用户名: 密码: 验证码:
苹果属砧木资源幼苗的耐低氧性评价及其对低氧胁迫适应的生理机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
苹果是世界上重要的栽培果树之一,是我国北方落叶果树中栽培面积最大的树种。在苹果生产中,时常因水淹、排灌不利、土壤质地紧实等原因造成苹果树根际缺氧。而关于低氧胁迫对苹果树的影响,国内外研究较少。苹果树的抗逆性主要取决于砧木,因此了解苹果属砧木资源的耐低氧能力,筛选耐低氧砧木,对充分利用砧木资源、发展苹果生产、合理选择和定向培育耐涝果树砧木都具有重要意义。深入研究低氧胁迫对苹果砧木伤害的生理原因,探明苹果砧木对低氧逆境的适应机制,有利于丰富果树抗逆生理理论,并且能为解决果树生产中土壤低氧胁迫问题提供一定的理论依据。
     本研究以中国12个苹果属砧木资源为试材,采用营养液培养的方法,结合淹水试验,利用湿害指数(WI)、抗逆系数(ARC)、模糊数学中隶属函数值和聚类分析等多种方法分析不同苹果属砧木资源幼苗耐低氧性的差异,对12个供试砧木资源进行耐低氧性综合评价。以筛选出的耐低氧能力具有显著差异的两个苹果砧木为材料,进一步采用营养液培养的方法,通过分析低氧胁迫下植株体内活性氧(ROS)积累和膜脂过氧化作用的特点,以及抗氧化酶和呼吸酶活性、抗氧化剂的适应性变化,研究低氧胁迫对苹果砧木幼苗部分生理特性、ROS代谢和根系呼吸代谢的影响,探究苹果砧木幼苗低氧胁迫的生理伤害机理以及抗氧化系统和根系呼吸代谢对低氧胁迫的调节机制,并分析这些生理生化变化与苹果砧木幼苗耐低氧性的关系。
     主要研究结果如下:
     1.低氧胁迫15 d时,苹果属砧木资源幼苗新叶数、根系长、最长新根长、株高和生物量明显降低,根系中超氧阴离子(O_2~-)产生速率和丙二醛(MDA)含量增加,可溶性蛋白含量下降,相对膜透性(RMP)增大,植株受到伤害;同时根系中脯氨酸(Pro)含量增加,超氧化物歧化酶(SOD)和过氧化物酶(POD)活性升高,而根系活力和过氧化氢酶(CAT)活性因砧木资源不同而表现不一。淹水胁迫30 d时,苹果属砧木资源幼苗叶绿素含量降低并且不同叶绿素之间的比例发生改变,植株生物量明显减少。
     2.不同砧木资源对低氧逆境的敏感性存在较大差异。采用WI、ARC、隶属函数值等多种方法结合聚类分析的综合评价结果显示,供试的12个苹果属砧木资源可以分为4大类:(1)耐低氧性强的砧木资源,包括‘平邑甜茶’(Malus hupehensis(Pamp)Rehd.)、‘平顶海棠’(M.robusta Rehd.)和‘卢氏红果’(M.sieboldii(Regel)Rehd.);(2)耐低氧性中等的砧木资源,包括‘毛山荆子’(M.manshurica(Maxim)Komarov.)、‘楸子’(M.prunifolia (Willd)Borkh.)、‘西府海棠’(M.micromalus Hemsl.)、‘八棱海棠’(M.robusta Rehd.)和‘东北黄海棠’(M.prunifolia Borkh.);(3)耐低氧性较弱的砧木资源,包括‘红三叶海棠’(M.sieboldii(Regel)Rehd.)和‘大果红三叶海棠’(M.sieboldii(Regel)Rehd.);(4)耐低氧性弱的砧木资源,包括‘新疆野苹果’(M.sieverii(Ledeb)Roem.)和‘变叶海棠’(M.toringoides(Rehd)Hughes.)。
     3.‘平邑甜茶’和‘变叶海棠’通气对照的幼苗在整个处理过程中光合色素含量及其比值、根系活力、可溶性蛋白和Pro含量变化不大。而低氧胁迫下两种苹果砧木幼苗叶绿素a(Chl a)、叶绿素b(Chl b)、总叶绿素(Chl)和类胡萝卜素(Car)含量都降低,并引起不同色素间比例的改变;根系活力先升后降并在胁迫中后期低于对照;叶片和根系中可溶性蛋白质含量持续下降;脯氨酸(Pro)含量逐渐增加,且叶片的变化幅度大于根系。耐低氧性强的‘平邑甜茶’除根系活力和Pro含量外,其余指标的变化幅度均小于耐性弱的‘变叶海棠’。
     4.正常通气条件下,‘平邑甜茶’和‘变叶海棠’两种砧木幼苗体内ROS代谢均无明显变化。但在低氧胁迫过程中,苹果砧木幼苗叶片和根系中O_2~-产生速率和H_2O_2含量增加,MDA含量上升,且随时间延长呈快慢快的变化趋势,RMP随之增加;同时叶片和根系中SOD、POD、CAT的活性增加,抗坏血酸过氧化物酶(APX)和谷胱甘肽还原酶(GR)的活性前期有所提高而后期降低并低于对照,抗坏血酸(AsA)和还原型谷胱甘肽(GSH)含量在胁迫早期增加而后逐渐减少,中期和后期低于对照,脱氢抗坏血酸(DHA)和氧化型谷胱甘肽(GSSG)含量略增,并由此引起总抗坏血酸(AsA+DHA)和总谷胱甘肽(GSH+GSSG)水平的变化与AsA和GSH含量基本一致,而表示抗坏血酸和谷胱甘肽氧化还原势的AsA/DHA和GSH/GSSG比值在胁迫前期增加而后下降,在胁迫后期显著低于对照。说明低氧胁迫下苹果砧木幼苗叶片和根系中ROS积累,细胞膜脂质过氧化加重,植株叶片和根系的抗氧化防御系统能在一定程度上减轻低氧胁迫所造成的膜伤害,但当胁迫持续加重时,植株将受到更大的氧化伤害。‘变叶海棠’叶片和根系细胞膜受到的氧化伤害大于‘平邑甜茶’,其抗氧化系统的防御能力弱于后者;而根系受到的氧化伤害大于叶片。
     5.正常通气条件下,‘平邑甜茶’和‘变叶海棠’幼苗根系的呼吸代谢未发生明显变化。低氧胁迫使苹果砧木幼苗根系中异柠檬酸脱氢酶(IDH)、琥珀酸脱氢酶(SDH)、苹果酸脱氢酶(MDH)和细胞色素C氧化酶(CCO)活性显著降低,丙酮酸大量积累;同时丙酮酸脱羧酶(PDC)、乙醇脱氢酶(ADH)和乳酸脱氢酶(LDH)活性先升后降,并在胁迫中期酶活性达到最高;乙醛、乙醇和乳酸含量呈先增后减的趋势。说明低氧胁迫下,苹果砧木幼苗根系三羧酸循环(TCAC)受阻,电子呼吸链的末端氧化能力下降,根系有氧呼吸代谢受到抑制;同时根系加强了乙醇发酵和乳酸发酵,导致根系中乙醇、乙醛和乳酸积累。整体来看,耐低氧性强的‘平邑甜茶’幼苗根系中有氧呼吸酶活性下降幅度较小而无氧呼吸酶活性的上升幅度较大,乙醇和乙醛积累较少。
Apple is one kind of the world's major fruit trees of cultivated species and the mostwidely cultivated deciduous fruit trees in North of China.In apple production,Some factorssuch as flooding,unfavorable irrigation,tight soil texture cause the occurrence of hypoxiaaround apple tree's root-zone.There are few reports about the hypoxia stress on apple trees inthe world.The stress resistance of apple trees mainly depends on rootstocks,therefore tostudy the resistant capacity of Malus rootstocks to hypoxia,and select hypoxia-resistantrootstocks is of great significance to fully utilize the resources of Malus rootstocks,developapple's production,reasonably choose and orientately breed fruit trees varieties with tolerantto waterlogging.Through deeply studying on physiological damage to Malus rootstocks andproving the adaptive mechanism of hypoxia stress,it can provide some physiological stresstheory and certain theoretical basis to solve the soil stress of hypoxia in production of fruittrees.
