与丽蛹集金小蜂、意大利蜜蜂、赤拟谷盗、埃及伊蚊和黑腹果蝇碱性磷酸酶的相似性分别为91%、66%、48%、48%和46%。RT-PCR分析表明,蝶蛹金小蜂毒液酸性磷酸酶在毒器官中的转录具有时相性。该毒液蛋白在毒器官内的含量也随发育时间变化而改变,并与与其基因转录模式一致。2蝶蛹金小蜂调控寄主菜粉蝶的分子机理
     (1)蝶蛹金小蜂寄生对菜粉蝶血浆蛋白质组分的影响。通过双向电泳研究发现,菜粉蝶蛹被蝶蛹金小蜂寄生24 h后,其血浆中7个蛋白质点发生了差异表达,这些差异蛋白质点经质谱鉴定,为类似丝氨酸蛋白酶同源蛋白、烯醇化酶、成虫盘生长因子、胆素结合蛋白、鸟氨酸脱羧酶、维甲酸结合蛋白以及一未知功能蛋白,它们为与免疫、细胞骨架、解毒和能量代谢相关蛋白。依据质谱获得的肽段序列,设计简并引物,并结合RACE技术,克隆获得了类似丝氨酸蛋白酶同源蛋白、烯醇化酶和胆素结合蛋白的全长基因。RT-PCR分析表明,蝶蛹金小蜂寄生能导致菜粉蝶类似丝氨酸蛋白酶同源蛋白和胆素结合蛋白基因在蛹脂肪体中的转录水平升高,而对烯醇化酶和成虫盘生长因子蛹脂肪体中的转录水平无影响。
     (2)蝶蛹金小蜂寄生对菜粉蝶贮藏蛋白基因的转录调控。克隆了菜粉蝶贮藏蛋白基因,并研究了蝶蛹金小蜂寄生对其转录水平的影响。菜粉蝶贮藏蛋白基因全长为2270 bp,ORF为2121 bp,编码707 aa,预测分子量约83 kDa,pI 6.13。推导的氨基酸序列中有一16 aa的信号肽,2个保守的贮藏蛋白家族结构域。分子进化分析表明,克隆到的菜粉蝶贮藏蛋白基因属芳基贮藏蛋白。依据氨基酸组成,克隆到的菜粉蝶贮藏蛋白甲硫氨酸和芳香族氨基酸的含量分别为1.42%和18.82%,属芳基贮藏蛋白的范围。RT-PCR分析表明,蝶蛹金小蜂寄生能引起菜粉蝶芳基贮藏蛋白基因在蛹脂肪体中的转录水平升高。
     (3)蝶蛹金小蜂寄生对菜粉蝶钙网蛋白基因的转录调控。克隆了菜粉蝶钙网蛋白基因,并研究了蝶蛹金小蜂寄生对其转录水平的影响。菜粉蝶钙网蛋白基因全长1816 bp,ORF为1194 bp,编码398 aa,预测分子量为45.75 kDa,pI 4.4。推导的氨基酸序列,可分为N、P、C 3个区域,3个区域的特性与其它物种钙网蛋白相似,与意大利蜜蜂、冈比亚按蚊Anopheles gambiae和黑腹果蝇的相似性分别为74%、70%和69%。RT-PCR分析表明,蝶蛹金蜂寄生能抑制钙网蛋白基因在菜粉蝶蛹血细胞中的转录水平。
     (4)蝶蛹金小蜂寄生对菜粉蝶血细胞骨架相关蛋白基因的转录调控。克隆了菜粉蝶肌动蛋白、肌动蛋白解聚因子及微管蛋白基因,并研究了蝶蛹金小蜂寄生对其转录水平的影响。菜粉蝶肌动蛋白基因ORF为1131 bp,编码377 aa,预测分子量为41.78 kDa,pI为5.29,与其它昆虫肌动蛋白的相似性非常高,在90%以上。氨基酸组成特点和系统进化分析表明,克隆到的菜粉蝶肌动蛋白基因属细胞质型肌动蛋白。菜粉蝶肌动蛋白解聚因子基因全长为1243 bp,ORF为447 bp,编码149 aa,预测分子量为16.97 kDa,pI为7.11,与家蚕Bombyx mori、赤拟谷盗、意大利蜜蜂和桑粉介壳虫Maconellicoccus hirsutus肌动蛋白解聚因子的相似性分别为97%、87%、89%和72%。菜粉蝶微管蛋白基因全长为1757bp,ORF为1344 bp,编码448 aa,预测分子量为50.38 kDa,pI为4.86,与家蚕β型微管蛋白1、2、3和4的相似性分别为97%、97%、87%和93%。系统进化分析表明,克隆到的菜粉蝶微管蛋白基因属β型微管蛋白。RT-PCR分析表明,蝶蛹金蜂寄生能抑制肌动蛋白、肌动蛋白解聚因子及微管蛋白基因在菜粉蝶蛹血细胞中的转录水平。
     (5)蝶蛹金小蜂毒液对寄主菜粉蝶内分泌激素的影响。结合寄生和毒液离体注射的方法,以未寄生和注射PBS为对照,测定菜粉蝶蛹血淋巴内保幼激素滴度、保幼激素酯酶活性和蜕皮激素滴度在处理后72 h内的变化。结果显示,寄生或注射毒液寄主蛹血淋巴的保幼激素(仅检测到Ⅲ型)滴度在24-72 h内显著高于对照组,且在处理12 h后保幼激素滴度激急上升;保幼激素酯酶活性在未寄生或注射PBS的蛹血淋巴中分别于6-48 h和12-36 h显著高于处理组,且其活性分别在12 h和24 h达到最大值;与处理组相比,蜕皮激素滴度在未寄生或注射PBS的蛹血淋巴中,12-36 h之间快速上升,在36 h达到峰值,然后下降,但48 h以前其滴度均高于处理组,并在24-48 h与处理组呈显著差异。研究结果表明,蝶蛹金小蜂毒液能够扰乱其寄主菜粉蝶蛹的激素分泌系统。
     (6)蝶蛹金小蜂寄生对柑桔凤蝶血浆蛋白质组分的影响。通过双向电泳研究发现,柑桔凤蝶蛹被蝶蛹金小蜂寄生24 h后,其血浆中有16个蛋白质点发生了差异表达。其中8个蛋白点表达量上调,5个蛋白点表达量下降,1个蛋白质点消失,2个蛋白质点新出现。这些差异表达蛋白质点经质谱鉴定,为与细胞或体液免疫、解毒及能量代谢相关的蛋白。
     通过较系统的研究,本论文取得了下列创新性成果:明确了蝶蛹金小蜂毒器官的显微和超微形态结构,鉴定出蛹期或金小蜂科寄生蜂毒液中有钙网蛋白、精氨酸激酶、丝氨酸蛋白酶、热激蛋白70、酸性磷酸酶和碱性磷酸酶等组分,克隆了钙网蛋白精氨酸激酶、酸性磷酸酶和碱性磷酸酶等4个毒液蛋白基因,并明确了酸性和碱性磷酸酶基因的组织定位、生化特性和表达时相;在寄生蜂毒器官中发现了1种致病性微小RNA新病毒;发现以毒液为单一寄生因子的寄生蜂寄生能引起寄主免疫、解毒和能量代谢的相关蛋白差异表达,其中与营养代谢相关的芳基贮藏蛋白基因的转录水平上升,而与细胞免疫相关的钙网蛋白、肌动蛋白、肌动蛋白解聚因子及微管蛋白的转录水平下降;发现寄生蜂毒液能扰乱寄主的内分泌系统。这些结果在很大程度上揭示了寄生蜂与寄主互作的分子机制,对开辟利用寄生蜂毒液控制害虫的新途径有指导意义。
Parasitoids associated diversified range of virulence parasitic factors such as venom,polydnaviruse(PDV),virus-like particle(VLP),and teratocyte appear to interfere with host'simmune response or to disrupt host's development to insure the successful development of theiroffspring in the hemocoel or at the external surface of host insects.Given the specialphysiological functions,these parasitic factors would be potentially valuable resources ofnatural substance in developing new environmentally safe insect control agents or transgeneticcrops with modem biotechnologies.As a consequence,parasitoid-host interaction is a focalresearch point in the entomological physiology and biochemistry and biological control area,which aims to explore the nature of the parasitic factors and the mechanisms of parasitoidmanipulation of host that helpful to gain insights into the potential properties of the parasiticfactors for future practical use.Up to date,the biochemical and molecular basis of PDV andVLP have been well documented.The genome of PDV from near 10 parasitoids has beencompletely sequenced and lots of gene resources from them are available.Howeverover,onlylittle is known so far on the biochemical and molecular basis of venom.Regarding to themechanisms of parasitoid-host interactions,mostly investigations carried out at thephysiological and biochemical levels,but molecular dissection of parasitoid-host interactions isstill little known.In addition,in terms of parasitoid-host systems,the investigated parasitoids aremostly limited to ichneumonid and braconid,and are of egg-larval or larval stage specificparasitism.By consideration the historical perspective on previous issues on parasitoid-hostinteractions and on the basis of detailed biochemical characters and physiological functions ofvenom from Pteromalus puparum(Hymenoptera:Pteromalidae)(no other parasitoid associatedfactors other than venom are found in the female reproductive organ),a predominate pupalendoparasitoid of Pieris rapae(Lepidoptera:Pieridae),been well investigated in our laboratory,we here report on the outcomes of molecular characterization of venom from P.puparum andmolecular mechanism of this parasitoid manipulation to the host.
     1 Molecular characterization of venom from P.puparum
     (1)Morphology and ultrastructure of P.puparum venom apparatus.The venomapparatus of P.puparum was studied with light and electron microscope and was subjected tothe electrophoretic and immunohistochemical analyses.Typically its venom apparatus consistsof a venom gland and a venom reservoir,which is associated with a Dufour gland.The venomgland consists of four layers of basement membrane layer,secretory cell layer,duct cell layer and inner intima layer.Basement membrane and inner intima layers have evenly thickenedorganization.Secretory cells in the venom gland are characterized by extensive roughendoplasmic reticulum and numerous secretory vesicles,which is associated with an endapparatus to collect its secretions into the venom gland lumen.They also exhibit severalsecretory granules and vacuoles.Duct cells in the venom gland lack numerous cellularorganelles except secretory vesicles and their nucleus becomes smaller as compared to thenucleus in the secretory cell.The venom reservoir presents three distinct regions:an externallayer,composed by numerous fine muscle fibers;an internal layer,represented by epithelial cellwith large nucleus;and an intima portion,represented by thin and uniform organization.Theelectrophoretic and immunohistochemical results reveal that the rich proteinaceous componentsare present in the venom gland as that in venom reservoir.The venom proteins are firstly mainlyproduced in the venom gland,then drained to the lumen through the end apparatus,and arefinally collected and stored in the venom reservoir.
     (2)Proteomic analysis of P.puparum venom.Two-dimensional gel electrophoresisclearly defined 55 spots showing a major protein region(25-66.2 kDa,pI 4-7)were observed.All the venom protein spots were analyzed by mass spectrometry.Four venom components wereidentified:calreticulin,arginine kinase,serine protease and heat shock protein 70.
     (3)cDNA library construction and EST analysis of P.puparum venom apparatus.Theoriginal titration of library was 1.6×10~6 cfu with recombinant rate of 90.65%.The averagelength of insert cDNA fragment was between 0.5 kb and 2.5 kb.265 ESTs from the cDNAlibrary were obtained.After annotation,the results revealed that only 72 ESTs showedsignificant similarity to known genes from other organisms,and the other had no match to anydatabase sequence,indicating that mostly venom genes of P.puparum are new genes.Thevenom acid phospoatase and serine protease genes were obtained.A few contigs with homologyto virus structural protein were observed.Its open reading frame(ORF)was 2619 bp encoding873 amino acid residues with estimated molecular weight of 97.6 kDa.Its mature protein waswith three major capsid polyproteins(28,31 and 28 kDa)and a minor one(9.6 kDa).
     Phylogenetic evolution analysis exhibited that this virus belonged to the Cripavirus genus ofpathogenetic dicistroviruse and fell into same clade with Black queen cell virus.
     (4)Cloning and sequence analysis of cDNA encoding venom calreticulin gene of P.puparum.The 1722 bp full-length sequence had an open reading frame of 1212 bp encoding aprotein of 404 amino acids.The calculated molecular mass of the mature protein was 42.57 kDawith an estimated pI of 4.31.Sequence comparison showed that this venom protein has anoverall similarity of 69% to venom calreticulin of Cotesia rubecula.
     (5)Cloning and expression of venom arginine kinase gene of P.puparum.Thecomplete cDNA consisted of 1828 bp and contained an open reading frame of 1068 bp thatencoded 356 amino acid residues and had a predicted molecular weight of 39.9 kDa and pI 8.89.Sequence comparison showed that this venom protein has a highly similarity of 92% to venomarginine kinase of Cyphononyx dorsalis.This gene was expressed as a fusion protein usingpET-32a vector in Escherichia coli.
     (6)Molecular cloning and characterization of acid phosphatase in venom of P.puparum.The cDNA consisted of 1378 bp with 1215 bp open reading frame and encoded asequence of 405 amino acids.By multiple sequence alignment,the deduced amino acidsequence shared 88%,41%,31%,30% and 29% identity to its counterparts from Nasoniavitripennis,Apis mellifera,Tribolium castaneum,Aedes aegypti and Drosophila melanogaster.Using p-nitrophenyl phosphate(p-NPP)as substrate,the optimal pH and temperature for thisenzyme activity was measured to be 4.8 and 45℃,respectively.And NaF treatment waseffective way to inhibit the activity if this venom enzyme.Ultracytochemical analyses furtherrevealed that strong enzyme activity was located in the nuclei and secretory vesicles of thevenom gland secretory cells.Expression of the acid phosphatase gene was observed to beregulated at different developmental stages by RT-PCR analysis.Compared to the mRNAexpression,a time-course related enzyme activity in an individual venom apparatus was alsofound.
     (7)Molecular cloning and characterization of alkaline phosphatase in venom of P.puparum.Using chromogenic substrates 5-bromo-4-chloro-3'-indolyl phosphate(BCIP)andnitro blue tetrazolium(NBT),alkaline phosphatase was histochemically detected in the venomapparatus of P.puparum.Ultrastructural observations also demonstrated its presence in thesecretory vesicles and nuclei of the venom gland secretory cells.Using p-nitrophenyl phosphate(p-NPP)as substrate to measure the enzyme activity,this venom alkaline phosphatase wasfound to be temperature dependent and with bivalent cations effects.The full-length eDNAsequence of alkaline phosphatase was 2645 bp with 1623 bp open reading frame covered 541deduced amino acids with predicted molecular mass of 59.83 kDa and pI of 6.98.By multiplesequence alignment,the deduced amino acid sequence shared 91%,66%,48%,48% and 46%identity to its counterparts from N.vitripennis,A.mellifera,T.castaneum,A.aegypti and D.melanogaster.The transcript of alkaline phosphatase gene was detected by RT-PCR in venomapparatus with development related expression after adult wasp emergence.Compared to themRNA expression,a time-course related enzyme activity in an individual venom apparatus wasalso found.
