用户名: 密码: 验证码:
攀援植物爬山虎生长特性及其在高陡岩面植被恢复中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
攀援植物是一类不能直立,需要通过主茎缠绕或攀附器官攀附支持物生长的植物总称,这类植物是热带和亚热带森林中重要物种,分布广泛,是药材、食品原料和景观绿化植物重要来源;同时攀援植物也是杂草控制主要种类,其缠绕攀附的生长行为也危害其他植物的生长。研究攀援植物的生长特点和养分吸收规律,发现攀援植物生长的限制因子,将有助于合理掌握攀援植物在生态环境中的应用尺度。本文以典型的亚热带多年生落叶木本攀援植物爬山虎(Parthenocissustricuspidata(Sieb.et Zucc))为研究对象,对自然生长爬山虎的营养元素分布和季节变化规律,氮磷钾养分、支持物、光照、高温和水分等环境条件对攀援植物的生长的影响以及其在高陡岩面的植被恢复的应用等方面进行了研究,结果如下:
     1.自然生长爬山虎地上部养分分布不仅与器官有关,而且受器官所在部位及季节变化的影响;叶片的养分含量显著高于茎和叶柄;植株上部器官的养分含量低于中部和下部器官的养分含量;而在不同部位和不同器官的各类营养元素随季节变化有不同的变化趋势。爬山虎各器官的养分含量次序有明显不同,叶片营养元素的含量顺序是N>Ca>K>Mg>P>Fe>Mn>B>Zn>Cu,叶柄的营养元素的含量顺序是N>Ca>K>Mg>P>Fe>B>Mn>Zn>Cu,茎的营养元素的含量顺序是N>Ca>K>P>Mg>Fe>Mn>B>Zn>Cu。爬山虎植株各营养元素的转移率以N和K最高,达到75%以上;Mn的转移率最低,仅为10.6%。
     2.供氮水平的提高能增加爬山虎的生物量,爬山虎能够通过主茎和侧枝的生长形态的变化适应不同的氮素水平。植株茎、叶和根的氮含量和氮累积量也随着供氮水平的提高而增加,叶是整个植株的氮贮存的主要器官,叶的氮累积量达到整个植株的60%-70%;供氮水平的增加降低了爬山虎的氮利用率,提高了磷钾的利用率,并且磷的利用率高于氮钾的利用率。
     3.供磷水平增加,爬山虎主茎的生长速度和生物量显著提高,但供磷水平过高后(大于0.06 g.L~(-1))对爬山虎的生长影响不显著;低磷水平显著影响爬山虎的根构型的变化,导致其爬山虎根系生物量占总生物量的比例增大;爬山虎在0.03 g.L~(-1)处理的总根长、根表面积、根系体积、根尖数和侧根数显著高于其他处理;随着供磷水平的增加,爬山虎根茎叶的磷含量和叶根氮含量有增加趋势,但降低了根茎叶的钾含量,而爬山虎的茎含氮量随供磷水平的增加先增加后减少;当供磷水平高于0.03 g.L~(-1),对爬山虎根茎叶的氮磷钾的含量的影响不显著,表明爬山虎适应低磷养分供应;随着供磷水平的增加,对爬山虎的磷养分利用率影响不显著,但能提高爬山虎钾的养分利用率,减少氮的养分利用率。
     4.供钾水平的增加,能增加爬山虎的生物量和主茎长度;过多的钾供应对生物量变化影响不显著,但调节各器官的生物量分配比例,主要表现为主茎生长受到抑制,增加叶在植株体内的生物量的分配比例;当供钾水平增加后,爬山虎植株体内的钾含量和钾累积量都显著增加;当供钾处理达到一定值后(0.18 g.L~(-1)处理),爬山虎的钾含量和钾累积量没有显著提高,这表明爬山虎是对钾易满足型植物;供钾水平增加对爬山虎根和茎的氮含量影响不显著,能提高爬山虎叶的氮含量;对爬山虎茎的磷含量影响不显著,但降低叶根的磷含量;当供钾处理达到一定值后(0.18 g.L~(-1)处理),爬山虎的根茎叶的氮磷钾含量没有显著变化。随着供钾水平的增加,各处理的爬山虎的氮利用率有降低趋势,磷养分利用率有升高趋势,但差异不显著;而钾的养分利用率随供钾水平的提高而显著减少。
     5.匍匐生长的爬山虎植株主要通过增大主茎生物量和主茎长度而适应生长环境,而垂直攀援生长的爬山虎植株表现出较强的分枝能力,可以通过分枝茎的伸展以扩展生长空间。随着支持物角度的增加,爬山虎植株的主茎长度、主茎直径有减小的趋势,而分枝和分枝总长有增加的趋势。
     6.适当遮荫有利于促进爬山虎的主茎纵向生长和分支的横向生长;但遮荫强度过大显著减少爬山虎生物量;遮荫强度不同影响爬山虎的各器官生物量分配,低遮荫条件有助于叶生物量积累,高遮荫导致爬山虎以茎生物量积累为主。
     7.随着40℃高温时间持续,爬山虎叶片的相对含水量和蛋白质含量显著降低,而CMS和MDA显著升高;抗氧化酶(SOD、CAT和POD)先升高后降低。而高温持续第2天后,爬山虎的净光合值快速下降。
     8.增加土壤水分能显著增加爬山虎的植株生物量,较高的土壤水分供应有助于爬山虎叶生物量分配,而较低的土壤水分有助于根生物量分配。土壤水分减少能使爬山虎叶片的气孔导度gs、蒸腾速率E和净光合值P_N显著下降。土壤水分变化,对爬山虎根茎叶的磷和钾含量影响较小,但显著影响爬山虎氮的含量。在不同的土壤水分条件下,爬山虎叶片保持了低的钾含量(低于10 g.kg~(-1)),有助于限制叶片气孔开度,这可能是爬山虎这种茎细叶茂结构适应水分环境的重要机理。土壤水分增加,对爬山虎的磷和钾的养分利用率影响不显著,但显著影响爬山虎的氮的养分利用率。
     9.爬山虎在岩石坡面有较高的成活率和生长速度,可以作为先锋植物用于高陡岩面的植被恢复;将爬山虎结合岩面钻孔种植的方法可以作为高陡岩面植被恢复的技术之一,并优先在多雨地区和庇荫稳定的坡面使用。而使用压缩型生长基质(生态块)种植爬山虎有助于其在岩石坡面生长。
The climbing plants is an important species of tropical and subtropical forests,and canprovide deep green cover to many objects,rapidly climbing to supports by means of tendrils oradhesive disks for not standing.They are not only main raw material of medicine and food butalso planted widely for landscaping,soil erosion control and revegation.But sometimes,theclimbing plants act as weed to damage trees,shrubs and flower beds for windly growth anddifficultly control.So learning the growth features and uptake nutrients law of the climbing plantsand finding the limiting factor to growth will contribute to have reasonable application of them inenvironment.
