用户名: 密码: 验证码:
全日潮海区红树林造林关键技术的生理生态基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究针对制约当前我国红树林造林的最关键的两个自然因素:潮汐淹水和污损动物胁迫进行系统研究,目的是为科学划分红树林宜林地提供关键的技术参数,为红树林污损动物防治提供技术方法,从而提高红树林生态恢复工程的成功率。研究内容包括:
     1.红树植物淹水胁迫研究。在全日潮海区滩涂上建造野外试验平台,围绕当地平均海平面设置了8个滩面高程梯度,开展白骨壤(Avicennia marina)、桐花树(Aegicerascomiculatum)、秋茄(Kandelia obovata)、红海榄(Rhizophora stylosa)和木榄(Bruguieragymnorrhiza)等5种红树植物幼苗淹水胁迫试验,探索这5种红树植物在北部湾海区滩涂造林的宜林临界线。平台使幼苗除滩面高程有梯度差别外,其他如光照、海水盐度、基质性质和营养等立地条件达到最大程度的一致。2.红树林污损动物生态学研究。采用试验圆柱模拟红树,探索广西英罗湾红树林污损动物的初始附着规律和数量变化动态,结合白骨壤呼吸根上和桐花树茎上的污损动物群落,总结广西红树林污损动物群落演替规律。3.红树林污损动物防治研究。根据广西英罗湾红树林污损动物生态规律,使用2种农药各设置4个浓度和4个防治频度,采用喷雾方式,对比研究不同防治措施对红海榄幼苗及污损动物的生理生态影响。并初步探索了红树林污损动物的生物防治途径。结果如下:
     1.五种红树植物幼苗对淹水胁迫的反应各不相同,采用不同的生长策略应对胁迫生境。桐花树幼苗的茎在低滩面高程生境加快延长,而叶在中等高程生境中生长较好;生物量分配的变化不大,趋向于叶累积较多。白骨壤幼苗的茎延长受到了低滩面高程处理的促进,但叶似乎对淹水胁迫不敏感,生物量较多地分配在茎上。中等高程生境中秋茄幼苗的生长高度较高,节数、叶数和大根数越多,叶面积和叶保存率越大;在任一高程,秋茄幼苗各新生器官生物量分配均表现为:茎>根>叶,各新生器官及全株生物量的最大值出现在中等高程。木榄和红海榄的存活和生长特征较相似,对梯度淹水程度反应强烈:在较高生境,这两个种的幼苗存活率较高,茎延长较快,叶面积和叶保存率高,生物量累积也较多,并趋向累积于叶。
     2.对于不同的淹水胁迫程度,五种红树植物的生理指标反应变化各异。在-40和-30 cm低滩面高程处理组,白骨壤幼苗叶绿素含量较高。在-10至30 cm处理组,白骨壤幼苗叶绿素a和总叶绿素含量随滩面高程增大而降低;而各高程组的叶绿素b含量差异不大。白骨壤幼苗根系和叶片中SOD、POD和CAT对淹水胁迫的反应较为一致,即中等滩面高程生境下酶活性较高。
     桐花树幼苗叶片的叶绿素a、b和总含量均随滩面高程升高而降低,Chl(a/b)随滩面高程升高而增大。较低滩面高程处理组(-40到0 cm)幼苗叶片中SOD活性远大于较高滩面高程处理组(-10至30 cm)。不同处理组间根系中SOD活性变化不显著,梯度效应很弱。中等滩面高程生境下根系中POD活性较高;较小高程下叶片中POD活性较高。桐花树幼苗根系和叶片中CAT活性规律较一致:较小高程生境下CAT活性较高。
     低滩面高程生境下秋茄幼苗叶片叶绿素含量显著地高。ChI(a/b)则随滩面高程上升而增大。根系中SOD和POD的分布规律较为一致,都以0cm处理组的活性最高。叶片中SOD和POD活性的变化则相反,叶片SOD随高程增大而降低,POD则随高程增大而增大。根系中SOD和POD活性的水平与幼苗全株生物量的关系均呈显著相关,叶片中的则无此相关性。
     小高程组红海榄幼苗叶片叶绿素a显著受损,叶绿素b则相对较轻;叶绿素a/b比值随滩涂高程降低而变小。长时间淹水诱导根系中SOD活性上升,叶片中则表现为中等高程组酶活性较低。叶片和根系中POD活性均随高程降低而加大。
     小高程生境对木榄叶片叶绿素含量的促进作用较微弱,总体上大高程生境有更利于叶绿素含量上升;但较长时间的淹水胁迫使叶绿素a/b比值反而较高。小高程处理均促使叶片和根系中SOD和POD活性增强。同一高程组的木榄幼苗根系中SOD和POD活性均高于叶片的数倍。
     3.五种红树植物幼苗在不同程度的淹水胁迫下存活率和生长指标表明,它们在全日潮海区抗淹水能力排序为:白骨壤>桐花树>秋茄>红海榄>木榄,这与它们的向海分布序列相符。相对于当地平均海平面,在全日潮海区可以保证比较高的造林成功率的宜林滩面高程分别建议为:白骨壤为-29cm,桐花树、秋茄和红海榄均为+1cm,木榄为+21cm。
     4.在广西红树上共记录到污损动物29种。污损动物在茎上的附着高度h随树龄和树高H增大而增大,但h/H比值在达到91.9%(5a)后随树龄的增加而降低。广西红树林污损动物主要种的耐受干旱能力表现为:白条地藤壶(Euraphia withersi)>潮间藤壶(Balanus littoralis)>团聚牡蛎(Ostrea glomerata)>黑荞麦蛤(Xenostrobus atratus)。红树林污损动物的初始附着呈双峰型,分别在4月和10月;同时污损动物的初始附着量很大,每个月均超过了1600 Ind.m~(-2)。红树林污损动物群落结构从单优群落向复杂群落发展,潮间藤壶是构建群落的先锋种,逐渐过渡到白条地藤壶占优势,多年演变成为黑荞麦蛤+潮间藤壶+白条地藤壶群落。模拟试验和群落调查分析结果为红树林污损动物的防治策略提供了重要的基础数据。
     5.防治目标针对污损动物的幼体,采用高频度喷雾防治是本文防污的重要策略。不同的浓度和频度的防治措施,在污损动物附着量、幼苗存活率和生长指标出现了显著的差异。较高的浓度和频度防治取得较理想的防治效果,马拉硫磷防治效果比乐果更好。考虑到农药污染残留问题、经济成本和操作性,采用频度14d和浓度1/800马拉硫磷(45%乳油)防治红树林污损动物较为适合。生物防治初步研究表明锯缘青蟹(Scyllaserrata)对较低位置的污损动物清除效果十分明显,致使污损动物的密度、生物量和生物多样性显著下降;但同时锯缘青蟹不能取食较高位置的污损动物,表明多种动物协同防污应是今后红树林污损动物的生物防治的重要技术路线。本文探讨了生物防治的潜在应用生物种类、方式和可行性,并提出了“生态养殖-造林综合体系”的建议。