     2 Molecular mechanism of P.puparum manipulation of P.rapae
     (1)Proteome changes in the plasma ofP.rapae induced by P.puparum parasitization.By examining the differential expression of plasma proteins in the parasitized and unparasitizedhosts pupae after 24 h by two-dimensional electrophoresis,7 proteins were found to vary inrelation to parasitization compared to unparasitized control samples.All of them were submittedto identification by mass spectrometry coupled with a database search.Six were identified asmasquerade-like serine proteinase homolog(MasSPH),enolase(ENO),imaginal disc growthfactor(IDGF),bilin-binding protein(BBP),ornithine decarboxylase(ODC)and cellular retinoicacid binding protein(CRABP).Next to known function proteins,one was identified asunannotated proteins.The modulated proteins were found to fall into the following functionalgroups:humoral or cellular immunity,detoxification,energy metabolism,and others.Degenerate primers designed based on peptides obtained from mass spectral analysis were usedfor PCR amplification of the fragment of the differential expressed proteins.And their fulllength eDNA were derived from RACE amplification.The gene of MasSPH,ENO and BBPwere cloned and sequenced.RT-PCR analysis indicated that parasitization by P.puparuminduced increased transcripts of MasSPH and BBP,and had no apparent impact on the level ofIDGF and ENO transcripts in the fat body of P.rapae pupae.
     (2)cDNA of an arylphorin-type storage protein from P.rapae with parasitisminducible expression by P.puparum.The cDNA of a storage protein,PraAry,from P.rapaewas cloned and its expression regulated by parasitization of P.puparum was investigated.Thefull-length cDNA of PraAry was 2270 nucleotides and contains a 2121 bp open reading frameencoding 707 amino acids with calculated molecular weights of approximately 83 kDa.Analysisof the primary protein sequence revealed that it possesses a signal peptide of 16 amino acids atthe N-terminus and contains two highly conserved storage protein signature motifs.Accordingto both phylogenetic analysis and the criteria for amino acid composition,PraAry belongs to thesubfamily of arylphorin-type storage protein(1.42% methionine and 18.82% aromatic aminoacids).RT-PCR analysis indicated that the transcriptional level of PraAry mRNA in P.rapaepupae fat body is inducible upregulation in response to parasitization by P.puparum.
     (3)Transcriptional changes of calreticulin from P.rapae after parasitization by P.puparum.The cDNA of calreticulin from P.rapae was cloned and its expression regulated byparasitization of P.puparum was investigated.Sequence analysis showed that P.rapaecalreticulin was of 1816 bp in full length contained an 1194 bp open reading frame whichpredicted a 398 amino acid protein.The calculated molecular mass and pI were 45.75 kDa and4.4,respectively.The deduced amino acid sequence contained N,P and C domains with special characters similar to that of other species,sharing 74%,70% and 69% homology with thecounterparts of A.mellifera,Anopheles gambiae and D.melanogaster.Expression analyses ofthe calreticulin gene in the haemocyte of P.rapae pupae parasitized and unparasitized by P.puparum were performed by RT-PCR,which indicated down regulated transcription underparasitization.
     (4)Transcriptional changes of cytoskeleton related proteins of P.rapae afterparasitization by the endoparasitoid wasp P.puparum.The cDNA of actin,actindepolymerisation factor and tubulin from P.rapae was cloned and their expression regulated byparasitization of P.puparum was investigated.P.rapae actin contained an open reading frameof 1131 bp encoding for 377 amino acid residues with predicted molecular mass and pI of 41.78kDa and 5.29,respectively.The homology of P.rapae actin with other insect actin genes wasgreater than 90% in amino acids.P.rapae actin was classified as a cytoplasmic type by absenceof muscle-specific amino acids and phylogenetic tree analysis.The 1243 bp cDNA sequence ofP.rapae actin depolymerisation factor contained an open reading frame of 447 bp encoding anneutral(pI 7.11)protein of 149 amino acids predicted molecular mass of 16.97 kDa,sharing97%,87%,89% and 72% homology with the counterparts of Bombyx mori,T.castaneum,A.mellifera and Maconellicoccus hirsutus.Nucleotide sequence analysis of P.rapae tubulinshowed full length cDNA of 1757 bp with open reading frames of 1344 bp encoding proteins of448 amino acids with a predicted molecular weight and pI of 50.38 kDa and 4.86,respectively.The cDNA-deduced amino acid sequence of P.rapae tubulin showed 97%,97%,87% and 93%homology with that of B.mori beta-tubulin 1,2,3 and 4.P.rapae tubulin was classified as betatype by phylogenetic evolution analysis.RT-PCR analysis showed that P.rapae actin,actindepolymerisation factor and tubulin gene were affected by P.puparum parasitization indicatingdecreased expression.
     (5)Endocrine changes in the hemolymph ofP.rapae indiced by venom of P.puparum.The changes of hemolymph juvenile hormone(JH)(only JHⅢdetected),ecdysteroid andjuvenile hormone esterase activity(JHE)over 72 h in parasitized and venom microinjected P.rapae pupae were monitored.Non-parasisized and PBS microinjected P.rapae served ascontrols.Results showed that JH titers were significant higher in parasitized and venommicroinjected pupae than that in control pupae during 24 to 72 h.After 12 h,JH titers weresignificantly promoted by parasitization and venom microinjection.JHE activities ofnon-parasitized and PBS microinjected pupae were significant higher than that of parasitizedand venom microinjected which was with a peak at 12 h(parasitized pupae)or 24 h(venommicroinjected pupae)during 6 to 48 and 12 to 36 h respectively.The hemolymph titers of ecdysteroid in non-parasitized and PBS microinjected pupae increased rapidly during 12 to 36 hwith a peak at 36 h,and were higher than treatments before 48 h,while presenting significantdifference at 24 to 48 h between the treatments and controls.The results demonstrate that venomalone of this parasitoid wasp can disrupt its host's endocrine system.
     (6)Proteome changes in the plasma of Papilio xuthus induced by P.puparumparasitization.By examining the differential expression of plasma proteins in the parasitizedand non-parasitized hosts pupae after 24 h by two-dimensional electrophoresis,16 proteins werefound to vary in relation to parasitization compared to unparasitized control samples.Among ofthem,8 proteins were elevated,5 showed decreased expression,and 1 disappeared,and 2 newlyoccurred after parasitization.All of them were submitted to identification by mass spectrometrycoupled with a database search.The modulated proteins were found to fall into the followingfunctional groups:humoral or cellular immunity,detoxification,energy metabolism,and others.
     In this paper,the microstructure and ultrastructure of venom apparatus of P.puparum wasclearly defined.The venom proteins of calreticulin,arginine kinase,serine protease,heat shockprotein 70,acid phosphatase and alkaline phosphatase were firtly identified from the venom ofpupal stage specific parasitoid or parasitoid belonging to Pteromalidae.The cDNA encodingvenom calreticulin,arginine kinase,acid phosphatase and alkaline phosphatase genes werecloned and sequenced,and the tissue location,biochemical characters and time-course relatedgene expression of acid and alkaline phosphatase were defined,which provided the firstevidence for the detail investigation of parasitoid venom acid and alkaline phosphatase.A novelpathogenic small RNA virus belonged to the Cripavirus genus of Dicistroviridae was reportedfrom the parasitoid.The results first revealed that the parasitization by the parasitoid onlyassociated with venom induced the proteins in the host plasma related to humoral or cellularimmunity,detoxification,energy metabolism differentially expressed,the the transcription ofnutrition metabolism related arylphorin-type storage protein gene up regulated,and thetranscription of cellular immune related calreticulin,actin,actin depolymerisation factor andtubulin genes decreased.In addition,the results firstly demonstrated that venom alone ofparasitoid can disrupted its host's endocrine system.These results not only revealed themolecular mechanisms of the interaction between parasitoid and host to a large extent,but alsomade a great contribution to gain insights into exploiting parasitoid venom for insect control.
引文
白素芬,陈学新,叶恭银,程家安,符文俊,何俊华,2003.畸形细胞对寄生蜂及其寄主的生理作用.中国生物防治19,35-39.
    蔡峻,2002.蝶蛹金小蜂对寄主免疫调控机理的初步研究.浙江大学博士学位论文.
    曹梅讯,许湘维,陈志辅,夏克敏,1980.20-羟基蜕皮酮的放射免疫分析法及其在蓖麻蚕蛹上的应用.昆虫学研究集刊1,1-6.
    胡萃,1986.蝶蛹金小蜂发育速率与温度的关系.昆虫学报9,101-103.
    黄志伟,黄勇平,杜家纬,2007.蛋白质组学方法在昆虫学研究中的应用.昆虫知识41,37-41.
    郦卫弟,2005.颈双缘姬蜂调控寄主小菜蛾的生理机制研究.浙江大学博士学位论文.
    刘奎,2007.椰扁甲啮小蜂对椰心叶甲的寄生作用和生理学效应研究.华南农业大学博士学位论文.
    潘健,陈学新,2003.两种小菜蛾寄生蜂毒液器官超微结构的比较.电子显微学报22,298-303.
    秦启联,王方海,龚和,1999.畸形细胞在协调寄生蜂同其寄主相互关系中的作用.昆虫学报4,431-438.
    唐启义,冯明光,2007.实用统计分析及DPS数据统计分析系统.北京:科学出版社.
    王方海,古德祥,1997.寄生蜂作用于寄主的内部生理机制.中山大学学报论丛5,108-112.
    吴玛莉,2008.蝶蛹金小蜂毒液的生理功能及活性成分分离纯化的研究.浙江大学博士学位论文.
    叶恭银,胡萃,1998.寄生蜂防御寄主免疫系统的策略及其在害虫防治中的应用前景.见:俞晓平主编.中国无公害农业的发展策略和途径.北京:中国农业出版社.
    俞瑞鲜,2006.菜蛾盘绒茧蜂毒液对寄主小菜蛾生理调控机制的研究.浙江大学硕士学位论文.
    张忠,2005.蝶蛹金小蜂和丽蝇蛹集金小蜂毒液的生化特性与生理功能.浙江大学博士学位论文.
    张忠,叶恭银,胡萃,2005.两种金小蜂毒液对菜粉蝶蛹血细胞延展、存活及包囊作用的影 响.昆虫学报47,551-561.
    朱家颖,叶恭银,胡萃,2007.膜翅目昆虫杜氏腺形态结构、内分泌物与功能的研究进展.昆虫学报50,616-620.
    Abdalla,FC.,2006.Morphological,chemical and developmental aspects of the Dufour gland in some eusocial bees (Hymenoptera,Apidae):a review.Rev.Bras.Entomol.50,153-162.
    Abdalla,F.C.,Cruz-Landim,C.D.,2000.Dufour glands in the hymenopterans (Apidae,Formicidae,Vespidae):a review.Rev.Brasil.Biol.61,95-106.
    Abt,M.,Rivers,D.B.,2007.Characterization of phenoloxidase activity in venom from the ectoparastioid Nasonia vitripennis (Walker) (Hymenoptera:Pteromalidae).J.Invertebr.Pathol.94,108-118.
    Agnew,B.J.,Minamide,L.S.,Bamburg,J.R.,1995.Reactivation of phosphorylated actin depolymerizing factor and identification of the regulatory site.J.Biol.Chem.270,17582-17587.
    Ahmad,R.,Ennaciri,J.,Cordeiro,P.,Bassam,S.E.,Menezes,J.,2007.Herpes simplex virus-1 up-regulates IL-15 gene expression in monocytic cells through the activation of protein tyrosine kinase and PKC Zeta/Lambda signaling pathways.J.Mol.Biol.367,25-35.
    Ai-Saleh,S.S.,2002.Biochemical characterization of the soluble alkaline phosphatase isolated from the venomous snake W.aegyptia.J.Nat.Toxins 11,357-65.
    Ali,A.T.,Pennym,C.B.,Paiker,J.E.,van Niekerk,C.,Smair,A.,Ferris,W.F.,Crowther,N.J.,2005.Alkaline phosphatase is involved in the control of adipogenesis in the murine preadipocyte cell line,3T3-L1.Clin.Claim.Acta 354,101-109.
    Altschul,S.F.,Madden,T.L.,Sch(a|¨)ffer,A.A.,Zhang,J.H.,Zhang,Z.,Miller,W.,Lipman,D.J.,1997.Gapped BLAST and PSI-BLAST:a new generation of protein database search programs.Nucleic Acids Res.25,3389-3402.
    Amador-Mu(?)oz,O.,Marriott,P.J.,2008.Quantification in comprehensive two-dimensional gas chromatography and a model of quantification based on selected summed modulated peaks.J.Chromatogr.1184A,323-340.
    Amaya,K.E.,Asgari,S.,Jung,R.,Hongskula,M.,Beckage,N.E.,2005.Parasitization of Manduca sexta larvae by the parasitoid wasp Cotesia congregata induces an impaired host immune response.J.Insect Physiol.51,505-512.
    Amparyup,P.,Jitvaropas,R.,Pulsook,N.,Tassanakajon,A.,2007.Molecular cloning,characterization and expression of a masquerade-like serine proteinase homologue from black tiger shrimp Penaeus monodon.Fish Shellfish Immu.22,535-546.
    Amparyup, P., Jitvaropas, R., Pulsook, N., Tassanakajon, A., 2007. Molecular cloning,characterization and expression of a masquerade-like serine proteinase homologue from black tiger shrimp Penaeus monodon. Fish Shellfish Immu. 22, 535-546.
    Andersch, M.A., Szcypinski, A.J., 1947. Use of p-nitrophenol phosphate as the substrate in determination of serum acid phosphatase. Am. J. Clin. Pathol. 66,287-292.
    Apodaca, G., 2001. Endocytic traffic in polarized epithelial cells: role of the actin and microtubule cytoskeleton. Traffic. 2,149-159.
    Armbruster, L., Levy, M., Mathieu, M.N., Bautz, A.M., 1986. Acid phosphatase activity in the hemolymph, hemocytes, fat body, and salivary glands during larval and prepupal development in Calliphora erythrocephala (Diptera: Calliphoridae). Comp. Biochem.Physiol. 84B, 349-354.
    Asgari, S., 2006. Venom proteins from polydnavirus-producing endoparasitoids: Their role in host-parasite interactions. Arch. Insect Biochem. Physiol. 61,146-156.
    Asgari, S., Schmidt, O., 2003. Is cell surface calreticulin involved in phagocytosis by insect hemocytes? J. Insect Physiol. 49, 545-550.