     In this research,12 Malus rootstocks in China were used as materials.In order toanalyze the difference of tolerance to hypoxia among different Malus rootstock seedlings andcomprehensively evaluate their hypoxia tolerance,many means by waterlogging index(WI),adversity resistance coefficient(ARC),subordinate function value in fuzzy math and clusteranalysis were used,combining with nutrient solution culture with waterlogging trail.TwoMalus rootstocks with significant difference in hypoxia tolerance were selected for furtherstudy.Through analyzing the changes of accumulation of reactive oxygen species(ROS)andmembrane lipid oxidation,the activities of antioxidant enzymes and enzymes related to root'srespiratory and the contents of antioxidants,the results revealed the physiological mechanismof damage and the regulation metabolism of antioxidant system and root's respiratorymetabolism in Malus rootstock seedlings under hypoxia stress,and further analyzing therelationship between these physiological changes and hypoxia tolerance of Malus rootstockseedlings.
     The main results were as follows:
     1.After 15 d under hypoxia stress,some indicators showed significant decreases amongin Malus rootstock seedlings,such as the number of new leaf,root length and maximumlength of new root,plant height and biomass,however the generation rate of superoxideanion radical(O_2~-),content of malonaldehyde(MDA)and relative membrane permeability(RMP)in root increased,and content of the soluble protein decreased,which indicated thatthe seedlings under hypoxia stress were damaged.Meanwhile,in root of Malus rootstockseedlings under hypoxia stress,the content of the proline(Pro)increased,and the activities ofsuperoxide dismutase(SOD)and peroxidase(POD)raised,while the root vitality and activityof catalase(CAT)showed different changes among different Malus rootstocks.After 30 d ofwaterlogging stress,in all rootstock seedlings the contents of chlorophyll reduced and theratios of different chlorophyll types changed,and the plant biomass decreased significantly.
     2.More significant differences in hypoxia sensitivity among different Malus rootstocksexisted.Comprehensive evaluation with WI,ARC,subordinate function value in fuzzy mathand cluster analysis results showed these rootstocks could be divided into 4 categories.(1)high hypoxia tolerance rootstocks,including 'Pingyi begonia'(Malus hupehensis(Pamp)Rehd.),'Pinding begonia'(M.robusta Rehd.)and 'Lushi red fruit'(M.sieboldii(Regel)Rehd.);(2)medium hypoxia tolerance rootstocks,including 'Maoshang jingzi'(M.manshurica(Maxim)Komarov.),'Qiuzi'(M.prunifolia(Willd)Borkh.),'Xifu begonia'(M.micromalus Hemsl.),'Baleng begonia'(M.robusta Rehd.)and'Northeast yellow begonia'(M.prunifolia Borkh.);(3)low hypoxia tolerance rootstocks,including'Red tri-leaf begonia'(M.sieboldii(Regel)Rehd.)and 'Dig fruit red tri-leaf begonia'(M.sieboldii(Regel)Rehd.);(4)week hypoxia tolerance rootstocks,including 'Xinjiang wild apple'(M.sieverii(Ledeb)Roem.)and 'Bianye begonia'(M.toringoides(Rehd)Hughes.).
     3.During the normal ventilation treatment,in 'M.hupehensis' and 'M.toringoides'seedlings,there were little changes in the contents and ratios of photosynthetic pigments,rootvitality,contents of soluble protein and Pro in leaf and root.While in the seedlings underhypoxia stress,the contents of chlorophyll a(Chl a),chlorophyll b(Chl b),total chlorophyll(Chl)and carotinase(Car)decreased,and the ratios of different photosynthetic pigmentschanged.At the same time,the root vitality rose first and decreased afterwards,and waslower than that of control at middle-late-term under hypoxia stress;and the contents ofsoluble protein continually declined in leaf and root.But the content of Pro increasedgradually,and the variation range in leaf was larger than that in root.There were different in two rootstocks under hypoxia stress.Except the root vitality and the content of Pro,therewere larger variation ranges of other indicators in 'M.hupehensis' seedlings with highhypoxia tolerance than that of'M.toringoides' seedlings with week hypoxia tolerance.
     4.There were no significant changes in ROS metabolism in 'M.hupehensis' and 'M.toringoides' seedlings under normal ventilated conditions.However,many indicatorsincreased in leaf and root of Malus rootstock seedlings during hypoxia stress,such as thegeneration rate of O_2~-,content of hydrogen peroxide(H_2O_2)and MDA and RMP,showedthe similar trend of'fast-slow-fast' with the time passing.At the same time,the activities ofSOD,POD and CAT increased;activities of ascorbate peroxidase(APX)and glutathionereductase(GR)increased first and decreased afterwards,and were lower than that of controlat later-term under hypoxia stress.Moreover,contents of ascorbic acid(AsA)and reducedglutathione(GSH)increased in the early and reduced gradually in leaf and root of Malusrootstock seedlings under hypoxia stress,and were lower than that of control at middle-term;there were slight increases in contents of dehydroascorbate(DHA)and oxidized glutathione(GSSG),which lead to that the contents of total ascorbic acid(AsA + DHA)and totalglutathione(GSH + GSSG)showed basically in accordance with AsA and GSH.As a result,ratios of AsA/DHA and GSH/GSSG indicating redox potential of ascorbate and glutathioneincreased at earlier term and then decreased gradually,and were significantly lower than thatof control at later term of hypoxia stress.All these suggested that hypoxia stress in Malusrootstock seedlings lead to the accumulation of ROS and more serious membrane lipidperoxidation,however plants could soften the damage from oxidative stress;but theantioxidant defense system including antioxidantive enzymes and antioxidants could reducethese damages to some extent,but when the stress continued over the limit,the plants wouldexpose to greater oxidative damage.The damages to leaf and root of 'M.toringoides'seedlings were greater than that of'M.hupehensis',and the capacity of antioxidant defensesystem were lower than that of the latter,and the damage of oxidative stress to root wasgreater than that of leaf.
     5.There were no significant changes in respiratory metabolism of root in 'M.hupehensis' and 'M.toringoides' seedlings under normal ventilated conditions.Underhypoxia stress,the activities of some enzymes related to respiration decreased significantly inroot of Malus rootstock seedlings,such as isocitrate dehydrogenase(IDH),succinatedehydrogenase(SDH),malate dehydrogenase(MDH)and cytochrome C oxidase(CCO),andpyruvate accumulated.At the same time,the activities of pyruvate decarboxylase(PDC), alcohol dehydrogenase(ADH)and lactate dehydrogenase(LDH)rose first and decreasedafterwards,and reached the highest in the middle-term under hypoxia stress.There were sametrends of increasing-decreasing for acetaldehyde,alcohol and lactate.All these indicated thatthe tricarboxylic acid cycle(TCAC)was inhibited in root of Malus rootstock seedlings underhypoxia stress,the terminal oxidation capacity of electronic respiratory chain decreased,andthe aerobic respiration in root was inhibited.At the same time,the anaerobic respirationincluding alcohol fermentation and lactate fermentation was strengthen in root of Malusrootstock seedlings,which caused the accumulations of alcohol,acetaldehyde and lactate.Overall,the decreasing ranges of the activities of enzymes related to aerobic respiration wereless in root of 'M.hupehensis' seedlings with high hypoxia tolerance,while the activities ofenzymes related to anaerobic respiratory increased larger,and showed less accumulations ofalcohol and acetaldehyde in root.
引文
[1]王文泉,张福锁.高等植物厌氧适应的生理及分子机制[J].植物生理学通讯,2001,37(1):63~70.
    [2]Drew M C.Oxygen deficiency and root metabolism:injury and acclimation under hypoxia and anoxia[J].Annu Rev Plant Physiol Plant Mol Biol,1997,48:223~250.
    [3]Geigenberger P.Response of plant metabolism to too little oxygen[J].Curr Opin Plant Biol,2003,6:247~256.
    [4]郭世荣.无土栽培学[M].北京:中国农业出版社,2003,125~129.
    [5]史春余,王振林,余松烈.土壤通气性对甘薯产量的影响及其生理机制[J].中国农业科学,2001,340(2):173~178.
    [6]Huang B,Johnson J W.Root respiration and carbohydrate status of two wheat genotypes in response to hypoxia[J].Ann Bot,1995,75:427~432.
    [7]李玉昌,李阳生,李绍清,等.淹涝胁迫对水稻生长发育与耐淹性机理研究的进展[J].中国水稻科学,1998,12(增刊):70~76.