Focused on the two key factors determining the chance of successful mangroveafforestation,i.e.flooding and fouling stress,the present study aimed at providing thesupporting parameters for reasonable selection of suitable tidal flat for mangroveafforestation,and for controlling technique to the mangrove fouling fauna as well.This study consisted of three aspects,1) the eco-physiological responses ofmangrove plants to flooding stress,2) the ecology of mangrove fouling fauna,and 3)the controlling of mangrove fouling fauna.
     In the flooding experiment,three replicate experimental platforms wereconstructed on the bare flat in Yingluo Bay in the Beibu Gulf,where a diurnal tideprevailed;and eight different tidal flat elevation (abbreviated as TFE) treatments werecreated on each platform for the seedling cultivation.The experimental platformspresented the utmost similarities in such habitat conditions like light,salinity,sediment and nutrient,except the gradient degrees of flooding stress.The floodingtolerance of five important mangrove species in China,i.e.Aegiceras corniculatum(Ac),Avicennia marina (Am),Kandelia obovata (Ko),Bruguiera gymnorrhiza (Bg) andRhizophora stylosa (Rs) was examined.
     In the ecological study on the mangrove fouling fauna,the cylindricalexperimental poles were applied for the first time to simulate the stem of mangroveplant,and to investigate the temporal dynamic rules of mangrove fouling community.The perennial fouling communities on the pneumatophores of Am tress and on thestems of Ac trees were also sampled for the community succession analysis.
     In the antifouling experiment,two kinds of pesticides (malathion and dimethoate)were applied,and four concentrations (1/200,1/400,1/600 and 1/800 seawatersolution of the original pesticide concentration respectively) and four spraying frequencies (every 3d,7d,14d and 28d respectively) were designated to thetreatment groups.The growth and physiological responses of Rs seedlings underdifferent treatments were measured,so were the fouling fauna communities on theseedlings.Furthermore,a preliminary bio-controlling experiment was conducted.
     The results were showed as following.
     1.The growth responses to gradients of flooding differed among these fivemangrove species,different strategies were adopted to adapt the flooding stresshabitats.In Ac,stem elongation was promoted at lower TFEs;leaves grew better inmoderate habitats;and biomass proportions changed narrowly,with moreaccumulated in the leaf.Am seedling's stem elongation was also promoted by lowerTFEs,while its leaf seemed to be insensitive to flooding stress,and more biomasswas accumulated in the stem.For the Ko seedling,better growth was achieved at themoderate TFEs,with more knots,higher numbers of leaves and cable roots,largerleaf areas,higher leaf conservation rates,and larger biomass accumulation.Bg andRs exhibited similar trends in survival and growth,with intense gradients ofresponses to flooding.Seedlings of both species had a higher survival rate,quickerstem elongation,larger foliar area and conservation,and more biomass accumulationat higher TFEs.