     Parthenocissus tricuspidata (Sieb.et Zucc) is a woody deciduous climbing plant of thefamily Vitaceae that has been widely planted for city green in china and play an important role inthe envinment management.But it is little known about its growth characteristics.This paperrepresented that the change of nutrients trend and distribution with the change of season,the N,P,K uptake characteristic,the effect of support angles,shaping,high temperature,soil moisture ongrowth,as well as revegetation of high and slope ofP.tricuspidata.The results were as follows:
     1.With the season change,the concentration of the macronutirents N,P,K,Ca,Mg and themicronutrients Fe,Mn,B,Cu,Zn in different plant parts of natural grown P.tricuspidata haddifferent change trends.The nutrient concentration of leaf was higher than stem and leafstalk.Thetissue nutrient concentration of upside part of the plant was less than of middle part and downsidepart.Nutrient elements of different tissue had different concentration order:in leaf,N>Ca>K>Mg>P>Fe>Mn>B>Zn>Cu;in leafstalk,N>Ca>K>Mg>P>Fe>B3>Mn>Zn>Cu;in stem,N>Ca>K>P>Mg>Fe>Mn>B>Zn>Cu.The N and K was the highest retranslocation rate among allnutrient elements in P.tricuspidata,exceeded 75%,and the Mn retranslocation rate was lowerthan other nutrient elements,only 10.6%.
     2.Plant branches were smaller and shorter in size under lower nitrogen rates than higher rates.High nitrogen rates also significantly promoted early branching of P.tricuspidata seedlings andlowered branching positions on the main stems.Supplying high nitrogen to P.tricuspidatasignificantly increased plant biomass and nitrogen content in root,leaf and stem.Compared tostem and root,leaf had highest biomass,accounting for 50% of plant total biomass.Leaf was alsothe main tissue for nitrogen accumulation,accounting for 60% to 70% of total accumulatednitrogen.
     3.Increasing phosphorus rates could increase the biomass and main stem length of P.tricuspidata,but high phosphorus rate (>0.06 g.L~(-1)) did not influence significantly the growth of P.tricuspidata.There was significant variation of root style and biomass under lower phosphorusrate.The total root length,root surface area,root volume,root tips and forks under 0.03 g.L~(-1) Prate treatment was higher than other treatments.With phosphorus rates increasing,the tissuephosphorus concentration and leaf and root nitrogen concentration of P.tricuspidata had an increase trend while the tissue potassium concentration was reduced,but the stem nitrogenconcentration increased first,and then decreased later.Higher phosphorus rates (0.03 g.L~(-1))had noobvious effect on nitrogen,phosphorus and potassium concentration of stems,leaves and roots,and indicated that P.tricuspidata could adapt to lower phosphorus availability.Increasedphosphorus rates can increase potassium use efficiency and decrease nitrogen use efficiency,butno obviously influence on phosphorus use efficiency.
     4.Increased potassium rates can increase the biomass and main stem length ofP.tricuspidata.However,higher potassium did not affect the biomass,but adjust the biomass partition.Leafgrowth constituted the more biomass proportion while the stem biomass was reduced under higherpotassium rates condition.The tissue potassium concentration and potassium content wereincreased with the increasing potassium rate.But when the potassium rate exceeded 0.18 g.L~(-1),theincrement of the tissue potassium concentration and potassium content was not significant.It issuggested that P.tricuspidata could adapt to lower potassium availability.Increased potassiumrates significantly increased the leaf nitrogen concentration,and reduced the leaf and rootphosphorus concentration,but not affected the root and stem nitrogen concentration and thestem phosphorus concentration.Higher potassium rates (>0.18 g.L~(-1)) did not greatly influencethe tissue nutrient concentration.With the potassium rates increasing,potassium use efficiencydecreased significantly,and nitrogen use efficiency showed a falling trend while phosphorus useefficiency had a rising trend,but not significantly different.
     5.The supports angles influenced the morphology and growth of P.tricuspidata.Under nosupporting condition,the biomass and main stem length of P.tricuspidata wasincreased.Undervertical angle condition,P.tricuspidata showed strong branch ability to extend growth space.When the support angles increased,the stem length and diameter of P.tricuspidata decreasedwhile the the branch number and total branch length inceased obviously.
     6.Different shading measures obviously affected growth and biomass distribution of P.tricuspidata.Proper shading measures was good for developing the growth of main stem andbranches,and low shading increased the leaf biomass while high shading leaded to stem biomassincrease.
     7.Under the high temperatures 40℃stress,the leaf relative water content (RWC),dissoluble protein content was significantly decreased but the cell membrane thermostability(CMS) and MDA were increased.Superoxide dismutase (SOD),catalase (CAT),peroxidase (POD)activities in leaf increased obviously at early stage of high temperature stress,then decreasedrapidly.After high temperatures stress for two days,the Net photosynthetic rate (P_N) was sharplyfalling.
     8.Biomass in P.tricuspidata was increased with the enhancing of water supply.However,the seedlings grown under higher water supplies invested more biomass in leaf (in terms of leafnumber and leaf area),and root growth constituted the largest proportion of the biomass underlower water supplies.Decreased water supplies significantly reduced the Net photosynthetic rate (P_N),stomatal conductance (gs) and transpiration rate (E).Different water supplies greatlyinfluenced the tissue N concentration than P and K concentration.P.tricuspidata had a low Kconcentration (below 10 g.kg~(-1)) in all its plant tissues,which may allow the plants to limit itsstomatal opening and reduce its water loss.Water supplies had significantly affected N-useefficiency,but did not affect P and K-use efficiency.
