用户名: 密码: 验证码:
中国人参(Panax ginseng C.A.Meyer)野生和栽培类型的遗传多样性和DNA甲基化多态性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人参是重要的药用植物,被称为“百草之王”。在野生人参与栽培人参之间巨大的价格差异的商业利益驱使下,人们对野生人参资源进行过度开采,以至于野生人参已经处于灭绝的边缘,现在已经不得不通过栽培来满足野生人参市场的需要。众所周知,对于植物物种的栽培驯化会导致其遗传多样性的大量丢失。为了了解野生和栽培人参类型之间遗传多样性的差异,我们开展了本文研究工作。
     然而,关于人参野生型和栽培型的遗传和表观遗传差异依然处于未知阶段,为解决此问题,我们首先选择中国人参(Panax ginseng)野生和栽培两个类群中的17个单株,西洋参的4个单株和一个五加科外群种(短梗五加Acanthopanax sessiliflorus)的1个单株。利用筛选的24对引物,进行了扩增片段长度多态性(AFLP)分析,共产生了1490个位点(平均每对引物62个位点),其中有1342个位点在22个单株中呈现多态性,多态性水平为90.06%。UPGMA聚类分析显示,在所有研究的人参单株中,只有西洋参形成一个单独的分组,野生型和栽培型没有形成明确的分组。在随后的分析中也证明了这一点:PCOORDA分析显示了相同的分组情况。我们发现西洋参与人参的几个亚组之间存在着很高水平的的遗传差异,范围在0.3699 (AMG vs. WLG)到0.4715 (AMG vs. CHB)之间。在栽培和野生型(WLG and WDM)人参中只发现了较低水平的遗传差异,除了“长脖”和“石柱”之外其他的都几乎具有相同的差异趋势。另外,这两个组(野生和栽培人参)之间遗传差异的相关系数很低(0.2057),说明只有25.57%的遗传差异属于两个组之间的,79.43%的遗传差异都属于这两个组之中单株之间的差异。AMOVA分析显示遗传多样性的大部分(91.64%; P <0.001)存在于组内(野生/栽培),而只有8.36% (P >0.001)的遗传多样性存在于两个组之间。
     我们进一步进行了甲基化敏感多态性分析(MSAP),通过筛选的28对引物进行扩增,总共生成1821个清晰可重复的位点,其中有379个(20.81%)是甲基化的位点,79.19%是非甲基化位点。甲基化不敏感多态性(MISP)分析的结果与AFLP分析结果相一致。结合AFLP和MIP结果分析显示,人参野生和栽培群体之间遗传距离非常近。
     与遗传多态性相反的是,甲基化敏感多态性(MSP)结果显示出不同的单株形成明显的分组,除了天然野生型(WLG)和栽培野生型(WDM)之外,每个亚组都能够单独聚类,前者仍然聚类成一组。PCOORDA分析显示出相同的分组结果确证了前述结论。同时在CG和CNG位点甲基化水平上野生型和一些栽培型中发现了明显的差异,“长脖”和“石柱”的甲基化水平最低,只有野生型组群(WLG或WDM)的三分之一左右。进一步AMOVA分析显示组间DNA甲基化多样性要比AFLP和MIP方法高(分别为8.36%和9.17%)。两组之间相关性分析,例如野生和栽培人参,显示了表观遗传差异在平均水平上高于遗传差异。这表明人参的驯化过程在全基因组水平上诱导产生了大量甲基化多态性。最后,通过亚硫酸盐测序对甲基化敏感多态性结果进行验证,结果显示栽培型(特别是“长脖”和“石柱”)中的甲基化水平较低,野生型人参的甲基化水平较高。
     基于Jaccard相似性相关系数的Mantel分析显示,在所研究的单株中,遗传和表观遗传多态性没有显著相关性,这进一步说明在人参驯化过程中,DNA甲基化水平和模式受到了较大的影响。
     将两个亚组之间呈现遗传和甲基化差异的条带回收测序并进行同源性分析,结果显示,有部分条带序列与已知功能或推测蛋白编码基因同源,然而很少甚至没有与重复序列如转座子和反转座子同源的序列。这暗示,这些野生和栽培人参中发生的表观遗传变异的序列可能影响了基因的差异表达。
Orient Ginseng (Panax ginseng C. A. Meyer) is one of the most important global plants used in traditional medicine. The demand of this slow growing plant has exceeded its resources in the wild; this has necessitated a commercial cultivation although the wild type is still ten thousands costlier than the cultivated type in the markets. Hence, this valuable wild plant remains endangered due to the commercial differences between the wild and the domesticated types. Although studies in other plants have shown that the domestication of a plant has a tendency of narrowing genetic diversity, the genetic diversity and epigenetic variation between the wild plants and the cultivated landraces of the Orient ginseng remains unexplored.
     To address these issues, amplified fragment length polymorphism (AFLP) analysis was performed with 24 selected primers on seventeen Orient ginseng plants to represent: three natural wild plants (WLG), three cultivated wild plants (WDM), and eleven domesticated landraces; (Damaya (DMY), Yuanbangyuanlu (YUAN), Changbo (CHB), and Shizhu (SHIZHU), together with four cultivated American ginseng plants (AMG) and one Acanthopanax sessiliflorus as an outgroup. The selected AFLP primers generated a total of 1490 loci (average 62 loci per primer) of which 1342 loci were polymorphic among 22 plants with a high level of polymorphism (90.06%). UPGMA Cluster analysis showed that, apart from the American ginseng that formed a distinct cluster, no clear grouping for all studied plants of ginseng was evident either for the wild or the domesticated Orient ginseng landraces. This was corroborated by principal coordinate analysis (PCOORDA) that showed the same grouping. High levels of genetic distance were observed between American ginseng and each sub-group of the Orient ginseng, ranging from 0.3699 (AMG vs WLG) to 0.4715 (AMG vs CHB). Lower levels of genetic distance were observed between WLG and WDM and the cultivated plant groups (DMY, YUAN, CHB, and SHIZHU) and were almost in the same trend though Changbo and Shizhu tended to be distant from the others. In addition, the coefficient of genetic differentiation between the two groups (Wild and Cultivated ginsengs) was low (Gst = 0.2057), showing that only 20.57% of genetic differentiation resided between the two groups, while 79.43% resided in different plants of the two groups. Analysis of molecular variance (AMOVA) showed that a significant proportion of genetic variation (91.64%; P <0.001) resided within groups (wild/cultivated) while only 8.36% (P >0.001) of the total genetic variation resided between the two groups.
     Secondly methylation sensitive amplification polymorphism (MSAP) with 28 selected primers was performed on the same plants. This generated a total of 1821 clear and reproducible sites, of which 379 (20.81%) were methylated while 79.19% were un-methylated. Similar results to AFLP markers were observed by using methylation insensitive polymorphisms (MIP). The combined AFLP and MIP results showed that wild and cultivated groups of P. ginseng were not genetically distinct. On the contrary, methylation sensitive polymorphisms (MSP) showed a distinct grouping of different plants, each sub-group forming a cluster although the natural wild (WLG) and the cultivated wild (WDM) remained clustered together. This was corroborated by principal coordinate analysis (PCOORDA) that showed the same grouping. Clear differences in methylation levels at both CG and CHG sites between wild and some cultivated plants were also observed, the lowest levels of methylation being observed in Yuanbangyuanlu, Changbo and Shizhu being almost a third of the methylation level in wild groups (WLG or WDM). Moreover, AMOVA showed that the inter-group epigenetic variation was higher than AFLP and MIP methods (8.36 and 9.17% respectively). Coefficients of epigenetic differentiation showed a proportion higher than genetic (Gst = 34.59%) resided between the two groups, i.e., wild and cultivated ginseng plants. This indicates that domestication of ginseng engendered clear global methylation polymorphisms between wild and cultivated plants of P. ginseng.
