用户名: 密码: 验证码:
天山北坡中段伊犁绢蒿荒漠退化草地土壤质量的演变与评价及预警系统的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
伊犁绢蒿荒漠草地多处于平原与山地的过渡带,是当地重要的春秋草场,在新疆生态环境保护和畜牧业生产中发挥着重要的作用。但是,由于长期超载过牧,草地退化现象十分普遍,局部地区甚至出现极度退化。本文以天山北坡中段伊犁绢蒿荒漠退化草地为研究对象,分别选择处于中度、重度和极度退化阶段的典型草地设置样地,研究地上植物特征和土壤的物理、化学和生物学特征。通过野外调查与室内分析,得到以下研究结论:
     1.超载过牧造成草地退化,致使土壤容重增大,总盐含量、pH值显著升高(p<0.05),有机质含量升高。土壤有机质、全磷和全钾是比较稳定的指标,受外界的影响较小。受植物、放牧家畜排泄物等的影响,土壤氮含量显著升高,有效磷、速效钾变化具有波动性,在极度退化阶段含量最高,达到显著水平(p<0.05)。因此,反映草地生态系统退化较敏感的土壤理化指标有:土壤容重、总盐、pH值、全氮、碱解氮、有效磷、速效钾。
     2.土壤颗粒分形维数与粘粒含量呈显著正相关,随着草地的退化,土壤颗粒分形维数逐渐增大,表明在现草地退化阶段,虽然地表植被已经退化,但是土壤并未表现出沙质化现象。分形维数D与土壤物理性质没有相关性,与土壤氮素、全磷、速效钾、有机质、pH、总盐呈显著或极显著正相关。分形维数D在一定程度上可以代表土壤养分含量的高低水平。
     3.土壤微生物的组成中,细菌数量最多,占绝对优势,放线菌次之,真菌最少。各退化阶段草地土壤0-10cm表层细菌、放线菌、真菌的数量差异均不显著;10-20cm土壤剖面中细菌、放线菌、真菌、微生物总数在重度退化草地显著升高;20-30cm土层,仅细菌和微生物总数在中度退化草地显著升高。说明该类草地的退化对土壤微生物影响的深度主要在0-20cm土层。
     4.土壤过氧化氢酶、碱性磷酸酶、脱氢酶、转化酶随着土壤深度的加深呈现递减的规律。在0-10cm土层,随着草地退化程度的加剧,过氧化氢酶、脲酶、碱性磷酸酶、脱氢酶、转化酶的活性提高,极度退化草地土壤碱性磷酸酶、脱氢酶、转化酶的活性均比中度、重度退化草地土壤酶的活性有显著提高。过氧化氢酶活性重度退化草地显著小于极度退化草地。脲酶活性仅在10-20cm土层各退化梯度间差异显著。过氧化氢酶、碱性磷酸酶、脱氢酶、转化酶的活性在土壤剖面均表现出一定的差异性,仅过氧化氢酶活性没有差异。因此,在监测草地土壤质量演变时,敏感的土壤生物指标有:细菌、放线菌、真菌的数量,碱性磷酸酶、脱氢酶、转化酶活性。
     5.伊犁绢蒿荒漠草地退化后物种均匀度指数和多样性指数下降,草地生态系统的稳定性降低。土壤容重与物种多样性指数呈正相关关系,土壤的化学性质均与其呈负相关关系,其中土壤有机质、全氮、全钾与物种均匀度指数和物种多样性指数呈显著负相关,说明植被的变化对土壤有机质和全量养分影响较大。
     6.采用主成分分析法和模糊聚类分析方法,构造了退化草地土壤质量评价的最小数据集为pH、碱解氮、容重、有效磷和总盐。根据评分法对土壤质量进行评价,土壤质量排序为:中度退化草地>重度退化草地>极度退化草地。
     7.根据土壤质量分布的频度将土壤质量划分为5个警度级别:无警情、轻警、中警、重警和剧警。研究区草地土壤质量大部分处于中度以下警度级别。
Seriphidium transiliense desert grassland locates at the transitional zone of the plains and mountains, which is the important grassland for grazing in spring and autumn, so it plays an important role in the protecting ecological environment and livestock production in Xinjiang. But due to long-term over-grazing, grassland degradation is widespread, even is extreme degradation in some areas. Taking the plain degraded Seriphidium transiliense desert grassland in the middle of northern slope of Tianshan Mountains in Xinjiang as a study object, the degraded grassland is classified into three groups: the moderate degradation grassland, the severe degradation grassland and the extreme degradation grassland. The typical plots were picked for studying the characteristics of the vegetation and soil physical, chemical and biological characteristics. Through sample analysis, data processing, main results were as follows:
     1. Increase in soil bulk density and organic matter content was result of the grassland degradation caused by overgrazing. The total salt content and pH were increased significantly (p<0.05). Soil organic matter, total phosphorus and potassium are relatively stable indicators, who are less affected by the situation. By impacts of plants and livestock excreta, soil nitrogen was significantly increased, and the changes of available P and K were in volatility so that the contents were highest in the extreme degradation stage, reaching significant levels (p<0.05). Therefore, the sensitive soil physical and chemical indicators to grassland ecosystem degradation are: soil bulk density, total salt, pH, total nitrogen, available nitrogen, available phosphorus and potassium.