     9.P.tricuspidata had higher survival and growth rates,and showed well adaptability todisadvantageous growing conditions of rock slope so that it could be used as pioneer plant speciesto revegetation of rock slopes.The compress substrates can impove the biomass and growth rateof P.tricuspidata planting in rock slope.
引文
1. Ackerly, D.D. Light, leaf age, and leaf nitrogen concentration in a tropical vine.Oecologia, 1992, 89: 596-600.
    2. Adolfo, C, Raul, N., Ibone, A and Montalvo, J. Local topoclimate effect on short-term cutslope reclamation success. Ecology. Engineering, 2002, 18:489-498.
    3. Aerts, R. and Caluwe, D. H. Nitrogen use efficiency focarex species in relation to nitrogen supply. Ecology, 1994, 75: 2362-2372.
    4. Akhtar, M., Shahbaz, Y. O. and Tadashi, A. Phosphorus starvation induced root-mediated pH changes in solublization and acquisition of sparingly soluble P sources and organic acids exudation by Brassica cultivars. Soil science and plant nutrition, 2006, 52: 623-633.
    5. Alan, C. Plant species coexistence in cliff habitats. Journal of biogeography, 1997,24: 483-494.
    6. Appanah, S. and Putz, F. E. Climber abundance in virgin Dipterocarp Forest and the effect of prefelling climber cutting on logging damage. Malaysian Forester,1984,47: 335-342.
    7. Aronson, J., Floret, C, Floch, E. L. C. and Pontanier. R. Restoration and rehabilitation degraded ecosystems in arid and semi-arid lands. I. A view from the south. Restoration Ecology, 1993,1: 8-17.
    8. Aspinall, D. and Paleg, L. G. Proline Acuumulation: Physiological Aspects, The physiology and Biochemistry of Drought Resistance in Plant.New York:Academic Press, 1981,205-211.
    9. Augspurger, C. K. and Franson, S. E. Input of wind dispersed seeds into light gaps and forest sites in a Neotropical forest. Jouurnal of Tropical Ecology, 1988,4: 239-252.
    10. Barber, S. A. Soil Nutrient Bioavailability: A Mechanistic Approach. New York:John Wiley and Sons, Inc., 1984.
    11. Bazzaz, F. A. and Carlson, R. W. Photosynthetic acclimation to variability in the light environment of early and late successional plants. Oecologia, 1982, 54:313-316.
    12. Bazzaz, F. A. Plants in changing environments, Linking physiological, population and community ecology. London: Cambridge University Press. 1996. 13-40.
    13. Berry, J. Photosynthetic response and adaptation to temperature in high Plants.Plant physiology, 1980, 31: 491-543.
    14. Bhambie, S. Correlation between form, structure and habit in some lianas.Proceedings of the Indian Academy of Sciences. 1972, 75(5): 246-256.
    15. Blum, A.and Ebercon, A. Cell membrane stability as a measure of drought and heat tolerance in wheat. Crop Science, 1981, 21: 43-47.
    16. Brofas, G and Varelides, C. Hydro-seeding and mulching for establishing vegetation on mining spoils in Greece. Land Degradation, 2000,11: 375-382.
    17. Caballe, G. Liana structure, function and selection: a comparative study of xylem cylinders of tropical rainforest species in Africa and America. Botanical Journal of the Linnean Society, 1993, 113: 41-60.
    18. Cakmk. I. and Marschner, H. Magnesium deficiency and high light intensity enhance activities of superoxide dismutase, ascorbate peroxidase, and glutathione reductase in bean leaves. Plant Physiology, 1992, 98: 1222-1227.
    19. Carlquist, S. Anatomy of vine and liana stems: a review and synthesis. In: Putz, F.E., Mooney, H. A. The biology of Vines. Cambridge, England: Cambridge University Press, 1991, 53-71.
    20. Carquist, S. Observations on the functional histology of vines and lianas: vessel dimorphism, trecheids, vasicentric, tracheids, narrow vessels, and parenchyma. Aliso, 1985,11:139-157.
    21. Carter, G. A. and Teramura, H. A. Vine photosynthesis and relationships to climbing mechanics in a forest understory. American Journal of Botany, 1988, 75:1011-1018.
    22. Carter, G. A. Photosynthesis in an open field for exotic versus native vines of the southeastern USA. Canada Journal of Botany, 1989, 67: 443-446.
    23. Castellanos, G. A. Leaf, stem and metamer characteristics of vines in a tropical deciduous forest in Jalisco, Mexico. Biotropica, 1989,21: 41-49.
    24. Chalmers, A. C. and Turner, J. C. Climbing plants in relation to their supports in a stand of dry rainforest in the Hunter Valley, New South Wales. Proceedings of the L innean Society of New South Wales, 1994,114: 73-90.
    25. Chapin Ⅲ, F. S. Ecological aspects of plant mineral nutrition. Advance Mineral Nutrient, 1988(3): 161-191.
    26. Chapin Ⅲ, F. S. The mineral nutrition of wild plant. Annual Reviews Ecology.System, 1980, (11): 233-260.
    27. Chapin Ⅲ, F. S., Autumn, K., Pugnaire, F. Evolution of suites of traits in response to environmental stress. The American Naturalist, 1993,142: 578-592.
    28. Chapin Ⅲ, F. S., Vitousek, P. M. and Van, C. K. Plant response to multiple environmental factors. Bioscience, 1987,37: 49-57.
    29. Chartzoulakis, K., Noitsakis, B., Therios, I. Photosynthesis, plant growth and dry matter distribution in kiwifruit as influenced by water deficits. Irrigation Science,1993,14: 1-5.
    30. Ciompi, S., Gentili, E., Guidi, L. The effect of nitrogen deficiency on leaf gas exchange and chlorophyll fluorescence parameters. Plant Science, 1996,668:177-184.