    Asgari, S., Schmidt, O., Theopold, U., 1997. A polydnavirus-encoded protein of an endoparasitoid wasp is an immune suppressor. J. Gen. Virol. 78, 3061-3070.
    Asgari, S., Zareie, R., Zhang, G, Schmidt, O., 2003a. Isolation and characterization of a novel venom protein from an endoparasitoid, Cotesia rubecula (Hym: Braconidae). Arch. Insect Biochem. Physiol. 53, 92-100.
    Asgari, S., Zhang, G. M., Schmidt, O., 2003c. Polydnavirus particle proteins with similarities to molecular chaperones, heat-shock protein 70 and calreticulin. J. Gen. Virol. 84,1165-1171.
    Asgari, S., Zhang, G.M., Zareie, R., Schmidt, O., 2003b. A serine proteinase homolog venom protein from an endoparasitoid wasp inhibits melanization of the host hemolymph. Insect Biochem. Mol. Biol. 33,1017-1024.
    Asgeirsson, B., Nielsen, B.N., H(?)jrupb, P., 2003. Amino acid sequence of the cold-active alkaline phosphatase from Atlantic cod (Gadus morhua). Comp. Biochem. Physiol. 136B,45-60.
    Ashfaq, M., Sonoda, S., Tsumuki, H., 2007. Expression of two methionine-rich storage protein genes of Plutella xylostella (L.) in response to development, juvenile hormone-analog and pyrethroid. Comp. Biochem. Physiol. 148B, 84-92.
    Ashida, M., Brey, P.T., 1998. Recent advances on the research of the insect prophenoloxidase cascade. In: Brey PT, Hultmark D (eds). Molecular Mechanisms of Immune Responses in Insects. Chapman and Hall, London, pp. 135-172.
    Baksh, S., Burns, K., Busaan, J., Michalak, M., 1992. Expression and purification of recombinant and native calreticulin. Protein Expr. Purif. 3, 322-331.
    Baksh, S., Michalak, M., 1991. Expression of calreticulin in Escherichia coli and identification of its Ca~(2+) binding domains. J. Biol. Chem. 266, 21458-21465.
    Balakier, H., Dziak, E., Sojecki, A., Librach, C, Michalak, M., Opas, M., 2002. Calcium-binding proteins and calcium-release channels in human maturing oocytes, pronuclear zygotes and early preimplantation embryos. Hum. Reprod. 17,2938-2947.
    Balgopal MM, Dover BA, Goodman WG, Strand MR. 1996. Parasitism by Microplitis demolitor induces alterations in the juvenile hormone titers and juvenile hormone esterase activity of its host, Pseudoplusia includens. J. Insect Physiol. 42, 337-345.
    Barat-Houari, M., Hilliou, F, Jousset, F.X., Sofer, L., Deleury, E., Rocher, J., Ravallec, M.,Galibert, L., Delobel, P., Feyereisen, R., Fournier, P., Volkoff, A.N., 2006. Gene expression profiling of Spodoptera frugiperda hemocytes and fat body using cDNA microarray reveals polydnavirus-associated variations in lepidopteran host genes transcript levels. BMC Genomics7,160.
    Barras, D.J., Wiygul, G, Vinson, S.B., 1969. Amino acids in the hemolymph of the tobacco budworm, Heliothis virescens Fab., as affected by it habitual parasite, Cardiochiles nigriceps Viereck. Com. Biochem. Physiol. 31, 707-714.
    Barratt, B.I.P., Evans, A.A., Stoltz, D.B., Vinson, S.B., Easingwood, R., 1999. Virus-like particles in the ovaries of Microctonus aethiopoides Loan (Hymenoptera: Braconidae), a parasitoid of adult weevils (Coleoptera: Curculionidae). J. Invertebr. Pathol. 73,182-188.
    Beckage NE. 2008. Parasitoid polydnaviruses and insect immunity. In: Beckage NE (Eds.), Insect Immunology. Elsevier, pp. 243-270.
    Beckage, N.E., 1985. Endocrine interactions between endoparasitic insects and their hosts. Annu. Rev. Entomol. 30, 371-413.
    Beckage, N.E., 1998. Modulation of immune responses to parasitoids by polydnaviruses. Parasitology 116, S57-64.
    Beckage, N.E., Gelman, D.B., 2004. Wasp parasitoid disruption of host development: implications for new biologically based strategies for insect control. Annu. Rev. Entomol. 49,299-330.
    Beckmann, M., Haack, K.J., 2003. Insektizide fur die Land-wirtschaft: Chemische Sch(?)dlingsbek(?)mpfung [Insecticides for agriculture: chemical pest control]. Chemie in Unsere Zeit 37, 88-97.
    Beis, A., Zammit, V.A., Newsholme, E.A., 1980. Activities of 3-hydroxybutyrate dehydrogenase, 3-oxoacid CoA-transferase and acetoacetyl-CoA thiolase in relation to ketone-body utilization in muscles from vertebrates and invertebrates. Eur. J. Biochem. 104,209-215.
    Bendtsen, J.D., Nielsen, H., von Heijne, G., Brunak, S., 2004. Improved prediction of signal peptides: SignalP 3.0. J. Mol. Biol. 340, 783-795.
    Benjeddou, M., Leat, N., Davison, S., 2002. Black queen-cell virus RNA is infectious in honey bee pupae; J. Invertebr. Pathol. 81,205-206.
    Benson, D.A., Karsch-Mizrachi, I., Lipman, D.J., Ostell, J., Rapp, B.A., Wheeler, D.L., 2000. GenBank. Nucleic Acids Res. 28,15-18.
    Binder, M., Mahler, V., Hayek, B., Sperr, W.R., Scholler, M., Prozell, S., Wiedermann, G, Valent,P., Valenta, R., Duchene, M., 2001. Molecular and immunological characterization of arginine kinase from the Indianmeal moth, Plodia interpunctella, a novel cross-reactive invertebrate pan-allergen. J. Immunol. 167, 5470-5477.
    Boquet, P., Lemichez, E., 2003. Bacterial virulence factors targeting Rho GTPases: parasitism or symbiosis? Trends Cell Biol. 13,238-246.
    Bosquet, G., 1977. Haemolymph modifications during starvation in Philosamia cynthia walheri (Ferber)-I. Volume, osmotic pressure, pH; relation to intracellular water content. Comp.Biochem. Physiol. 58A, 373-376.
    Bourtzis, K., Marmaras, V.J., Zacharopoulou, A., 1993. Biochemical and genetic studies on alkaline phosphatase of Ceratitis capitata. Biochem. Genetics 31,409-424.
    Bradford, M., 1976. A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principal of protein dye binding. Aanal. Biochem. 72,218-254.
    Brandt, S.L, Coudron, T.A., Jones, D., Racquib, A., 1996. Regulation of storage protein production in envenomated host larvae parasitized by Euplectrus sp. (Hymenoptera:Eulophidae). Toxicon 34, 328-329.
    Bridges, A., Owen, M., 1984. The morphology of the honey bee venom gland and reservoir. J.Morphol. 181,69-81.
    Bucher, G.E., 1963. Transmission of bacterial pathogens by the ovipositor of a hymenopterous parasite. J. Insect Pathol. 5, 277-283.
    Burton, R.L., Hopper, D.G., Sauer, J.R., Frick, J.H., 1972. Properties of the haemolymph of the corn earworm. Comp. Biochem. Physiol. 42B, 713-716.
    Cai, J., Ye, G.Y., Hu, C, 2004. Parasitism of Pieris rapae (Lepidoptera: Pieridae) by a pupal endoparasitoid, Pteromalus puparum (Hymenoptera: Pteromalidae): effects of parasitization and venom on host hemocytes. J. Insect Physiol. 50, 315-322.
    Carlier, M.F., 1998. Control of actin dynamics. Curr. Opin. Cell Biol. 10,45-51.
    Carlini, C.R., Grossi-de-S(?) M F, 2002. Plant toxic proteins with insecticidal properties. A review on their potentialities as bio insecticides. Toxicon 40, 1515-1539.
    Carlini, D.B., Reece, K.S., Graves, J.E., 2000. Actin gene family evolution and the phylogeny of coleoid cephalopods (Mollusca: Cephalopoda). Mol. Biol. Evol. 17,1353-1370.
    Carneiro, S.M., Fernandes, W., Delia Casa, M.S., Sesso, A., 2001. Cytochemical analysis of acid phosphatase activity in the venom secretory cells of Bothrops jararaca. Tissue Cell 33,311-317.
    Carton, Y., Poiri(?), M, Nappi, A.J., 2008. Insect immune resistance to parasitoids. Insect Science 15,67-87.
    Casida, J.E., Quistad, C.B., 1998. Golden age of insecticide research: past, present, or future?Annu. Rev. Entomol. 43,1-16.
    Chang, L., Goldman, R.D., 2004. Intermediate filaments mediate cytoskeletal crosstalk. Nat.Rev. Mol. Cell Biol. 5, 601-613.
    Chang, W.S., Zachow, K.R., Bentley, D., 1993. Expression of epithelial alkaline phosphatase in segmentally iterated bands during grasshopper limb morphogenesis. Development 118,651-663.
    Chen, Y.N., Aulia, S., Li, L.Z., Tang, B.L., 2006. AMIGO and friends: An emerging family of brain-enriched, neuronal growth modulating, type I transmembrane proteins with leucine-rich repeats (LRR) and cell adhesion molecule motifs. Brain Res. Rev. 51,265-274.
    Cheon, H.M., Hwang, S.J., Kim, H.J., Jin, B.R., Chae, K.S., Yun, C.Y., Seo, S.J., 2002. Two juvenile hormone suppressible storage proteins may play different roles in Hyphantria cunea Drury. Arch. Insect Biochem. Physiol. 50, 157-172.
    Choi, J.Y., Whitten, M.M.A., Cho, M.Y., Lee, K.Y., Kim, M.S., Ratcliffe, N.A, Lee, B.A., 2002. Calreticulin enriched as an earlystage encapsulation protein in wax moth Galleria mellonella larvae. Dev. Comp. Immunol. 26, 335-343.
    Cho-Ngwa, F., Mbua, E.N., Nchamukong, K.G., Titanji, V.P., 2007. Detection, purification and characterisation of a secretory alkaline phosphatase from Onchocerca species. Mol.Biochem. Parasitol. 156,136-43.
    Cole, T.J., Beckage, N.E., Tan, F.F., Srinivasan, A., Ramaswamy, S.B., 2002. Parasitoid-host endocrine relations: self-reliance or co-optation? Insect Biochem. Mol. Biol. 32, 1673-1679.
    Colinet, D., Dubuffet, A., Cazes, D., Moreau, S., Drezen, J.M., Poiri(?), M., 2009. A serpin from the parasitoid wasp Leptopilina boulardi targets the Drosophila phenoloxidase cascade. Dev.Comp. Immunol. 33, 681-689.
    Colinet, D., Schmitz, A., Depoix, D., Crochard, D., Poiri(?), M., 2007. Convergent use of RhoGAP toxins by eukaryotic parasites and bacterial pathogens. PLoS Pathog. 3,2029-2037.
    Consoli, F.L., Vinson, S.B., 2004. Host regulation and the embryonic development of the endoparasitoid Toxoneuron nigriceps (Hymenoptera: Braconidae). Com. Biochem. Physiol.137B, 463-473.
    Coppolino, M.G., Dedhar, S., 1998. Calreticulin. Int. J. Biochem. Cell Biol. 30, 553-558.
    Corona, M., Robinson, G.E., 2006. Genes of the antioxidant system of the honey bee: annotation and phylogeny. Insect Mol. Biol. 15,687-701.
    Coudron, T.A., Brandt, S.L., 1996. Characteristics of a developmental arrestant in the venom of the ectoparasitoid wasp Euplectrus comstockii. Toxicon 34,1431-1441.
    Coudron, T.A., Iqbal, M., Rice, W.C., Ellersieck, MR., Pinnell, R.E., 1999. Mediated pathogenicity of the baculovirus AcMNPV by the venom from Euplectrus comstockii Howard (Hymenoptera: Eulophidae). Comp. Biochem. Physiol. 124B, 231-240.
    Coudron, T.A., KnopWright, M.M., Puttier, B., Brandt, S.L., Rice, W.C., 2000. Effect of the ectoparasite Necremnus breviramulus (Hymenoptera: Eulophidae) and its venom on natural and factitious hosts. Annu. Entomol. Soc. 93, 890-897.
    Coustau, C, Carton, Y., Nappi, A.J., Shotkoski, R, Ffrench-Constant, R., 1996. Differential induction of antibacterial transcripts in Drosophila susceptible and resistant to parasitism by Leptopilina boulardi. Insect Mol. Biol. 5,167-172.
    Crawford, A.M., Brauning, R., Smolenski, G, Ferguson, C, Barton, D., Wheeler, T.T.,McCulloch, A., 2008. The constituents of Microctonus sp. parasitoid venoms. Insect Mol.Biol. 17,313-324.
    Crozatier, M., Ubeda, J.M., Vincent, A., Meister, M., 2004. Cellular immune response to parasitization in Drosophila requires the EBF orthologue Collier. PLoS Biol. 2, el96.
    Czibener, C, La Torre, J.L., Muscio, O.A., Ugalde, R.A., Scodeller, E.A., 2000. Nucleotide sequence analysis of Triatoma virus shows that it is a member of a novel group of insect RNA viruses. J. Gen. Virol. 81,1149-1154.
    Dani, M.P., Edwards, J.P., Richards, E.H., 2005. Hydrolase activity in the venom of the pupal endoparasitic wasp, Pimpla hypochondriaca. Comp. Biochem. Physiol. 141B, 373-381.
    Dani, M.P., Richards, E.H., Edwards, J.P., 2004. Venom from the pupal endoparasitoid, Pimpla hypochondriaca, increases the susceptibility of larval Lacanobia oleracea to the entomopathogens Bacillus cereus and Beauveria bassiana. J. Invertebr. Pathol. 86, 19-25.
    Dani, M.P., Richards, E.H., Isaac, R.E., Edwards, J.P., 2003. Antibacterial and proteolytic activity in venom from the endoparasitic wasp Pimpla hypochondriaca (Hymenoptera:Ichneumonidae). J. Insect Physiol. 49, 945-954. Dhar, A.K., Dettori, A., Roux, M.M., Klimpel, K.R., Read, B., 2003. Identification of differentially expressed genes in shrimp (Penaeus stylirostris) infected with white spot syndrome virus by cDNA microarrays. Arch. Virol. 148,2381-2396. Digilio, M.C., Isidoro, N., Tremblay, E., Pennacchio, F., 2000. Host castration by Aphidius ervi venom proteins. J. bisect Physiol. 46,1041 -1050. Disanza, A., Scita, G., 2008. Cytoskeletal regulation: coordinating actin and microtubule dynamics in membrane trafficking. Curr. Biol. 18, R873-875.