    [8]Huang S,Greenway H,Colmer T D.Responses of coleoptiles of intact rice seedings to anoxia:K~+ net uptake from the external solution and translocation from the caryopses[J].Ann Bot,2003,91:271~278.
    [9]Vartapetian B B,Andreeva I N,Generozova I P,et al.Functional electron microscopy in studies of plant response and adaptation to anaerobic stress[J].Ann Bot,2003,91:155~172.
    [10]汪天,王素平,郭世荣,等.低氧胁迫下黄瓜幼苗根系多胺代谢的变化[J].园艺学报,2005,32(3):433~437.
    [11]Biemelt B,Keetman U,Albrecht G.Re-aeration following hypoxia or anoxia leads to activation of the antioxidative defense system in roots of wheat seedlings[J].Plant Physiol,1998,116:651-658.
    [12]Albrecht G,Biemelt S.A comparative study on carbohydrate reserves and ethanolic fermentation in the roots of two wetland and non-wetland species after commencement of hypoxia[J].Physiologia Plantarum,1998,104:81~86.
    [13]Finch-Savage W E,C(?)me D,Lynn J R,et al.Sensitivity of Brassica oleracea seed germination to hypoxia—A QTL analysis[J].Plant Science,2005,169:753~759.
    [14]高洪波,郭世荣.外源γ-氨基丁酸对营养液低氧胁迫下网纹甜瓜幼苗抗氧化酶活性和活性氧含量的影响[J].植物生理与分子生物学报,2004,30(6):651~659.
    [15]王旭,郭世荣,徐刚,等.Ca~(2+)对低氧胁迫下黄瓜幼苗光合效率和细胞超微结构的影响[J].江苏农业学报,2007,23(1):39~45.
    [16]Drew M C.Plant injury and adaption to oxygen deficiency in the root environment:a review[J].Plant and Soil,1983,75:179~199.
    [17]Morard P,Lacoste L,Silvestre J.Effect of oxygen deficiency on uptake of water and mineral nutrients by tomato plants in soilless culture[J].J Plant Nutr,2000,23(8):1063~1078.
    [18]Guo S R,Nada K,Tachibana S.A role for nitrate reductase in the high tolerance of cucumber seedlings to root-zone hypoxia[J].J Japan Soc Hort Sci,1998,67(4):613~618.
    [19]Everard J D,Drew M C.Mechanmisms in anaerobically treated roots ofZea mays L.[J].J Exp Bot,1 987.38:1 154~1 165.
    [20]#12
    [21]Rove R N,Beardsell D V.Waterlogging of fruit trees[J].Hort Abstract,1973,43:533~548.
    [22]Tachibana S,Konishi N.Diurnal variation of in vivo and in vitro nitrate reductase activity in cucumber plants[J].J Japan Soc Hort Sci,1991,60:593~99.
    [23]Chen H J,Qualls R G,Blank R R.Effect of soil flooding on photosynthesis,carbohydrate partitioning and nutrient uptake in invasive exotic Lipidium latifolium[J].Aquatic Botany,2005,82:250~268.
    [24]陆景陵.植物营养学[M].北京:中国农业大学出版社,2003.
    [25]Guo S R,Tachibana S J.Effect of dissolved O_2 levels in a nutrient of tomato and mineral nutrition of tomato and cucumber seedlings[J].J Japan Soc Hort Sci,1997,66(2):331~337.
    [26]Atwell B,Steer B T.The effect of oxygen deficiency on uptake and distribution of nutrients in maize plant[J].Plant Soil,1990,122:1~8.
    [27]Gibbs J,Turner D W,Armstrong W,et al.Greenway H.Response to oxygen deficiency in primary maize roots.Ⅰ.Development of oxygen deficiency in the stele reduces radial solute transport to the xylem[J].Aus J Plant Physiol,1998,25(6):745~758.
    [28]苏玲,林咸永,幸永松,等.水稻土淹水过程中不同土层铁形态的变化及对磷吸附解特性的影响[J].浙江大学学报(农业与生命科学版),2001,27(2):124~128.
    [29]王文泉,张福锁,郑永战,等.厌氧胁迫下芝麻不同耐渍基因型形态、生理及矿质元素变化的比较研究[J].应用生态学报,2002,13(4):421~424.
    [30]Bennicelli R P,Stepniewski W,Zakrzhevsky D A,et al.The effect of soil aeration on superoxide dismutase activity,malondialdehyde level,pigment content and stomatal diffusive resistance in maize seedings[J].J Exp Bot,1998,39(3):203~211.
    [31]Daugherty C J,Mathews S W,Musgrave M E.Structure changes in rapid-cycling Brassica rapa selected for different waterlogging tolerance[J].Can J Bot,1994,72(9):1322~1328.
    [32]Bragina T V,Drozdova L S,Alekhin V Z,et al.The rate of photosynthesis,respiration,and transpiration in young Maize plant under hypoxia[J].Doklady Bio Sci,2001,380:482~485.
    [33]Alpi A,Beevers H.Effects of O_2 concentration on rice seedlings[J].Plant Physiol,1983,71:30~34.
    [34]Pradet A,Mocquot B,Raymond P,et al.Energy metabolism and synthesis of nucleic acids and proteins under anoxic stress[A].In:Key J L,Kosuge T(eds).Cellular and molecular biology of plant stress.New York:Alan R Lis,1985,227-245.
    [35]Jackson M B,Ricard B.Physiology,biochemistry and molecular biology of plant root systems subjected to flooding of the soil[A].Ecological Studies 168,Springer.Hans de Kroon,Eric J W Visser(eds),2003,193-213.
    [36]倪君蒂,李振国.淹水对大豆生长的影响[J].大豆科学,2000,19(1):42~48.
    [37]汪天,李娟,郭世荣,等.外源多胺对低氧胁迫下黄瓜幼苗根系生长及H~+-ATP酶和H~+-焦磷酸酶活性的影响[J].植物生理与分子生物学报,2005,31(6):592~596.
    [38]Kennedy R A,Fox T C,Everard J D.Biochemical adaptations to anoxia:Potential role of mitochondrial metabolism to flood tolerance in Echinochloa phyllopogon(Barnyard Grass)[A].In:Jackson M B,Davies D D,Lambers H(eds).Plant Life Under Oxygen Deprivation-Ecology, Physiology and Biochemistry.The Netherlands:SPB Academic Publishing by,1991,202~217.
    [39]Bragina T V,Drozdova,Ponomareva Y V,et al.Photosynthesis,respiration,and transpiration in maize seedlings under hypoxia induced by complete flooding[J].Doklady Biol Sci,2002,384:274~277.
    [40]Ladygin V G.Functional activity and chloroplast structure in leaves of Pisum sativum and Glycine max under conditions of root hypoxia and anoxia[J].Russian J Plant Physiol,1999,46:207~218.
    [41]魏和平,利容千,王建波.淹水对玉米叶片细胞超微结构的影响[J].植物学报,2000,42(8):811~817.
    [42]Perata P,Vernieri P,Armellini D,et al.Immunological detection of acetaldehyde-protein adducts in ethanol-treated carrot cells[J].Plant Physiol,1992,98:913~918.
    [43]Roberts J K M,Andrade F H,Anderson I C.Further evidence that cytoplasmic acidosis is a determineant of flooding intolerance in plants[J].Plant Physiol,1985,77:492~494.
    [44]Kennedy R A,Rumpho M E,Fox T C.Anaerobic metabolism in plants[J].Plant Physiol,1992,84:1204~1209.
    [45]Guo S R,Nada K,Katoh H,et al.Differences between tomato(Lycopersicon esculentum Mill.)and cucumber(Cucumis sativus L.)in ethanol,lactate and malate metabolisms and cell sap pH of roots under hypoxia[J].J Jap Soc Hort Sci,1999,68:152~159.
    [46]Davies D D,Grego S,Kenworth P.The control of the production of lactate and enthanol by higher plants[J].Plant Physiol,1974,118:297~310.
    [47]Steinmann F,Brandle R.Carbohydrate and protein metabolism in the rhizomes of the bulrush(Schoenoplectus lacustris L.Palla)[J].Aguat Bot,1984,19:53~63.