    31. Claire, J., Pablo, C, Patrick, P., Michel, D. Diagnosing phosphorus status of natural grassland in the presence of white clover. Europe Journal Agronomy,2004,21:273-285.
    32. Clemente, A. S., Werner, C, Maguas, C, Cabral, N. S., Martins-Loucao, M.A.and Correid, O. Restoration of a limestone Quarry: effect of soil amendments on the establishment of native Mediterranean sclerophyllous shrubs. Restoration Ecology, 2004, 12(1): 20-28.
    33. Collins, G. G., Nie, X. L., Saltveit, M. E. Heat shock proteins and chilling sensitivity of mung bean hypocotyls. Journal of Experimental Botany, 1995, 46:795-802.
    34. Cox, J. A. and Conran, J.G. The effect of water stress on the life cycles of Erodium crinitum Carolin and Erodium cicutarium (L.) L'He rit. ex Aiton (Geraniaceae). Australian Journal of Ecology, 1996,21: 235-240.
    35. Cullen, W. R., Wheater, C. P. and Dunleavy, P. J. Establishment of species-rich vegetation on reclaimed limestone quarry faces in Derbyshire, UK. Biology.Conservation, 1998, 84: 25-33.
    36. Daisuke, H., Chiemi, Y., Katsue, N. and Akria, K. Revegetation of an artificial cut slope by seeds dispersed from the surrounding vegetation. Landscape Ecology.Engineering, 2006, 2: 53-63.
    37. Daniel, M., Eric, D. and Paulo, M. Nutrient loss and redistribution after forest clearing on a highly weathered soil in Amazonia. Ecological Applications, 2004, 14(4): 177-199.
    38. Darwin, C. The movements and habits of climbing plants. Beijing: Science Press,1957.
    39. Dias, A. T. C, Zaluar, H. L. T., Ganade, G. and Scarano, F. R. Canopy composition influencing plant patch dynamics in a Brazilian sandy coastal plain. Journal of Tropical Ecology, 2005, 21: 343-347.
    40. Dimitris, D. and Dimitris, K. Environmental economics and the mining industry:Monetary benefits fan abandoned quarry rehabilitation in Greece. Environmental Geology, 2003,44: 356-362.
    41. Dubbelden, D. and Verburg, K. Inherent allocation patterns and potential growth rates of herbaceous climbing plants. Plant and Soil, 1996,184: 341-347.
    42. Dubbelden, D. Growth and Allocation Patterns in Herbaceous Climbing Plants.Ph.d thesis, Netherlands Utrecht University, 1994.
    43. Dubbelden, D. The availability of external support affects patterns and morphology in herbaceous climbing plants. Functional Ecology, 1995, 9(4):628-634.
    44. During, H. J., Kwant, R. A. and Werger, M. J. A. Effect of light quantity on above ground biomass investment patterns in the vine Lonicera periclymenum and the shrub Lonicera xyloseum. Phytocoenologia, 1994,24: 597-607.
    45. Endress, A. G. and Thomson, W. W. Adhesion of the Boston ivy (Parthenocissus tricuspidata) tendill. Canda Journal Botany, 1997, 55: 918-924.
    46. Endress, A. G. and Thomson, W. W. Ultrastructural and Cytochemical studies on the developing adhesive disc of Boston ivy tendrils. Protoplasma, 1976, 88:315-331.
    47. Epstein, E. and Arnold, J. B. Mineral nutrition of plants: principles and perspectives, Second Edition. Sinauer Associaters press. Sunderland, USA, 2005.
    48. Erlandsson, G. Rapid effects on ion and water uptake induced by changes of water potential in young wheat plants. Physiology Plant, 1975, 35: 256-262.
    49. Esther, B. and Patricio, G F. Factor controlling vegetation establishment and water erosion on motorway slopes in Valencia Spain. Restoration Ecology, 2004,12: 166-174.
    50. Evans, J. R. Developmental constraints on photosynthesis: effects of light and nutrition. In: Baker, N. R. Photosynthesis and the Environment. Netherlands:Kluwer Academic Publisher, 1996, 281-304.
    51. Evans, J. R. Photosynthesis and nitrogen relationship in leaves of C3 plants. Oecologia, 1989,78:9-19.
    52. Evans, T. P. Winterhalder, B. Modified solar insolation as an agronomic factor in terraced environments. Land Degradation & Development, 2000,11: 273-287.
    53. Ewers, F.W., Fisher, J.B. and Chiu, S. T. Water transport in the liana Bauhinia fassoglensis (Fabaceae). Plant Physiology, 1989, 91:1625-1631.
    54. Field, C. and Mooney, H. A. The photosynthesis- nitrogen relationship in wild plants. In: Givinish, T. J. On the Economy of Plant Form and Function.Cambridge University Press, Cambridge, 1986, 25-55.
    55. Fisher, J. B.and Ewers, F. W. Structural responses to stem injury in vines. In:Putz, F. E. and Mooney, H. A. The biology of vines. Cambridge, U K: Cambridge University Press, 1991, 99-126.
    56. Fokar, M., Nguyen, H. T. and Blum, A. Heat tolerance in spring wheat. I.Estimating-cellularthermotolerance and heritability. Euphytica, 1998,104:1-8.
    57. Forseth, I. N. and Teramura, A. H. Kudzu leaf energy budget and calculated transpiration: The influence of leaflet orientation. Ecology, 1986, 67:564-571.
    58. French, J. C. Growth relationships of leaves and intemodes in viny angiosperms with different modes of attachment. American Journal of Botany, 1997, 64:292-304.
    59. French, RJ.and Turner, N.C. Water deficit change dry matter partitioning and seed yield in narrow-leafed lupins (Lupinus angustifolius L.). Australian Journal Agriculture Research, 1991,42: 471-484.
    60. Gentry, A. H. An ecotaxonomic survey of Panamanian lianas. Darcy, W. and Correa, M. Historia natural de Panama. Monographs of Systematic Botany, Saint Louis, USA: Missouri Botanical Garden, 1985,29-42.