    Domier, L.L., McCoppin, N.K., D'Arcy, C.J., 2000. Sequence requirements for translation initiation of Rhopalosiphum padi virus ORF2. Virol. 268,264-271.
    Dong, K., Zhang, D., Dahlman, D.L., 1996. Down-regulation of juvenile hormone esterase and arylphorin production in Heliothis virescens larvae parasitized by Microplitis croceipes.Arch. Insect Biochem. Physiol. 32,237-248.
    Doucet, D., Beliveau, C, Dowling, A., Simard, J., Feng, Q., Krell, P.J., Cusson, M., 2008. Prophenoloxidases 1 and 2 from the spruce budworm, Choristoneura fumiferana: molecular cloning and assessment of transcriptional regulation by a polydnavirus. Arch. Insect Biochem. Physiol. 67,188-201.
    Doury, G., Bigot, Y., Periquet, G., 1997. Physiological and biochemical analysis of factors in the female venom gland and larval salivary secretions of the ectoparasitoid wasp Eupelmus orientalis. J. Insect Physiol. 43: 69-81.
    Drezen, J.M., Provost, B., Espagne, E., Cattolico, L., Dupuy, C, Poirie, M., Periquet, G.,Huguet, E., 2003. Polydnavirus genome: integrated vs. free virus. J. Insect Physiol. 49,407-417.
    Dudek, S.M., Garcia, J.G., 2001. Cytoskeletal regulation of pulmonary vascular permeability. J.Appl. Physiol. 91,1487-1500.Edson, K.M., Barlin, M.R., Vinson, S.B., 1982. Venom apparatus of braconid wasps:Comparative ultrastructure of reservoirs and gland filaments. Toxicon 20, 553-562.
    Edson, K.M., Vinson, S.B., 1979. A comparative morphology of the venom apparatus of female braconids (Hymeopetera: Braconidae). Can. Entomol. Ill, 1013-1024.
    Eguchi, M., 1995. Alkaline phosphatase isozymes in insects and comparison with mammalian enzyme. Comp. Biochem. Physiol. 11 IB, 151-162.
    Ergin, E., Uckan, F., Rivers, D.B., Sak, O., 2006. In vivo and in vitro activity of venom from the endoparasitic wasp Pimpla turionellae (L.) (Hymenoptera: Ichneumonidae). Arch. Insect Biochem. Physiol. 61,87-97.
    Espagne, E., Dupuy, C, Huguet, E., Cattolico, L., Provost, B., Martins, N., Poirie, M., Periquet,G, Drezen, J.M., 2004. Genome sequence of a polydnavirus: Insights into symbiotic virus evolution. Science 306,286-289.
    Falabella, P., Riviello, L., Caccialupi, P., Rossodivita T., Teresa Valente, M., Luisa De Stradis,M., Tranfaglia, A., Varricchio, P., Gigliotti, S., Graziani, R, Malva, C, Pennacchio, R, 2007.A y-glutamyl transpeptidase of Aphidius ervi venom induces apoptosis in the ovaries of host aphids. Insect Biochem. Mol. Biol. 37, 453-465
    Falquet, L., Pagni, M., Bucher, P., Hulo, N., Sigrist, C.J., Hofmann, K., Bairoch, A., 2002. The PROSITE database, its status in 2002. Nucleic Acids Res. 30,235-238.
    Feigen, M.I., Johns, M.A., Postlethwait, J.H., Sederoff, R.R., 1980. Purification and characterizationo of acid phosphatase-1 from Drosophila melanogaster. J. Biol. Chem. 255,10338-10343.
    Fernley, H.N., 1971. Mammalian alkaline phosphatases. In: Boyer PD (ed.) The enzymes, vol 4.Academic Press, New York, 4,417-444.
    Fitches, E., Edwards, M.G., Mee, C, Grishin, E., Gatehouse, A.M.R., Edwards, J.P., Gatehouse,J.A., 2004. Fusion proteins containing insect-specific toxins as pest control agents:snowdrop lectin delivers fused insecticidal spider venom toxin to insect haemolymph following oral ingestion. J. Insect Physiol. 50, 61-71.
    Fitches, E., Woodhouse, S., Edwards, J.P., Gatehouse, J.A., 2001. In vitro and in vivo binding of snowdrop (Galanthus nivalis agglutinin; GNA) and jackbean (Canavalia ensiformis; Con A) lectins within tomato moth (Lacanobia oleracea) larvae; mechanisms of insecticidal action.J. Insect Physiol. 47, 777-787.
    Fliegel, L., Burns, K., MacLennan, D.H., Reithmeier, R.A., Michalak, M., 1989. Molecular cloning of the high affinity calcium-binding protein (calreticulin) of skeletal muscle sarcoplasmic reticulum. J. Biol. Chem. 264,21522-21528.
    Fling, S.P., Gregerson, D.S., 1986. Peptide and protein molecular weight determination by electrophoresis using a high-molarity tris buffer system without urea. Anal. Biochem. 155,83-88.
    Francis, F., Gerkens, P., Harmel, N., Mazzucchelli, G., De Pauw, E., Haubruge, E., 2006.Proteomics in Myzus persicae: Effect of aphid host plant switch. Insect Biochem. Mol. Biol.36,219-227.
    Francischetti, I.M., Valenzuela, J.G., Pham, V.M., Garfield, M.K., Ribeiro, J.M., 2002. Toward a catalog for the transcripts and proteins (sialome) from the salivary gland of the malaria vector Anopheles gambiae. J. Exp. Biol. 205,2429-2451.
    Fujimoto, N., Tanaka, K., Suzuki, T., 2005. Amino acid residues 62 and 193 play the key role in regulating the synergism of substrate binding in oyster arginine kinase. FEBS Lett. 579,1688-1692.
    Fukushima, J.I., Kuwahara, Y., Yamada, A., Suzuki, T., 1990. New non-cyclic hono-diterpene from the sting glands of Bracon hebetor Say (Hymenoptera: Braconidae). Agric. Biol. Chem.54, 809-810.
    Funk, C.J., 2001. Alkaline phosphatase activity in whitefly salivary glands and saliva. Arch.Insect Biochem. Physiol. 46,165-174.
    Fyrberg, E.A., Kindle, K.L., Davidson, N., Sodja, A., 1980. The actin genes of Drosophila: a dispersed multigene family. Cell 19, 365-378.
    Garcia-Orozco, K.D., Aispuro-Hern(?)ndez, E., Yepiz-Plascencia, G, Calder(?)n-de-la-Barca, A.M.,Sotelo-Mundo, R.R., 2007. Molecular characterization of arginine kinase, an allergen from the shrimp Litopenaeus vannamei. Int. Arch. Allergy Immunol. 144,23-28.
    Gatehouse, J.A., 2008. Biotechnological prospects for engineering insect-resistant plants. Plant Physiol. 146, 881-887.
    Gelman, D.B., Reed, D.A., Beckage, N.E., 1998. Manipulation of fifth-instar host (Manduca sexta) ecdysteroid levels by the parasitoid wasp Cotesia congregate. J. Insect Physiol. 44,833-843.
    Georgieva, D., Risch, M., Kardas, A., Buck, F., von Bergen, M., Betzel, C, 2007. Comparative analysis of the venom proteomes of Vipera ammodytes ammodytes and Vipera ammodytes meridionalis. J Proteome Res. 7, 866-886.
    Gharib, B., Reggi, M.D., 1983. Changes in ecdysteroid and juvenile hormone levels in developing eggs of Bombyx mori. J. Insect Physiol. 29, 871-876.
    Gilbert, L.I., Granger, N.A., Roe, R.M., 2000. The juvenile hormone: historical facts and speculations on future research directions. Insect Biochem. Mol. Biol. 30, 617-644.
    Glatz, R.V., Asgari, S., Schmidt, O., 2004. Evolution of polydnaviruses as insect immune suppressors. Trends Microbiol. 12, 545-554.
    Gnatzy, W., Volknandt, W., 2000. Venom gland of the digger wasp Liris niger. morphology,ultrastructure, age-related changes and biochemical aspects. Cell Tissue Res. 302,271-284.
    Goldstein, D.J., Rogersk, C.E., Harrisk, H., 1980. Expression of alkaline phosphatase loci in mammalian tissues. Proc. Natl. Acad. Sci. USA 77, 2857-2860.
    Goodson, H.V., Hawse, W.F., 2002. Molecular evolution of the actin family. J. Cell Science 115, 2619-2622.
    Grimmelikhuijzen, C.J.P., Cazzamali, G, Williamson, M., Hauser, R, 2007. The promise of insect genomics. Pest Manag. Sci. 63,413-416.
    Grossniklaus-B(u|?rgin, C, Lanzrein, B., 1990. Endocrine interrelationship between the parasitoid Chelonus sp. and its host Trichoplusia ni. Arch. Insect Biochem. Physiol. 14,201-216.
    Grossniklaus-Biirgin, C, Pfister-Wilhelm, R., Meyer, V., Treiblmayr, K., Lanzrein, B., 1998.Physiological and endocrine changes associated with polydnavirus/venom in the parasitoid-host system Chelonus inanitus-Spodoptera littoralis. J. Insect Physiol. 44, 305-321.
    Grunwald, T., Bockisch, B., Spillner, E., Ring, J., Bredehorst, R., Ollert, M.W., 2006. Molecular cloning and expression in insect cells of honeybee venom allergen acid phosphatase (Api m 3). J. Allergy Clin. Immun. 117, 848-854.
    Guedes, S.M., Vitorino, R., Domingues, R., Tomer, K., Correia, A.J.F., Amado, F., Domingues,P., 2005. Proteomics of immune-challenged Drosophila melanogaster larvae hemolymph.Biochem. Bioph. Res. Co. 328, 106-115.
    Guerra, A.A., Robacker K.M., Martinez, S., 1993. Free amino acid and protein titers in Anthonomus grandis larvae venomized by Bracon mellitor. Entomophaga 38, 519-525.
    Guimaraes, L.H.S., Terenzi, H.F., Jorge, J.A., Polizeli, M.L.T.M., 2001. Thermostable conidial and mycelial alkaline phosphatases from the thermophilic fungus Scytalidium thermophilum.J. Ind. Microbiol. Biotechnol. 27,265-270.
    Guiochon, G., Marchetti, N., Mriziq, K., Shalliker, R.A., 2008. Implementations of two-dimensional liquid chromatography. J. Chromatogr. 1189 A, 109-168.
    Gunsalus, K.C., Bonaccorsi, S., Williams, E., Verni, F., Gatti, M., Goldberg, M.L., 1995.Mutations in twinstar, a Drosophila gene encoding a cofilin/ADF homologue, result in defects in centrosome migration and cytokinesis. J. Cell Biol. 131, 1243-59.
    Gupta, P., Ferkovich, S.M., 1998. Interaction of calyx fluid and venom from Microplitis croceipes (Braconidae) on developmental disruption of the natural host, Heliocoverpa zea,and two atypical hosts, Galleria mellonella and Spodoptera exigua. J. Insect Physiol. 44,713-719.
    Gupta, S., Wang, Y., Jiang, H.B., 2005. Manduca sexta prophenoloxidase (proPO) activation requires proPO-activating proteinase (PAP) and serine proteinase homologs (SPHs) simultaneously. Insect Biochem. Mol. Biol. 35, 241-248.
    Gurniak, C.B., Perlas, E., Witke, W., 2005. The actin depolymerizing factor n-cofilin is essential for neural tube morphogenesis and neural crest cell migration. Dev. Biol. 278, 231-241.
    Hammock, B.D., Sparks, T.C., 1977. A rapid assay for insect juvenile hormone esterase activity. Anal. Biochem. 82, 573-579.
    Hammond, J., Cai, D., Verhey, K.J., 2008. Tubulin modifications and their cellular functions.Curr. Opin. Cell Biol. 20, 71-76.
    Hassan, F, Ei-Hawary, M.F., Ei-Ghazawy, A., 1986. Acid and alkaline phosphomonoesterases in Egyptian snake venoms. Z. Ernahrungswiss. 20,44-54.
    Haunerland, N.H., 1996. Insect storage proteins: gene families and receptors. Insect Biochem.Mol. Biol. 26, 755-765.
    Hayakawa, Y., Ohnishi, A., Endo, Y., 1998. Mechanism of parasitism-induced elevation of haemolymph growth-blocking peptide levels in host insect larvae (Pseudaletia separata). J.Insect Physiol. 44, 859-866.
    Heitz, J.R., Norment, B.R., 1974. Characteristics of an alkalinephosphatase activity in brown recluse venom. Toxicon 12,181-187.
    Hoch, G, Schopf, A., 2001. Effects of Glyptapanteles liparidis (Hym.: Braconidae) parasitism,polydnavirus, and venom on development of microsporidia-infected and uninfected Lymantria dispar (Lep.: Lymantriidae) larvae. J. Invertebr. Pathol. 77, 37-43.
    Hoffman, D.R., 1977. Allergens in bee venom. III. Identification of allergen B of bee venom as an acid phosphatase. J. Allergy Clin. Immunol. 59, 364-366.
    Hoffman, D.R., Weimer, E.T., Sakell, R.H., Schmidt, M., 2005. Sequence and characterization of honeybee venom acid phosphatase. J. Allergy Clin. Immun. 115, S107.
    Hoffmann, J.A., 2003. The immune response of Drosophila. Nature 426, 33-38.
    Hossain, A., Jung, L.K., 2008. Expression of bone specific alkaline phosphatase on human B cells. Cell. Immunol. 253r 66-70.
    Houk, E.J., Hardy, J.L., 1984. Alkaline phosphatases of the mosquito, Culex tarsalis Coquillett.Comp. Biochem. Physiol. 78B, 303-310.
    Howard, R.W., Baker, J.E., 2003. Morphology and chemistry of Dufour glands in four ectoparasitoids: Cephalonomia tarsalis, C. waterstoni ( Hymenoptera: Bethylidae ) ,Anisopteromalus calandrae, and Pteromalus cerealellae (Hymenoptera: Pteromalidae) .Comp. Biochem. Physiol. 135B, 153-167.
    Hulo, N., Bairoch, A., Bulliard, V., Cerutti, L., Cuche, B.A., de Castro, E., Lachaize, C,Langendijk-Genevaux, P.S., Sigrist, C.J., 2008. The 20 years of PROSITE. Nucleic Acids Res. 36, D245-249.
    Itoh, M., Kanamori, Y., Takao, M., Eguchi, M., 1999. Cloning of soluble alkaline phosphatase cDNA and molecular basis of the polymorphic nature in alkaline phosphatase isozymes of Bombyx mori midgut. Insect Biochem. Mol. Biol. 29, 121-129.