     Finally, bisulfite sequencing analysis validated the MSP results showing lower levels of methylation in the cultivated type (especially in Changbo and Shizhu) while higher levels were shown in the wild groups of P. ginseng. Mantel test based on Jaccard coefficients of similarity showed absence of correlation between genetic and epigenetic polymorphisms between the studied plants, suggesting that only the cytosine DNA methylation was affected by domestication of ginseng. Sequence analysis of a subset of genetic and epigenetic variable bands between different sub-groups of ginseng showed homology to known-functional and putative protein-coding genes while repetitive sequences such as retrotransposons or transposons were less-represented.
引文
[1] Hu S Y. A contribution of our knowledge of ginseng [J]. Am J Chin Med, 1977, 5: 1- 23.
    [2] Wu Z Y. On the significance of Pacific intercontinental discontinuity [J]. Ann Mo Bot Gard, 1983, 70: 577-590.
    [3] Wen J, Zimmer E A. Phylogeny and biogeography of Panax L. (the Ginseng genus, Araliaceae): inferences from ITS sequences of nuclear ribosomal DNA [J]. Molecular Phylogenetics and Evolution, 1996, 6: 167-177.
    [4] Proctor JTA, WG Bailey. Ginseng: industry, botany, and culture [J]. Hortic Rev, 1987, 9:187-236.
    [5] Hu S Y, L Rudenberg, Tredici D P. Studies of American ginsengs [J]. Rhodora. 1980, 82:627-636. [6 ] Bai D, Brandle J, Reeleder R. Genetic Diversity in North American Ginseng (Panax quinquefolius L.) Grown in Ontario Detected by RAPD Analysis [J]. Genome, 1997, 40:111-115.
    [7] Hwang J K, Yang H C. Studies on Physiological Chemistry of Flower Organ and Seed in Ginseng Plant: 1. Variation of Free Amino Acids during the Growth of Flower Organ and Seed [J]. Insam Munhun Teukjip (Seoul), 1974, (5): 91-101.
    [8] Zhuravlev, Yu N, Kozyrenko M M, Artyukova E V, et al., PCR-Based Genotyping of Ginseng with Arbitrary Primers [J]. Dokl Ak ad Nauk, 1996, 349: 111-114.
    [9] Shin C S, Park S Y, Jo J S, Lim Y P. Classification of the Ginseng by Using RAPD Analysis, and the Markers for Identification of Korean Ginseng, Advances in Ginseng Research: Proc. 7th Int. Symp on Ginseng, Hoon Huh, Kang Ju Choi, and Young Choong Kim, Eds., Seoul, Korea, 1998, 126-127.
    [10] Ma X, Wang X, Xiao P, Hong D. A Study on Germplasm of Panax ginseng and its DNA Fingerprinting, Advances in Ginseng Research: Proc. 7th Int. Symp. on Ginseng, Hoon Huh, Kang Ju Choi, and Young Choong Kim, Eds., Seoul, Korea, 1998, 89-90.
    [11] Choi K-T. Botanical characteristics, pharmacological effects and Medicinal components of Korean Panax ginseng C A Meyer [J]. Acta Pharmacologica Sinica, 2008, 29 (9): 1109-1118
    [12] Song Y N: "Botanical origin of shenye in Sichuan Province.[Chinese]" [J]. Chung Yao Tung Pao, 1986, 11(10).
    [13] Song Y N, Xie C K: "A taxonomical study on plants of the genus Panax in Sichuan. [Chinese]" [J]. Hua Hsi I Ko Ta Hsueh Hsueh Pao, 1986, 17(4).
    [14] Samukawa K, Yamashita H, Matsuda H, Kubo M: Simultaneous analysis of ginsenosides of various ginseng radix by HPLC [Japanese] [J]. Yakugaku Zasshi, 1995, 115(3)
    [15] Liu H, Liu T, Ren F, Hu B: Amino acid analysis of the main organs during different growing periods of Panax ginseng C. A. Meyer, [Chinese] [J], Chung Kuo Chung Yao Tsa Chih, 1990, 15(12)
    [16] Liu M, Li R, Liu M: Observation on the annual and seasonal changes of anatomic characteristics of the main root of Panax ginseng C. A. Meyer, [Chinese] [J], Chung Kuo Chung Yao Tsa Chih, 1990,15(1)
    [17] Wang TS: "Effect of different soil water conditions on the growth and physiology of Panax ginseng C. A. Meyer [Chinese]" [J], Chung Kuo Chung Yao Tsa Chih, 1990, 15(1).
    [18] Kitagawa I, Taniyama T, Shibuya H, Noda T, Yoshikawa M: Chemical studies oncrude drug processing. V. On the constituents of ginseng radix rubra (2): Comparison of the constituents of white ginseng and red ginseng prepared from the same Panax ginseng root. [Japanese] [J], Yakugaku Zasshi, 1987, 107(7).
    [19] Li X, Guo R, Li L: Pharmacological variations of Panax ginseng C. A. Meyer during processing, [Chinese] [J], Chung Kuo Chung Yao Tsa Chih, 1991, 16(1)
    [20] Yoshikawa M, Fukuda Y, Hatakeyama S, Murakami N, Yamahara J, Taniyama T, Hayashi T, Kitagawa I: Chemical fluctuation of the constituents during the drying of Ginseng radix and Ginseng radix Rubra. Crude drug processing by far-infrared treatment, [Japanese] [J]. Yakugaku Zasshi, 1993, 113(6)
    [21] Nah JJ; Kim SK; Kim SC; Nam KY; Jung DW; Nah SY; Yoon SR: Determination of ginsenoside Rf and Rg2 from Panax ginseng using enzyme immunoassay [J]. Chem Pharm Bull (Tokyo), 1998, 46(7):1144-7
    [22] Mizuno M, Yamada J, Terai H, Kozukue N, Lee YS, Tsuchida H: Differences in immunomodulating effects between wild and cultured Panax ginseng [J]. Biochem Biophys Res Commun, 1994, 200(3): 1672-1678.
    [23] Liu C X, Xiao P G: Recent advances on ginseng research in China [J]. J Ethnopharmacol, 1992, 36:27-38.
    [24] Yun T K: Brief introduction of Panax gingeng C.A. Meyer [J]. J Korean Med Sci, 2001,16: S3-5.
    [25] Wen J, Zimmer EA: Phylogeny and biogeography of Panax L. (the ginseng genus, araliaceae): inferences from ITS sequences of nuclear ribosomal DNA [J]. Mol Phylogenet Evol, 1996, 6:167-177.
    [26] MULTILINGUAL MULTISCRIPT PLANT NAME DATABASE- http://www.plantnames.unimelb.edu.au/Sorting/Panax.html#bipinnatifidus and Ginseng: A Concise Handbook. Edited by James A, Duke. Reference Publications, Inc. 1989. Michigan, USA
    [27] Zhuravlev Y N, Koren O G, Reunova G D, Muzarok T I, Gorpenchenko T Y, Kats I L, Khrolenko Y A. Panax ginseng natural populations: their past, current state and perspectives [J]. Acta Pharmacol Sin, 2008, 29 (9): 1127–1136
    [28] Court WE. Ginseng, The Genus Panax: Medicinal and Aromatic Plants-Industrial Profiles. 2000. Hardwood Academic Publisher. p 215.