    61. Gentry, A. H. The distribution and evolution of climbing plants. In: Putz, F. E.and Mooney, H. A. The biology of vines. Cambridge, England: Cambridge University Press, 1991 3-49.
    62. Giannopolitis, C. N and Ries, S. K. Superoxide dismutase I. Occurrence in higher plants. Plant Physiology, 1977, 59: 309-314.
    63. Givnish, T. J. and Vermeij, G. J. Sizes and shapes of liana leaves. American.Naturalist, 1976, 110: 131-160.
    64. Hak, R. and Natr, L. Effect of nitrogen starvation and recovery on gas exchange characteristics of young barley leaves. Photosynthetica, 1987, 56: 9-14.
    65. Holford, I.C.R. Soil phosphorus: Its measurement and its uptake by plants.Austrian Journal Soil Research, 1997,35: 227-239.
    66. Hsiao, T.C., and Xu, L.V. K. Sensitivity of growth of roots versus leaves to water stress: biophysical analysis and relation to water transport. Journal of experiment Botany, 2000, 51: 1595-1616.
    67. Huang, Y.L., Chen, L.D., Fu, B.J., Zhang, L.P and Wang,Y.L. Evapotranspiration and Soil Moisture Balance for Vegetative Restoration in a Gully Catchment on the Loess Plateau, China. Pedosphere, 2005,15: 509-517..
    68. Hutchings, M.J., and kroon, D.H. Foraging In plants: the role of morphological plasticity in resource acquisition. Advances in Ecological Research, 1994,25:159-238.
    69. Jaramillo, V. J. and Detling, J. K. Small-scale heterogeneity in a semi-arid North Amertican grasslandl.Tillering, N uptake and retranslocation in simulated urine patches. Journal of Applied Ecology, 1992,29: 1-8.
    70. Jim, C.Y. Ecological and Landscape Rehabilitation of Quarry Site in Hong Kong.Restoration. Ecology, 2001, 9: 85-94.
    71. John, S.K., Kurt, S.P. and Donald, R. Z. Clonal variation in above- and below-ground growth responses of Populus tremuloides Michaux: Influence of soil warming and nutrient availability. Plant and Soil, 217: 119-130,1999.
    72. Jorg S. Structural and nutritional differences between climbers and their supporting trees in a montane rainforest in South-Ecuador. Dissertation Thesis.Department of Systematic Botany and Ecology. University of Ulm, 2004.
    73. Kazda, M. and Salzer, J. Leaves of lianas and self-supporting plants differ in mass per unit area and in nitrogen content. Plant Biology, 2000, 2 (3): 268-271.
    74. Kearsley, M.J.C. and Whitham, T. G. Developmental changes in resistance in herbivory: implications for individuals and populations. Ecology, 1989, 70,422-434.
    75. Koerselman, W., Meuleman, A. F. M. The vegetation N: P ratio: a new tool to detect the nature of nutrient limitation. Journal of Applied Ecology. 1996, 33,1441-1450.
    76. Kudoyarova, G. R., Veselov, D. S., Faizov, R. G., Veselova S. V., Ivanov, E. A.,and Farkhutdinov, R. G. Stomata Response to Changes in Temperature and Humidity in Wheat Cultivars Grown under Contrasting Climatic Conditions. Russian Journal of Plant Physiology, 2007, 54(1): 46-49.
    77. Kumar, A., Singh, D. P. Use of physiological indices as a screening technique for drought tolerance in oilseed Brassica species. Annals of Botany, 1998, 81:413-420.
    78. Larcher, W. Physiological Plant Ecology. Springer-Verlag, Germany, Berlin.1995.
    79. Lee, D. W. Correlates of leaf tropical properties in tropical forest extreme shade and sun plants. American Journal of Botany, 1990, 77: 370-380.
    80. Lin, C. Y., Chen, Y. M., Key, J. L. Solute leakage in soybean seedlings under various heat shock regimes. Plant Cell Physiology, 1985,26: 1493-1498.
    81. Markus, G. and Pascal, M. Potassium transporters in plants-Involvement in acquisition, redistribution and homeostasis. FEBS Letters, 2007, 581: 2348-2356.
    82. Martinean, J. R and Specht J E. Temperature tolerance in soybean. Crops science,1979, (19): 75-81.
    83. Mengel, K. Potassium movement within plants and its importance in assimilate transport. In: Potassium in Agriculture. ASA-CSSA-SSSA, Madison, Wisconsin,USA, 1985. 397-408.
    84. Montoro, A. J., Alvarezrogel, J., Querejeta, J., Diaz, E. and Castillo, V. Three hydroseeding reveetation techniques for soil erosion control on anthropic steep slopes. Land Degradation, 2000, 11: 315-325.
    85. Nabe-Nielsen J. Diversity and distribution of lianas on a Neptropical rain forest.Journal of Ecology, 2001,17: 1-19.
    86. Nakano, Y. and Asada, K. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiology, 1981,22(5): 867-880.
    87. Parren, M. P. E. and Bongers, F. Does climber cutting reduce felling damage in Southern Cameroon. Forest Ecology and Management, 2001, 141: 175-188.
    88. Penalosa, J. Shoot dynamics and adaptive morphology of Ipomogea phillomega (Veff.) House (Convolvulaceae), a tropical rain forest liana. Annals of Botany,1983, 52:737-754.
    89. Perez-Salicrup, D. R., Sork, V. L. and Putz, F. E. Lianas and trees in a liana forest of Amazonian Bolivia. Biotropica, 2001, 33: 34-47.
    90. Petersen, S. L., Roundy, B. A. and Bryant, C. Revegetation methods for high-elevation roadsides at brycecanyon national park, Utah. Restoration Ecology,2004, 12(2): 248-257.
    91. Putz, F. E. and Mooney, H. A. The biology of vines. Cambridge. Cambridge University Press, 1991.
    92. Putz, F. E. and Windsor, D. M. Liana phenologyon Barro Colorado Island,Panama. Biotropica, 1987, 19: 334-341.
    93. Putz, F. E. Liana biomass and leaf area of a"terra firme"forest in the Rio Negro Basin, Venezuela. Biotropica, 1983,15: 185-189.