     2.The responses in physiological parameters to gradients of flooding variedamong these five mangrove species.The chlorophyll contents in leaves of Amseedlings were higher in -40cm and -30 cm treatments.Among the TFE of-10 cm to30 cm,there presented an increase of Chl a and total Chl with the decreasing TFE;while the Chl b changed little.The activities of SOD,POD and CAT respondedsimilarly to the flooding stress,of which higher activity occurred under moderate TFE.
     The contents of Chl a,Chl b and total Chl of Ac seedlings all increased,while Chl(a/b) decreased with the decreasing TFE.SOD activities in leaves were higher inlower TFE treatments (-40 cm to 0 cm) than those in higher TFE treatments (-10 cmto 30 cm).SOD activities in root changed little among different TFE treatments.PODactivities in root were higher under moderate TFE treatments,while high PODactivities in leaf occurred under lower TFE.Both the CAT activities in leaf and in root were higher under lower TFE than those under higher TFE.
     The chlorophyll contents of Ko seedlings under lower TFE treatments werehigher than the higher ones,indicating that the longer waterlogging had a positivepromotion to the increase of chlorophyll contents.Both SOD and POD activities inroot were higher than those in leaf in the same treatment.In root,the SOD followedthe same rule as POD,and both of their maximum occurred in the 0cm YSD.In leaf,there showed an opposite trend,with the TFE increased,the SOD activity decreasedwhile the POD increased.There existed significant correlation between the totalbiomasses of the seedling and the activities of SOD and POD in root,but none in leaf.
     To Rs seedlings,larger damage to Chl a occurred in the lower TFE treatments,while relatively less to Chl b.Ratios of Chl (a/b) decreased as the TFE lowered.Prolonged inundation treatments induced higher SOD activities in root,whilemoderate TFE habitats inhibited the activities in leaf.As the TFE decreased,PODactivities in both root and leaf all went up.
     A slight promotion to the chlorophyll contents of Bg seedlings could be foundunder lower TFE habitats,however stronger promotion occurred under the higherones.And the ratios of Chl (a/b) under lower TFEs were higher than those underhigher TFEs.Higher SOD and POD activities in both the leaves and the roots weresignificantly promoted by the lower TFEs.At the same TFE the activities of both SODand POD in the roots are several times higher than those in the leaves.
     3.Comparison of flooding tolerance was mainly based on the survival andgrowth parameters of seedlings.Flooding tolerance for these species studieddecreased in the following order:Am>Ac>Ko>Rs>Bg,which matched theirnatural distribution in the intertidal zone.In order to afforest mangrove successfully inthe diurnal tidal region,the critical tidal elevation we proposed for Am was located at29 cm under local mean sea level (MSL),while those for Ac,Ko and Rs were at 1 cmabove the local MSL,and that for Bg was 21 cm above local MSL.
     4.Twenty nine species of fouling fauna were recorded on the mangrove trees ofGuangxi.The fouled heights (h) went up with the tree ages and the tree height (H),while the ratio h/H reached the maximum (91.9%) at 5a and then decreased with the tree ages.The drought-tolerance of the major species of mangrove fouling fauna inGuangxi decreased in the following order:Euraphia withersi>Balanus littoralis>Ostrea glomerata>Xenostrobus atratus.The larval supply of mangrove fouling faunain Guangxi presented a two-tip type through the whole year,with one tip on April andanother on October respectively.However,we should pay more attention to the factthat the monthly larval supply except January and February exceeded 1600 Ind.m~(-2).The perennial mangrove fouling community changed from the mono-dominant type tothe multi-dominant type,during which Balanus littoralis acted as the pioneer speciesin the earlier stage;and then Euraphia withersi dominated the community in themeddle stage;after that the multi-dominant-species Xenostrobus atratus+Balanuslittoralis+Euraphia withersi community came into being in the later stage.Resultsfrom the simulation experiment and the field investigation played important roles indesigning the controlling strategy to mangrove fouling fauna.
     5.High frequency of spraying pesticide on the young larval in the early stage wasthe important strategy applied in our antifouling experiment.The results showed thatthere existed significant differences in fouling quantities,seedling survivor and growthunder different pesticide concentration and spraying frequency,while better resultwas achieved under denser pesticide and more frequent controlling treatment.Malathion was more efficient than dimethoate.As less pesticide persistence,lowercost and simplified operation were considered,a fouling controlling proposal withspraying frequency of every 14d and Malathion concentration of 1/800 was given.Inthe biotic controlling experiment,the Scylla serrata exhibited efficient clearancecapability of the fouling fauna on the lower position while poor on the higher position,pointing out that the multi-species strategy should be applied for the bio-controlling ofmangrove fouling fauna in the future.The potential species,methods and feasibilityfor the further bio-controlling to mangrove fouling fauna were analyzed;and an“ecofarming-afforestation integrated system”was proposed.