     2. Soil particle fractal dimension had a significant positive correlation with clay particles content. The fractal dimension was gradually increased with the escalation of the degree of grassland degradation. Consequently, the soil did not show desertification at the present although the vegetation has been degraded. No significant correlations were observed between the fractal dimension and the soil physical properties, but there existed a significant or very significant positive correlation between the fractal dimension and chemical factors. Fractal dimension can represent the level of soil nutrient in a degree.
     3. The number of bacteria was largest, which was dominating, and followed by actinomycete and fungi. At 0-10cm soil layer, there was no difference of bacteria, desert actinomycete and fungi. At 10-20cm soil layer, the differences of the number of bacteria, actinomycete and the total number of microorganisms were notablely increased in the severe degraded grassland. At 20-30cm soil layer, the bacteria and the number of microorganisms were notablely increased in the moderate degradation grassland. Therefore, the influence depth of grassland degradation on soil microorganisms was mainly at 0-20cm soil layer.
     4. The activities of soil catalase, alkaline phosphatase, dehydrogenase and invertase were degressive along with soil depth. In 0-10cm soil layer, with the escalation of the degree of grassland degradation, the activity of catalase, urease, alkaline phosphatase, dehydrogenase and invertase increased. At 0-10cm soil layer, compared with the moderate degradation grassland and severe degradation grassland, the activities of soil alkaline phosphatase, dehydrogenase and invertase of extreme degradation grassland were notablely increased. Catalase Activity in severe degradation grassland was significantly less than it in the extreme degradation grassland. Urease activity had significant difference only at 10-20cm soil layer among the degraded grassland. The activities of catalase, alkaline phosphatase, dehydrogenase and invertase showed some differences in the soil profiles, but there was no difference about catalase activity. Therefore, the sensitive soil biological indicators for grassland degradation are: bacteria, actinomycete, fungi, alkaline phosphatase, dehydrogenase and invertase.
     5. The species diversity index and evenness index decreased in the degraded Seriphidium transiliense grassland, which indicated that the stability of grassland ecosystem had been reduced. There was a positive correlation between soil bulk density and species diversity index. There was a negative correlation between species diversity and soil chemical properties, in which the soil organic matter, total nitrogen and total potassium were especially notable, which illustrated that the changes in vegetation had a greater impact on soil organic matter and total nutrients.
     6. Using principal component analysis and cluster analysis method, the minimum data set for evaluating soil quality of grassland degradation was built at last, which includes bulk density, pH, available nitrogen, available phosphorus and the total salt. The soil quality was evaluated by means of scoring, the ranking are: the moderate degradation grassland > the severe degradation grassland > the extreme degradation grassland.
     7. Based on the frequency distribution of soil quality, the soil quality was graded into five warning states: no warning, slight warning, medium warning, sever warning and extreme warning. The majority of soil qualities in study area are in medium warning state, even more serious. Accordingly, the grassland soil conservation measures were proposed for the various warning states.
引文
[1]赵万羽.新疆荒漠草地退化与治理建设方略[J].中国草地,2002,24(30):68-72.
    [2]可宗党,黄燕,罗云清.迭部县天然草地退化现状与治理对策[J].四川草原,2003(6):1.
    [3]王录仓.江河源区草场退化的生态环境后果及成因[J].草业科学,2004,21(1):17-19.
    [4]付华,王彦荣,吴彩霞,等.放牧对阿拉善荒漠草地土壤性状的影响[J].中国沙漠,2002,22(4):339-343.
    [5]李香真,陈佐忠.不同放牧率对草原植物与土壤C、N、P含量的影响[J].草地学报,1998,6(2):90-98.
    [6]李绍良,陈有君,关世英,等.土壤退化与草地退化关系的研究[J].干旱区资源与环境,2002,16(1):92-95.
    [7]M. Du, H. Yang, Q. Chang, K. et al. Caesium-137 fallout depth distribution in different soil profiles and significance for estimating soil erosion rate [J]. Sciences of soils, 1998,3:3.
    [8]梁卫国.库鲁斯台草原生态系统恶化现状及治理对策[J].中国草地,2001,5:75-78.
    [9]许鹏.新疆草地资源及其利用[M].新疆:科技出版社,1993.
    [10]庄晓秋.新疆草地生态环境恶化原因及对策[J].草食家畜,2001,2:37-38.
    [11]郑江平,陈彤,王锡波.新疆草地生态现状及对策分析[J].草食家畜,2003,3:1-4.
    [12]赵万羽.新疆荒漠草地退化与治理建设方略[J].中国草地,2002,24(3):68-72.
    [13]许志信,赵萌莉.过度放牧对草原土壤侵蚀的影响[J].中国草地,2001,6:59-63.