    [48]Roberts J K M,Callis J,Wemmer D,et al.Mechanism of cytoplasmic pH regulation in hypoxia maize root tips and its role in survival under hypoxia[J].Pro Nati Acad Sci USA,1984,81:3379~3383.
    [49]Roberts J K M,Callis J,Jardetzky O et al.Cytoplasmic acidosis as a determinant of flooding in tolerance in plants[J].Proc Nati Acad Sci USA,1984,81:6029~6033.
    [50]焦鸿俊.基础生物化学[M].南宁:广西民族出版社,1995,161~168.
    [51]Davies D D.The biochemistry of plants.Vol 2,Metabolism and respiration[M].New York:Academic Press Inc,1980.
    [52]李璟,郭世荣,胡晓辉.外源亚精胺对低氧胁迫下黄瓜根系多胺含量和呼吸代谢酶活性的影响[J].西北植物学报,2006,26(1):92~97.
    [53]孙艳军,郭世荣,胡晓辉,等.根际低氧逆境对网纹甜瓜幼苗生长及根系呼吸代谢途径的影响[J].植物生态学报,2006,30(1):112~117.
    [54]刘新宇.低氧胁迫时玉米幼苗根尖表达蛋白的鉴定[D].四川农业大学硕士学位论文,2004.
    [55]Pfster-Sieber M,Brandle R.Aspects of plant behaviour under anoxia and post-anoxia[J].Proc of the Roy Soc of Edinburgh,1994,102B:313~324.
    [56]Argelika M,Albrecht G.Tolerance of crop plants to oxygen deficiency stress:fermentative activity and photosynthetic capacity of entire seedlings under hypoxia and anoxia[J].Physiologia Plantarum,2003,117:508~520.
    [57]Dennis E S,Dolferus R,Ellis M,et al.Molecular strategies for improving waterlogging tolerance in plants[J].J Exp Bot,2000,51:89~97.
    [58]Crawford R M M,Braendle R.Oxygen deprivation stress in a changing environment[J].J Exp Bot, 1996,47(295):145~149.
    [59]布坎南B B,格鲁依森姆W,琼斯R L.植物生物化学与分子生物学[M].北京:科学出版社,2004.
    [60]Braun K P,Cody R B,Jones J D R,et al.A structural assignment for a stable acetaldehyde-lysine adduct[J].J Biol Chemi,1995,270,11263~-11266.
    [61]Nilsen E T,Orcutt D M.The physiology of plants under stress[M].New York:John Wiley & Sons,1996.
    [62]Drew M C,Lynch J M.Soil anaerobiosis,microorganisms and root function[J].Annu Rev Phytopathol,1980,18:37~66.
    [63]Kuan T L,Erwin D C.Predisposition effect of water saturation of soil on phytophthora root of alfalfa[J].Phytopathology,1980,70(10):981~986.
    [64]Patra B N,Mohandy S K.Effect of nutrients and liming on changes in pH,resox potential,and uptake of iron and manganese by wetland rice in iron-toxic soil[J].Biol Fertil Soils,1994,17:285~288.
    [65]Huang B,Johnson T W,Nesmith D S.Nutrient accumulation and distribution of wheat genotypes in response to waterlogging and nutrient supply[J].Plant and Soil,1995,173:47~54.
    [66]Tanaka F,Ono S,Hayasaka T.Identification and evaluation of rice root elongation inhibitors in flooded soils with added wheat straw[J].Soil Sci Plant Natr,1990,36(1):97~103.
    [67]Sophis B,Ulrich K,Gerd A.Re-aeration following hypoxia or anoxia leads to activation of the antioxidative defense system in roots of wheat seedlings[J].Plant Physiol,1998,116:651~658.
    [68]Asada K,Takahashi M.Production and scavenging of active oxygen in photosynthesis[M].Elsevier Science Publishers:Amsterdam.1987,227~287.
    [69]郑荣梁,黄中洋.自由基医学与农学基础[M].北京:高等教育出版社,2001.
    [70]Crawford L A,Brown A W,Breitkreuz K E,et al.The synthesis of γ-aminobytyric acid in response to treatments reducing cytosolic pH[J].Plant Physiol,1994,104:865~871.
    [71]John G S.Oxygen stress and superoxide dismutases[J].Plant Physiol,1993,101:7~12.
    [72]Blokhina O B,Virolainen E,Fagerstedt K V,et al.Antioxidant status of anoxia-tolerant and intolerant plant species under anoxia and reaera tron[J].Physiology Plantarum,2000,109:396~403.
    [73]高洪波,郭世荣,刘艳红,等.低氧胁迫下Ca~(2+)、La~(3+)和EGTA对网纹甜瓜幼苗活性氧代谢的影响[J].南京农业大学学报,2005,28(2):17~21.
    [74]白团辉,马锋旺,李翠英,等.水杨酸对根际低氧胁迫下八棱海棠幼苗活性氧代谢的影响[J].园艺学报,2008,35(2):163~168.
    [75]Pandey O P,Asha K,Haque H.NAD-alcohol dehydrogenase and superoxide dismutase activity in Zea mays under hypoxia and post-hypoxia stress tegime[J].J Plant Biol,2000,27:71~73.
    [76]高洪波.根际低氧胁迫下网纹甜瓜幼苗生理代谢的特征及Ca~(2+)、GABA生理调节功能[D].南京农业大学博士学位论文,2005.
    [77]Kawase M.Effect of flooding on ethylene concentration in horticultural plant[J].J Amer Soc Hort Sci,1972,97:584~588.
    [78]Jackson M B,Hall K C.Early stomatal closure in waterlogged pca plants as mediated by abscisic acid in the absence of fpliar water deficits[J].Plant Cell Environ,1987,10:121~130.
    [79]潘瑞智.植物生理学[M].北京:中国高等教育出版社,2001.
    [80]Hurn W P,Lur H S,Liao K C.Role of abscisic acid,ethylene and polyaminjes in flooding promoted senescence of tobacco leaves[J].Plant Physiol,1994,143:102~105.
    [81]余叔文,汤章城.植物生理与分子生物学(第二版)[M].北京:科学出版社,1998:739~751.
    [82]Chen L Z,Wang W Q,Lin P.Photosynthetic and physiological responses of Kandelia candel(L.)druce seedlings to duration of tidal immersion in artificial seawater[J].Environ Exp Bot,2005,54:256~266.
    [83]利容千,王建波.植物逆境细胞及生理学[M].武汉:武汉大学出版社.2002.
    [84]Burrows W J,Carr D J.Effects of flooding the root system of sunflower plants on the cytokinin contents in the xylem sap[J].Physiology Plantarum,1969,22:1105~1112.
    [85]胡田田,康绍忠.植物淹水胁迫响应研究进展[J].福建农林大学学报,2005,34(1):18~24.
    [86]Malik A I,Colmer T D,Lumbers H,et al.Aerenchyma formation and radial O_2 loss along adventitious roots of wheat with only the apical root portion exposed to O_2 deficiency[J].Plant Cell Environ,2003,26:1713~1722.
    [87]Perata P A,Alpi A.Plant responses to anaerobiosis[J].Plant Science,1993,93:1~7.
    [88]Xu Z,Adams P.Effects of interplanted rice on the growth of tomato in deep solution culture and on the response to Salinity[J].Hort Sci,1994,69(2):319~328.
    [89]Armstrong W.Aeration in higher plants[J].Advances in Botanical Research,1979,7:225~332.
    [90]Jackson M B,Drew M C.Effects of flooding on growth and metabolism of herbaceous plants[A].In:Kozlowski T F.(ed).Flooding and plant grouth.Orlando:Academic Press lnc,1984,46~128.
    [91]Smirriof N,Crawford R M M.Variation in the structure and response to flooding of root aerenchyma in some wetland plants[J].Ann Bot,1983,51:237~249.
    [92]Webh J,Jackson M B.A transmission and cryo-scanning electron microscopy study of the fomation of aerenchyma(Cortical gas-filled space)in adventitious roots of rice(Oryza sativa L.)[J].J Exp Bot,1986,37(179):832~841.
    [93]Youssef T,Saenger P.Anatonucal adaption strategies to flooding and rhizosphere oxidation in mangrove seedlings[J].Aust J Bot,1996,44:297~313
    [94]Kludze H K,Delaune R D,Patrick W H.Aerenchyma formation and methane and oxygen exchange in rice[J].Soil Sci Soc Ann J,1993,57:386~391.