引文
[1]范航清.红树林—海岸环保卫士[M].南宁:广西科学技术出版社.2000.
    [2]林鹏.中国红树林生态系[M].北京:科学出版社.1997.
    [3]昝启杰,王勇军,廖宝文,等.无瓣海桑、海桑人工林的生物量及生产力研究[J].武汉植物学研究 2001,19(5):391-396.
    [4]范航清,陈光华,何斌源,等.山口红树林滨海湿地与管理[M].北京:海洋出版社.2005.
    [5]黄宗国,李经建,林永源,等.海洋河口湿地生物多样性[M].北京:海洋出版社.2004.
    [6]何斌源,范航清,王瑁,等.中国红树林湿地物种多样性及其形成[J].生态学报,2007,27(11):4859-4870.
    [7]何明海,范航清.我国红树林保护与管理的现状[C].见:范航清,梁士楚主编,中国红树林研究与管理.北京:科学出版社.1995.173-182.
    [8]国家林业局森林资源管理司.全国红树林资源调查报告[R].2002.
    [9]林鹏.中国红树林湿地与生态工程的儿个问题[J].中国工程科学,2003,5(6):33-38.
    [10]张乔民,隋淑珍,张叶春,等.红树林宜林海洋环境指标研究[J].生态学报,2001,21(9):1427-1437.
    [11]王伯荪,廖宝文,王勇军,等.深圳湾红树林生态系统及其持续发展[C].北京:科学出版社,2002.257-260.
    [12]何斌源,戴培建,范航清.广西英罗港红树林沼泽沉积物和大型底栖动物中重金属含量的研究[J].海洋环境科学,1996,15(1):35-41.
    [13]黄立南,蓝崇钰,束文圣.污水排放对红树林湿地生态系统的影响[J].生态学杂志,2000,19(2):13-19.
    [14]李玫,章金鸿,陈桂珠.生活污水排放对红树林植物生长的影响[J].防护林科技,2002,(3):1-5.
    [15]李玫,章金鸿,陈桂珠.化工废水对红树林湿地的影响[J].重庆环境科学,2003,25(6):21-24,60.
    [16]章金鸿,李玫,陈桂珠.港湾污水排放对红树林湿地的影响[J].上海环境科学,2004,23(4):147-151.
    [17]Luiting V T,Cordell J R,Olson A M,et al.Does exotic Spartina alterniflora change benthic invertebrate assemblages? In:PatternK.Proceedings of the Second International Spartina Conference[C].Olympia:Washington State University,1997.48-50.
    [18]徐晓军,王华,由文辉,等.崇明东滩互花米草群落中底栖动物群落动态的初步研究[J].海洋湖 沼通报,2006,(2):89-95.
    [19]范航清,邱广龙.中国北部湾白骨壤红树林的虫害与研究对策[J].广西植物,2004,24(6):558-562.
    [20]陈鹭真,林鹏,王文卿.滨海红树林宜林地选择过程中的生态工程问题[z].中国科技论文在线 (http://www.paper.edu.cn),2005年3月8日.1-11.
    [21]李玫,廖宝文.无瓣海桑的引种及生态影响[J].防护林科技,2008,(3):100-102.
    [22]廖宝文,郑德璋,郑松发,等.中国红树林湿地造林现状及其展望[M].见:郑德璋,廖宝文,郑松发等主编,红树林主要树种造林与经营技术研究.北京:科学出版社,1999.58-63.
    [23]王文卿,王瑁.中国红树林[M].北京:科学出版社.2007.
    [24]Skelton N J,Allaway W G.Oxygen and pressure changes measured in situ during flooding in roots of the grey mangrove Avicennia marina (Forsk.) Vierh[J].Aquatic Botany,1996,54:165-175.
    [25]Ye Y,Tam N FY,Wong Y S,et al.Growth and physiological responses of two mangrove species (Bruguiera gymnorrhiza and Kandelia candel) to waterlogging[J].Environmental and Experimental Botany,2003,49:209-221.
    [26]卢吕义,高海燕,陈光程,等.盐渍和水渍对高等植物的联合作用[J].厦门大学学报(自然科学版),2005,44(增刊):69-74.
    [27]Bradford K J,Hsiao T C.Stomatal behavior and water relations of waterlogged tomato plants[J].Plant Physiology,1982,70:1508-1513.
    [28]Chen L Z,Wang W Q,Lin P.Photosynthetic and physiological responses on Kandelia candel L.Druce seedlings to duration of tidal immersion in artificial seawater[J].Environmental and Experimental Botany,2005.54:256-266.
    [29]McKee K L.Growth and physiological respones of neotropical mangroves seedlings to root zone hypoxia[J].Tree Physiology,1996,16:883-889.