    [29] Hu S Y: A contribution of our knowledge of ginseng [J]. Am J Chin Med, 1977, 5:1-23.
    [30] Woo SY, Lee DS. A study on the growth and environments of Panax ginseng in the different forest stands [J]. Kor J Agric For Meteor, 2002, 4: 65-71 5
    [31] Liu C X: Introduction on research of ginseng [J]. Information of Traditional Chinese Medicine, 1975, 2: 9-11.
    [32] Liu C X: Pharmacology and clinic of active principles of ginseng [J]. Chinese Traditional Herbs and Drugs, 1975, 7:57.
    [33] Liu C X, Xiao P G: Recent advances on ginseng research in China [J]. J Ethnopharmacol, 1992, 36: 27-38.
    [34] Jiang J W, Xiao Q S: Handbook of Active Constituents of Medicinal Plants Beijing: People's Health Publishers; 1985,503-516.
    [35] Lim W, Mudge K W, Vermeylen F O. Effects of Population, Age, and Cultivation Methods on Ginsenoside Content of Wild American Ginseng (Panax quinquefolium) [J]. Journal of Agricultural and Food Chemistry, 2005, 53(22): 8498-8505.
    [36] Wang B X: Progress of pharmacological studies of ginseng [J]. Yaoxue Xuebao 1980, 15:312-320.
    [37] Tao HC: Sheng-Nung-Pen-Tsao-Ching Taipei, Taiwan: Chung-Hwa; 1955.
    [38] Park JK, Nam KY, Hyun HC, Jin SH, Chepunov SA, Chepunov NE. Effect of ginseng triol saponin fractions on the spatial memory functions studied with 12-arm radial maze [J]. Korean J Ginseng Sci, 1994, 18: 32-8.
    [39] Bittles AH, Fulder SJ, Grant EC, Nichills MR. The effect of ginseng on lifespan and stress response in mice [J]. Gerontology, 1979, 25: 125.
    [40] Zhang JT, Qu ZW, Liu Y, Deng HL. Preliminary study on antiamnestic mechanism of ginsenoside Rg1 and Rb1 [J]. Clin Med J, 1990; 103: 932-8.
    [41] Zhang G, Liu A, Zhou Y, San X, Jin T, Jin Y, et al. Ginsenoside- Rg2 protects memory impairment via anti-apoptosis in a rat model with vascular dementia [J]. J Ethnopharmacol, 2008; 115: 441-8.
    [42] Lee S T, Chu K, Kim J M, Park H J, Kim M. Cognitive improvement by ginseng in Alzheimer' disease. Proceedings of the 9th International Ginseng Symposium; 2006. Geumsan, Chungnam, Korea, Korean Society of Ginseng.
    [43] Kennedy D O, Scholey A B. Ginseng: potential for the enhancement of cognitive performance and mood [J]. Pharmacol Biochem Behav, 2003, 75: 68-70.
    [44] Kennedy DO, Reay JL, Scholey AB. Effects of 8 weeks administration of Korean Panax ginseng extract on the mood and cognitive performance in healthy individuals. Proceedings of the 9th International Ginseng Symposium; 2006, Geumsan, Chungnam, Korea, Korean Society of Ginseng.
    [45] Seo Y J, Shim E J, Kwon M S, Choi O S, Yang J W, Choi S S, et al. Anticiceptiveeff ects of ginsenosides injected intracerebroventricularly or intrathecally in various pain models. Proceedings of the 9th International Ginseng Symposium; 2006, Geumsan, Chungnam, Korea, Korean Society of Ginseng.
    [46] Yun T K, Choi S Y. A case-control study of ginseng intake and cancer [J]. Int J Epidemiol, 1990, 19: 871-876.
    [47] Yun T K, Choi S Y. Preventive effect of ginseng intake against various human cancers: A case-control study on 1987 pairs [J]. Cancer Epidemiol Biomakers Prev, 1995, 4: 401-408.
    [48] Ahn Y K, Kim J Y, Chung J G, Kim J H, Goo J D. The effect of Korean ginseng on the immunotoxicity of mitomycin C [J]. Yakhak Hoeji 1987; 31: 355- 360.
    [49] Fukushima S, Wanibuchi H, Li W. Inhibition by ginseng of colon carcinogenesis in rats [J]. J Korean Med Sci, 2001; 16: S75-80.
    [50] Hwang W I, Lee S D, Han Y N, Lee Y T. A study on the cytotoxic activity of Korean red ginseng against cancer cells. Proceedings of the 6th Internationa1 Ginseng Symposium; 1993. Korea Ginseng & Tobacco Research Institute, Korea.
    [51] Kikuchi Y, Sasa H, Kita T, Hirata J, Tode T. Inhibition of human ovarian cancer cell proliferation in vitro by ginsenoside-Rh2 and adjuvant effects to cisplatin in vivo [J]. Anticancer Drugs (England) 1991, 2: 63-67.
    [52] Liu W K, Xu S X, Che C T. Anti-proliferative effect of ginseng saponins on human prostate cancer cell line [J]. Life Sci, 2000, 67:1297-306.
    [53] Matsunaga H, Katano M, Yamanoto H, Fujito H, Mori M, Takata M. Cytotoxic activity of polyacetylene compounds in Panax ginseng CA Meyer [J]. Chem Pharm Bull, 1990, 38: 3480-3482.
    [54] Odashima S, Nakayabu Y, Honjo N, Abe H, Arichi S. Induction of phenotypicreverse transformation by ginsenosides in cultured Morris hepatimacells [J]. Eur J Cancer, 1979, 15: 885-892.
    [55] Popovich D G, Kitts D D. Ginsenosides 20(S)-protopanaxadiol and Rh2 reduce cell proliferation and increase sub-G1 cells in two cultured intestinal cell lines, int-407 and caco-2 [J]. Can J Physiol Pharmacol, 2004, 82: 183-190.
    [56] Wang Z, Zheng Q, Liu K, Li G, Zheng R. Ginsenoside Rh2 enhances antitumor activity and decreases the genotoxic effect of cytophosphamide [J]. Basic Clin Pharmacol Toxicol, 2006, 98: 411-415.
    [57] Xu T M, Xin Y, Cui M H, Jiang X, Gu L P. Inhibitory effect of ginsenoside Rg3 combined with cyclophosphamide on growth and angiogenesis of ovarian cancer [J]. Clin Med J, 2007, 120: 584-588.
    [58] Yun T K, Lee Y S, Lee Y H, Kim S I, Yun H Y. Anticarcinogenic effect of Panax ginseng C. A. Meyer and identification of active compounds [J]. J Korean Med Sci, 2001, 16: S6-18.
    [59] Kumar A, Kumar M, Panwar M, Samarth R, Park T Y, Park M H, et al. Evaluation of anticancer action of ginsenoside Rp1 and its molecular mechanism. Proceedings of the 9th International Ginseng Symposium; 2006, Geumsan, Chungnam, Korea, Korean Society of Ginseng.
    [60] Park J D, Shin H J, Kwak Y S, Wee J J, Song Y B, Kyung J S, et al. Partial chemical structure and immunomodulating antitumor activities of RGAP (red ginseng acidic polysaccharide) from Korean red ginseng. Proceedings of the 9th International Ginseng Symposium; 2006, Geumsan, Chungnam, Korea, Korean Society of Ginseng.