    [95]张福锁.环境胁迫与植物营养[M].北京:北京农业大学出版社,1993.
    [96]Insausti P,Grimoldi A A,Chaneton E J,et al.Flooding induces a suite of adaptive plastic responses in the grass Paspalum Dilatatum[J].New Phytologist,2001,152:291~299.
    [97]Vasellati V,Oesterheld M,Medan D,et al.Effects of flooding and drought on the anatomy of Paspalum Dilatatum[J].Ann Bot,2001,88:355~360.
    [98]王文泉,郑永战,梅鸿献,等.不同耐渍基因型芝麻在厌氧胁迫下根系的生理与结构变化[J].植物遗传资源学报,2003,4(3):214~219.
    [99]周苏玫,王晨阳,张重义,等.土壤渍水对冬小麦根系生长及营养代谢的影响[J].作物学报,2001,27(5):673~679.
    [100]Abad C,Karen L M,Irving A M.Fate of oxygen losses from Typha domingensis(Typhaceae)and Cladium jamaicense(Cyperaceae)and consequences for root metabolism[J].Amer J Bot,2000,87:1081~1090.
    [101]Perumalla C J,Peterson C A,Ensioned D E.A survey of angiosperm species to detect hypodermal Casparian bands.Ⅰ.Roots with a uniserate hypodermis and epidermis[J].Botanical J the Linnean Society,1990,103:93~112.
    [102]Peterson C A,Perumalla C J.A survey of angiosperm species to detect hypodermal Casparian bands Ⅱ.Roots with a multiserat hypodermis or epidermis[J].Botanical J the Linnean Society,1990,103:113~125.
    [103]Seago J L,Peterson C A,Enstone D E.Cortical development in roots of the aquatic plant Pontederia cordata(Pontederiaceae)[J].Amer J Bot,2000,87:1116~1127.
    [104]Colmer T D.Aerenchyma and an inducible barrier to radial oxygen loss facilitate root aeration in upland,paddy and deepwater rice(O ryza sativa L.)[J].Ann Bot,2003,91:301~309.
    [105]Colmer T,Gibberd M,Wiengweera A,et al.The barrier to radial oxygen loss from roots of rice(O ryza sativa L.)is induced by growth in stagnant solution[J].J Exp Bot,1998,49:1431~1436.
    [106]Armstrong W,Cousins D,Armetrong J,et al.Oxygen distribution in wetland p lant roots and permeability barriers to gas-exchange with the rhizosphere:a microelectrode and modelling study with Phragm ites australis[J].Ann Bot,2000,86:687~703.
    [107]Hose E,Clarkson D T,Steudle E,et al.Review article the exodermis:a variable apop lastic barrier[J].J Exp Bot,2001,52:2245~2264.
    [108]Aschi-Smiti S,Chaibi W,Brouquisse R,et al.Assessment of enzyme induction and aerenchyma formation as mechanisma for flooding tolerance in Trifolium subterraneum ‘Park’[J].Ann Bot,2003,91:195~204.
    [109]Yoshida S,Kitano M,Eguchi H.Lignification of hypoxia roots in cucumber plants(Cucumis sativus L.)[J].Environ Control in Biology,1998,36(1):53~55.
    [110]Zeier J.Pflanzliche abschlussgewebe der wurzel:chemische zusammensetzung und feinstruktur der endodermis in abhangigkeit von entwicklung und auβerenFaktoren[D].Würzburg,1998.
    [111]Porterfield D M,Musgravem E.The tropic response of plant roots to oxygen:oxytropism in Pisum sativum L.[J].Planta,1998,206(1):1~6.
    [112]欧阳惠.水旱灾害学[M].北京:气象出版社,2001.
    [113]Johnson J R,Cobb B G,Drew M C.Hypoxia induction of anoxia tolerance in roots of adh1 null Zea mays L.[J].Plnat Physiol,1994,105,61~67.
    [114]Kato N H.Anoxia tolerance in rice roots acclimated by several different periods of hypoxia[J].J Plant Physiol,2003,160(5):565~568.
    [115]刘晓忠,汪宗立,高煜珠.涝渍逆境下玉米根系乙醇脱氢酶活性与耐涝性的关系[J].江苏农业学报,1991,7(4):1~7.
    [116]Scandalious J G.In:Smith H.(ed)Phytochemical Society Symposia Series No.14,Regulation of Enzyme Synthesi and Activity in Higher Plants[A].London:Academic Press,1977,120~135.
    [117]Freeling M,Bennett D C.Maize Adh1[J].Annual Review of Genetics,1985,19:297-323.
    [118]Joly C A.Flooding tolerance:are interpretation of Crawford's metabolic theory[J].Proc of the Rov Soc of Edinburgh,1994,102B:343~354.
    [119]Johnson J,Cobb B G,Drew M C.Hypoxia induction of anoxia tolerance in root tips of Zea mays[J].Plant Physiol,1989,91:837~841.
    [120]Good A G,Muench D C.Long-term anaerobic metabolism in root tissue:Metabolic products of pyruvate metabolism[J].Plant Physiol,1993,101:1163~1168.
    [121]Menegus F,Cattaruzza L,Mattana M,et al.Response to anoxia in rice and wheat seedlings.Changes in pH of intracellular compartments,glucose-6-phosphate level and metabolic rate[J].Plant Physiol,1991,95:760~767.
    [122]刘晓忠,汪宗立,高煜珠.涝渍逆境下玉米根系苹果酸代谢与耐涝性的关系[J].植物生理学通讯,1993,29(6):413~415.
    [123]Rodolfo G C,Heliodoro C,Irma R.Importance of Rhodospirillum rubrum H~+-pyrophosphatase under low-enerhy conditions[J].Journal of Bacteriology,2004,186(19):6651~6655.
    [124]赵利辉,刘友良.液泡膜H~+-PPase及其对逆境胁迫的反应[J].植物生理学通讯,1999,35:441~445.
    [125]Veronique G,Berenice,Philippe R,et al.The role of sugars,hexokinase and srcose synthase in the determination of hypoxiaally induced tolerance to anoxia in tomato roots[J].Plant Physiol,1997,114:167~175.
    [126]张祖新,姜华武,魏中一,等.淹水胁迫下不同耐渍性玉米自交系根系中的酶学研究[J].湖北农业科学,2003,(3):25~28.
    [127]Sukano K.Revision of biochemical pH-stat:Involvement of alternative pathway metabolisms[J].Plant Cell Physiol,1998,39(5):467~473.
    [128]Sacha M M,Freeling M,Okimoto R.The anaerobic protein of maize[J].Cell,1980,20:761~767.
    [129]Russell D A,Wong D M L,Sachs M M.The anaerobic response of soybean[J].Plant Physiol,1990,92:401~407.
    [130]Mujer C V,Rumpho M E,Lin J J,et al.Constitutive and inducible aerobic and anaerobic stress protein in the Echinochloa complex and rice[J].Plant Physiol,1993,101:217~226.
    [131]高洪波,刘艳红,郭世荣,等.低氧胁迫下钙对网纹甜瓜幼苗多胺含量及多胺氧化酶活性的影响[J].植物生态学报,2005,29(4):652~658.
    [132]郭世荣,橘昌司,李谦盛.营养液温度和溶解氧浓度对黄瓜植株氮化合物含量的影响[J].植物生理与分子生物学报,2003,29(6):593~596.
    [133]Kakkar R K,Sawhney V K.Polyamine research in plants—changing perspective[J].Physiologia Plantarum,2002,116:281~292.
    [134]Zhao F G,Sun C,Liu Y L,et al.Relationship between polyamine metabolism in roots and salt tolerance of barley seedlings[J].Acta Botanica Sinica,2003,45(3):295~300.
    [135]Santa-Gruz A,Bolarin C.Changes in free polyamine levels induced by salt stress in leaves of cultivated and wild tomato species[J].Physiologia Plantarum,1997,101:341~346.
    [136]汪天,郭世荣,刘俊,等.多胺氧化酶检测方法的改进及在低氧水培黄瓜根系中的应用[J].植物生理学通讯,2004,40(3):358~360.
    [137]Jackson M B,Hall K C.Polyamine content and action of roots of Zea mays L.in relation to aerenchyma development[J].Ann Bot,1993,72(6):569~575.