    Itoh, M., Takeda, S., Yamamoto, H., Izumi, S., Tomino, S., Eguchi, M., 1991. Cloning and sequence analysis of membrane-bound alkaline phosphatase cDNA of the silkworm, Bombyx mori. Biochim. Biophys. Acta 1129,135-138.
    James, C, 2008. Global status of commercialized biotech/GM crops: 2008 (executive summary).ISAAA Brief 39,1-19.
    Jaworski, D.C., Simmen, F.A., Lamoreaux, W., Coons, L:B., Muller, M.T., Needham, G.R., 1995.A secreted calreticulin protein in ixodid tick (Amblyomma americanum) saliva. J. Insect Physiol. 41, 369-375.
    Jones, D., 1989. Protein expression during parasite redirection of host (Trickoplusia ni) biochemistry. Insect Biochem. 19,445-455.
    Jones, D., Jones, G., Rubnicka, M., Click, A., 1985. Precocious expression of the final larval instar developmental program in larvae of Trirchoplusia ni pseudoparasitized by Chelonus spp. Comp. Biochem. Physiol. 83B, 339-346.
    Jones, D., Jones, G., Rubnicka, M., Click, A., Reck-Malleczewen, V., Iwaya, M., 1986.Pseudoparasitism of host Trirchoplusia ni by Cheloris sp. as a new model system for parasite regulation of host physiology. J. Insect Physiol. 32, 315-328.
    Jones, D., Sawicki, G, Wozniak, M., 1992. Sequence, structure and expression of a wasp venom protein with a negatively charged signal peptide and a novel repeating internal structure. J.Biol. Chem. 267,14 871-14 878.
    Kaeslin, M., Pfister-Wilhelm, R., Molina, D., Lanzrein, B., 2005. Changes in the haemolymph proteome of Spodoptera littoralis induced by the parasitoid Chelonus inanitus or its polydnavirus and physiological implications. J. Insect Physiol. 51, 975-988.
    Kaul, N., Sapra, G.R., Dass, C.M.S, 1982. Intracellular digestive channel system in the ciliate Stylonychia mytilus ehtenberg. Arch. Protistenk. 126, 455-474.
    Kawasaki, H., Sugaya, K., Quan, G.X., Nohata, J., Mita, K., 2003. Analysis of α- and β-tubulin genes of Bombyx mori using an EST database. Insect Biochem. Mol. Biol. 33, 131-137.
    Khafagi, W.E., Hegazi, E.M., 2001. Effects of juvenile hormones and precocenes on the immune response of Spodoptera littoralis larvae to supernumerary larvae of the solitary parasitoid, Microplitis rufiventris Kok. J. Insect Physiol. 47, 1249-1259.
    Khan, S.A., Zafar, Y., Briddon, R.W., Malik, K.A., Mukhtar, Z., 2006. Spider venom toxin protects plants from insect attack. Transgenic Res. 15, 349-357.
    Kim, H.R., Kang, C.S., Mayer, R.T., 1989. Storage proteins of the fall webworm, Hyphantria cunea Drury. Arch. Insect Biochem. Physiol. 10, 115-130.
    Kim, M.K., Sisson, G, Stoltz, D., 1996. Ichnovirus infection of an established gypsy moth cell line. J. Gen. Virol. 77, 2321-2328.
    Kim, S.R., Lee, K.S, Yoon, H.J., Park, N.S., Lee, S.M., Je, Y. H., Jin, B.R., Sohn, H.D., 2004.cDNA cloning, expression, and characterization of an arylphorin-like hexameric storage protein, AgeHex2, from the mulberry longicorn beetle, Apriona germari. Arch. Insect Biochem. Physiol. 56, 61-72.
    Kim, S.R., Yoon, H.J., Park, N.S., Lee, S.M., Moon, J.Y., Seo, S.J., Jin, B.R., Sohn, H.D., 2003. Molecular cloning, expression, and characterization of a cDNA encoding the arylphorin-like hexameric storage protein from the mulberry longicorn beetle, Apriona germari. Arch. Insect Biochem. Physiol. 53,49-65.
    King, G.F., 2007. Modulation of insect Cav channels by peptidic spider toxins. Toxicon 49,513-530.
    Klose, R.J., Yan, Q., Tothova, Z., Yamane, K., Erdjument-Bromage, H., Tempst, P., Gilliland,D.G., Zhang, Y., Kaelin, W.G., 2007. The retinoblastoma binding protein RBP2 Is an H3K4 demethylase. Cell 128, 889-900.
    Kneipp, L.F., Palmeira, V.F., Pinheiro, A.A.S., Alviano, C.S., Rozental, S., Travassos, L.R.,Meyer-Fernandes, J.R., 2003. Phosphatase activity on the cell wall of Fonsecaea pedrosoi.Med.Mycol.41,469-477.
    Koepsell, H., Korn, K., Ferguson, D., Menuhr, H., Ollig, D., Haase, W., 1984. Reconstitution and partial purification of several Na~+ co-transport systems from renal brush-border membranes. J. Biol. Chem. 259, 6548-6558.
    Kostrewa, D., Wyss, M., D'Arcy, A., van Loon, A.P.G.M., 1999. Crystal structure of Aspergillus niger pH 2.5 acid phosphatase at 2.4 angstrom resolution. J. Mol. Biol. 288,965-974.
    Krause, K.H., Michalak, M., 1997. Calreticulin. Cell 88,439-443.
    Krishnan, A., Nair, P.N., Jones, D., 1994. Isolation, cloning, and characterization of new chitinase stored in active form in chitin-lined venom reservoir. J. Biol. Chem. 269,20971-20976.
    Kucharski, R., Maleszka, R., 1998. Arginine kinase is highly expressed in the compound eye of the honey bee, Apis mellifera. Gene 211, 343-349.
    Kunkel, J.G., Grossniklaus-Buergin, C, Karpells, S.T., Lanzrein, B., 1990. Arylphorin of Trichoplusia ni: Characterization and parasite-induced precocious increase in titer. Arch.Insect Biochem. Physiol. 13,117-125.
    Kuraishi, T., Manaka, J., Kono, M., Ishii, H., Yamamoto, N., Koizumi, K., Shiratsuchi, A., Lee,
    B.L., Higashida, H., Nakanishi, Y, 2007. Identification of calreticulin as a marker for phagocytosis of apoptotic cells in Drosophila. Exp. Cell Res. 313, 500-510.
    Labrosse, C, Carton, Y., Dubuffet, A., Drezen, J.M., Poirie, M., 2003. Active suppression of D.melanogaster immune response by long gland products of the parasitic wasp Leptopilina boulardi. J. Insect Physiol. 49, 513-522.
    Labrosse, C, Eslin, P., Doury, G, Drezen, J.M., Poirie, M., 2005a. Haemocyte changes in D.melanogaster in response to long gland components of the parasitoid wasp Leptopilina boulardi: a Rho-GAP protein as an important factor. J. Insect Physiol. 51,161-170.
    Labrosse, C, Stasiak, K., Lesobre, J., Grangeia, A., Huguet, E., Drezen, J.M., Poirie, M., 2005b.A RhoGAP protein as a main immune suppressive factor in the Leptopilina boulardi (Hymenoptera, Figitidae)-Drosophila melanogaster interaction. Insect Biochem. Mol. Biol.35: 93-103.
    Lanzrein, B., Pfister-Wilhelm, R., Wyler, T., Trenczek, T., Stettler, P., 1998. Overview of parasitism associated effects on host haemocytes in larval parasitoids and comparison with effects of the egg-larval parasitoid Chelonus inanitus on its host Spodoptera littoralis. J.Insect Physiol. 44, 817-831.
    Lapointe, R., Tanaka, K., Barney, W.E., Whitfield, J.B., Banks, J.C., B(?)liveau, C, Stoltz, D.,Webb, B.A., Cusson M., 2007. Genomic and morphological features of a banchine polydnavirus: Comparison with bracoviruses and ichnoviruses. J. Virol. 81, 6491-6501.
    Lapointe, R., Wilson, R., Vilaplana, L., O'Reilly, D.R., Falabella, P., Douris, V., Bernier-Cardou,M., Pennacchio, R, Iatrou, K., Malva, C, Olszewski, J.A., 2005. Expression of a Toxoneuron nigriceps polydnavirus-encoded protein causes apoptosis-like programmed cell death in lepidopteran insect cells. J. Gen. Virol. 86, 963-971.
    Lappalainen, P., Fedorov, E.V., Fedorov, AA et al., 1997. Essential functions and actin-binding surfaces of yeast cofilin revealed by systematic mutagenesis. EMBO J. 16, 5520-5530.
    Lappalainen, P., Kessels, M.M., Cope, M.J., Drubin, D.G., 1998. The ADF homology (ADF-H) domain: A highly exploited actin-binding module. Mol. Biol. Cell 9,1951-1959.
    Lavine, M.D., Beckage, N.E., 1995. Polydvaviruses-potent mediators of host insect immune dysfunction. Parasitol. Today 11, 368-378.
    Lavine, M.D., Strand, M.R., 2002. Insect hemocytes and their role in immunity. Insect Biochem.Mol. Biol. 32, 1295-1309.
    Lawrence, P.O., 2005a. Non-poly-DNA viruses, their parasitic wasps, and hosts. J. Insect Physiol. 51,99-101.
    Lawrence, P.O., 2005b. Morphogenesis and cytopathic effects of the Diachasmimorpha longicaudata entomopoxvirus in host haemocytes. J. Insect Physiol. 51,221-233.
    Lawrence, P.O., Akin, D., 1990. Virus-like particles from the poison glands of the parasitic wasp Biosteres longicaudatus (Hymenoptera: Braconidae). Can. J. Zool. 68, 539-546.
    Lawrence, P.O., Matos, L.F., 2005. Transmission of the Diachasmimorpha longicaudata rhabdovirus (DIRhV) to wasp offspring: an ultrastructural analysis. J. Insect Physiol. 51,235-241.
    Leader, D.P., 1979. Protein biosynthesis on membrane bound ribosomes. Trends Biochem.Science 4,205-207.
    Leat, N., Ball, B., Govan, V., Davison, S., 2000. Analysis of the complete genome sequence of black queen-cell virus, a picorna-like virus of honey bees. J. Gen. Virol. 81,2111-2119.
    Lee, H.P., Ko, T.Y., Lee, K.R., 1990a. Changes in haemolymph metabolites, protein,carbohydrates, and free amino acid of Galleria mellonella L. parasitized by the pupal parasitoid, Brachymeria lasus Walker. Kore. J. Zool. 33,166-174.
    Lee, H.P., Ko, T.Y., Lee, K.R., 1990b. Changes in haemolymph metabolites of Lymantria dispar L. parasitized by the pupal parasitoid, Brachymeria lasus Walker. Kore. J. Entomol. 20,23-31.
    Lee, K.S., Kim, S.R., Park, N.S., Kim, I., Kang, P.D., Sohn, B.H., Choi, K.H., Kang, S.W., Je,Y.H., Lee, S.M., Sohn, H.D., Jin, B.R., 2005. Characterization of a silkworm thioredoxin peroxidase that is induced by external temperature stimulus and viral infection. Insect Biochem. Mol. Biol. 35, 73-84.
    Lee, M.H., Nittayajarn, A., Ross, R.P., Rothschild, C.B., Parsonage, D., Claiborne, A., Rubens,C.E., 1999. Characterization of Enterococcus faecalis alkaline phosphatase and use in identifying Streptococcus agalactiae secreted proteins. J. Bacteriol. 181, 5790-5799.
    Leluk, J., Schmidt, J., Jones, D., 1989. Comparative studies on the protein composition of hymenopteran venom reservoirs. Toxicon 27,105-114.
    Levin, D.M., Breuer, L.N., Zhuang, S., Anderson, S.A., Nardi, J.B., Kanost, M.R., 2005. A hemocyte-specific integrin required for hemocytic encapsulation in the tobacco hornworm,Manduca sexta. Insect Biochem. Mol. Biol. 35,369-80.
    Li, J.H., Zhang, C.X., Shen, L.R., Tang, Z.H., Cheng, J.A., 2005. Expression and regulation of phospholipase A2 in venom gland of the Chinese honeybee, Apis cerana cerana. Arch.Insect Biochem. Physiol. 60,1-12.
    Li, S., Falabella, P., Kuriachan, I., Vinson, S.B., Borst, D.W., Malva, C, Pennacchio, F., 2003.Juvenile hormone synthesis, metabolism, and resulting haemolymph titre in Heliothis virescens larvae parasitized by Toxoneuron nigriceps. J. Insect Physiol. 49, 1021-1030.
    Li, W.D., Yu, R.X., Chen, X.X., He, J.H., 2006. Venom gland of the ichneumonid Diadromus collaris: morphology, ultrastructure and age-related changes. Insect Science 13,137-143.
    Liao, Z., Cao, J., Li, S.M., Yan, X.J., Hu, W.J., He, Q.Y, Chen, J.T., Tang, J.Z., Xie, J.Y.,Liang, S.P., 2007. Proteomic and peptidomic analysis of the venom from Chinese tarantula Chilobrachys jingzhao. Proteomics 7,1892-1907.
    Liu, C.I., Cheng, T.L., Chen, S.Z., Huang, Y.C., Chang, W.T., 2005. LrrA, a novel leucine-rich repeat protein involved in cytoskeleton remodeling, is required for multicellular morphogenesis in Dictyostelium discoideum. Dev. Biol. 285,238-251.
    Low, M.G., Saltiel, A.R., 1988. Structural and functional roles of glycosyl-phosphatidylinositol in membranes. Science 239, 268-275.
    Luna, E.J., Hitt, A.L., 1992. Cytoskeleton棗plasma membrane interactions. Science 258,955-964.
    Luo, K.J., Pang, Y, 2006a. Disruption effect of Microplitis bicoloratus polydnavirus EGF-like protein, MbCRP, on actin cytoskeleton in Lepidopteran insect hemocytes. Acta Bioch. Bioph.Sin. 38, 577-585.
    Luo, K.J., Pang, Y, 2006b. Spodoptera litura multicapsid nucleopolyhedrovirus inhibits Microplitis bicoloratus polydnavirus-induced host granulocytes apoptosis. J. Insect Physiol.52, 795-806.
    Maciver, S.K., Hussey, P.J., 2002. The ADF/cofilin family: actin-remodeling proteins. Genome Biol. 3,reviews3007.1-3007.12.
    Mahadav, A., Gerling, D., Gottlieb, Y, Czosnek, H., Ghanim, M., 2008. Parasitization by the wasp Eretmocerus mundus induces transcription of genes related to immune response and symbiotic bacteria proliferation in the whitefly Bemisia tabaci. BMC Genomics 9, 342.
    Maiti, I.B., Dey, N., Pattanaik, S., Dahlman, D.L., Rana, R.L., Webb, B.A., 2003. Antibiosis-type insect resistance in transgenic plants expressing a teratocyte secretory protein (TSP14) gene from a hymenopteran endoparasite (Microplitis croceipes). Plant Biotechnol. J. 1,209-219.