    [14]徐筱军.新疆土地退化现状与基本对策的探讨[J].干旱地区农业研究,1991,4:67-74.
    [15]托曼.新疆草地现状、退化原因及其防治对策[J].新疆畜牧业,1993,2:28-33.
    [16]李建龙.新疆草地现状、退化原因及其防治对策.中国草地,1992,3:17-21.
    [17]徐志信,白永飞.草原退化与气候变化[J].国外畜牧学——草原与牧草,1997,3:16-20.
    [18]侯扶江,杨中艺.放牧对草地的作用[J].生态学报,2006,26(1):243-264.
    [19]李胜功,赵哈林,何宗颖,等.不同放牧压力下草地微气象的变化与草地荒漠化的发生[J].生态学报,1999,19(5):697-704.
    [20]牛海山,李香真,陈佐忠.放牧率对土壤饱和导水率及其空间变异的影响[J].草地学报,1999,7(3):211-216.
    [21]姜世成,周道玮.牛粪堆积对草地影响的研究[J].草业学报,2006,15(4):1-3.
    [22]于俊平,兰云峰,乌力吉,等.草地生态系统氮素在“土—草—畜”间的流程与转化[J].内蒙古草业,2000,3:53-56.
    [23]李博.中国北方草地退化及其防治对策[J].中国农业科学,1997,30(6):1-9.
    [24]张卫国,黄文冰,杨振宇.草地微斑块与草地退化关系的研究[J].草业学报,2003,12(3):44-50.
    [25]Reynolds, J. F., R. A. Virginia & W. H. Schlesinger. Defining functional types for models of desertification. In: Smith, T. M., H. H. Shugart & F. I. Woodword eds. Plant function types: their relevance to ecosystem properties and global change [M]. Cambridge UK: Cambridge University Press. 1997,195-216.
    [26]张宏,史培军,郑秋红.半干旱地区天然草地灌丛化与土壤异质性关系研究进展[J].植物生态学报,2001,25(3):366-370.
    [27]程晓莉,安树青,钦佩,等.鄂尔多斯草地退化过程中植被地上生物量空间分布的异质性[J].生态学报,2003,23(8):1526-1532.
    [28]任继周,贺达汉,王宁,等.中国河西走廊草地农业的基本格局和它的系统相悖—草地退化机理初探[J].草业学报,1995,4(1):69-80.
    [29]Chen Z.Z(陈佐忠), Wang S.P(汪诗平). Study on 0ptimized Productive Model of Typical Grassland [M]. Beijing: Meteorology Press. 1998, 129-168.
    [30]Hodgson J, Illius AW. The Ecology and Management of Grazing Systems [M]. Oxon. UK: CABI Publishing. 1995.
    [31] Lemaire G, Hodgson J, de Moraes A, el al. Grassland Ecophysiology and Grazing Ecology Oxon [M]. UK: CABI Publishing. 1999.
    [32] Hamilton EW, Giovannini MS, Moses SA, et al. Biomass and mineral element responses of a Serengeti shortgrass species to nitrogen supply and defoliation: Compensation requires a critical [J]. Oecologia, 1998, 116(3):407-418.
    [33]Mcnaughton SJ, Banyikwa FF, Mcnaughton MM. Promotion of the cycling of diet enhancing nutrients by African grazers [J]. Science, 2001, 278:1798.
    [34]侯扶江,南志标,肖金玉,等.重牧退化草地的植被、土壤及其耦合特征[J].应用生态学报,2002,13(8):915-922.
    [35]林慧龙,侯扶江.草地农业生态系统中的系统耦合与系统相悖研究动态[J].生态学报,2004,24(6):1252-1258.
    [36]孙波,张桃林,赵其国.我国中亚热带缓丘区红粘土红壤肥力的演化II.化学和生物学肥力的演化[J].土壤学报,1999,36(2):203-217.
    [37]姜培坤,徐秋芳,俞益武.土壤微生物量碳作为林地土壤肥力指标[J].浙江林学院学报,2002,19(1):17-19.
    [38]Vance E D, Brookes P C, Jenkinson D S. An extraction method for measuring soil microbial biomass [J]. Soil Biology & Biochemistry, 1987, 19:703-707.
    [39]张于光,张小全,肖烨.米亚罗林区土地利用变化对土壤有机碳和微生物量碳的影响[J].应用生态学报,2006,17(11):2029-2033.
    [40]姚拓,龙瑞军.天祝高寒草地不同扰动生境土壤三大类微生物数量动态研究[J].草业学报,2006,15(2):93-99.
    [41]Wang K H, McSorley R, Bohlen P, et al. Cattle grazing increases microbial biomass and alters soil nematode communities in subtropical pastures [J]. Soil Biology and Biochemistry, 2006, 38: 1956-1965.
    [42]Hanne S, Margareta I, Ann N, et al. How to monitor semi-natural key habitats in relation to grazing preferences of cattle in mountain summer farming areas an aerial photo and GPS method study [J]. Landscape and Urban Planning, 2004, 67:67-77.