    [61] Suh S O, Kim J, Boo Y J, Park J M, Kim J. Prospective study for Korean red ginseng extract as an immune modulator following a curative surgery in patients with advanced colon cancer. Proceedings of the 9th International Ginseng Symposium; 2006, Geumsan, Chungnam, Korea, Korean Society of Ginseng.
    [62] Mochizuki M, Yoo Y C, Azuma I. Inhibitory effect of tumor invasion and metastasis by saponins, 20(R)- and 20(S)-ginsenoside-Rg3, or red ginseng. Proceedings of the Korea-Japan Ginseng Symposium; 1995, Seoul, Korea, Korea Ginseng & T Research Institute.
    [63] Mochizuki M, Yoo YC, Matsuzawa K, Sato K, Saiki I, Tono-Oka S, et al. Inhibitory effect of tumor metastasis in mice by saponin, ginsenoside-Rb2, 20(R)- and 20(S)-ginsenoside-Rg3, of red ginseng [J]. Biol Pharm Bull, 1995, 18:1197-1202.
    [64] Kubo M, Tong C N. Influence of the 70% methanolic extract from red ginseng on the lysosome of tumor cells and on the cytocidal effect of mitomycin C [J]. Planta Med, 1992, 58: 424-8.
    [65] Noh H T, Rhee Y E, Choi Y B, Park M J. Clinical study for effects of ginseng on CDDP-treated cancer patients [J]. Choesin Uihak, 1992, 35: 40-46.
    [66] Park J D, Kim D S, Kwon H Y, Son S K, Lee Y H, Baek N I, et al. Effects of ginseng saponin on modulation of multidrug resistance [J]. Arch Pharm Res, 1996; 193: 213-218.
    [67] Lai D M, Tu Y K, Liu I M, Chen P F, Cheng J T. Mediation of beta-endorphin by ginsenoside Rh2 to lower plasma glucose in streptozotocin-induced diabetic rats [J]. Planta Med, 2006, 72: 9-13.
    [68] Saito H, Nishiyama N. Effects of ginseng and its saponins on experimental amnesis in mice and on cell cultures of neurons. Proceedings of the 5th International Ginseng Symposium; 1988. Seoul, Korea: Korean Society of Ginseng.
    [69] Yokozawa T, Oura H. Facilitation of protein biosynthesis by ginsenoside-Rb2 administration in diabetic rats [J]. J Nat Prod., 1990, 53:1514-1518.
    [70] Ando T, Muraoka T, Okuda H, Yamasaki N. Preparation of insulin-like peptides from Panax ginseng. Proceedings of Wakan-Yaku Ginseng Symposium. Gobe, Japan Proc Symp Wakan-Yaku, 1979, 12: 15-19.
    [71] Lee W K, Kao S T, Liu I M, Chen J T. Increase of insulin secretion by ginsenoside Rh2 to lower plasma glucose in Wistar rats [J]. Clin Exp Pharmacol Physiol 2006, 33:27-32.
    [72] Okuda H, Lee S D. Biological activities of non-saponincompounds isolated from Korean red ginseng. Proceedings of the International Symposium on Korean Ginseng, 1990; Seoul, Korea. Korea Ginseng & T Research Institute.
    [73] Takaku T, Kameda K, Matsuura Y, Sekiya K, Okuda H. Studies on insulin-like substances of Korean red ginseng [J]. Planta Med, 1990, 56: 27-30.
    [74] Huh K, Jang B S, Park J M. Protective effect of ginseng on bromobenzene-induced hepatoxicity in mice. Korean J Ginseng Sci, 1988, 12: 114-120.
    [75] Lee F C, Park J K, Kim E K, Ko J H, Lee J S, Kim K Y. The role of Panax ginseng in detoxification of xenobiotics. Proceedings of the 4th International Ginseng Symposium; 1984. Seoul, Korea, Korea Ginseng & T Research Institute. Korea Ginseng Research Institute.
    [76] Mizoguchi Y. Protective effect of ginseng saponin. Report on Ginseng Research Association, 1988. p 46-48.
    [77] Saxena P N, Mahour K. Analysis of hepatoprotection by Panax ginseng following mercuric chloride intoxication in albino rat. Proceedings of the 9th International Ginseng Symposium; 2006, Geumsan, Chungnam, Korea, Korean Society of Ginseng.
    [78] Song J H, Park M J, Kim E, Kim Y C. Effects of Panax ginseng on galactosamine-induced cytotoxicity in primary cultured rat hepatocytes [J]. Yakhak Hoeji, 1990, 34: 341-347.
    [79] Vuksan V, Stavro M, Woo M, Leiter L A, Sung M K, Sievenpiper J L. Korean red ginseng (Panax ginseng) can lower blood pressure in individuals with hypertension: a randomized controlled trial. Proceedings of the 9th International Ginseng Symposium; 2006, Geumsan, Chungnam, Korea, Korean Society of Ginseng
    [80] Kang S Y, Schini-Kerth V B, Kim N D. Ginsenosides of the protopanaxatriol group cause endothelium-dependent relaxation in the rat arorta [J]. Life Sci, 1995, 56:1577-1586.
    [81] Kim N D, Kang S Y, Schini-Kerth V B. Ginsenosides evoke endothelium-dependent vascular relaxation in rat aorta [J]. Gen Pharmac, 1994, 25: 1071-1077.
    [82] Saito H, Bao T T. Effect of red ginseng on mice exposed to various stress. Proceedings of the 4th International Ginseng Symposium; 1984, Seoul, Korea, Korea Ginseng & T research Institute.
    [83] Kim C C. Influence of Panax ginseng on the response of stressful stimuli in the experimental animal exposed to various stress [J]. Korean J Ginseng Sci, 1979, 3: 168-186.
    [84] Kaneko H, Nakanishi K, Murakami A, Aidoh H, Kuwashima K. The acute effects of massive dose of red ginseng on healthy adults under the conditions of cold stress. Proceedings of the Korea-Japan Ginseng Symposium; 1996, Seoul, Korea, Korea Ginseng & T Research Institute.
    [85] Zhang J T, Chui D H, Liu G Z. The chemistry, metabolism and biological activities of ginseng. Beijing: Chemical Industry Press; 2006.
    [86] Park J D, Rhee D K, Lee Y H. Biological activities and chemistry of saponins from Panax ginseng C. A. Meyer [J]. Phytochemistry Reviews, 2005, 4(2-3): 159-175
    [87] El-Kady A A, Hosain A R M, Park M H, Kim Y T, Park H H, Abdel-Wahhab M A. Efficacy of Panax ginseng extract standardized with ginsenoside Rg3 against oxidative stress of PCBs in rats.Proceedings of the 9th International Ginseng Symposium; 2006, Geumsan, Chungnam, Korea, Korean Society of Ginseng.
    [88] Ogita S, Samugawa K. Clinical effectiveness of Korean ginseng on patients with climacteric disturbances [J]. Ginseng Rev, 1994, 18: 95-97.
    [89] Andrade E, Mesquita A A, Claro J A, Andrade P M, Ortiz V, Paranhos M, et al. Study of the efficacy of Korean red ginseng in the treatment of erectile dysfunction [J]. Asian J Androl, 2007, 9: 241-244.
    [90] Choi H K, Seong D H. Effectiveness for erectile dysfunction after the administration of Korean red ginseng [J]. Korean J Ginseng Sci, 1995, 19: 17-21.