    Malone, L.A., Gatehouse, A.M.R., 2008. Beyond Bt: Alternative strategies for insect-resistant genetically modified crops. In: Romeis J, et al. (eds): Integration of Insect-Resistant Genetically Modified Crops within IPM Programs, Springer, pp. 223-248.
    Mansfield, S.G., Cammer, S., Alexander, S.C., Muehleisen, D.P., Gray, R.S., Tropsha, A.,Bollenbacher, W.E., 1998. Molecular cloning and characterization of an invertebrate cellular retinoic acid binding protein. Proc. Nat. Acad. Sci. USA 95, 6825-6830.
    Maori, E., Lavi, S., Mozes-Koch, R., Gantman, Y, Peretz, Y, Edelbaum, O., Tanne, E., Sela, I., 2007. Isolation and characterization of Israeli acute paralysis virus, a dicistrovirus affecting honeybees in Israel: evidence for diversity due to intra- and inter-species recombination. J.Gen. Virol. 88, 3428-3438.
    Mazorr, M.T., Rubio, J.A., Blascoa, J., 2002. Acid and alkaline phosphatase activities in the clam Scrobicularia plana: kinetic characteristics and effects of heavy metals. Comp.Biochem. Physiol. 131B, 241-249.
    Mehlo, L., Gahakwa, D., Nghia, P.T., Loc, N.T., Capell, T., Gatehouse J.A., Gatehouse A.M.R.,Christou, P., 2005. An alternative strategy for sustainable pest resistance in genetically enhanced crops. Proc. Natl. Acad. Sci. USA 102,7812-7816.
    Meister, M., 2004. Blood cells of Drosophila: cell lineages and role in host defence. Curr. Opin.Immunol. 16,10-15.
    Memmel, N.A., Trewitt, P.M., Grezlak, K., Rajaratnam, V.S., Kumaran, A.K., 1994. Nucleotide sequence, structure and developmental regulation of LHP82, a juvenile hormone-suppressible hexamerin gene from the waxmoth, Galleria mellonella. Insect Biochem. Mol. Biol. 24,133-144.
    Meulemans, W., De Loof, A., 1990. Cytoskeletal F-actin patterns in whole-mounted insect Malpighian tubules. Tissue Cell, 22,283-290.
    Michalak, M., Corbett, E.F., Mesaeli, N., Nakamura, K., Opas, M., 1999. Calreticulin: one protein, one gene, many functions. Biochem. J. 344,281-292.
    Michalak, M., Milner, R.E., Burns, K., Opas, M., 1992. Calreticulin. Biochem. J. 285, 681-692.
    Moore, E.L., Haspel, G, Libersat, F., Adams, M.E., 2005. Parasitoid wasp sting: A cocktail of GABA, taurine, and -alanine opens chloride channels for central synaptic block and transient paralysis of a cockroach host. J. Neurobiol. 66, 811-820.
    Morales, J., Chiu, H., Oo, T., Plaza, R., Hoskins, S., Govind, S., 2005. Biogenesis, structure, and immune-suppressive effects of virus-like particles of a Drosophila parasitoid, Leptopilina victoriae. J. Insect Physiol. 51,181-195.
    Moreau, S.J.M., Cherqui, A., Dubois, F., Doury, G., Fourdrain, Y., Bulet, P., Sabatier, L.,Saarela, J., Pr(?)vost, G., Giordanengo, P., 2004. Identification of an aspartylglucosaminidase-like protein in the venom of the parasitic wasp Asobara tabida (Hymenoptera: Braconidae).Insect Biochem. Mol. Biol. 34,485-492.
    Moreau, S.J.M., Guillot, S., 2005. Advances and prospects on biosynthesis, structures and functions of venom proteins from parasitic wasps. Insect Biochem. Mol. Biol. 35,1209-1223.
    Moser, J.C., Blum, M.S., 1963. Trail marking substance of the Texas leaf cutting ant: source and potency. Science 140,1228.
    Mounier, N., Gouy, M., Mouchiroud, D., Prudhomme, J.C., 1992. Insect muscle actins differ distinctly from invertebrate and vertebrate cytoplasmic actins. J. Mol. Evol. 34,406-415.
    M(?)hlebach, S.M., Gross, M., Wirz, T., Wallimann, T., Perriard, J.C., Wyss, M., 1994. Sequence homology and structure predictions of the creatine kinase isoenzymes. Mol. Cell. Biochem.133-134,245-262.
    M(?)ller, S., 2004. Redox and antioxidant systems of the malaria parasite Plasmodium falciparum.Mol. Microbiol. 53,1291-1305.
    M(?)ller, U., Vogel, P., Alber, G, Schaub, GA., 2008. The innate immune system of mammals and insects. Contrib Microbiol. 15,21-44.
    Munks, R.J., Sant'Anna, M.R., Grail, W., Gibson, W., Igglesden, T., Yoshiyama, M., Lehane,S.M., Lehane, M.J., 2005. Antioxidant gene expression in the blood-feeding fly Glossina morsitans morsitans. Insect Mol. Biol. 14,483-491.
    Munyiri, F.N., Ishikawa, Y., 2004. Endocrine changes associated with metamorphosis and diapause induction in the yellow-spotted longicorn beetle, Psacothea hilaris (Coleoptera:Cerambycidae). J. Insect Physiol. 50,1075-1081.
    Nakamatsu, Y, Gyotoku Y, Tanaka T., 2001. The endoparasitoid Cotesia kariyai (Ck) regulates the growth and metabolic efficiency of Pseudaletia separata larvae by venom and Ck polydnavirus. J. Insect Physiol. 47, 573-584.
    Nakamatsu, Y., Kuriya, K., Harvey, J.A., Tanaka, T., 2006. Influence of nutrient deficiency caused by host developmental arrest on the growth and development of a koinobiont parasitoid. J. Insect Physiol. 52,1105-1112.
    Nakamatsu, Y., Tanaka, T., 2003. Venom of ectoparasitoid, Euplectrus sp. near plathypenae (Hymenoptera: Eulophidae) regulates the physiological state of Pseudaletia separate (Lepidoptera: Noctuidae) host as a food resource. J. Insect Physiol. 49,149-159.
    Nakamatsu, Y., Tanaka, T., 2004. Correlation between concentration of hemolymph nutrients and amount of fat body consumed in lightly and heavily parasitized hosts (Pseudaletia separata). J. Insect Physiol. 50, 135-141.
    Nakhasi, H.L., Pogue, G.P., Duncan, R.C., Joshi, M., Atreya, CD., Lee, N.S., Dwyer, D.M.,1998. Implication of calreticulin function in parasite biology. Parasitol. Today 14, 157-160.
    Nguyen, T.T., Boudreault, S., Michaud, D., Cloutier, C, 2008. Proteomes of the aphid Macrosiphum euphorbiae in its resistance and susceptibility responses to differently compatible parasitoids. Insect Biochem. Mol. Biol. 38, 730-739.
    Nicholson, G.M., 2007a. Fighting the global pest problem: preface to the special toxicon issue on insecticidal toxins and their potential for insect pest control. Toxicon 49, 413-422.
    Nicholson, G.M., 2007b. Insect-selective spider toxins targeting voltage-gated sodium channels.Toxicon 49,490-512.
    Nicolas, E., Nappi, A.J., Lemaitre, B., 1996. Expression of antimicrobial peptide genes after infection byparasitoid wasps in Drosophila. Dev. Comp. Immunol. 20,175-181.
    Noirot, C, Quennedey, A., 1974. Fine structure of insect epidermal glands. Annu. Rev. Entomol.19,61-80.
    Norment, B.R., Jong, Y.S., Heitz, J.R., 1979. Separation and characterization of venom components in Loxosceles reclus - III. Hydrolytic enzyme-activity. Toxicon 17, 539-548.
    Nunes, E.T., Mathias, M.I.C., Bechara, G.H., 2006. Rhipicephalus (Boophilus) microplus (Canestrini, 1887) (Acari: Ixodidae): Acid phosphatase and ATPase activities localization in salivary glands of females during the feeding period. Exp. Parasitol. 114,109-117.
    Oerke, E.C., Dehne, H.W., 2004. Safeguarding production-losses in major crops and the role of crop protection. Crop Prot. 23,275-285.
    Ortiz, G., Izabel, M., Mathias, C, 2006. Venom gland of Pachycondyla striata worker ants (Hymenoptera: Ponerinae). Ultrastructural characterization. Micron 37, 243-248.
    Oshima, Y., 1997. The phosphatase system in Saccharomyces cerevisiae. Genes Genet. Syst. 72,323-334.
    Ostwald, T.J., Maclennan, D.H., 1974. Isolation of a high affinity calcium-binding protein from sarcoplasmic reticulum. J. Biol. Chem. 249, 974-979.
    Palmenberg, A.C., 1990. Proteolytic processing of picornaviral polyprotein. Annu. Rev.Microbiol. 44, 603-623.
    Pan, J., Chen, X.X., 2003. A comparative study on the ultrastructure of the venom apparatus of two species of parasitic wasps (Hymenoptera) of Plutella xylostella (Lepidoptera). Chin. J.Electron Microsc. Soc. 22,298-303.
    Papakonstanti, E.A., Stournaras, C, 2008. Cell responses regulated by early reorganization of actin cytoskeleton. FEBS Lett. 582,2120-2127.
    Parkinson, N., Smith, I., Weaver, R., Edwards, J.P., 2001. A new form of arthropod phenoloxidase is abundant in venom of the parasitoid wasp Pimpla hypochondriaca. Insect Biochem. Mol. Biol. 31, 57-63.
    Parkinson, N., Smith, I., Weaver, R., Edwards, J.P., 2001. A new form of arthropod phenoloxidase is abundant in venom of the parasitoid wasp Pimpla hypochondriaca. Insect Biochem. Mol. Biol. 31, 57-63.
    Parkinson, N.M., Conyers, CM., Keen, J.N., MacNicoll, A.D., Smith, I., Weaver, R.J., 2003. cDNAs encoding large venom proteins from the parasitoid wasp Pimpla hypochondriaca identified by random sequence analysis. Comp. Biochem. Physiol. 134C, 513-520.
    Parkinson, N.M., Conyers, CM., Keen, J.N., MacNicoll, A.D., Smith, I., Audsley, N., Weaver,R.J., 2004. Towards a comprehensive view of the primary structure of venom proteins from the parasitoid wasp Pimpla hypochondriaca. Insect Biochem. Mol. Biol. 34, 565-571.
    Parkinson, N.M., Smith, I., Audsley, N., Edwards, J.P., 2002a. Purification of pimplin, a paralytic heterodimeric polypeptide from venom of the parasitoid wasp Pimpla hypochondriaca, and cloning of the cDNA encoding one of the subunits. Insect Biochem.Mol. Biol. 32,1 769-1 773.
    Parkinson, N.M., Richards, E.H., Conyers, C, Smith, I., Edwards, J.P., 2002b. Analysis of venom constituents from the parasitoid wasp Pimpla hypochondriaca and cloning of a cDNA encoding a venom protein. Insect Biochem. Mol. Biol. 32, 729-735.
    Parkinson, N.M., Conyers, C, Smith, I., 2002c. A venom protein from the endoparasitoid wasp Pimpla hypocondriaca is similar to snake venom reprolysin-type metalloproteases. J.Invertebr. Pathol. 79,129-131.
    Parkinson, N.M., Smith, I., Weaver, R., Edwards, J.P., 2001. A new form of arthropod phenoloxidase is abundant in venom of the parasitoid wasp Pimpla hypochondriaca. Insect Biochem. Mol. Biol. 31, 57-63.
    Parkinson, N.M., Weaver, R.J., 1999. Noxious components of venom from the pupal specific parasitoid Pimpla hypochondriaca. J. Invertebr. Pathol. 73, 74-83.
    Peiren, N., Vanrobaeys, F., de Graaf, D.C., Devreese, B., Beeumen, J.V., Jacobs, F.J., 2005. The protein composition of honeybee venom reconsidered by a proteomic approach. Biochim.Biophys. Acta 1752,1-5.
    Pellitteri-Hahn, M.C., Warren, M. C, Didier, D. N., Winkler, E. L., Mirza, S. P., Greene, A.S. ,Olivier, M. 2006. Improved mass spectrometric proteomic profiling of the secretome of rat vascular endothelial cells. J. Proteome Res. 5,2861-2864.
    Pennacchio, F., Strand, M.R., 2006. Evolution of developmental strategies in parasitic Hymenoptera. Annu. Rev. Entomol. 51, 233-258.
    Pennacchio, F., Vinson, S.B., Tremblay, E., Tanaka, T., 1994. Biochemical and developmental alterations of Heliothis virescens F. (Lepidoptera: Noctuidae) larvae induced by the endophagous parasitoid Cardiochiles nigriceps Viereck (Hymenoptera: Braconidae). Arch.Insect Biochem. Physiol. 26, 211-233.
    Piek, T., 1986. Venoms of the Hymenoptera: Biochemical, pharmacological and behavioral aspects. London: Academic press INC.
    Pinoni, S.A., Goldemberg, A.L. Mananes, A.A.L., 2005. Alkaline phosphatase activities in muscle of the euryhaline crab Chasmagnathus granulatus: Response to environmental alinity. J. Exp. Marine Biol. Ecol. 326,217-226.
    Prasain, N., Stevens, T., 2009. The actin cytoskeleton in endothelial cell phenotypes. Microvasc.Res. 77, 53-63.
    Qualmann, B.M., Kessels, M., Kelly, R.B., 2000. Molecular links between endocytosis and the actin cytoskeleton. J. Cell Biol. 15,111-116.
    Quicke, D.L.J., 1997. Parasitic Wasps. Chapman and Hall, London.Quicke, D.L.J., Achterberg, C, Godfray, H.C.J., 1997. Comparative morphology of the venom gland and reservoir in opiine and alysiine braconid wasps (Insecta, Hymenoptera,Braconidae). Zool. Scr. 26,23-50.
    Quicke, D.L.J., Tunstead, J., Falco, J.V., Marsh, P.M., 1992. Venom gland and reservoir morphology in the Doryctinae and related braconid wasps (Insecta, Hymenoptera,Braconidae). Zool. Scr. 21,403-416.
    Quistad, G.B., Nguyen, Q., Bernasconi, P., Leisy, D.J., 1994. Purification and characterization of insecticidal toxins from venom glands of the parasitic wasp, Bracon hebetor. Insect Biochem. Mol. Biol. 24, 955-961.
    Rahbe, Y., Digilio, M.C., Febvay, G, Guillaud, J., Fanti, P., Pennacchio, F., 2002. Metabolic and symbiotic interactions in amino acid pools of the pea aphid, Acyrthosiphon pisum,parasitized by the braconid Aphidius ervi. J. Insect Physiol. 48, 507-516.