    94. Putz, F. E. The natural history of lianas on Barro Colorado Island, Panama.Ecology, 1984, 65: 1713 -1724.
    95. Putz, F.E. and Chai, P. Ecological studieson lianas in Lambir National Park.Sarawak, Malaysia. Journal of Ecology, 1987, 75:523-531.
    96. Raghothama, K.G. Mineral Nutrition of Higher Plant. Beijing: Academic Press,1999.
    97. Rasio, A., Cedota, M. C, Toponi, M., Flagella, Z., Wittmer, G. Leaf morphology and water status changes in Triticum durum under water stress. Physiology Plant,1990, 778: 462-467.
    98. Ray, T. S. Foraging behaviour in tropical herbaceous climbers (Araceae). Ecology,1992,80:189-896.
    99. Rehder, A. The New England Species of Pscderal. Journal of Rhodora, 1908, (10):24-27.
    100.Rodrigues, M. L., Pacheco, C. M. A. and Chaves, M. M. Soil-plant water relations, root distribution and biomass partitioning in Lupinus albus L. under drought conditions. Journal of experiment Botany, 1995,46: 947-956.
    101.Rosecrance, R.C. Effect of alternate bearing on nutrient uptake, storage, and root growth in mature pistachio (Pistacia vera L.) trees. Ph.D. Dissertation, University of California: Davis, California. 1996.
    102.Saliendra, N. Z., Sperry, J. S. and Comstock, J. P. Influence of leaf water status on stomatal response to humidity, hydraulic conductance, and soil drought in Betula occidentalis. Planta. 1995, 196: 357-366.
    103.Scarano, F. R. Structure, function and floristic relationships of plant communities in stressful habitats marginal to the Brazilian Atlantic rain forest. Annals of Botany, 2002, 90:517-524.
    104.Schnitzer, S. A. and Bongers, F. The ecology of lianas and their role in forests.Trends in Ecololy and Evolution, 2002, 17: 223-230.
    105.Schroeder, L. A. Changes in tree leaf quality and growth performance of lepidopteran larvae. Ecology, 1986, 67, 1628-1636.
    106.Shanahan, J. F., Edwards, I. B., Quick, J. S. and Fenwick, J. R. Membrane thermostability and heat tolerance of spring wheat. Crop Science, 1990, 30:247-251.
    107.Sharp, R. E., Hsiao, T. C. and Silk, W. K. Growth of the maize primary root at low water potentials. Plant Physiology, 1990, 93: 1337-1346.
    108.Silvia, M. and Fernando, V. Improving revegetation of gypsum slopes is not a simple matter of adding native species: Insights from a multispecies experiment.Ecological Engineering, 2007, 30: 67-77.
    109.Smart, R. E. and Coombe, G. B. Water relations of grapevines. In: Kozlowski,T.T. (ed.): Water deficits and plant growth 7. Academical Press, New York, USA,1983,137-196.
    110.Spollen, W. G., Sharp, R. E., Saab, I. N. and Wu, Y. Regulation of cell expansion in roots and shoots at low water potentials. In: Smith, J.A.C., Griffiths, H. (Eds).Water Deficits: Plant Responses from Cell to Community.Bios, Oxford, UK,1993, 37-52.
    111.Stephan H. Liana seedling growth in response to fertilisation in a neotropical forest understorey. Basic Apply of Ecology, 2002, (3):135-143.
    112.Stocking, C. R. and Ongun, A. The intracellular distribution of some metallic elements in leaves. American Journal of Botany, 1962,49: 284-289.
    113.Strong, D. R. and Ray, T. S. Host tree location behavior of a trop ical vine (Monstera gigantea) by scototropism. Science, 1975,190: 804-806.
    114.S(?)leyman, H., Mshvildadze, V. and Gepdiremenl, A. Acute and chronic antiinflammatory profile of the ivy plant, Hedera helix, in rats. Phytomedicine,2003,10: 370-374.
    115.Tardieu, F. and Simmonneau, T. Variability among species ofstomatal control under fluctuating soil water status and evaporative demand: modelling isohydric and anisohydric behaviours. Jouranl of experiment Botany, 1998,49: 419-432.
    116.Thomidis, T., Tsipouridis, C. and Darara, V. Seasonal variation of nutrient elements in peach fruits (cv. May Crest) and its correlation with development of Brown rot (Monilinia laxa). Scientia Horticulturae, 2007, 111: 300-303.
    117.Tomemori, H., Hamamura, K. and Tanabe, K. Interactive effects of sodium and potassium on the growth and photosynthesis of spinach and komatsuna. Plant Product Science, 2002, 5: 281-285.
    118.Turner,J.and Singerm,J.Nutrient distribution and cycling in a subalpine coniferous forest ecosystem.Journal of Applied Ecology,1976,13:295-301.
    119.Vitousek,P.M,Sanford,J.R.L.Nutrient cycling in moist tropical forest.Annals Reviews Ecology System,1986,17:137-167.
    120.Weeb,D.A.Flora Europaea--a retrospect.Taxon,1978,27:3-14.
    121.Weigleb,G.and Felinkd,B.Primary succession in post mining landscapes of lower lusatia-change or necessity.Ecology Engeering,2001,17:199-127.
    122.Wieneke,J.Phosphorus efficiency and phosphorus mobilization in two sorghum (Sorghum bicolor(L.)moench) cultivators.Plant and Soil,1990,23:139-145.
    123.Wigley,T.M.L.and Raper,S.C.B.Interpretation of high projections for global-mean warming.Science.2001,293:451-454.
    124.Wu,C.,Wang,Z.Q.and Fan,Z.Q.Effects of different concentrations and form ratios of nitrogen on chlorophyll biosynthesis,photosynthesis,and biomass partitioning in Fraxinus Mandshurica seedlings.Acta Phytoecologica Sinica,2003,57:771-779.
    125.Wyn,R.G.,Brady,C.J.and Speirs,J.Ionic and osmotic relations in plant cells.In:Laidman DH,Wyn Jones RG,editors.Recent advances in the biochemistry of cereals.Academic Press.London,UK,1979,63-103.