    [30]Kriedemann P E,Sands R .Salt resistance and adaptation to root-zone hypoxia in sunflower[J].Australian Journal of Plant Physiology,1984,11:287-301.
    [31]Huang B,Ne Smith D S,Bridges D C,et al.Responses of squash to salinity,waterlogging and subsequent drainage:I .Gas exchange,water relations,and nitrogen status[J].Journal of Plant Nutrient,1995,18:127-140.
    [32]Kozlowski T T.Plant responses to flooding of soil[J].BioScience,1984,34(3):162-167.
    [33]Chapman V J.Mangrove vegetation[M].Heidelberg:Strauss & Cramer Gmbt.1975.10-301.
    [34]Purnobasuki H,Suzuki M.Aerenchyma formation and porosity in root of a mangrove plant, Sonneratia alba (Lythraceae)[J].Journal of Plant Research,2004,117(6):465-472.
    [35]Curran M.Gas movements in the roots of Avicennia marina (Forsk.) Vieh[J].Australian Journal of Plant Physiology,1985,12:97-108.
    [36]Naidoo G.Effects of flooding on leaf water potential and stomatal resistance in Bruguiera gymnorrhiza (L.) Lam[J].New Phytologist,1983,(93):369-376.
    [37]Misra S,Choudhurya A,Ghosh A.The role of hydrophobic substances in leaves in adaptation of plants to periodic submersion by tidal water in a mangrove ecosystem[J].Journal of Ecology,1984,(72):621-625.
    [38]Ellison A M,Farnsworth E J.Seedling survivorship,growth,and response to disturbance in Belizean mangal[J].American Journal of Botany,1993,80:1137-1145.
    [39]Hovenden M J,Curran M,Cole M A,et al.Ventilation and respiration in roots of one-year old seedlings of grey mangrove Avicennia marina (Forsk.) Vierh[J].Hydrobiologia,1995,(295):23-29.
    [40]Komiyama A,Santiean T,Higo M,et al.Microtopography,soil hardness and survival of mangrove (Rhizophora apiculata BL.) seedlings planted in an abandoned tin-mining area[J].Forest Ecology and Management,1996,81:243-248.
    [41]廖宝文,郑德璋,郑松发,等.红树植物秋茄造林技术的研究[J].林业科学研究,1996,9(6):586-592.
    [42]Ellison A M,Farnsworth E J.Simulated sea level change alters anatomy,physiology,growth,and reproduction of red mangrove (Rhizophora mangle L.)[J].Oecologia,1997,112:435-446.
    [43]Ellison A M,Farnsworth E J.Simulated sea level change alters anatomy,physiology,growth,and reproduction of red mangrove (Rhizophora mangle L.)[J].Oceanographic Literature Review,1998,45(6):1003-1004.
    [44]Naidoo G,Rogalla H,von Willert D J.Gas exchange responses of a mangrove species,Avicennia marina,to waterlogged and drained conditions[J].Hydrobiologia,1997,(352):39-47.
    [45]Delgado P,Hensel P F,Jim(?)nez J A,et al.The importance of propagule establishment and physical factors in mangrove distributional patterns in a Costa Rican estuary[J].Aquatic Botany,2001,71:157-178.
    [46]叶勇,卢昌义,谭凤仪.木榄和秋茄对水渍的生长与生理反应的比较研究[J].生态学报,2001,21(10):1654-1661.
    [47]Kitaya Y,Jintana V,Piriyayotha S,et al.Early growth of seven mangrove species planted at different elevations in a Thai estuary[J].Trees,2002,16:150-154.
    [48]Allen J A,Krauss K W,Hauff R D.Factors limiting the intertidal distribution of the mangrove species Xylocarpus granatum[J].Oecologia,2003,(135):110-121.
    [49]Chen L Z,Wang W Q,Lin,P.Influence of waterlogging time on the growth of Kandelia candel seedlings[J].Acta Oceanologica Sinica,2004,23:149-158.
    [50]陈鹭真,王文卿,林鹏.潮汐淹水时间对秋茄幼苗生长的影响[J].海洋学报,2005,27(2):141-147.
    [51]Ye Y,Tam N FY,Wong Y S,et al.Does sea level rise influence propagule establishment,early growth and physiology of Kandelia candel and Bruguiera gymnorrhiza? Journal of Experimental Marine Biology and Ecology,2004,306(2):197-215.
    [52]郑松发,陈玉军,陈文沛,等.适应性研究深水裸滩红树植物与落羽杉生长[J].林业科学研究,2004,17(5):654-659
    [53]Chen L Z,Wang W Q,Lin,P.Photosynthetic and physiological responses of Kandelia candel L.Druce seedlings to duration of tidal immersion in artificial seawater[J].Environmental and Experimental Botany,2005,54:256-266.
    [54]Cardona-Olarte P,Twilley R R,Krauss K W,et al.Responses of neotropical mangrove seedlings grown in monoculture and mixed culture under treatments of hydroperiod and salinity[J].Hydrobiologia,2006,(569):325-341.