    [43]Navarro T, Aladosb C L, Cabezudo B. Changes in plant functional types in response to goat and sheep grazing in two semi-arid shrub lands of SE Spain [J]. Journal of Arid Environments, 2006, 64:298-322.
    [44]Isabelle K, Colin D R, Hubert T. Impact of cattle on soil physical properties and nutrient concentrations in overland flow from pasture in Ireland [J]. Agriculture Ecosystems and Environment, 2006, 113:378-390.
    [45]Su Y Z, Li Y L, Cui J Y, et al. Influences of continuous grazing and livestock exclusion on soil properties in a degraded sandy grassland, Inner Mongolia, northern China [J]. Catena, 2005, 59:267-278.
    [46]周华坤,周立,赵新全,等.放牧干扰对高寒草场的影响[J].中国草地,2002,24(5):53-61.
    [47]高英志,韩兴国,汪诗平.放牧对草原土壤的影响[J].生态学报,2004,24(4):790-797.
    [48]Villar M C, Petrikova V,Díaz-Ravin M,etal. Changes in soil microbial biomass and aggregate stability following burning and soil rehabilitation [J]. Geoderma, 2004, 122:73-82.
    [49]Piao H C, Zhu J M, Liu G S, et al. Changes of natural13C abundance in microbial biomass during litter decomposition [J]. Applied Soil Ecology, 2006, 33:3-9.
    [50]张乃莉,郭继勋.松嫩草甸寸草苔群落土壤微生物量磷的初步研究[J].草业学报,2006,15(5):19-24.
    [51]王启兰,王长庭,杜岩功,等.放牧对高寒嵩草草甸土壤微生物量碳的影响及其土壤环境的关系[J].草业学报,2008,17(2):39-46.
    [52]徐微.松嫩羊草草地放牧梯度上土壤微生物和根系分泌物的初步研究[D].东北师范大学硕士论文,2005.
    [53]黄文娟,于海多,赵兰坡.松嫩羊草草原植被与土壤的耦合关系[J].草地学报,2006,14(1):62-66.
    [54]张华,伏乾科,李锋瑞,等.退化沙质草地自然恢复过程中土壤—植物系统的变化特征[J].水土保持通报,2003,23(6):1-6.
    [55]李绍良,贾树海,陈有君,等.内蒙古草原土壤退化进程及其评价指标的研究[J].土壤通报,1997,28(6):241-243.
    [56]闫玉春,唐海萍.草地退化相关概念辨析[J].草业学报,2008,17(1):93-99.
    [57]程水英,李团胜.土地退化的研究进展[J].干旱区资源与环境,2004,18(3):38-43.
    [58]孙华,张桃林,王兴祥.土地退化及其评价方法研究概述[J].农业环境保护,2001,20(4):283-285.
    [59] Johnson D L, Lewis L A. Land degradation: creation and destruction [M]. Cambridge, MA and Oxford: Blackwell, 1995.
    [60]赵其国.土壤退化及其防治[J].土壤,1991,23(2):57-61.
    [61]黄昌勇.土壤学[M].中国农业出版社,2000.
    [62]关世英,常金宝,贾树海,等.草原暗栗钙土退化过程中的土壤性状及其变化规律的研究[J].中国草地,1997,3:39-43.
    [63]刘良梧,周建民,刘多森.农牧交错带不同利用方式下草原土壤的变化[J].土壤,1998,30(5):225-229.
    [64]文倩,关欣.土壤团聚体形成的研究进展[J].干旱区研究,2004,21(4):434-438.
    [65]濮励杰,包浩生,彭补拙,等.137Cs应用于我国西部风蚀地区土地退化的初步研究—以新疆库尔勒地区为例[J].土壤学报,1998,35(4):441-449.
    [66]Mandelbrot B B. The Fractal Geometry of Nature [M]. San Francisco: W H Freeman, 1982, 45-256.
    [67]Turcotte D L. Fractal fragmentation [J]. Journal of Geographical Research, 1986, 91(12):1921-1926.
    [68]杨培岭,罗远培,石元春.用粒径的的重量分布表征的土壤分形特征[J].科学通报,1993,38(20)1896-1899.
    [69]周金星,漆良华,张旭东,等.不同植被恢复模式土壤结构特征与健康评价[J].中南林学院学报,2006,26(6):32-37.
    [70]韩永伟,韩建国,张蕴薇.农牧交错带退耕还草对土壤物理性状的影响[J].草地学报,2002,10(2):100-105.
    [71]戎郁萍,韩建国,王培,等.放牧强度对草地土壤理化性质的影响[J].中国草地,2001,23(4):41-47.
    [72]张蕴薇,韩建国,李志强.放牧强度对土壤物理性质的影响[J].草地学报,2002,10(1):74-78.
    [73]吴伯志,M.A.福林.与永久性草地相比长期裸露侵蚀对英国Bridgnorth砂壤的影响[J].云南农业大学学报,1998,13(2):197-204.