    [138]Kende H,Der Knaap E,Cho H T.Deepwater rice:a model plant to study stem elongation[J].Plant Physiology,1998,118:1105~1110.
    [139]刘祖祺,张石城.植物抗性生理学[M].北京:中国农业出版社,1994,160~192.
    [140]Visser E,Bogmann G,Blom C,et al.Ethylene accumulation in waterlogged Rumex plants promotes formation of adventitious roots[J].J Exp Bot,1996,47:403~410.
    [141]Shen H J.Plant hormone and woodformation[J].Sci Silvae Sinicae,1996,32(2):165~170.
    [142]Drew M C,Jackson M B,Giffard S C.Inhibition by silver ions of space formation in adventitioius roots of Zea mays L.subjected to exogenous ethylene or oxygen deficiency[J].Planta,1981,153:217~224.
    [143]Jacroson M B,Hall K C.Early stomatal closure in waterlogged pea plants is mediated by abscisic acid in the absence of foliar deficits[J].Plant Cell Environ,1987,10:101~130.
    [144]徐锡增,唐罗忠,程淑婉.涝渍胁迫下杨树内源激素及其它生理反应[J].南京林业大学学报,1999,23(1):1~5.
    [145]刘华山,韩锦峰,孟凡庭,等.土壤渍水下芝麻叶片中几个与抗性能力有关的生理指标的变化[J].植物生理学通讯,2001,7(2):106~108.
    [146]晏斌,戴秋杰.外源活性氧清除剂对玉米植株涝害的缓解[J].华北农学报,1995,10(1):51~55.
    [147]Yan B,Dai Q J,Liu x,et al.Flooding-induced membrane damage,lipid oxidation and activated oxygen generation in corn leaves[J].Plant Soil,1996,179:261-268.
    [148]蒋明义,郭绍川,张学明.OH胁迫下稻苗体内脯氨酸积累及其抗氧化作用[J].科学通报,1997,42(6):646-649.
    [149]Kao C H.Physiological significance of stress-induced changes in polyamines in plants[J].Botanical Bulletin of Academic Sinica,1997,8(3):141~147.
    [150]Sachs M M,David H T U.Alteration of gene expression during environmental stress in plant[J].Annu Rew Plant Physiol,1998,37:363~376.
    [151]Sachs M M,Subbaiah C C,Saab I N.Anaerobic gene expression and flooding tolerance in maize[J].J Exp Bot,1996,47:1~15.
    [152]Ellis M H,Dennis E S,Peacock W J.Arabidopsis roots and shoots have different mechanism for hypoxia stress tolerance[J].Plant Physiol,1999,119:57~64.
    [153]Andrew D L,Cobb B C,Johnson J R,et al.Hypoxia and anoxic induction of alcohol dehydrogenase in roots and Zea may[J].Plant physiol,1993,101:407~414.
    [154]Zeng Y,Wu Y,Avigne W T,et al.Differential regulation of sugarsensitive sucrose synthase by hypoxia and anoxia indicate complementary transcriptional and post-translational response[J].Plant Physiol,1998,116:1573~1583.
    [155]Taylor E R,Nie X Z,Macgregor A W,et al.A cereal hemoglobin gene is expressed in seeds and root tissues under anaerobic conditions[J].Plant Mol Bio,1994,24:853~862.
    [156]Huq E,Hodges T K.An anaerobically inducible early(aie)gene family from rice[J].Plant Mol Bio,1999,40(4):591~601.
    [157]Hunt P W,Watts A,Trevaskis B,et al.Expression and evolution of functionally distinct haemoglobin gene in plants[J].Plant Mol Bio,2001,47:677~692.
    [158]刘晓忠,汪宗立.缺氧条件诱导玉米根系乙醇脱氢酶活性的调节作用[J].植物学通报,1996,13(1):48~49.
    [159]Bailey-Serres J,Chang R.Sensing and signaling in response to oxygen deprivation in plants and other organisms[J].Ann Bot,2005,96:507~518.
    [160]Terwilliger N B.Functional adaptations of oxgen-transport proteins[J].J Exp Biol,1998,201(8):1106~118.
    [161]Wang G L,Semenzy G L.Characterization of hypoxia-inducible factor Ⅰ and regulation of DNA binding activity by hypoxia[J].J Biol Chem,1993,268:21513~21518.
    [162]Pahl H L,Baeuerle P A.Oxygen and the control of gene expression[J].Bio Essays,1994,16(7): 497~502.
    [163]Bunn H F.A model for oxygen-dependent gene regulation[J].J Exp Biol,1998,201(8):1197~1202.
    [164]Liu H T,Li B,Shang Z L,et al.Calmodulin is involved in heat shock signal transducvtion in wheat[J].Plant Physiol,2003,132:1186~1195.
    [165]Subhaiah C C,Bush D S,Sachs M M.Mitochondrial contribution to the anoxic Ca~(2+)signal in maize suspension-cultured cells[J].Plant Pbysiol,1998,118:759~771..
    [166]Subhaiah C C,Zhang J,Sachs M M.Involvement of intracellular Calcium in anaerobic gene expression and survival of maize seedlings[J].Plant Physiol,1994,105:369~376.
    [167]胡晓辉,李娟,郭世荣,等.钙对根际低氧胁迫下黄瓜幼苗根系呼吸代谢的影响[J].园艺学报,2006,33(5):1113~1116.
    [168]Anton J M P,Marjolein C H C,Joris J B,et al.Submergence research using Rumex Palustris as a model;looking back and going forward[J].Journal of Experimental Botany,2002,53:391~398.
    [169]Elsem A,Daviesw J,Malone M,et al.A negative hydraulic message from oxygen-deficient roots of tomato plants? Influence of soil flooding on leafwater potential,leaf expansion and the synchrony of stomatal conductance and root hydraulic conductivity[J].Plant Physiol,1995,109:1017~1024.
    [170]Elsem A,Tiekstra A E,Crokor S T,et al.Stomatal closure in flooded tomato plants involves abscisic acid and a chemically unidentified antitranspirant in xylem sap[J].Plant Physiol,1996,112:239~264.
    [171]Smit B,Stachowiak M.Effects of hypoxia and elevated carbon dioxide concentration on water flax through populus roots[J].Tree Physiol,1988,4:153~165.
    [172]Garnczarska M,Bednarski W.Effect of a short-term hypoxia treatment followed by re-aeration on free radicals level and antioxidative enzymes in lupine roots[J].Plant Physiology and Biochemistry,2004,42:233~240.
    [173]高洪波,郭世荣,汪天.营养液低氧胁迫对网纹甜瓜幼苗脯氨酸和多胺含量的影响[J].植物生理学通讯,2004,40(4):434~436.
    [174]马月花,郭世荣.不同黄瓜品种根际低氧逆境耐性鉴定[J].江苏农业科学,2004,5:68~70.
    [175]张学昆,范其新,陈洁,等.不同耐湿基因型甘蓝型油菜苗期对缺氧胁迫的生理差异响应[J].中国农业科学,2007,40(3):485~491
    [176]Malgorzata G,Waldemar B.Effects of a short-term hypoxia treatment followed by re-aeration on free radicals level and antioxidative enzymes in lupine roots[J].Plant Physiology and Biochemistry,2004,42:233~240.
    [177]Das A,Uchimiya H.Oxygen stress and adaptation of a semi-aquatic plant:rice(Oryza sativa)[J].J Plant Res,2002,115:315~20.
    [178]Greenway H,Gibbs J.Mechanisms of anoxia tolerance in plants.Ⅱ.Energy requirements for maintenance and energy distribution to essential processes[J].Funct Plant Biol,2003,30:999~1036.
    [179]Kato-Noguchia H,Morokuma M.Ethanolic fermentation and anoxia tolerance in four rice cultivars[J].J Plant Physiol,2007,164:168~173.
    [180]Kang Y Y,Guo S R,Li J,et al.Effects of 24-epibrassinolide on antioxidant system in cucumber seedling roots under hypoxia stress[J].Agricultural Sciences in China,2007,6(3):281~289.
    [181]韩振海,李天忠,徐雪峰.苹果砧木资源研究、利用现状及发展趋势[J].果树学报,2005,22(专刊):24~29.
    [182]高俊凤.植物生理学试验技术[M].西安:世界图书出版社,2000,101~202.