    [91] Choi H K, Seong D H, Rha K H. Evaluation of clinical efficacy of Korean red ginseng for erectile dysfunction by international index of erectile function (IIEF) [J]. Int J Ginseng Res, 2001, 25:112-117.
    [92] Choi Y D, Rha K H, Choi H K. In vitro and in vivo experimental effect of Korean red ginseng on erection [J]. J Urol, 1999, 162: 1508-1511.
    [93] Salvati G, Genovesi G, Marcellini L, Paolini P, De Nuccio I, Pepe M, et al. Effects of Panax ginseng C.A. Meyer saponins on male fertility [J]. Panminerva Med, 1996, 38:249-54.
    [94] Cho Y K. Change of serumβ2-microglobulin, p24 antigen and CD4+ T lymphocyte in persons with human immunodeficiency virus infection after azidothymidine Treatment [J]. J Korean Soc Microbiol, 1993, 28: 409-417.
    [95] Cho Y K, Kim Y K, Lee I, Choi M H, Shin Y O. The effect of Korean red ginseng (KRG), zidovudine, and the combination of KRG and ZDV on HIV-infected individuals [J]. J Korean Soc Microbiol, 1996, 31: 353-360.
    [96] Shin Y O. Effects of Korea red ginseng on immunological markers of persons with human immunodeficiency virus. Proceedings of the 6th International Ginseng Symposium. Seoul, Korea, Korea Ginseng & T Research Institute; 1993, 52-56.
    [97] Cho Y K, Lim J Y, Jung Y S, Oh S K, Lee H J, Sung H. High frequency of grossly deleted nef genes in HIV-1 infected long-term slow progressors treated with Korean red ginseng [J]. Curr HIV Res, 2006, 4: 447-457.
    [98] Abdel-Wahhab M A, Ahmed H H. Protective effects of Korean Panax ginseng against chromium VI toxicity and free radical generation in rats [J]. J Ginseng Res, 2004, 28: 11-17.
    [99] Chung Y H, Kim K W, Oura H. Effects of ginsenoside Rb2 on the anti-oxidants in senescence-accelerated mice(SAM-R/1). Proceedings of the 6th Internationa1 Ginseng Symposium; 1993, Korea Ginseng & Tobacco Research Institute, Korea.
    [100] Han B H, Han Y N, Park M H. Chemical and biochemical studies on antioxidant components. Advances in Chinese Medicinal Materials Research. Philadelphia: World Scientific Co; 1985.
    [101] Kim H Y, Chen X, Gillis C N. Ginsenosides protect pulmonary vascular endothelium against free radical-induced injury [J]. Biochem Biophys Res Commun., 1992, 189: 670-676.
    [102] Kim Y K, Gua Q, Packer L. Free radical scavenging activity of red ginseng aqueous extracts [J]. Toxicology, 2002, 172: 149-156.
    [103] Kim (Jun) H Y, Lee Y H, Kim S I. Effects of polyacetylene compounds from Panax ginseng C.A. Meyer on CCI4 induced lipid peroxidation in mouse liver [J]. Korean J Toxicol, 1988, 4, 3.
    [104] Wang X M, Qi Y, Sun C W, Zhong G G, Jiang Y, Qiu Y H. Single calcium channel analysis and electron spin resonance (ESR) spectral study on the mycocardial effects of ginsenoside Rb2 [J]. Chung Guo Yao Tsa Chih, 1994, 19: 621-624.
    [105] Oura H, Oita Y. Effect of Korean red ginseng powder on the survival rate of rat [J]. Ginseng Rev, 1989: 228-237.
    [106] Huang K C. The Pharmacology of Chinese Herbs Boca Raton, FL: CRC Press, 1999.
    [107] Shoji J: Recent advances in the chemical studies on ginseng. In Advances in Chinese Medicinal Materials Research Edited by: Chang HM Yeung HW, Tso WW, Koo A. Singapore: World Scientific; 1985.
    [108] Tanaka O, Kasai R, Morita T: Chemistry of ginseng and related plants: recent advances [J]. Abstr Chin Med, 1986, 1:130-152.
    [109] Wang X, Sakuma T, Asafu-Adjaye E, Shiu G K: Determination of ginsenosides in Plant extracts from Panax ginseng and Panax quinquefolius L. by LC/MS/MS [J]. Anal Chem, 1999, 71: 1579-1584.
    [110] Yu H, Zhang C, Lu M, Sun F, Fu Y, Jin F: Purification and characterization of new special ginsenosidase hydrolyzing multiglycisides of protopanaxadiol ginsenosides, ginsenosidase type I [J]. Chem Pharm Bull (Tokyo), 2007, 55:231-235.
    [111] Kim S I, Lee Y H, Kang K S. 10-Acetylpanaxytriol, a newcytotoxic polyacetylene from Panax ginseng [J]. Yakhak Hoeji, 1989, 33: 118-123.
    [112] Ahn B Z, Kim S I, Kang K S, Kim Y S. The action of cytotoxic components of Korean ginseng against L1210 cells and their structure-activity relationship. Proceedings of the 5th International Ginseng Symposium; 1988, Seoul, Korea, Korea Ginseng & T Research Institute.
    [113] Park S N, Choi S W, Boo Y C, Kim C K, Lee T Y. Effects of flavonoids of ginseng leaves on erythrocyte membranes against singlet oxygen caused damage [J]. Korean Journal of Ginseng Science, 1990, 14: 191-199.
    [114] Park H S, Kwak T H, Moon D G, Kim J J, Chen J. Development of the anti-cancer immunotheraphy for human prostate cancer: in vivo characterization of an immunotropic and anti-cancer activities of the new polysaccharide from the leaves of Panax ginseng C.A. Meyer [J]. European Urology Supplements, 2004, 2, 94.
    [115] Hong S G, Lee K H, Kwak J, Bae K S. Diversity of yeasts associated with Panax Ginseng [J]. Journal of Microbiology, 2006, 44: 674-679.
    [116] Sruamsiri P, Okagi k, Sugino M. Production of Ginseng (Panax ginseng) in Nagano Prefecture, Japan Mem Fac Agr Kinki Univer, 1991, 24: 71-87
    [117] Kim Ki-J, Lee H-L. Complete Chloroplast Genome Sequences from Korean Ginseng (Panax schinseng Nees) and Comparative Analysis of Sequence Evolution among 17 Vascular Plants [J]. DNA Research, 2004,11: 247-261.
    [118] Harn C, Whang J Development of female gametophyte of Panax ginseng. Korean J Bot, 1963, 6: 3-6
    [119] Hong C P, Lee S J, Park J Y, Plaha P, Park Y S, Lee Y K, Choi J E, Kim K Y, Lee J H, Lee J, Jin H, Choi S R, Lim Y P. Construction of a BAC library of Korean ginseng and initial analysis of BAC-end sequences [J]. Mol Gen Genomics, 2004, 271: 709-716
    [120] White S E, Habera L F, Wessler S R. Retrotransposons in the flanking regions of normal plant genes, a role for copia-like elements in the evolution of gene structure and expression [J]. Proceedings of the National Academy of Sciences, USA, 199491, 11792-11796.
    [121] Wessler S R, Bureau T E, White S E. LTR-retrotransposons MITEs, important players in the evolution of plant genome [J]. Current Opinion in Genetics & Development, 19965, 814-821.
    [122] Bennetzen J L. The contributions of retroelements to plant genome organization, function and evolution [J]. Trends in Microbiology, 1996, 4: 347-353.