    [74]苏永中,赵哈林,文海燕.退化沙质草地开垦和封育对土壤理化性状的影响[J].水土保持学报,2002,16(4):5-8,126.
    [75]文海燕,赵哈林.退化沙质草地植被与土壤分布特征及相关分析[J].干旱区研究,2004,21(1):76-80.
    [76]傅华,陈亚明,周志宇,等.阿拉善荒漠草地恢复初期植被与土壤环境的变化[J].中国沙漠,2003,23(6):661-664.
    [77]张伟华,关世英,李跃进,等.不同恢复措施对退化草地土壤水分和养分的影响[J].内蒙古农业大学学报,2000,21(4):31-35.
    [78]张伟华,关世英,李跃进.不同牧压强度对草原土壤水分、养分及其地上生物量的影响.干旱区资源与环境,2000,14(4):61-64.
    [79]何冬梅,由文辉,李喜和,等.锡林河中游草原生态系统中小型土壤动物与土壤有机质的关系[J].植物生态学与地植物学学报,1989,13(4):350-358.
    [80]刘伟,周立,王溪.不同放牧强度对植物及啮齿动物作用的研究[J].生态学报,1999,19(3):376-382.
    [81]贺金生,王政权,方精云.全球变化下的地下生态学:问题与展望[J].科学通报,2004,49(13):1226-1233.
    [82]Naeem S, Hahn D R, Schuurman G. Producer-decomposer co-dependency influences biodiversity effects [J].Nature, 2000, 403:762-764.
    [83]Wardle D A, Bardgett R D, Klironomos J N, et al. Ecological linkages between aboveground and belowground biota[J].Science,2004,304:1629-1633.
    [84]马万里.土壤微生物多样性研究的新方法[J].土壤学报,2004,41(1):103-107.
    [85]安登第.天然草地的另类资源—土壤微生物[J].草业科学,2003,20(12):68-71.
    [86]吴建峰,林先贵.土壤微生物在促进植物生长方面的作用[J].土壤,2003,1:18-21.
    [87]赵文智,何志斌,李志刚.草原农垦区土地沙质荒漠化过程的生物学机制[J].地球科学进展,2003,18(2):257-262.
    [88]黄韶华,王正荣,周华荣,等.新疆荒漠区土壤微生物与土壤环境关系的初步探讨[J].新疆环境保护,1997,19(1):81-84.
    [89]邵玉琴,赵吉,杨劼.恢复草地和退化草地土壤微生物类群数量的分布特征[J].中国沙漠,2004,24(2):223-226.
    [90]罗明,邱沃.新疆平原荒漠盐渍草地土壤微生物生态分布的研究[J].中国草地,1995,5:29-33.
    [91]尚占环,丁玲玲,龙瑞军,等.江河源区高寒草地土壤微生物数量特征[J].草原与草坪, 2006,5:3-7.
    [92]王娟,谷雪景,赵吉.羊草草原土壤酶活性对土壤肥力的指示作用[J].农业环境科学学报,2006,25(4)934-938.
    [93]龙章富,刘世贵,葛绍荣.退化草地土壤生化活性研究[J].草地学报,1994,2(2):58-65.
    [94]龙章富,刘世贵.退化草地土壤农化性状与微生物区系研究[J].土壤学报,1996,33(2):192-200.
    [95]刘黎明等编,等.土地资源调查与评价[M].北京:科学技术文献出版社,1994.
    [96]黄勇,杨忠芳.土壤质量评价国外研究进展[J].地质通报,2009,28(1):130-136.
    [97]王子龙,付强,姜秋香.土壤肥力综合评价研究进展[J].农业系统科学与综合研究,2007,23(1):15-18.
    [98]何尧启.主成分分析在喀斯特土壤环境退化研究中的初步运用—以贵州麻山地区紫云县宗地乡为例[J].贵州师范大学学报(自然科学版),1999,17(1):12-19.
    [99]夏建国,李廷轩,邓良基.主成分分析法在耕地质量评价中的应用[J].西南农业学报,2000,13(2):51-55.
    [100]Karlen D L, Stott D E. A framework for evaluating physical and chemical indicators of soil quality [C]// Doran J W, Coleman D C, Bezdicek D F, et al. Defining Soil Quality for a Sustainable Environment. Special Publication, Soil Science Society of America, 1994, 35: 53-72.
    [101] Glover J D, Reganold J P, Andrews P K. Systematic method for rating soil quality of conventional, organic and integrated apple orchards in Washington State [J]. Agriculture, Ecosystems and Environment, 2000, 80: 29-45.
    [102]Andrews S S, Mitchell J P, Mancinelli Roberto, et al. On-farm assessment of soil quality in California’s Central Valley [J]. Agronomy Journal, 2002, 94: 12-23.