    [183]Bradford M M.A rapid and sensitive method for quantities of microgram of protein utilizing the principle of protein-dye binding[J].Analytical Biochemistry,1976,72:248~254.
    [184]李合生,孙群,赵世杰.植物生理生化实验原理和技术[M].北京:高等教育出版社,2000,164~169.
    [185]王爱国,罗广华.植物的超氧化物自由基与羟胺反应的定量关系[J].植物生理学通讯,1990,(6):55~57.
    [186]陈义强,邓祖湖,郭春芳,等.甘蔗常用亲本及其衍生品种的抗旱性评价[J].中国农业科学,2007,40(6):1108~1117.
    [187]叶乃好,翟衡,杜中军,等.水分胁迫条件下10种苹果砧木抗旱性评价[J].果树学报,2004,21(5):395~398.
    [188]马雅琴,翁跃进.引进春小麦种质耐盐性的鉴定评价[J].作物学报,2005,31(1):58~64.
    [189]王军,周美学,许如根,等.大麦耐湿性鉴定指标和评价方法研究[J].中国农业科学,2007,40(10):2145~2152.
    [190]张卫星,赵致,朱德峰,等.水分和N胁迫下玉米杂交种的抗逆性及综合评价[J].干旱地区农业研究,2005,23(5):17~24.
    [191]魏永胜,梁宗锁,山仑,等.利用隶属函数值法评价苜蓿抗旱性[J].草业科学,2005,22(6):33~36.
    [192]Dat J F,Capelli N,Folzer H,et al.Sensing and signaling during plant flooding[J].Plant Physiology and Biochemistry,2004,42:273~282.
    [193]Sarkar R K,Das A.Changes in antioxidative enzymes and antioxidants in relation to flooding tolerance in rice[J].J Plant Biol,2000,27(3):307~311.
    [194]Zaidi P H,Rafique S,Singh N N.Response of maize(Zea mays L.)genotypes to excess soil moisture stress:morpho-physiological effects and basis of tolerance[J].European J Agronomy,2003,19:383~399.
    [195]杨洪强,接玉玲,黄天栋,等.尿素、BA和羊粪对苹果幼树新根的诱导与调控[J].中国农业科学,2001,34(1):1~4.
    [196]Yoshiba Y,Kiyosue T,Nakashima K,et al.Regulation of levels of proline as osmolyte in plants under water stress[J].Plant Cell Physiol,1997,38(10):1095~1102.
    [197]Vantoai T T,Bolles C S.Postanoxic injury in soybean(Glycine max)seedlings[J].Plant Physiol,1991,97:588~592.
    [198]孙艳军.根际低氧胁迫对网纹甜瓜幼苗伤害生理的研究[D].南京农业大学硕士学位论文,2005.
    [199]李贵全,张海燕,季兰,等.不同大豆品种抗旱性综合评价[J].应用生态学报,2006,17(12):2408~2412.
    [200](O|¨)pik H.Respiration in higher plants[M].Great Britain:The Camelot press,1980,42~46.
    [201]李育农.苹果属植物种质资源研究[M].北京:中国农业出版社,2001,225~246.
    [202]范君华,刘明.不同叶型零式果枝海岛棉叶片光合色素特性比较[J].中国棉花,2006,33(4):11~12.
    [203]徐惠风,刘兴土,金研铭,等.向日葵叶片叶绿素和比叶重及其产量研究[J].农业系统科学与综合研究,2003,19(2):97~100.
    [204]刘振亚,刘贞琦.作物光合作用的遗传及其在育种中的应用研究进展[A].作物育种研究与进展(第1集).北京:北京农业出版社,1993:168~183.
    [205]Willeken S H,Vancam P W,Lnze D,et al.Ozone,sulfur dioxide,and ozone ultraviolet-B have similar effect on mRNA accumulation of antioxidant genes in N icotiana plum baginifolia L.[J].Plant Physiol,1994,106:1007~1014.
    [206]王素平,郭世荣,胡晓辉,等.盐胁迫对黄瓜幼苗叶片光合色素含量的影响[J].江西农业大学学报,2006,28(1):32~38.
    [207]何军,许兴,李树华,等.水分胁迫对牛心朴子叶片光合色素及叶绿素荧光的影响[J].西北植物学报,2004,24(9):1 594~-1 598.
    [208]陈士刚,李青梅,陶晶,等.盐碱胁迫对几种杨树光合色素含量的影响[J].吉林林业科技,2005,34(6):8~12.
    [209]马焕成,王沙生,蒋湘宁.盐胁迫下胡杨的光合和生长响应[J].西南林学院学报,1998,18(1):33~41.
    [210]高洪波,郭世荣,章铁军,等.营养液低氧胁迫对网纹甜瓜幼苗生长和生理代谢影响[J].沈阳农业大学学报,2006,37(3):368~372.
    [211]熊明彪,罗茂盛,田应兵,等.小麦生长期土壤养分与根系活力变化及其相关性研究[J].土壤肥料,2005(3):8~11.
    [212]李阳生,李绍清.淹涝胁迫对水稻生育后期的生理特性和产量性状的影响[J].武汉植物学研究,2000,18(2):117~122.
    [213]王华田,孙明高.水涝对银杏生长及生理的影响[J].经济林研究,1997,15(2):14~18.
    [214]杨宝铭,吕德国,秦嗣军,等.淹水对‘寒富’苹果保护酶系和根系活力的影响[J].沈阳农业大学学报,2007,38(3):291~294.
    [215]Bailey-Serres J,Freeling M.Hypoxia stress-induced changes in ribosomes of maize seedlings[J].Plant Physiol,1990,94:1237~1243.
    [216]高洪波,郭世荣,汪天.根际低氧胁迫对网纹甜瓜硝态氮、铵态氮和蛋白质含量的影响[J].园艺学报,2004,31(2):236~238.
    [217]Sivalinganna M,Lee C H K,Van W P,et al.Molecular and biochemical characterization of cytosolic phosphoglucomutase in maize.Expression during development and in response to oxygen deprivation[J].Plant Physiol,1998,117(3):997~1006.
    [218]Sacha M M,Subbaiah C C,Saab I N.Anaerobic gene expressing and flooding tolerance in maize[J].J Exp Bot,1996,47:1~15.
    [219]宋凤斌,戴俊英,李海燕,等.外源多胺与玉米的耐旱性[J].玉米科学,1995,3:44~46.
    [220]赵福庚,刘友良.大麦幼苗多胺合成比脯氨酸合成对盐胁迫更敏感[J].植物生理学报,2000,26(4):343~349.
    [221]Sawahel W A,Hassan A H.Generation of transgenic wheat p roducing high levels of the osmop rotectant p roline[J].Biotechnology Letters,2002,24:721~725.
    [222]汤章城.逆境条件下植物脯氨酸的累积及其可能的意义[J].植物生理学通讯,1984,1:15~21.
    [223]Sarkar R K,Das S,Ravi I.Changes in certain antioxidative enzymes and growth parameters as a result of complete submergence and subsequent re-areation of rice cultivars differing in submergence tolerance[J].J Agronomy & Crop Science,2001,187:69~74.
    [224]董登峰,骆炳山,陈大清.小麦苗期和孕穗期涝渍的某些生理特性比较研究[J].广西农业大学 学报,1998,17(4):351~355.
    [225]陈强,郭修武,胡艳丽,等.淹水对甜樱桃根系呼吸和糖酵解末端产物的影响[J].园艺学报,2008,35(2):169~174.
    [226]Narayanan S,Ruma D,Gitika B,et al.Antioxidant activities of seabuckthorn(Hippophae rhamnoides)during hypoxia induced oxidative stress in glial cells[J].Mol Cell Biochem,2005,278:9~14.
    [227]胡晓辉,郭世荣,李璟,等.低氧胁迫对黄瓜幼苗根系无氧呼吸酶和抗氧化酶活性的影响[J].武汉植物学研究,2005,23(4):337~341.
    [228]Ramani K S,Avijit D.Changes in anti-oxidative enzymes and antioxidants in relation to flooding tolerance in rice[J].J Plant Biol,2000,27(3):307~311.
    [229]周国贤,郭世荣,王素平.外源多胺对低氧胁迫下黄瓜幼苗光合特性和膜脂过氧化的影响[J].植物学通报,2006,23(4):341~347.
    [230]Kampfenkel K,Van Montagu M,Inz(?)D.Extraction and determination of ascorbate and dehydroascorbate from plant tissue[J].Anal Biochem,1995,225:165~167.