    [123] SanMiguel P A,Tikhonov Y K, Jin Y, Motchoulskaia N, Zakharrov D, Melake- Berhan A, Springer P, Edward K, Lee M, Avramova Z, Bennetzen J. Nested retrotransposons in the intergenic regions of the maize genome [J]. Science, 1996, 274: 765-768.
    [124] Capy P, Gasperi G, Biemont C, Bazin C. Stress and transposable elements, co-evolution or useful parasites? [J] Heredity, 2000, 85: 101-106.
    [125] Miller W J, Capy P. Mobile genetic elements as natural tools for genome Evolution [J]. Methods in Molecular Biology, 2004, 260: 1-20.
    [126] Brookfield J F. The ecology of the genome-mobile DNA elements and their Hosts [J]. Nature Reviews Genetics, 2005, 6: 128-136..
    [127] Kim J, Jo B H, Lee K L, Yoon E-S, Ryu G H, Chung K W, Identification of New Microsatellite Markers in Panax ginseng [J]. Molecules and Cells, 2007, 24:60-68.
    [128] Liu X D, Zhong X F, Ma Y, Gong H J, Zhao Y Y, Qi B, Yan Z K, Sun X B, Liu B.Copia retrotransposons of two disjunctive Panax species: P. ginseng and P. quinquefolius [J]. Australian Journal of Botany, 2008, 56: 177-186
    [129] Lawson M J, Zhang L. Distinct patterns of SSR distribution in the Arabidopsis thaliana and rice genomes [J]. Genome Biol, 2006, 7 (2): 1-11.
    [130] Sharopova N. Plant simple sequence repeats: distribution, variation, and effects on gene expression [J]. Genome, 2008, 51 (2): 79-90.
    [131] Alleman M L, Sidorenko L, Seshadri V, McGinnis K, Dorweiler J E, White, J, Sikkink K, Chandler V L. An RNA-dependent RNA polymerase is required for paramutation in maize [J]. Nature, 2006,442: 295-298.
    [132] Thon Michae R, Pan Huaqin, Diener Stephen, Papalas John, Taro Audrey, Mitchell Thomas K, Dean Ralph A. The role of transposable element clusters in genome evolution and loss of synteny in the rice blast fungus Magnaporthe oryzae [J]. Genome Biol, 2006, 7: R1-R9.
    [133] Chengguo YAO, Botao ZHAO, Wei L I, Yang L I, Wenming QIN, Bing HUANG, Youxin JIN. Cloning of Novel Repeat-associated Small RNAs Derived from Hairpin Precursors in Oryza sativa [J]. Acta Biochimica et Biophysica Sinica, 2007, 39 (11): 829-834.
    [134] Costa F F. Non-coding RNAs, epigenetics and complexity [J]. Gene, 2008, 410(1) : 9-17
    [135] Xie Z, Qi X. Diverse small RNA-directed silencing pathways in plants [J]. Biochimica et Biophysica Acta, 2008, 1779(11): 720-724.
    [136] Zhai Jixian, Liu Jun, Liu Bin, Li Pingchuan, Meyers Blake C, Chen Xuemei, Cao Xiaofeng. Small RNA-Directed Epigenetic Natural Variation in Arabidopsis thaliana [J]. PloS Genetics, 2008 4 (4): 1-11.
    [137] Piriyapongsa J, Jordan I K. Dual coding of siRNAs and miRNAs by plant transposable elements [J]. RNA, 2008, 14(5):814-821.
    [138] Loveless M D, Hamrick J L. Ecological determinants of genetic structure in plant populations [J]. Annual Review of Ecological Systems, 1984, 15: 65-69.
    [139] Rossetto M, Weaver P K, Dixon K W. Use of RAPD analysis in devising conservation strategies for the rare and endangered Grevillea scapigera (Proteaceae) [J]. Molecular Ecology, 1995, 4: 321-329.
    [140] Otero-Arnaiz A, Casas A, Hamrick J L, Cruse-Sanders J. Geneticvariation and evolution of Polaskia chichipe under domestication in Tehuacan Valley, Central Mexico [J]. Molecular Ecology, 2005a, 14: 1603-1611.
    [141] Pickersgill B. The domestication of peppers. In: Ucko P.J., Dimbley G.W. (Eds), The Domestication and Exploitation of Plants and Animals. Duckworth, London, 1969, 443-450.
    [142] Doebley J. Isozymic evidence and evolution of crop plants. In: Soltis E D., Soltis P M. (Eds), Isozymes in Plant Biology. Dioscorides, Portland, Oregon,1989, 165-191.
    [143] Buckler E S. IV, Thornsberry J M., Kresovich S. Molecular diversity, structure and domestication of grasses [J]. Genetic Research, 2001, 77: 213-218.
    [144] Hancock J F. Contributions of domesticated plant studies to our understanding of plant Evolution [J]. Ann. Bot. (Lond.), 200596, 953–963.
    [145] Zeder M A, Emshwiller E, Smith B D, Bradley D G. Documenting domestication: the intersection of genetics and archaeology [J]. Trends in Genetics, 2006, 22: 139-155.
    [146] Oyama K, Hernandez-Verdugo S, Sanchez C, Gonzalez-Rodr?guez A, Sanchez- Pena P, Garzon-Tiznado J A, Casas A. Genetic structure of wild and domesticated populations of Capsicum annuum (Solanaceae) from northwestern Mexico analyzed by RAPDs [J]. Genetic Resources and Crop Evolution, 2006, 53: 553-562.
    [147] Miller A J, Schaal B A. Domestication and the distribution of genetic variation in wild and cultivated populations of the Mesoamerican fruit tree Spondias purpurea L. (Anacardiaceae) [J]. Molecular Ecology 2006, 15: 1467-1480.
    [148] Zohary D. Unconscious selection and the evolution of domesticated plants [J]. Economic Botany, 2004, 58: 5-10.
    [149] Otero-Arnaiz A, Casas A, Hamrick J L. Direct and indirect estimates of Gene flow among wild and managed populations of Polaskia chichipe, an endemic columnar cactus in Central Mexico [J]. Molecular Ecology, 2005b, 14: 4313-4322.
    [150] Ma X, Wang X, Sun S, Xiao P, Hong D. A study on RAPD fingerprintings of Wild mountain ginseng (Panax ginseng) [J]. Yaoxue Xuebao, 1999, 34(4): 315-316
    [151] Cruse-Sanders J M, Hamrick J L. Genetic diversity in harvested and protected populations of wild American ginseng, Panax quinquefolius L. (Araliaceae). American Journal of Botany, 2004, 91 (4): 540-548
    [152] Hwang, H Z, Yeon M J, Seong J Y, Park H Y, Kim S O, Jeon H W, Kim K C, Choi K J, Lee Y J, Suh D S. Genetic variations in Korean wild ginsengs and their genetic relationships [J]. Korean Journal of Genetics, 2006, 28(2): 163-169
    [153] Artyukova E V, Kozyrenko M M, Koren O G, Muzarok T I, Reunova G D, Zhuravlev Y N. RAPD and Allozyme Analysis of Genetic Diversity in Panax ginseng C.A. Meyer and P. quinquefolius L [J]. Russian Journal of Genetics, 2004, 2:178-185.
    [154] Zhuravlev Y N, Koren O G, Reunova G D, Artyukova E V, Kozyrenko M M, Muzarok T I, Kats I L. Ginseng Conservation Program in Russian Primorye: Genetic Structure of Wild and Cultivated Populations [J]. Journal of Ginseng Research, 2004, 1:60-66.