    [103]Masto R E, Chhonkar P K, Singh D. Alternative soil quality indices for evaluating the effect of intensive cropping, fertilization and maturing for 31 years in the semi-arid soils of India [J]. Environmental Monitoring and Assessment, 2007, doi:10.1007/s10661-007-9697-z.
    [104] Lentzsch P, Wieland R, Wirth S. Application of multiple regression and neural network approaches for landscape-scale assessment of soil microbial biomass [J]. Soil Biology and Biochemistry, 2005, 37: 1577-1580.
    [105]Zornoza R, Mataix S J, Guerrero C, et al. Evaluation of soil quality using multiple lineal regression based on physical, chemical and biochemical properties [J]. Science of the Total Environment, 2007, 378:233-237.
    [106] Andrews S S, Karlen D L, Cambardella C A. The soil management assessment framework: A quantitative soil quality evaluation method [J]. Soil Science Society of America Journal, 2004, 68: 1945-1962.
    [107]Cambardella C A, Moormana T B, Andrews S S, et al. Watershed scale assessment of soil quality in the loess hills of southwest Iowa [J]. Soil and Tillage Research, 2004, 78: 237-247.
    [108]刘世梁,傅伯杰,刘国华,等.我国土壤质量及其评价研究的进展[J].土壤通报,2006,1:137-143.
    [109]卢铁光,杨广林,王立坤.基于相对土壤质量指数法的土壤质量变化评价与分析[J].东北农业大学学报,2003,1:56-59.
    [110]胡金明,刘兴土.三江平原土壤质量变化评价与分析[J].地理科学,1999,05:417-421.
    [111]李月芬,汤洁,林年丰,等.灰色关联度法在草原土壤质量评价中的应用[J].吉林农业大学学报,2003,25(5):551-556.
    [112]赵小勇,付强,邢贞相.投影寻踪等级评价模型在土壤质量变化综合评价中的应用[J].土壤学报,2007,44(1):164-168.
    [113]潘峰,梁川,付强,等.基于层次分析法的物元模型在土壤质量评价中的应用[J].农业现代化研究,2002,2:93-97
    [114]曾国熙,梁川,裴源生,等.土壤质量排序和分类研究中密切值法的应用[J].东北水利水电,2004,2:39-41
    [115]刘德春,何鑫,王昌全,等.马尔柯夫法在土壤质量动态评价中的应用[J].国土与自然资源研究,2004,2:51-52.
    [116]陈伯扬.TOPSIS法在土壤环境质量评价中的应用[J].现代地质,2008,6:1003-1009.
    [117]洪棉棉,王菲凤,杨晖,等.属性层次模型在土壤环境质量评价中的应用[J].环境科学导刊,2008,2:72-75.
    [118]胡月明,吴谷丰,江华,等.基于GIS与灰关联综合评价模型的土壤质量评价[J].西北农林科技大学学报,2001,29(4):39-42.
    [119]郭岚.利用GIS进行耕地质量评等定级方法的探讨[J].西南农业大学学报,2002,24(5):476-478.
    [120]侯文广,江聪世,熊庆文,等.基于GIS的土壤质量评价研究[J].武汉大学学报(信息科学版),2003,28(1):60-64.
    [121]张庆利,潘贤章,王洪杰,等.中等尺度上土壤肥力质量的空间分布研究及定量评价[J].土壤通报,2003,6:493-497.
    [122]王效举,龚子同.红壤丘陵小区域水平上不同时段土壤质量变化的评价和分析[J].地理科学,1997,2:141-149.
    [123]齐伟,张凤荣,牛振国,等.土壤质量时空变化一体化评价方法及其应用[J].土壤通报,2003,06:493-497.
    [124]张桃林,潘剑君,赵其国.土壤质量研究进展与方向[J].土壤,1999,1:1-7.
    [125]杨艳生.土壤退化指标体系研究[J].土壤侵蚀与水土保持学报,1998,4:45-47,72.
    [126]Arshad M A, Coen GM. Characterization of soil quality: physical and chemical criteria [J]. Am. J. Altern. Agric., 1992, 7: 25-31.
    [127]Anderson T H. Microbial ecophysiological indicators to assess soil quality [J]. Agriculture, Ecosystems and Environment, 2003, 9 (1-3): 285-293.
    [128]Parisi V, Menta C, Gardi C, et al. Microarthropod communities as a tool to assess soil quality and biodiversity : a new approach in Italy [J]. Agriculture, Ecosystems and Environment, 2005, 105: 323-333.
    [129]Kirchmann H, Andersson R. The Swedish system for quality assessment of agricultural soils [J]. Environmental Monitoring and Assessment, 2001, 2: 129-139.
    [130]刘兆顺,许文良.吉林省西部退化草地土壤性状分析及评价因子的选择[J].吉林地质,2001,20(1):65-69.
    [131]张华,张甘霖.土壤质量指标和评价方法[J].土壤,2001,6:326-330.
    [132]Grego S. Agricultural practices and biological activity in soil [J]. Fresenius Environ mental Bulletin, 1996, 5:282-288.