    126.Yuan,J.G.,Fang,W.,Fan,L.,Chen,Y.,Wang,D.Q and Yang,J.G..Soil formation and vegetation establishment on the cliff face of abandoned quarries in the early stages of natural colonization.Restoration Ecology,2006,14(3):349-356.
    127.Zammith,L.R.,and Scarano,F.R.Restoratoin of a restinga sandy coastal plain in Brazil:survival and growth of planted woody species.Restoration Ecology,2006,14:87-94.
    128.Zhang,Z.J.,Shl,L and Zhang,J.Z.Photosynthesis and growth responses of Parthenocissus quinquefolia (L.) Planch to soil water vailability.Photosynthetica,2004,42(1):87-92.
    129.蔡永立,宋永昌.藤本植物生活型系统的修订及中国亚热带东部藤本植物的生活型.生态学报,2000,(205):808-814.
    130.蔡永立,宋永昌.浙江天童常绿阔叶林香港黄檀的生态适应特征和行为.生态学报,2001,21(2):216-224.
    131.蔡永立,郭佳.藤本植物适应生态学研究进展及存在问题.生态学杂志,2000, 19(6):28-33.
    132.陈光宙,何和.海南岛4种药用藤本植物几项水份生理参数.中国野生植物资源.中国野生植物资源,1996,19(2):40-41.
    133.陈立松,刘星辉.植物抗热性鉴定指标的种类.干旱地区农业研究,1997,15(4):72-77.
    134.董爱文,陈建华,周辉,林桂艳,何征.爬山虎多糖的提取及抑菌作用.广州食品工业科技,2003,19(3):15-17.
    135.董爱文,赵虹桥,施立毛.爬山虎多糖提取与含量测定.广州食品业科技,2004,19(3):55-57.
    136.董爱文,赵虹桥,施立毛.爬山虎植物多糖含量的比较研究.天然产物研究与开发,2005,17(6):746-749.
    137.关义新,林葆,凌碧莹.光、氮及其互作对玉米幼苗叶片光合和碳、氮代谢的影响.作物学报,2000,26:806-812.
    138.韩振凤.地锦对环保作用的观察活动.生物学教学,1998,(1):33.
    139.何关福.植物资源专项调查研究报告.北京:科学出版社,1996.
    140.何维明,钟章成.攀援植物绞股蓝幼苗对光照强度的形态和生长反应.植物生态学报,2000,24(3):375-378.
    141.何维明,钟章成.外界支持物对绞股蓝种群觅养行为和繁殖对策的影响.生态学报,2001,21(1):47-50.
    142.贺士元,邢其华,尹祖棠.北京植物志.北京:北京出版社,1984,561-562.
    143.黄成林,傅松玲,梁淑云.五种攀缘植物光合作用与光因子关系的初步研究.应用生态学报,2004,15(7):1131-1134.
    144.黄敬军.废弃采石场岩质边坡绿化技术及废弃地开发利用探讨.中国地质灾害与防治学报,2006(17)3:69-72.
    145.黄铭洪,骆永明.矿区土地修复与生态恢复.土壤学报,2003,40(2):161-169.
    146.江仲春.爬山虎及川鄂爬山虎吸盘壁面附着机制的形态研究.南京农业大学学报,1994,17(4):27-31.
    147.李海波,夏铭,吴平.低磷胁迫对水稻苗期侧根生长及养分吸收的影响,植物学报,2001,43(11):1154-1160.
    148.李合生.植物生理生化实验原理和技术.北京:高等教育出版社,2000.
    149.廖红,严小龙.高级植物营养学.北京:科学出版社,2003.
    150.刘德良,李明红,张琴.南岳爬山虎属植物种质资源及园林应用.中国野生植物资源,2001,(6):31-32.
    151.刘峰,聂荣邦.作物钾营养研究进展.作物研究,2004(5):358-362.
    152.刘慧民,吴宇红,李金荣.五叶地锦抗寒理化指标的四季变化规律.东北农业大学学报,2005,36(4):451-454.
    153.刘慧民,章淑辉,李金荣,樊超,张超,冯楠楠.地锦属植物抗寒性生理指标变化分析.植物研究,2007,27(3):367-371.
    154.刘建祥,杨肖娥,吴良欢,John Bennett.植物钾营养高效与膜转运系统的关系.植物学通报,2001,18(5):5 13-520.
    155.刘祖祺,张石城.植物抗性生理学.北京:中国农业出版社,1995.
    156.龙云,邓美玲,谈锋.绞股蓝对水分胁迫的适应性研究.西南师范大学学报(自然科学版),1999,24(1):81-87.
    157.鲁如坤.土壤农业化学分析方法.北京:中国农业科技出版社,2000.
    158.马晓娣,彭惠茹,汪矛,王丽,孙其信.作物耐热性的评价.植物学通报,2004,21(4):411-418.
    159.毛达如.植物营养研究法.北京:北京农业大学出版社,1994.
    160.孟令国,李德远,顾克锁,杨艳茹.一个值得推广的园林绿化树种.山东林业科技,2001,增刊:17-19.
    161.牛西午,丁玉川,徐强,程滨.营养液不同浓度对柠条苗期植株生长发育的影响.西北植物学报,2003,23(4):622-627.
    162.彭克明.农业化学.北京:农业出版社,1990.
    163.彭少麟.热带亚热带恢复生态学研究与实践.北京:科学出版社,2003.
    164.祁承经,颜立红,彭春.异军突起的藤本植物.武汉植物学研究,2007,25(4):381-395.
    165.申建波,张福锁,毛达如.植物矿质营养的生态意义Ⅱ.植物对矿质养分的吸收、利用和分配.生态农业研究,1997,5(2):11-15.
    166.宋志伟主编.土壤与肥料.北京:高等教育出版社,2005.1.
    167.苏波,韩兴国,黄建辉,等.植物的养分利用效率(NUE)及植物对养分胁迫环境的适应策略.生态学报,2003,20(2):335-343.
    168.苏秀红.不同紫茎泽兰种群耐旱与耐热性的评价及耐热性生理生化特性的研究,南京农业大学博士学位论文.2005.