    [55]陈鹭真,杨志伟,王文卿,等.厦门地区秋茄幼苗生长的宜林临界线探讨[J].应用生态学报,2006,17(2):177-181.
    [56]Krauss K W,Doyle T W,Twilley R R,et al.Evaluating the relative contributions of hydroperiod and soil fertility on growth of south Florida mangroves[J].Hydrobiologia,2006,(569):311-324.
    [57]Krauss K W,Twilley R R,Doyle T W,Gardiner E S.Leaf gas exchange characteristics of three neotropical mangrove species in response to varying hydroperiod[J].Tree Physiology,2006,26:959-968.
    [58]陈玉军,廖宝文,郑松发,等.红树植物对不同海滩面高度的适应性研究[J].生态科学,2006,25(6):496-500.
    [59]林鹏,韦信敏.福建亚热带红树林生态学的研究[J].植物生态学与地植物学丛刊,1981,5(3):177-186.
    [60]Perry M D.Effects of associated fauna on growth and productivity in the red mangrove[J].Ecology, 1988,69:1064-1075.
    [61]Ellison A M,Farnsworth E J.The ecology of Belizean mangrove-root fouling communities:Patterns of epibiont distribution and abundance,and effects on root growth[J].Hydrobiologia,1992,(247):87-98.
    [62]莫竹承,范航清,何斌源.红海榄人工幼苗藤壶分布特征研究[J].热带海洋学报.2003,22(1):50-54.
    [63]林秀雁,卢昌义,王雨,等.盐度对海洋污损动物藤壶附着红树幼林的影响[J].海洋环境科学,2006,25(增刊):25-28.
    [64]何斌源,赖廷和.红树植物桐花树上污损动物群落研究[J].广西科学,2000,7(4):309-312.
    [65]陈坚,范航清,黎建玲.广西北海大冠沙白骨壤树上大型固着动物的数量及其分布[J].广西科学院学报,1993,9(2):67-72.
    [66]范航清,陈坚,黎建玲.广西红树林上大型固着藤壶的种类组成及分布[J].广西科学院学报,1993,9(2):58-62.
    [67]Ross P M.Larval supply,settlement and survival of barnacles in a temperate mangrove forest[J].Marine Ecology Progress Series,2001,(215):237-249.
    [68]周时强,李复雪,洪荣发.九龙江口红树林上附着动物的生态[J].台湾海峡,1993,12(4):335-341.
    [69]李云,郑德璋,郑松发,等.人工红树林藤壶为害及其防治的研究[M].红树林主要树种造林与经营技术研究,郑德璋,廖宝文,郑松发主编,北京:科学出版社.1999.238-245.
    [70]Woods Hole Oceanographic Institution.Marine fouling and its prevention[M].Annapolis,Maryland:United States Naval Institute.1952.3-20.
    [71]韩维栋,陈亮,袁梦婕.红树幼林藤壶的防治试验[J].福建林业科技,2004,31(1):57-61,70.
    [72]Walsh G E.Mangroves:a review[C].In:Reimhold R J,Queen W H eds.Ecology of halophytes.New York:Academic Press.1974.51-174.
    [73]Chapman V J.Mangrove biogeography.In:Walsh G E,Snedaker S C,Teas H J eds.Proceedings of the international symposium on biology and management of mangroves (C).Gainesville:University of Florida.1975.3-22.
    [74]Chapman V J.Introduction (C).In:Chapman V J ed.Ecosystem of the world Ⅰ:wet coastal ecosystems.Amsterdam:Elsevier Science Publication Company.1977.1-29.
    [75]温远光,刘世荣,元昌安.广西英罗港红树植物种群的分布[J].生态学报,2002,22(7):1160-1165.
    [76]沈其伟.测定水稻叶片叶绿素含量的混合液提取法[J].植物生理学通讯,1988,(2):62-64.
    [77]赵世杰,史国安,董新纯.植物生理学实验指导[M].北京:中国农业科学技术出版社.2002.
    [78]张志良,瞿伟菁.植物生理学实验指导[M].北京:高等教育出版社.2004.
    [79]黄宗国,蔡如星编著.海洋污损生物及其防除(上册)[M].北京:海洋出版社.1984.43-57.
    [80]叶勇,卢昌义,郑逢中,等.模拟海平面上升对红树植物秋茄的影响[J].生态学报,2004,24(10):2238-2244.
    [81]梁士楚.白骨壤幼苗的形态特征及其生物量[J].应用生态学报,1996,7(4):344-348.
    [82]Anderson J M,Chow W S,Goodchild D C.Thylakoid membrane organization in sun/shade Acclimation[J].Australian Journal of Plant Physiology,1988,(15):11-26.
    [83]Das A B,Parida A,Basak U C,et al.Studies on pigments,proteins and photosynthetic rates in some mangroves and mangrove associates from Bhitarkanika,Oriss[J].Marine Biology,2002,(141):415-422.