    [231]Griffith O W.Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine[J].Anal Biochem,1980,106:207~212.
    [232]Nakano Y,Asada K.Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts[J].Plant Cell Physiol,1981,22:867~880.
    [233]Ma F W,Cheng L L.The sun-exposed peel of apple fruit has higher xanthophyll cycle-dependent thermal dissipation and antioxidants of the ascorbate-glutathione pathway than the shade peel[J].Plant Science,2003,165:819~827.
    [234]Fridovich I.Superoxide dismutase[J].Ann Rew Biochem,1975,44:147~159.
    [235]陈少裕.膜脂过氧化与植物逆境胁迫[J].植物学通报,1989,6(4):211~217.
    [236]Ushimaru T,Kanematsu S,Katayama M.Antioxidative enzymes in seedlings of Nelumbo Nucifera germinated under water[J].Plant hysiol,2001,112(1):39~-46.
    [237]Noctor G,Foyer C H.Ascorbate and glutathione:keeping active oxygen under control[J].Ann Rev Plant Physiol and Plant Mol Biol,1998,49:249~279.
    [238]Meyer A J.The integration of glutathione homeostasis and redox signaling[J].J Plant Physiol,2007,31:1~14.
    [239]Ball L,Accotto G P,Bechtold U,et al.Evidence for a direct link between glutathione biosynthesis and stress defense gene expression in Arabidopsis[J].Plant Cell,2004,16:2448~2462.
    [240]Ken'ichi O.Glutathione-associated regulation of plant growth and stress responses[J].Antioxid Redox Signal,2005,7:973~981.
    [241]曾斌,王飞娟,朱诚,等.AsA-GSH循环对水稻突变体耐汞性的作用[J].作物学报,2008,34(5):823~830.
    [242]王娟,李德全.水分胁迫对玉米根系AsA-GSH循环及H_2O_2含量的影响[J].中国生态农业学报,2002,10(2):94~96.
    [243]Smitha A G,Crofta M T,Moulina M,et al.Plants need their vitamins too[J].Curr Opin Plant Biol,2007,10:266~275.
    [244]Pallanca J E,SmirnoffN.The control of ascorbic acid synthesis and turnover in pea seedlings[J].J Exp Bot,2000,51:669~674.
    [245]曾斌.水稻Hg~(2+)耐性突变体在Hg~(2+)胁迫下抗氧化系统的应答机制[D].浙江大学硕士学位论文,2007.
    [246]罗娅,汤浩茹,张勇.低温胁迫对草莓叶片SOD和AsA-GSH循环酶系统的影响[J].园艺学报,2007,34(6):1405~1410.
    [247]Pastori G M,Foyer C H.Common components,networks,and pathways of cross-tolerance to stress:The central role of“redox” and abscisic acid-mediated controls[J].Plant Physiol,2002,129:460~468.
    [248]Jim(?)nez A,Hern(?)ndez J A,Pastori G.Role of the ascorbate-glutathione cycle of mitochondria and peroxisomes in the senescence of pea leaves[J].Plant Physiol,1998,118:1327~1335.
    [249]丁海东,朱为民,杨少军,等.Zn~(2+)胁迫及恢复下番茄幼苗根系中抗氧化系统的动态变化[J].应用与环境生物学报,2005,11(5):531~535.
    [250]Shigeoka S,Ishikawa T,Tamoi M,et al.Regulation and function of ascorbate peroxidase isoenzymes[J].J Exp Bot,2002,53:1305~1319.
    [251]马春花,马锋旺,李明军,等.外源抗坏血酸对离体苹果叶片衰老的影响[J].园艺学报,2006,33(6):1179~1184.
    [252]Shulaev V,Oliver D J.Metabolic and Proteomic Markers for Oxidative Stress.New Tools for Reactive Oxygen Species Research~([OA])[J].Plant Physiology,2006,141:367~372.
    [253]何嵩涛,刘国琴,樊卫国.银杏对水涝胁迫的生理反应(Ⅰ)—水涝胁迫对银杏膜脂过氧化作用及保护酶活性的影响[J].山地农业生物学报,2000,19(4):272~275.
    [254]Avijie D,Uchimiya H,Das A.Oxygen stress and adaptation of a semi-aquatic plant:rice(Oryza sativa L.)[J].J Plant Research,2002,115(5):315~320.
    [255]Mustroph A,Albrecht G.Tolerance of crop plants to oxygen deficiency stress:fermentative activity and photosynthetic capacity of entire seedlings under hypoxia and anoxia[J].Physiologia Plantarum,2003,117:508~520.
    [256]Bergmeger H U.Methods of enzymatic analysis,3~(rd),Vol Ⅲ[M].Verlag Chemse:Weinhein Press,1983:118~126.
    [257]Waters I,Morell S,Greenway H,et al.Effects of anoxia on wheat seedlings Ⅱ.Influence of O_2 supply prior to anoxia on tolerance to anoxia,alcoholic fermentation,and sugar levels[J].J Exp Bot,1991,42(244):1437~1447.
    [258]Bergmeger H U.Methods of enzymatic analysis,3~(rd),Vol Ⅵ[M].Verlag Chemse:Weinhein Press,1983:598~616.
    [259]刘家尧,衣艳君,白克智,梁峥.CO_2/盐冲击对小麦幼苗呼吸酶活性的影响[J].植物学报,1996,38(8):641~646.
    [260]薛应龙.植物生理学实验手册[M].上海科学出版社,1985:179~180.
    [261]欧阳光察.上海植物生理学会编.植物生理学实验手册[M].上海:上海科学技术出版社,1985.
    [262]Bergmeger H U.Methods of enzymatic analysis,3~(rd),Vol Ⅲ[M].Verlag Chemse:Weinhein Press,1983:183~190.
    [263]Rasmusson A G,Moller I M.NADP-utilizing enzymes in the matrix of plant mitochondria[J].Plant Physiol,1991,94:1012~1018.
    [264]Douce R.Mitochondria in higher plant,structure,function,and biogenesis[M].Londer:Academic Press,Inc,1985.
    [265]潘瑞炽.植物生理学(第五版)[M].北京:高等教育出版社,2004:102~115.
    [266]江苏农学院主编.植物生理学[M].北京:农业出版社,1986,65~75.
    [267]Davies D D.Anaerobic metabolism and production of organic acids[A].In:Davies D Ded.The Biochemistry of Plants,Vol 2.New York:Academic Press,1980:581~611.
    [268]Fukao T,Bailey-Serres J.Plant responses to hypoxia-is survival a banlancing act?[J].Trends in Plant Science,2004,9(9):449~456.
    [269]Fukao T,Kennedy R A,Yamasue Y,et al.Genetic and biochemical analysis of anaerobically induced enzymes during seed germination of Echinochloa crus-galli varietes tolerant and intolerant of anoxia[J].J Exp Bptany,2003,54(386):1421~1429.
    [270]Peng H P,Chan C S,Shih M C,et al.Signaling events in the hy pox ic induction of alcohol dehydrogenase gene in Arabidopsis[J].Plant Physiol,2001,126:742~749.
    [271]Ratcliffe R G.Metabolic aspects of the anoxic response in plant tissue[A].In “Environment and Plant Metabolism:Flexibility and Acclimation”(N Smirnoff ed).Oxford:Bios Scientific,1995,111~127.
    [272]Rivoal J,Hanson A D.Metabolic control of anaerobic glycolysis.Overexpression of lactate dehydrogenase in transgenic tomato roots supports the Davies-Roberts hypothesis and points to a critical role for lactate secretion[J].Plant Physiol,1994,106:1179~1185.
    [273]Ratcliffe R G.In vivo NMR studies of the metabolic response of plant tissues to anoxia[J].Ann Bot,1997,79(SupplA):39~48.
    [274]Germain V,Raymond P,Ricard B.Differential expression of two lactate dehydrogenase genes in response to oxygen deficit[J].Plant Molecular Biology,1997,35:711~721.
    [275]Smith A M,ap Rees T.Pathways of carbohydrate fermentation in the roots of marsh plants[J].Planta,1979,146:327~334.
    [276]Jackson M B,Herman B,Goodenough A.An examination of the importance of ethanol in causing injury to flooded plants[J].Plant Cell Environ,1982,5:163~172.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700