    169.孙振元,张毅功,巨关升.爬山虎繁殖技术.林业实用技术,2003,8:28-29.
    170.孙振元,陆诗雷.地锦绿化荒山作用初步研究.林业科技通讯,2000,(3):8-1 1.
    171.陶建平,钟章成.光照对苦瓜形态可塑性及生物量配置的影响.应用生态学报,2003,14(3):336-340.
    172.陶建平,钟章成.支持物倾角对攀援植物栝楼形态和生长的影响.生态学报,2003,23(1):1-7.
    173.陶建平.攀援植物的觅食行为及繁殖分配研究.东北师范大学博士论文,2000,10.
    174.田霄鸿,王朝辉,李生秀.氮钾锰硼的供应水平对莴笋植株累积矿质元素的影响.干旱区农业研究,1999,17(2):53-58.
    175.田英翠.攀缘植物及在边坡绿化中的应用.安徽农业科学,2006,34(6):1077-1078.
    176.涂书新,郭智芬,张平,孙锦荷.植物吸收利用钾素研究的某些进展.土壤,2000,5:248-253.
    177.王洪涛,吴联.建筑上地锦的绿色效应.建筑学报,1999,(9):25.
    178.王双明.爬山虎果实色素的提取及其性质的初步研究.食品科技,2005,2:52-54.
    179.王天忠,徐明芳.苗木芽苗移栽育苗技术.上海农业科技,2006,2:97-98.
    180.王小如.电感耦合等离子体质谱应用实例.北京:化学工业出版社,2005.
    181.王兴银,张福墁.弱光对日光温室黄瓜光合产物分配的影响.中国农业大学学报,2000,5(5):36-41.
    182.王雁,苏雪痕,彭镇华.植物耐荫性研究进展.林业科学研究,2002,15(3):349-353.
    183.王忠.植物生理学.北京:中国农业出版社,2000.
    184.吴楚,范志强,王政权.磷胁迫对水曲柳幼苗叶绿素合成、光合作用,应用生态学报,2004,15(6):935-940.
    185.吴韩英,寿森炎,朱祝军,杨信廷.高温胁迫对甜椒光合作用和叶绿素荧光的影响.园艺学报,2001,28(6):517-521.
    186.肖松江,孙振元,杨中艺,袁剑刚,辛国荣,巨关升,袁首仁.3种爬山虎属植物23个生态型的耐荫性研究.中山大学学报(自然科学版),2006,45(2):73-77.
    187.许大全.气孔的非均匀关闭与光合作用的非气孔限制.植物生理学通讯,1995,31(4):246.
    188.严小龙.热带土壤中菜豆种质耐低磷特性的评价.植物营养与肥料学报,1995 1(1):30-37.
    189.杨胜远,陆兆新,孙力军,吕凤,别小妹,刘战民.爬山虎内生菌的鉴定及其谷氨酸脱羧酶酶学特性.南京农业大学学报,2007,30(2):122-27.
    190.杨学军,孙振元,韩蕾,巨关升,徐旭,彭镇华.五叶地锦在立体绿化中的降温增湿作用.城市环境与城市生态,2007,20(6):2-4.
    191.余传隆,黄泰康.中药辞海(第一卷).北京.中国医药科技出版社,1993:1967-1968.
    192.臧德奎.2002.攀缘植物造景艺术.中国林业出版社,北京.
    193.张福锁,曹一平.根际动态营养与植物营养.土壤学报,1992,29(3):239-250.
    194.张雷明,上官周平,毛明策.长期施氮对旱地小麦灌浆期叶绿素荧光参数的影响.应用生态学报,2003,14:695-698.
    195.张淑勇,张光灿,陈建,刘刚,李小磊,刘霞.土壤水分对五叶爬山虎光合与蒸腾作用的影响.中国水土保持科学,2004,4(4):62-66.
    196.张淑勇.模拟水分与光环境下6种攀缘植物也其界面生理学过程与机制.山东农业大学硕士论文,2006.
    197.张旺锋,勾玲,王振林.氮肥对新疆高产棉花叶片叶绿素荧光动力学参数的影响.中国农业科学,2003,36:893-898.
    198.张毅功,陆诗雷,孙振元.爬山虎属植物利用研究.资源科学,2005,25(6):141-145.
    199.张毅功,孙振元,陆诗雷.种植爬山虎绿化荒山研究与对策.林业科技通讯,2000,(1):26-27.
    200.张毅功,王素君,高仪.五叶爬山虎组织培养试验研究.河北农业大学学报,2004,27(5):51-53.
    201.赵方莹,徐邦敬,周连兄,曹玉亭,宋瑞莲.采石边坡生态修复技术组合模式研究.中国水土保持,2006(5):24-26.
    202.赵广德.地锦在城市生态系统中的作用.辽宁师专学报,2003,(1):48-49.
    203.赵黎芳,张金政,张启翔,石雷,鲁韧强.水分胁迫下扶芳藤幼苗保护酶活性和渗透调节物质的变化,2003,23(4):437-442.
    204.中国科学院植物研究所.新编拉汉英植物名称.北京:航空工业出版社,1996,517-518.
    205.中国科学院植物研究所中国植物志编委会.中国植物志(48卷下册).北京:科学出版社,1998,12-27.
    206.周国海,杨美霞,于华忠,胡浪,刘捷华.不同方法对爬山虎中总黄酮含量测定的影响.中国林副特产,2004,3:3-4.
    207.周曾奎.南京地区50年气温特点分析和变化趋势.气象科学,2000,20(3):309-316.
    208.朱徐富.地锦垂直绿化生态效应的初步研究.江苏绿化,1994,(4):9-10.
    209.朱祝军,喻景权,Joska,G.,Burkhard,S.氮素形体和光照强度对烟草生长和H_2O_2清除酶活性的影响.植物营养与肥料学报,1998,4(4):379-385.
    210.诸葛媛媛,代光辉,张志远,金素心.地锦提取液防治黄瓜白粉病效果及其抑菌物质的初步研究.上海交通大学学报(农业科学版),2008,26(3):200-205.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700