    [133]赵吉,杨劼,邵玉琴.退化草原土壤健康的微生物学量化评价[J].农业环境科学学报2007,26(6):2090-2094.
    [134]易泽夫,荣湘民,彭建伟,等.微生物变量作为土壤质量评价指标的探讨[J].湖南农业科学,2006,6:64-65,69.
    [135]陈永强,吕军,柳云龙.侵蚀红壤肥力退化评价指标体系研究[J].水土保持学报,2001,15(2):72-75.
    [136]曹慧,孙辉,杨浩,等.土壤酶活性及其对土壤质量的指示研究进展[J].应用与环境生物学报,2003,1:105-109.
    [137]赵吉.土壤健康的生物学监测与评价[J].土壤,2006,38(2):136-142.
    [138]苏永中,赵哈林.持续放牧和围封对科尔沁退化沙地草地碳截存的影响[J].环境科学,2003,24(4):23-28.
    [139]张伟华,武永智,苏晓东.草原土壤质量评价及其应用研究初探[J].内蒙古农业科技,2000(增刊):115-118.
    [140]王玉杰,王千.主要土壤肥力因素指标的筛选模型[J].生物数学学报,2000,15(2):163-168.
    [141]张鹏飞,田长彦,卞卫国,等.克拉玛依农业开发区土壤质量评价指标的筛选[J].干旱区研究,2004,21(2):166-170.
    [142]马强,宇万太,赵少华,等.黑土农田土壤肥力质量综合评价[J].应用生态学报,2004,10:1916-1920.
    [143]张薇,魏海雷,高洪文,等.土壤微生物多样性及其环境影响因子研究进展[J].生态学杂志,2005,24(1):48-52.
    [144]李骁,王迎春.土壤微生物多样性与植物多样性[J].内蒙古大学学报(自然科学版),2006,37(6):708-713.
    [145]陈美兰,吴延熊,周国模,等.预测、监测和预警关系的初步探讨[J].浙江林学院学报,1999,16(1):10-13.
    [146]叶臻杰.关于系统预警方法的研究[J].系统工程,1991,9(1):35-43.
    [147]杨瑞吉,杨祁峰,牛俊义.表征土壤肥力主要指标的研究进展[J].甘肃农业大学学报,2004,1:86-91.
    [148]莫彬,曹建华,徐祥明,等.岩溶石漠化演替阶段土壤质量退化的预警指标评价[J].水土保持研究,2007,14(3):16-18.
    [149]王瑞玲.农田土壤环境质量预警[D].北京:中国农业科学院硕士论文,2005.
    [150]陈印军,张维理.论农田质量预警[J].中国农业资源与区划,2002,23(5):28-31.
    [151]葛向东.耕地质量变化的临界警戒和评价指标体系研究[J].皖西学院学报,2001,17(2):50-54.
    [152]卜玉坤,范强,孙丽敏,等.基于3S技术的森林火险预警方法研究—以大连市为例[J].矿山测量,2007,1:48-49,47.
    [153]刘振波,倪绍祥,赵军.绿洲生态预警系统初步设计[J].干旱区地理,2004,27(1):19-23.
    [154]李凤霞,伏洋,张国胜,等.青海省干旱预警服务系统设计与建立[J].干旱地区农业研究,2004,22(1):1-5.
    [155]李凤全,吴樟荣.半干旱地区土地盐碱化预警研究—以吉林省西部土地盐碱化预警为例[J].水土保持通报,2002,22(1):57-59.
    [156]高娃.草原监测预警体系建立和完善的基本思路[J].内蒙古草业,2006,18(4):32-36.
    [157]朱进忠,吴咏梅.伊犁绢蒿荒漠不同退化阶段草地经济性状演变的分析[J].草业科学,2005,22(10):1-5.
    [158]李海梅.牧民定居后季节草场优化配置的研究[D].乌鲁木齐:新疆农业大学硕士论文,2001.
    [159]任继周.草业科学研究方法[M].北京:中国农业出版社,1998.
    [160]刘洪来.天山北坡中段蒿类荒漠草地退化演替特征研究[D].乌鲁木齐:新疆农业大学硕士论文,2007.
    [161]鲍士旦.土壤农化分析[M].北京:中国农业出版社,2000.
    [162]贺瑶琴.土壤学与土壤理化分析[M].新疆:科技卫生出版社,1995.
    [163]关松荫.土壤酶及其研究法[M].北京:农业出版社,1986.
    [164]贾树海,崔学明,李绍良,等.牧压梯度上土壤理化性质的变化.西北高原生物研究所编.草原生态系统研究(第五集)[C].北京:科学出版社,1997.251-253.
    [165] María B V, Nilda M A, Norman P. Soil degradation related to overgrazing in the semi-arid southern Caldenal area of Argentina [J]. Soil Science, 2001, 166(7): 441-452.
    [166]王周琼,李述刚,程心俊.荒漠绿洲农田生态系统中养分循环[M].北京:科学出版社.2002,76-77.