    [155] Koren O G, Potenko V V, Zhuravlev Y N. Inheritance and variation of allozymes in Panax ginseng C.A. Meyer (Araliaceae) [J]. Int J Plant Sci, 2003, 164(1) :189-195.
    [156] Selker E U Epigenetic phenomena in filamentous fungi: useful paradigms or repeat-induced confusion [J]. Trends Genet, 1997,13: 296-301
    [157] Rangwala S H, Richards E J The value-added genome: building and maintaining genomic cytosine methylation landscapes. Curr Opin Genet Dev, 2004, 14: 686-691
    [158] Yoder J A, Walsh C P, Bestor T H: Cytosine methylation and the ecology of intragenomic parasites [J]. Trends in Genetics, 1997, 13(8) :335-340.
    [159] Martienssen R A, Colot V. DNA methylation and epigenetic inheritance in plants and filamentous fungi [J]. Science, 2001, 293(5532):1070-1074.
    [160] Kalisz S, Purugganan M D. Epialleles via DNA methylation: consequences for plant evolution [J]. Trends Ecol Evol, 2004, 19:309-314
    [161] Grant-Downton R T, Dickinson H G. Epigenetics and its implications for plant biology. The epigenetic network in plants [J]. Ann Bot (Lond), 2005, 96: 1143-64
    [162] Rapp R A, Wendel J F. Epigenetics and plant evolution [J]. New Phytol, 2005, 168: 81-91
    [163] Steven Lockton, Jeffrey Ross-Ibarra, and Brandon S. Gaut. Demography and weak selection drive patterns of transposable element diversity in natural populations of Arabidopsis lyrata [J]. Proc Natl Acad Sci U S A, 2008, 105(37): 13965-13970..
    [164] Salmon A, Ainouche M L, Wendel J F. Genetic and epigenetic consequences of recent hybridization and polyploidy in Spartina (Poaceae) [J]. Mol Ecol, 2005,14: 1163-1175.
    [165] Chakrabarty D, Yu K W, Paek K Y. Detection of DNA methylation changes during somatic embryogenesis of Siberian ginseng (Eleuterococcus senticosus) [J]. Plant Science, 2003, 165: 61-68
    [166] Girod P A,. Zryd J P. Secondary metabolism in cultured red beet (Beta vulgaris) cells: differential regulation of betaxanthin and betacyanin biosynthesis [J]. Plant Cell, Tissue and Organ Culture, 1991, 25: 1-12.
    [167] Vaughn M W, Tanurdzic M, Lippman Z, Jiang H, Carrasquillo R, Rabinowicz P D, Dedhia N, McCombie W R, Agier N, Bulski A, Colot V, Doerge R W, Martienssen R A. Epigenetic natural variation in Arabidopsis thaliana [J]. PLoS Biol, 2007, 5:1617-1629
    [168] Tang K X. Biotechnology for Chinese Herbal Medicines. Fudan Unversity Press, Shanghai, 2005
    [169] Cai L Y. Genetic analysis of the wild cherry germplasm and identification of cultivated cherry varieties using DNA fingerprints. Ph.D. Dissertation, Northwest University, China, 2006
    [170] Zhu Q H, Zheng X M, Luo J C, Gaut B S, Ge S. Multilocus analysis of nucleotide variation of Oryza sativa and its wild relatives: severe bottleneck during domestication ofrice [J]. Molecular Biology and Evolution, 2007, 24: 875-888.
    [171] Wu H F, Li Z Z, Huang H W. Genetic differentiation among natural populations of Gastrodia elata (Orchidaceae) in Hubei and germplasm assessment of the cultivated populations [J]. Biodiversity Sciences, 2006, 14: 315-326.
    [172] Liu D, Li Y-G, Xu H, Sun S-Q, Wang Z-T. Differentiation of the root of Cultivated Ginseng, Mountain Cultivated Ginseng and Mountain Wild Ginseng using FT-IR and two-dimensional correlation IR spectroscopy [J]. Journal of Molecular Structure, 2008, 228-235.
    [173] Zhuravlev YuN, Burundukova O L, Koren O G, Zaytseva YuA (Khrolenko YuA), Kovaleva LE. Panax ginseng C.A. Meyer: Biodiversity evaluation and conservation. In: Bailey WG, Whitehead C, Proctor JTA, Kyle JT, editors. The challenges of the 21st century. Proceedings of International Ginseng Conference, 1994, Vancouver, Canada. p 162-8.
    [174] Fu L, Jin J, China Plant Red Data Book-Rare and endengeed plants. Science Press, Beijing, China, 1992, 1
    [175] Artiukova E V, Kozyrenko M M, Koren O G, Muzarok T I, Reunova G D, Zhuravlev I N, RAPD and allozyme analysis of genetic variability of Panax ginseng C.A. Meyer and P. quinquefolius L [J]. Genetika, 2004, 40: 239-247.
    [176] Yamaguchi H, Matsuura H, Kasai R, Tanaka O, Satake M, Kohda H, Izumi H, Nuno M, Katsuki S, Isoda S. Analysis of Saponins of wild Panax ginseng [J]. Chem Pharm Bull, 1988, 36: 4177-4181.
    [177] Richards E J. Population epigenetics [J]. Current Opinion in Genetics & Development, 2008, 18:221-226
    [178] Cropley J E, Suter C M, Beckman K B, Martin D I: Germ-line epigenetic modification of the murine Avy allele by nutritional supplementation [J]. Proc Natl Acad Sci U S A, 2006, 103(29):17308-17312.
    [179] Waterland R A, Jirtle R L: Transposable elements: targets for early nutritional effects on epigenetic gene regulation [J]. Mol Cell Biol, 2003, 23(30):5293-5300.
    [180] Wolff G L, Kodell R L, Moore S R, Cooney C A: Maternal epigenetics and methyl supplements affect agouti gene expression in Avy/a mice [J]. FASEB J, 1998, 12(31): 949-957.
    [181] Cropley J E, Suter C M, Martin D I: Methyl donors change the germline epigenetic state of the A(vy) allele. FASEB J, 2007, 21(32):3021-3022.
    [182] Waterland R A, Travisano M, Tahiliani K G: Diet-induced hypermethylation at agouti viable yellow is not inherited transgenerationally through the female [J]. FASEB J, 2007, 21(33), 3380-3385.
    [183] Anway M D, Cupp A S, Uzumcu M, Skinner M K: Epigenetic transgenerational actions of endocrine disruptors and male fertility. Science, 2005, 308(34):1466-1469.
    [184] Molinier J, Ries G, Zipfel C, Hohn B: Transgeneration memory of stress in plants. Nature, 2006, 442(35): 1046-1049.
    [185] Jung C-H, Seog H-M, Choi I-W, Cho H-Y. Antioxidant activities of cultivated and wild Korean ginseng leaves. Food Chemistry, 2005, 92: 535-540
    [186] Vos P, Hogers R, Bleeker M, Reijans M, Van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M. AFLP, a new technique for DNA fingerprinting [J]. Nucleic Acids Res,1995, 23:3307-3314.
    [187] Gaudeul M, Taberlet P, Till-Bottraud I. Genetic diversity in an endangered alpine plant, Eryngium alpinum L. (Apiaceae), inferred from amplified fragment length polymorphism markers [J]. Mol Ecol, 2000, 9: 1625-1637.
    [188] Soleimani V D, Baum B R, Johnson D A. AFLP and pedigree-based genetic diversity estimates in modern cultivars of durum wheat [Triticum turgidum L. subsp. durum (Desf.) Husn.]. Theor Appl Genet, 2002, 104: 350-357.