    [84]Monk L S,Fagerstedt K V,Crawford R M M.Super oxide dismutase as an anaerobic polypeptide.A key factor in recovery from oxygen deprivation in Iris pseudacorus?[J]Plant Physiology,1987,(85):1016-1020.
    [85]Pezeshki S R,Delaune R D,Patrick W H J.Differential response of selected mangroves to soil flooding and salinity:gas exchanges and biomass partitioning[J].Canadian Journal of Forest Research,1989,20:869-874.
    [86]张乔民,于红兵,陈欣树,等.红树林生长带与潮汐水位关系的研究[J].生态学报,1997,17(3):258-265.
    [87]莫竹承.广西红树林立地条件研究初报[J].广西林业科学,2002,31(3):122-127.
    [88]范航清,陈坚.Impacts of light on rooting of mangrove Kandelia candel propagules[J].广西科学院学报,1993,8(2):73-76.
    [89]郑德璋,李玫,郑松发,等.中国红树林恢复和发展研究进展[J].广东林业科技,2003,19(1):10-14.
    [90]李玫,廖宝文,章金鸿.我国红树林恢复技术研究概况[J].广州环境科学,2004,19(4):32-34.
    [91]廖宝文,郑松发,陈玉军,等.红树林湿地,恢复技术的研究进展[J].生态科学,2005,24(1):61-65.
    [92]彭逸生,周炎武,陈桂珠.红树林湿地恢复研究进展[J].生态学报,2008,28(2):786-797.
    [93]郑德璋,郑松发,廖宝文.海南岛清澜港红树林发展动态研究[M].广州:广东科技出版社.1995.
    [94]范航清.广西沿海红树林养护海堤的生态模式及其效益评估[J].广西科学,1995,2(4):48-52.
    [95]范航清,黎广钊.海堤对广西沿海红树林的数量、群落特征和恢复的影响[J].应用生态学报,1997,8(3):240-244.
    [96]彭友贵,陈桂珠,余忠明,等.红树林滩涂海水种植—养殖生态耦合系统初步研究[J].中山大学学报(自然科学版),2004,43(6):150-154.
    [97]Chen G Z,Miao S Y,Tam N F Y,et al.Effect of synthetic wastewater on young Kandelia candel plants growing under greenhouse conditions[J].Hydrobiologia,1995,(295):263-273.
    [98]Wong Y S,Tam N F Y,Chen G Z,et al.Response of Aegiceras corniculatum to synthetic sewage under simulated tidal conditions[J].Hydrobiologia,1997,(352):89-96.
    [99]陈桂葵,陈桂珠,黄玉山,等.人工污水对白骨壤幼苗生理生态特性的影响[J].应用生态学报,1999,10(1):95-98.
    [100]Boonsong K,Piyatiratitivorakul S,Patanaponpaiboon P.Potential use of mangrove plantation as constructed wetland for municipal wastewater treatment[J].Water Science and Technology,2003,48:257-266.
    [101]靖元孝,任延丽,陈桂珠.人工湿地污水处理系统3种红树植物生理生态特性[J].生态学报,2005,20(3):528-532.
    [102]靖元孝,李晓菊,杨丹菁,等.红树植物人工湿地对生活污水的净化效果[J].生态学报,2007,27(6):2365-2374.
    [103]Yang Q,Tam N F Y,Wong Y S,et al.Potential use of mangroves as constructed wetland for municipal sewage treatment in Futian,Shenzhen,China[J].Marine Pollution Bulletin,2008,57:735-743.
    [104]黄宗国,王建军,林盛,等.北部湾污损生物生态研究[J].海洋学报,1992,14(4):94-105.
    [105]严涛,严文侠,董钊,等.北部湾近海结构物污损生物研究[J].海洋学报,2000,22(4):137-146.
    [106]Doty M S.Critical tide factor that are correlated with the vertical distribution of marine algal and other organisms along the pacific coast[J].Ecology,1946,24(4):135-138.
    [107]Colman B A.The nature of the intertidal zonation of plants and animals[J].Journal of Marine Biology,1993,18(2):435-476.
    [108]何斌源,赖廷和.不同树龄桐花树茎上白条地藤壶分布特征的研究[J].海洋通报,2001,20(1):40-45.
    [109]何斌源.红树林污损动物群落生态研究[J].广西科学,2002,9(2):133-137.
    [110]庆宁,林岳光.广西防城港东湾红树林污损动物的种类组成与数量分布特征[J].热带海洋学报 2004,23(1):64-68.
    [111]何斌源,莫竹承.红海榄人工苗光滩造林的生长及胁迫因子研究[J].广西科学院学报,1995,11(3,4):37-42.
    [112]陈粤超.藤壶对红树林新造林的危害及防治对策[J].广东林勘设计,2003,(4):5-6.