    Ratcliffe, N.A., King, P.E., 1969. Morphological, ultrastructural, histochemical and electrophoretic studies on the venom system of Nasonia vitripennis Walker (Hymenoptera:Pteromalidae). J. Morphol. 127,177-204.
    Rath, S.S., Sinha, B.R.R.P., 2005. Parasitization of fifth instar tasar silkworm, Antheraea mylitta,by the uzi fly, Blepharipa zebina; a host-parasitoid interaction and its effect on host's nutritional parameters and parasitoid development. J. Invertebr. Pathol. 88, 70-78.
    Reece, K.S., McElroy, D., Wu, R., 1992. Function and evolution of actins. Evol. Biol. 26,1-34.
    Rees, J.A., Ali, S.Y., 1988. Ultrastructural localisation of alkaline phosphatase activity in osteoarthritic human articular cartilage. Annu. Rheum. Dis. 47, 747-753.
    Reineke, A., Asgari, S., 2005. Presence of a novel small RNAcontaining virus in a laboratory culture of the endoparasitic wasp Venturia canescens (Hymenoptera: Ichneumonidae). J.Insect Physiol. 51,127-135.
    Reineke, A., Asgari, S., Ma, G, Beck, M., Schmidt, O., 2002. Sequence analysis and expression of a virus-like particle protein, VLP2, from the parasitic wasp Venturia canescens. Insect Mol.Biol. 11,233-239.
    Reineke, A., L(?)bmann, S., 2005. Gene expression changes in Ephestia kuehniella caterpillars after parasitization by the endoparasitic wasp Venturia canescens analyzed through cDNA-AFLPs. J. Insect Physiol. 51, 923-932.
    Renault, S., Stasiak, K., Federici, B., Bigot, Y., 2005. Commensal and mutualistic relationships of reoviruses with their parasitoid wasp hosts. J. Insect Physiol. 51,137-148.
    Revenu, C, Athman, R., Robine, S., Louvard, D., 2004. The co-workers of actin filaments: from cell structures to signals. Nat. Rev. Mol. Cell Biol. 5, 635-646.
    Richards, E.H., Edwards, J.P., 2002. Parasitismof Lacanobia oleracea (Lepidoptera) by the ectoparasitic wasp, Eulophus pennicornis, disrupts the cytoskeleton of host haemocytes and suppresses encapsulation in vivo. Arch. Insect Biochem. Physiol. 49,108-124.
    Rivers, D.B., Hink, W.F., Denlinger, D.L., 1993. Toxicity of the venom from Nasonia vitripennis (Hymenoptera: Pteromalidae) toward fly hosts, nontarget insects, different developmental stages, and cultured insect cells. Toxicon 31,755-765.
    Roat, T.C., Nocelli, R.C.F., Landim, C.C., 2006. The venom gland of queens of Apis mellifera (Hymenoptera, Apidae): morphology and secretory cycle. Micron 37, 717-723.
    Robertson, P.L., 1968. A morphological and functional study of the venom apparatus in representatives of some major groups of Hymenoptera. Aust. J. Zool. 16,133-166.
    Rodrigues, M.C.A., Guimaraes, L.H.S., Liberate, J.L., Polizeli, M.L.T. M, Santos, W.F., 2006.Acid and alkaline phosphatase activities of a fraction isolated from Parawixia bistriata spider venom. Toxicon 47, 854-858.
    Rodriguez, J., Agudo, M, Van Damme, J., Vandekerckhove, J., Santar(?)n, J.F., 2000. Polypeptides differentially expressed in imaginal discs define the peroxiredoxin family of genes in Drosophila. Eur. J. Biochem. 267,487-497.
    Roesch, A., Becker, B., Meyer, S., Wild, P., Hafner, C, Landthaler, M., Vogt, T., 2005. Retinoblastoma-binding protein 2-homolog 1: a retinoblastoma-binding protein downregulated in malignant melanomas. Mod. Pathol. 18, 1249-1257.
    Ryder, T.A., Bowen, I.D., 1975. A method for the fine structural localization of acid phosphatase activity using />-nitrophenyl phosphate as substrate. J. Histochem. Cytochem.23, 235-237.
    Sakurai, H., Fujii, T., Izumi, S., Tomino, S., 1988. Complete nucleotide sequence of gene for sex-specific storage protein of Bombyx mori. Nucleic Acid Res. 16, 7717-7718.
    Salvador, G., Consoli, F.L., 2008. Changes in the hemolymph and fat body metabolites of Diatraea saccharalis (Fabricius) (Lepidoptera: Crambidae) parasitized by Cotesia flavipes (Cameron) (Hymenoptera: Braconidae). Biol. Control 45,103-110.
    Sano, K.I., Maeda, K., Oki, M., Maeda, Y., 2002. Enhancement of protein expression in insect cells by a lobster tropomyosin cDNA leader sequence. FEBS Lett. 532,143-146.
    Santos, V.L.P., Franco, C.R.C., Viggiano, R.L.L., Silveira, R.B., Cantao, M.P., Mangili, O.C.,Veiga, S.S., Gremski, W., 2000. Structural and ultrastructural description of the venom gland of Loxosceles intermedia (brown spider). Toxicon 38,265-285.
    Sarathchandra, P., Cassella, J.P., AH, S.Y., 2005. Enzyme histochemical localisation of alkaline phosphatase activity in osteogenesis imperfecta bone and growth plate: A preliminary study.Micron 36, 715-720.
    Sasaki, J., Nakashima, N., 1999. Translational initiation at the CUU codon is mediated by the internal ribosome entry site of an insect picorna-like virus in vitro. J. Virol. 73,1219-1226.
    Schaeffer, R.C.J., Bernick, S., Rosenquist, T.H., Russell, F.E., 1972. The histochemistry of the venom glands of the rattlesnake Crotalus viridis helleri. II. Monoamine oxidase, acid and alkaline phosphatase. Toxicon. 10,295-297.
    Schafellner, C, Marktl, R.C., Nussbaumer, C, Schopf, A., 2004. Parasitism-induced effects of Glyptapanteles liparidis (Hym., Braconidae) on the juvenile hormone titer of its host,Lymantria dispar. the role of the parasitoid larvae. J. Insect Physiol. 50,1181 -1189.
    Schlenke, T.A., Morales, J., Govind, S., Clark, A.G., 2007. Contrasting infection strategies in generalist and specialist wasp parasitoids of Drosophila melanogaster. PLoS Pathog. 3,1486-1501.
    Schmidt, J.O., 1986. Chemistry, pharmacology and chemical ecology of ant venoms. In:Venoms of the Hymenoptera. (Piek T, Ed.). London: Academic Press, pp. 425.
    Schmidt, J.O., 1986. Chemistry, pharmacology and chemical ecology of ant venoms. In:Venoms of the Hymenoptera. (Piek T, Ed.). London: Academic Press, pp. 425-506.
    Schmidt, O., 2006. At the core of parasitoid-host interactions. Arch. Insect Biochem. Physiol. 61,107-109.
    Schmidt, O., Glatz, R.V., Asgari, S., Roberts, H.S.L., 2005. Are insect immune suppressors driving cellular uptake reactions? Arch. Insect Biochem. Physiol. 60,153-158.
    Schmidt, O., Theopold, U., Strand, M., 2001. Innate immunity and its evasion and suppression by hymenopteran endoparasitoids. BioEssays 23, 344-351.
    Schoeters, E., Billen, J., 1995a. Morphology and ultrastructure of the convoluted gland in the ant Dinoponera australis (Hymenoptera: Formicidae). Int. J. Insect Morphol. Embryol. 24,323-332.
    Schoeters, E., Billen, J., 1995b. Morphology and ultrastructure of a secretory region enclosed by the venom reservoir in social wasps (Insecta: Hymenoptera). Zoomorphology 115, 63-71.
    Scotti, P.D., Longworth, J.F., Plus, N., Croizier, G, Reinganum, C, 1981. The biology and ecology of strains of an insect small RNA virus complex. Adv. Virus Res. 26, 117-143.
    Sharma, R., Komatsu, S., Nod, H., 2005. Proteomic analysis of brown planthopper: application to the study of carbamate toxicity. Insect Biochem. Mol. Biol. 34,425-432.
    Shelby, K.S., Cui, L., Webb, B.A., 1998. Polydnavirus-mediated inhibition of lysozyme gene expression and the antibacterial response. Insect Mol. Biol. 7,265-72.
    Shelby, K.S., Webb, B.A., 1994. Polydnavirus infection inhibits synthesis of an insect plasma protein, arylphorin. J. Gen. Virol. 75,2285-2292.
    Shelby, K.S., Webb, B.A., 1997. Polydnavirus infection inhibits translation of specific growth-associated host proteins. Insect Biochem. Mol. Biol. 27,263-70.
    Shevchenko, A., Wilm, M., Vorm, O., Mann, M., 1996. Mass spectrometric sequencing of proteins from silver-stained polyacrylamide gels. Anal. Chem. 68, 850-858.
    Shimizu, T., Tstsuki, Y., Takeda, N., 1993. Aromatic amino acid in the venom of braconid parasitoid, Apanteles kariyai. Z. Naturforsch. 48C, 108-109.
    Shimizu-Hirota, R., Sasamura, H., Kuroda, M., Kobayashi, E., Saruta, T., 2004. Functional characterization of podocan, a member of a new class in the small leucine-rich repeat protein family. FEBS Lett. 563, 69-74.
    Shu, S., Park, Y.I., Ramaswamy, S.B., Srinivasan, A., 1997. Hemolymph juvenile hormone titers in pupal and adult stages of southwestern corn borer [Diatraea grandiosella (pyralidae)] and relationship with egg development. J. Insect Physiol. 43: 719-726.
    Skinner, W.S., Dennis, P.A., Quistad, G.B., 1990. Partial characterization of toxins from Goniozus legneri (Hymenoptera: Bethylidae). J. Econ. Entomol. 83, 733-736.
    Small, J.V., Rottner, K., Kaverina, I., Anderson, K.I., 1998. Assembling an actin cytoskeleton for cell attachment and movement. Biochim. Biophys. Acta. 1404, 271-281.
    Soldatova, L.N., Bakst, J. B., Hoffman, D.R., Slater, J. E., 2000. 1105 Molecular cloning of a new honeybee venom allergen, acid phosphatase. J. Allergy Clin. Immun. 105, S378.
    Song, K.H., Jung, M.K., Eum, J.H., Hwang, I.C., Sik-Han, S., 2008. Proteomic analysis of parasitized Plutella xylostella larvae plasma. J. Insect Physiol. 54, 1271-1280.
    Sookrung, N., Chaicumpa, W., Tungtrongchitr, A., Vichyanond, P., Bunnag, C, Ramasoota, P.,Tongtawe, P., Sakolvaree, Y., Tapchaisri, P., 2006. Periplaneta americana arginine kinase as a major cockroach allergen among Thai patients with major cockroach allergies. Environ.Health Perspect. 114, 875-880.
    Spyliotopoulos, A., Gkouvitsas, T., Fantinou, A., Kourti, A., 2007. Expression of a cDNA encoding a member of the hexamerin storage proteins from the moth Sesamia nonagrioides (Lef.) during diapause. Comp. Biochem. Physiol. 148B, 44-54.
    Stasiak, K., Renault, S., Federici, B.A., Bigot, Y., 2005. Characteristics of pathogenic and mutualistic relationships of ascoviruses in field populations of parasitoid wasps. J. Insect Physiol. 51, 103-115.
    Steiner, B., Pfister-Wilhelm, R., Grossniklaus-B(?)rgin, C, Rembold, H., Treiblmayr, K.,Lanzrein, B., 1999. Tites of Juvenile hormone Ⅰ, Ⅱ and Ⅲ in Spodoptera littoralis (Noctuidae) from the egg to the Pupal moult and their modification by the egg-larval parasitoid Chelonus inanitus (Braconidae). J. Insect Physiol. 45,401-413.
    Stettler, P., Trenczek, T., Wyler, T., Pfister-Wilhelm, R.., Lanzrein, B., 1998. Overview of parasitism associated effects on host haemocytes in larval parasitoids and comparison with effects of the egg-larval parasitoid Chelonus inanitus on its host Spodoptera littoralis. J.Insect Physiol. 44, 817-831.
    Stoltz, D.B., Whitfield, J.B., 1992. Viruses and virus-like entities in the parasitic Hymenoptera.J. Hymenopt. Res. 1, 125-139.
    Strand, M.R., Clark, K.C., Gardiner, E.M.M., 1999. Plasmatocyte spreading peptide does not induce Microplitis demolitor polydnavirus-infected plasmatocytes to spread on foreign durfaces. Arch. Insect Biochem. Physiol. 40,41-52.
    Strand, M.R., Dover, B.A., Johnson, J.A., 1990. Alteration in ecdysisteroid and juvenile hormone esterase profiles of Trichoplusia ni parasitized by the polyembryonic wasp Copidosoma floridanum. Arch. Insect Biochem. Physiol. 13,41-51.
    Strand, M.R., Johnson, J.A., Noda, T., Dover, B.A., 1994. Development and partial characterization of monoclonal antibodies to venom of the parasitoid Microplitis demolitor.Arch. Insect Biochem. Physiol. 26, 123-136.
    Strand, M.R., Pech, L.L., 1995. Immunological basis for compatibility in parasitoid-host relationships. Annu. Rev. Entomol. 40, 31-56.
    Suderman, R.J., Pruijssers, A.J., Strand, M.R., 2008. Protein tyrosine phosphatase-H2 from a polydnavirus induces apoptosis of insect cells. J. Gen. Virol. 89,1411-1420.
    Suzuki, M., Tanaka, T., 2006. Virus-like particles in venom of Meteorus pulchricornis induce host hemocyte apoptosis. J. Insect Physiol. 52, 602-613.
    Suzuki, Y., Mizutani, Y., Tsuji, T., Ohtani, N., Takano, K., Haruki, M., Morikawa, M., Kanaya,S., 2005. Gene cloning, overproduction, and characterization of thermolabile alkaline phosphatase from a psychrotrophic bacterium. Bioscience Biotech. Biochem. 69, 364-373.
    Tabashnik, B.E., Gassmann, A.J., Crowder, D.W., Carri(?)re, Y., 2008. Insect resistance to Bt crops: evidence versus theory. Nat. Biotechnol. 26, 199-201.
    Takeuchi, M, Mizuta, C, Uda, K., Fujimoto, N., Okamoto, M., Suzuki, T., 2004. Unique evolution of Bivalvia arginine kinases. Cell Mol. Life Sci. 61,110-117.
    Tamura, K., Dudley, J., Nei, M., Kumar, S., 2007. MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24,1596-1599.