    [189] Barnes J, Anderson L A, Phillipson J D. St John's wort (Hypericum perforatum L.): a review of its chemistry, pharmacology and clinical properties [J]. J Pharm Pharmacol, 2001;53:583-600.
    [190] Blears M J, Grandis S A, Lee H, Trevors J T. Amplified fragment length Polymorphism (AFLP): a review of the procedure and its applications [J]. J Ind Microbiol Biotechnol, 1998, 21: 99-114.
    [191] Kidwell K K, Osborn T C.. Simple plant DNA isolation procedures. In: Beckman J S, Osborn T C, eds. Plant genomes, methods for genetic and physical mapping. Kluwer Academic Publishers, Amsterdam, the Netherlands, 1992, p1-13.
    [192] Reyna-López G E, Simpson J, Ruiz-Herrera J. Differences in DNA methylation patterns are detectable during the dimorphic transition of fungi by amplification of restriction polymorphisms [J]. Mol Gen Genet, 1997, 253: 703-710.
    [193] Xiong L Z, Xu C G, Saghai Maroof M A, Zhang Q. Patterns of cytosine methylation in an elite rice hybrid and its parental lines, detected by a methylation-sensitive amplification polymorphism technique [J]. Mol Gen Genet, 1999, 261: 439-446.
    [194] McClelland M, Nelson M, Raschke E. Effect of site-specific modification on restriction endonucleases and DNA modification methyltransferases [J]. Nucleic Acids Research, 1994, 22: 3640-3659.
    [195] Roberts R J, Macelis D. REBASE - restriction enzymes and methylases [J]. Nucleic Acids Research, 2001, 29: 268-269.
    [196] Jaccard P. Nouvelles rescherches sur la distribution florale. Bull Soc Vaud [J]. Sci Nat, 1908, 44:223-270.
    [197] Rohlf F J. NTSYS-pc, numerical taxonomy and multivariate analysis system. Version 2.1. Exeter Publications, New York, 2000
    [198] http://www.ncbi.nlm.nih.gov/
    [199] http://zymoresearch.com
    [200] http://www.urogene.org/methprimer
    [201] http://katahdin.mssm.edu/kismeth
    [202] Dong Z Y, Wang Y M, Zhang Z J, Shen Y, Lin X Y, Ou X F, Han F P, Liu B. Extent and pattern of DNA methylation alteration in rice lines derived from introgressive hybridization of rice and Zizania latifolia Griseb [J]. Theoretical and Applied Genetics, 2006, 113(2): 196-205.
    [203] Cervera M T, Ruiz-Garcia L, Martinez-Zapater J M. Analysis of DNA methylation in Arabidopsis thaliana based on methylation-sensitive AFLP markers [J]. Mol Genet Genomics, 2002, 268:543-552
    [204] Mantel N A. The detection of disease clustering and a generalized regression Approach [J]. Cancer Res, 1967, 27: 209-220.
    [205] Shi W, Yang C-F, Chen J-M, Guo Y-H. Genetic variation among wild and cultivated populations of the Chinese medicinal plant Coptis chinensis (Ranunculaceae) [J]. Plant Biology, 2008, 10: 485-491.
    [206] Baldoni L, Tosti N, Ricciolini C, Belaj A, Arcioni S, Pannelli G, Germana M A, Mulas M, Porceddu. A Genetic Structure of Wild and Cultivated Olives in the Central Mediterranean Basin [J]. Annals of Botany, 2006, 98, 935-942.
    [207] Grubbs H, Case M. A. Allozyme variation in American ginseng (Panax quinquefolius L.): variation, breeding system, and implications for current conservation practice [J]. Conservation Genet, 2004, 5: 13-23.
    [208] Hamrick J L, Godt M J V, Sherman-Broyles S L. Factors influencing levels of genetic diversity in woody plant species [J]. New Forests, 1992; 6: 95-124.
    [209] Janick J, Simon JE. Advances in New Crops. Timber Press, Portland, 1990.
    [210] Zhou S-L, Xiong G-M, Li Z-Y, Wen J. Loss of Genetic Diversity of Domesticated Panax notoginseng F H Chen as Evidenced by ITS Sequence and AFLP Polymorphism: A Comparative Study with P. stipuleanatus H T Tsai et K M Feng [J]. Journal of Integrative Plant Biology, 2005, 47 (1): 107-115.
    [211] Soule M E. Conservation: tactics for a constant crisis [J]. Science, 1991, 253: 744-750.
    [212] Laurance W F. Reflections on the tropical deforestation crisis [J]. Biological Conservation, 1999, 91: 109-117.
    [213] Pimm S L et al. Environment can we defy nature’s end? [J] Science, 2001, 293: 2207-2208.
    [214] Vance N C. Ecological considerations in sustainable use of wild plants. In Jones E T, McLain R J, Weigand J [eds.]. Nontimber forest products in the United States, 2002, 151-162. University Press of Kansas, Lawrence, Kansas, USA.
    [215] Frankel O H, Soule M E. Conservation and evolution. Cambridge University Press New York, New York, USA, 1981.
    [216] Shaffer M L. Minimum population sizes for species conservation. Bioscience, 1981, 31: 131-134.
    [217] Menges E S. The application of minimum viable population theory to plants. In Falk D A, Holsinger K E [eds.]. Genetics and the conservation of rare plants. Center for Plant Conservation, Oxford University Press, New York, New York, USA, 1991, 45-61.
    [218] Ellstrand N C, Elam D R. Population genetic consequences of small population size: implications for plant conservation [J]. Annual Review of Ecology and Systematics, 1993, 24: 217-242.
    [219] Millis L S, Smouse P E. Demographic consequenses of inbreeding in remnant Populations [J]. American Naturalist, 1994, 144: 412-431.
    [220] Frankham R. Inbreeding and extinction: a threshold effect [J]. Conservation Biology, 1995, 9: 792-799.
    [221] Lande R. Mutation and conservation [J]. Conservation Biology, 1995, 9, 782-791.
    [222] Godt M J, Johnson B R, Hamrick J L. Genetic diversity and population size in four rare southern Appalachian plant species [J]. Conservation Biology, 1996, 10: 796-805.
    [223] Godt M J W, Hamrick J L. Genetic diversity in rare Southeastern plants [J]. Natural Areas Journal, 2001, 21: 61-70.
    [224] Newman D D. Pilson. Increased probability of extinction due to decreased genetic effective population size: experimental populations of Clarkia pulchella [J]. Evolution, 1997, 51: 354-362.
    [225] Fischer M, Matteis D. Effects of population size on performance in the rare plant [J]. Gentianella germanica. Journal of Ecology, 1998, 86, 195-204.
    [226] Li Y, Shan X, Liu X, Hu L, Guo W, Liu B. Utility of the methylation-sensitive Amplified polymorphism (MSAP) marker for detection of DNA methylation polymorphism and epigenetic population structure in a wild barley species (Hordeum brevisubulatum) [J]. Ecol Res, 2008, 23: 927-930.
    [227] Salmon A, Jeremy C, Eric J, Veronique C, Maria J, Manzanares-Dauleux. Brassica oleracea displays a high level of DNA methylation polymorphism [J]. Plant Science, 2008, 174: 61-70
    [228] Frommer M, McDonald L E, Millar D S, Collis C M, Watt F, Grigg G W, Molloy P L, Paul C L. A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands [J]. Proc. Natl. Acad. Sci. U.S.A., 1992, 80: 1579-1583.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700