    [113]林秀雁,卢昌义.滩涂高程对藤壶附着秋茄幼林影响的初步研究[J].厦门大学学报(自然科学版),2006,45(4):575-579.
    [114]兰竹虹,陈桂珠.南中国海地区主要生态系统的退化现状与保育对策[J].应用生态学报,2006,17(10):1978-1982.
    [115]黄英,柯才焕,周时强.国外对藤壶幼体附着的研究进展[J].海洋科学,2001,25 (3):30-32.
    [116]Riley R W Jr,Kent C P S.Riley encased methodology:principles and processes of mangrove habitat creation and restoration[J].Mangroves & Salt Marshes,1999,3(4):207-213.
    [117]Kent C P S,Lin J.A comparison of Riley encased methodology and traditional techniques for planting red mangroves (Rhizophora mangle)[J].Mangroves & Salt marshes,1999,3(4):215-225.
    [118]林益明,林鹏.中国红树林生态系统的植物种类、多样性、功能及其保护[J].海洋湖沼通报,2001,(3):8-16.
    [119]Satumanatpan S,Keough M J,Watson G F.Role of settlement in determining the distribution and abundance of barnacles in a temperate mangrove forest[J].Journal of Experimental Marine Biology and Ecology,1999,(241):45-66.
    [120]Satumanatpan S,Keough M J.Roles of larval supply and behavior in determining settlement of barnacles in a temperate mangrove forest[J].Journal of Experimental Marine Biology and Ecology,2001,(260):133-153.
    [121]冯丹青,柯才焕,李少菁,周时强.生姜提取物的防污活性研究[J].厦门大学学报(自然科学版),2007,46(1):135-140.
    [122]周媛,杨震,许宁,等.三种重金属离子对东方小藤壶幼虫的急性毒性效应[J].海洋科学,2003,27(8):56-58.
    [123]张语克,冯丹青,刘万民,等.5种重金属对白脊藤壶无节幼体的急性毒性研究[J].台湾海峡,2007,26(1):133-140.
    [124]向平,杨志伟,林鹏.人工红树林幼林藤壶危害及防治研究进展[J].应用生态学报,2006,17 (8):1526-1529.
    [125]冯绪猛,罗时石,胡建伟,等.农药对水稻叶片丙二醛及叶绿素含量的影响[J].农核学报,2003,17(6):481-484.
    [126]张义贤,李晓玲.三种有机磷农药对大麦毒性效应的研究[J].农业环境科学学报,2003,22(6):754-757.
    [127]杜敏华,张乃群,李玉英,等.大气污染对城市绿化植物叶片叶绿素含量的影响[J].中国环境监测,2007,23(2):86-88.
    [128]Singh I P,Takahashi K,Etoh H.Potent attachment-inhibiting and-promoting substances for the blue mussel,Mytilus edulis galloprovincialis,from two species of Eucalyptus[J].Bioscience,Biotech and Biochemistry,1996,60(9):1522-1523.
    [129]Chen J D,Feng D Q,Yang Z W,et al.Antifouling metabolites from the mangrove plant Ceriops tagal[J].Molecules,2008,13:21-29.
    [130]邱式邦,杨怀文.生物防治—害虫综合防治的重要内容[J].植物保护.2007,33(5):1-6.
    [131]赖廷和,何斌源.广西红树林区大型底栖动物种类多样性研究[J].广西科学,1998,5(3):166-172.
    [132]陈皓文,王波.养殖牡蛎的敌害[J].广西水产科技,2008,(2):42-45.
    [133]Williams J.Opening of bivalve shells by the mud crab Scylla serrata Forskal[J].Australia Journal of Marine and Freshwater Research,1978,29(5):699-702.
    [134]韦受庆.藻、虾、蟹混养的研究[J].海洋学报,1990,12(3):288-394.
    [135]李复雪,高世和,周时强.附件沿海红树林区的动物资源及其开发利用[J].福建水产,1989,(4):18-23.
    [136]范航清,韦受庆,陈坚.广西红树林区经济动物的行为生态及其生态养殖的初步设计[J].广西科学院学报,1993,9(2):104-110.
    [137]范航清,何斌源,韦受庆.传统渔业活动对广西英罗港红树林区渔业资源的影响与管理对策[J].生物多样性,1996,4(3):167-174.
    [138]梁士楚,罗春业.红树林区经济动物及生态养殖模式[J].广西科学院学报,1999,15(2):64-68.
    [139]黄建华.红树林滩涂围养中华乌塘鳢的可行性探讨[J].水产科技,2001,(5):5-6.
    [140]黄凤莲,陈桂珠,夏北成,等.滩涂海水养殖生态模式研究[J].海洋环境科学,2005,24(1):16-20.
    [141]佘忠明,林俊雄,彭友贵,等.红树林与水产养殖系统初步研究[J].生态学杂志,2005,24(7):837-840.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700