    Tanaka, K., Lapointe, R., Barney, W.E., Makkay, A.M., Stoltz, D., Cusson, M., Webb B.A., 2007.Shared and species-specific features among ichno virus genomes. Virology 363,26-35.
    Tanaka, T., Vinson, S.B., 1991. Depression of prothoracic gland activity of Heliothis virescens by venom and calyx fluids from the parasitoid, Cardiochiles nigriceps. J. Insect Physiol. 37,139-144.
    Tawfik, I., Tanaka, Y, Tanaka, S., 2002. Possible involvement of ecdysteroids in embryonic diapause of Locusta migratoria. J. Insect Physiol. 48, 743-749.
    Taylor, T., Jones, D., 1990. Isolation and characterization of the 32.5 kDa protein from the venom of an endoparasitic wasp. Biochim. Biophys. Acta 1035, 37-43.
    Telfer, W.H., Kunkel, J.G., 1991. The function and evolution of insect storage hexamerins.Annu. Rev. Entomol. 36, 205-228.
    Teramoto, T, Tanaka, T, 2004. Mechanism of reduction in the number of the circulating hemocytes in the Pseudaletia separata host parasitized by Cotesia kariyai. J. Insect Physiol.50,1103-1111.
    Terra, W.R., Ferreira, C, Bianchi, A.G., 1979. Distribution of digestive enzymes among the endo- and ectoperitrophic spaces and midgut cells of Rhynchosciara and its physiological significance. J. Insect Physiol. 25,487-494.
    Thoetkiattikul, H., Beck, M.H., Strand, M.R., 2005. Inhibitor ?B-like proteins from a polydnavirus inhibit NF-kB activation and suppress the insect immune response. Proc. Natl.Acad. Sci. USA 102,11426-11431.
    Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F., Higgins, D.G, 1997. The CLUSTALX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25, 4876-4882.
    Thompson, S.N., Redak, R.A., Wang, L.W., 2001. Altered dietary nutrient intake maintain metabolic homeostasis in parasitized larvae of the insect Manduca sexta L.. J. Exp. Biol. 204,4065-4080.
    Torriani, A., 1990. From cell membrane to nucleotides: the phosphate regulation in Escherichia coli. BioEssays 12, 371-376.
    Tungjitwitayakul, J., Singtripop, T., Nettagul, A., Oda, Y., Tatun, N., Sekimoto T., Sakurai, S.,2008. Identification, characterization, and developmental regulation of two storage proteins in the bamboo borer Omphisa fuscidentalis. J. Insect Physiol. 54, 62-76.
    Untalana, P.M., Guerreroa, F.D., Hainesb, L.R., Pearson, T.W., 2005. Proteome analysis of abundantly expressed proteins from unfed larvae of the cattle tick, Boophilus microplus.Insect Biochem. Mol. Biol. 35,141-151.
    US Census Bureau, 2006. World population information. U. S. Census Bureau,Population Division, International Programs Center. Last Revised: June 8, 2006.
    Van Merle, J., Piek, T., 1986. Morphology of venom apparatus. In: Piek T, editor. Venoms of the Hymenoptera. New York: Academic Press, pp. 17-44.
    van Munster, M., Dullemans, A.M., Verbeek, M., van den Heuvel, J.F.J.M., Cl(?)rivet, A., van der Wilk, R, 2002. Sequence analysis and genomic organization of Aphid lethal paralysis virus:a new member of the family Dicistroviridae. J. Gene. Virol. 83, 3131-3138.
    Van Troys, M., Huyck, L., Leyman, S., Dhaese, S., Vandekerkhove, J., Ampe, C, 2008. Ins and outs of ADF/cofilin activity and regulation. Eur. J. Cell Biol. 87, 649-667.
    Vardal, H., 2006. Venom gland and reservoir morphology in cynipoid wasps. Arthropod Struct.Dev. 35,127-136.
    Vass, E., Nappi, A.J., 2000. Developmental and immunological aspects of Drosophila-parasitoid relationships. J. Parasitol. 86,1259-1270.
    Veiga-Malta, I., Duarte, M., Dinis, M., Tavares, D., Videira, A., Ferreira, P., 2004. Enolase from Streptococcus sobrinus is an immunosuppressive protein. Cell. Immunol. 6, 79-88.
    Vincent, J.B., Crowder, M.W., Averill, B.A., 1992. Hydrolysis of phosphate monoesters-a biological problem with multiple chemical solutions. Trends Biochem. Sci. 17, 105-110.
    Vinson, S.B., 1990. How parasitoids seal with the immune system of their host: an oveview.Arch. Insect Biochem. Physiol. 13, 3-27.
    Visser, B.J., Labruy(?)re, W.T., Spanjer, W., Piek, T., 1983. Characterization of two paralysing protein toxins (A-MTX, and B-MTX), isolated from a homogenate of the wasp Microbracon hebetor (Say). Comp. Biochem. Physiol. 75B, 523-530.
    Wang, Z.W., Yu, R.X., Chen, X.X., 2006. Venom apparatus of the endoparasitoid wasp Opius caricivorae Fischer (Hymenoptera: Braconidae): morphology and ultrastructure. Microscopy Res. Technique 69, 820-825.
    Wang, X.Q., Yu, S.P., 2005. Novel regulation of Na~+, K~+-ATPase by Src tyrosine kinases in cortical neurons. J. Neurochem. 93,1515-1523.
    Weaver, R.J., Marris, G.C., Olieff, S., Mosson, J.H., Edwards, J.P., 1997. Role of ectoparasitoid venom in the regulation of haemolymph ecdysteroid titres in a host noctuid moth. Arch.Insect Biochem. Physiol. 35,169-178. Webb, B.A., Luckhart, S., 1994. Evidence for an early immunosuppressive role for related Campoletis sonorensis venom and ovarian proteins in Heliothis virescens. Arch. Insect Biochem. Physiol. 26, 147-163. Webb, B.A., Strand, M.R., Dickey, S.E., Beck, M.H., Hilgarth, R.S., Barney, WE., Kadash, K.,Kroemer, J.A., Lindstrom, K.G, Rattanadechakul, W., Shelby, K.S., Thoetkiattikul, H.,Turnbull, M.W., Witherell, R. A., 2006. Polydnavirus genomes reflect their dual roles as mutualists and pathogens. Virology 347,160-174. Webb, B.A., Summers, M.D., 1990. Venom and viral expression products of the endoparasitic wasp Campoletis sonorensis share epitopes and related sequences. Proc. Natl. Acad. Sci.USA 87,4961-4965. Wend, T., Leonard, K., 1999. Structure of the insect troponin complex. J. Mol. Biol. 285,1845-1856.
    Wertheim, B., Kraaijeveld, A.R., Schuster, E., Blanc, E., Hopkins, M., Pletcher, S.D., Strand,M.R., Partridge, L., Godfray, H.C., 2005. Genome-wide gene expression in response to parasitoid attack in Drosophila. Genome Biol. 6, R94.Whetstone, P.A., Hammock, B.D., 2007. Delivery methods for peptide and protein toxins in insect control. Toxicon 49, 576-596.
    Whitfield, J.B., 1998. Phylogeny and evolution of host-parasitoid interactions in Hymenoptera.Annu. Rev. Entomol. 43,129-151.
    Whitfield, J.B., Asgari, S., 2003. Virus or not? Phylogenetics of polydnaviruses and their wasp carriers. J. Insect Physiol. 49, 397-405.
    Williams, M.J., Ando, I., Hultmark, D., 2005. Drosophila melanogaster Rac2 is necessary for a proper cellular immune response. Genes Cells 10, 813-823.
    Williams, M.J., Wiklund, M.L., Wikman, S., Hultmark, D., 2006. Racl signalling in the Drosophila larval cellular immune response. J. Cell Science 119,2015-2024.
    Willott, E., Wang, X.Y., Wells, M.A., 1989. cDNA and gene sequence of Manduca sexta arylphorin, an aromatic amino acid-rich larval serum protein: homology to arthropod hemocyanins. J. Biol. Chem. 264, 19052-19059.
    Wilson, J.E., Powell, M.J., Hoover, S.E., Sarnow, P., 2000. Naturally occurring dicistronic cricket paralysis virus RNA is regulated by two internal ribosome entry sites. Mol. Cell. Biol.20, 4990-4999.
    Windass, J.D., Duncan, R.E., Christian, P.D., Baule, V.J., 1996. International Patent-WO 96/16171.
    Wittig, I., Schagger, H., 2008. Structural organization of mitochondrial ATP synthase. Biochim.Biophys. Acta-Bioenerg. 1777, 592-598.
    Wood, S.R., Zhao, Q., Smith, L.H., Daniels, C.K., 2003. Altered morphology in cultured rat intestinal epithelial IEC-6 cells is associated with alkaline phosphatase expression. Tissue Cell 35,47-58.
    Woolaway, K.E., Lazaridis, K., Belsham, G.J., Carter, M.J., Roberts, L.O., 2001. The 5' untranslated region of Rhopalosiphum padi virus contains an internal ribosome entry site which functions efficiently in mammalian, plant, and insect translation systems. J. Virol. 75,10244-10249.
    Wu, K.M., Lu, Y.H., Feng, H.Q., Jiang, Y.Y., Zhao, J.Z., 2008. Suppression of cotton bollworm in multiple crops in China in areas with Bt toxin-containing cotton. Science 321,1676-1678.
    Wu, M.L., Ye, G.Y., Zhu, J.Y., Hu, C, 2008. Isolation and characterization of an immunosuppressive protein from venom of the pupa-specific endoparasitoid Pteromalus puparum. J. Invertebr. Pathol. 99,186-191.
    Wu, Q.Y., Li, F., Zhu, W.J., Wang, X.Y., 2007. Cloning, expression, purification, and characterization of arginine kinase from Locusta migratoria manilensis. Comp. Biochem.Physiol. 148B, 355-362.
    Wyss, M., Smeitink, J., Wevers, R., Wallimann, T., 1992. Mitochondrial creatine kinase: a key enzyme of aerobic energy metabolism. Biochim. Biophys. Acta 1102,119-166.
    Xia, Y., Clarkson, J.M., Charnley, A.K., 2001. Acid phosphatase of Metarhizium anisopliae during infection of the tobacco hornworm Manduca sexta. Arch. Microbiol. 176,427- 434.
    Xia, Y., Dean, P., Judge, A.J., Gillespie, J.P., Clarkson, J.M., Charnley, A.K., 2000. Acid phosphatase in the haemolymph of the desert locust, Schistocerca gregaria, infected with the entomopathogenic fungus Metarhizium anisopliae. J. Insect Physiol. 46,1249-1257.
    Yamamoto, T., Arimoto, H., Kinumi, T., Oba, Y., Uemura, D., 2007. Identification of proteins from venom of the paralytic spider wasp, Cyphononyx dorsalis. Insect Biochem. Mol. Biol.37, 278-286.
    Yang, M.Y., Wang, Z., MacPherson, M., Dow, J.A., Kaiser, K., 2000. A novel Drosophila alkaline phosphatase specific to the ellipsoid body of the adult brain and the lower Malpighian (renal) tubule. Genetics 154, 285-297.
    Yao, C.L., Wu, C.G., Xiang, J.H., Dong, B., 2005. Molecular cloning and response to laminarin stimulation of arginine kinase in haemolymph in Chinese shrimp, Fenneropenaeus chinensis.Fish Shellfish Immunol. 19, 317-329.
    Yao, L., Pike, S. E., Tosato, G., 2002. Laminin binding to the calreticulin fragment vasostatin .regulates endothelial cell function. J. Leukoc. Biol. 71,47-53.
    Ye, G.Y., Zhu, J.Y., Zhang, Z., Fang, Q., Cai, J., Hu, C, 2007. Venom from the endoparasitoid Pteromalus puparum (Hymenoptera: Pteromalidae) adversely affects host hemocytes:differential toxicity and microstructural and ultrastructural changes in plasmatocytes and granular cells. In: Rivers, D., Yolder, J. (Eds.), Recent Advances in the Biochemistry,Toxicity, and Mode of Action of Parasitic Wasp Venoms. Research Signpost, Kerala, India,pp. 115-127.
    Yeoh, S., Pope, B., Mannherz, H.G., Weeds, A., 2002. Determining the differences in actin binding by human ADF and cofilin. J. Mol. Biol. 315, 911-925.
    Yevtushenko, D.P., Romero, R., Forward, B.S., Hancock, R.E., Kay, W.W., Misra, S., 2005.Pathogen-induced expression of a cecropin a-melittin antimicrobial peptide gene confers antifungal resistance in transgenic tobacco. J. Exp. Bot. 56,1 685-1 695.
    Yi, S.X., Adams, T.S., 2001. Age- and diapause-related acid and alkaline phosphatase activities in the intestine and Malpighian tubules of the Colorado potato beetle, Leptinotarsa decemlineata (Say). Arch. Insect Biochem. Physiol. 46,152-163.
    Zaldivar-Riveron, A., Areekul, B., Shaw, M.R., Quicke, D.L.J., 2004. Comparative morphology of the venom apparatus in the braconid wasp subfamily Rogadinae (Insecta, Hymenoptera,Braconidae) and related taxa. Zool. Scr. 33,223-237.
    Zhang, G.M., Schmidt, O., Asgari, S., 2004a. A novel venom peptide from an endoparasitoid wasp is required for expression of polydnavirus genes in host hemocytes. J. Biol. Chem. 279,41580-41585.
    Zhang, G.M., Lu, Z.Q., Jiang, H.B., Asgari, S, 2004b. Negative regulation of prophenoloxidase (proPO) activation by a clip-domain serine proteinase homolog (SPH) from endoparasitoid venom. Insect Biochem. Mol. Biol. 34,477-483.
    Zhang, G.M., Schmidt, O., Asgari, S., 2006a. A calreticulin-like protein from endoparasitoid venom fluid is involved in host hemocyte inactivation. Dev. Comp. Immunol. 30, 756-764.
    Zhang, J., Sachio Iwai, Tsugehara, T., Takeda, M., 2006b. MblDGF, a novel member of the imaginal disc growth factor family in Mamestra brassicae, stimulates cell proliferation in two lepidopteran cell lines without insulin. Insect Biochem. Mol. Biol. 36, 536-546.
    Zhang, Z., Ye, G.Y., Cai, J., Hu, C, 2005. Comparative venom toxicity between Pteromalus puparum and Nasonia vitripennis (Hymenoptera: Pteromalidae) toward the hemocytes of their natural hosts, non-target insects and cultured insect cells. Toxicon 46, 337-349.
    Zhu, Y.C., Muthukrishnan, S., Kramer, K.J., 2002. cDNA sequences and mRNA levels of two hexamerin storage proteins PinSP1 and PinSP2 from the Indian meal moth,Plodia interpunctella.Insect Biochem.Mol.Biol.32,525-536.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700