    [167]高英志,韩兴国,汪诗平.放牧对草原土壤的影响[J].生态学报,2004,24(4):790-797.
    [168]关世英,文沛钦,康师安,等.不同牧压强度对草地土壤养分含量的影响.西北高原生物研究所编.草原生态系统研究(第五集)[C].北京:科学出版社,1997.212-214.
    [169]裴海昆.不同放牧强度对土壤养分及质地的影响[J].青海大学学报,2004,22(4):29-31.
    [170]Pastor J B, Naiman RJ, Mcinnes PF, et al. Moose browing and soil fertility in the boreal forest of Isle Royale National Park [J]. Ecology, 1993, 74: 467-480.
    [171]Ritchie ME, Titman D, Knops JMH. Herbivore effects on plant and nitrogen dynamics in oak savanna [J]. Ecology, 1998, 79:165-177.
    [172]Severson KE, Debano LF. Influence of Spanish goats on vegetation and soils in Arizona chaparral [J]. J Range Manage, 1991, 44(2): 111-117.
    [173]Unkovich M, Sanford P, Pate J, et al. Effects of grazing on plant and soil nitrogen relations of pasture crop rotations [J]. Aust J Agric Res, 1998,49(3): 475-485.
    [174]李艳茹,梁运江,许广波,等.分形理论及其在土壤物理学上的应用[J].安徽农业科学,2006,34(20):5141-5143,5145.
    [175]黄冠华,詹卫华.土壤颗粒的分形特征及其应用[J].土壤学报,2002,39(4):490-497.
    [176]刘梦云,常庆瑞,齐雁冰.不同土地利用方式的土壤团粒及微团粒的分形特征.中国水土保持科学,2006,4(4):47-51.
    [177]胡云锋,刘纪远,庄大方,等.不同土地利用/土地覆盖下土壤粒径分布的分维特征[J].土壤学报,2005,42(2):336-339.
    [178]王小丹,刘刚才,刘淑珍,等.西藏高原干旱半干干旱区土壤分形特征及其应用[J].山地学报,2003,21(增刊):58-63.
    [179]吴承祯,洪伟.不同经营模式团粒结构的分形特征研究[J].土壤学报,1999,36(2):162-167.
    [180]李德成,张桃林.中国土壤颗粒组成的分形特征研究[J].土壤与环境,2000,9(4):263-265.
    [181]文海燕,傅华,赵哈林.退化沙质草地开垦和围封过程中的土壤颗粒分形特征[J].应用生态学报,2006,17(1):55-59.
    [182]廖咏梅,陈劲松.米亚罗地区亚高山针叶林在不同人为干扰条件下的土壤分形特征[J].生态学杂志,2005,24(8):878-882.
    [183]宫阿都,何毓蓉.金沙江干热河谷区退化土壤结构的分形特征研究[J].水土保持学报,2001,15(3):112-115.
    [184]朱震达,陈广庭,等.中国土地沙质荒漠化[M].北京:科学出版社,1994,157-179.
    [185]苏永中,赵哈林.科尔沁沙地农田沙漠化演变中土壤颗粒分形特征[J].生态学报,2004,24(1):71-74.
    [186]赵文智,刘志民,程国栋.土地沙质荒漠化过程的土壤分形特征[J].土壤学报,2002,39(5):877-881.
    [187]王树茂.人类生产活动对草地生态系统生物多样性的影响[J].草原与草坪,2004,4:21-23.
    [188]尚占环,丁玲玲,龙瑞军,等.江河源区退化高寒草地土壤微生物与地上植被及土壤环境的关系[J].草业学报,2007,16(1):34-40.
    [189]刘忠宽,汪诗平,陈佐忠,等.不同放牧强度草原休牧后土壤养分和植物群落变化特征[J].生态学报,2006,26(6):2048-2056.
    [190]路洪海,周蓓,章程.不同地质背景下发育的土壤及其对物种多样性的影响[J].地理与地理信息科学,2007,23(1):83-86.
    [191]柳小妮,孙九林,张德罡,等.东祁连山不同退化阶段高寒草甸群落结构与植物多样性特征研究[J].草业学报,2008,17(4):1-11.
    [192]C.N.R. Critchley, B.J. Chambers, J.A. Fowbert, et al. Association between lowland grassland plant communities and soil properties [J]. Biological Conservation, 2002, 105: 199–215.
    [193]王琳,张金屯,上官铁梁,等.历山山地草甸的物种多样性及其与土壤理化性质的关系[J].应用与环境生物学报,2004,10(1):18-22.
    [194]任天志.持续农业中的土壤生物指标研究[J].中国农业科学,2000,33(1):68-75.
    [195]Sicardi M, Garca-Préchac F, Frioni L. Soil microbial indicators sensitive to land use conversion from pastures to commercial Eucalyptus grandis (Hill ex Maiden) plantations in Uruguay [J]. Applied Soil Ecology, 2004, 27: 125-133.
    [196]郭彦军,韩建国.农牧交错带退耕还草对土壤酶活性的影响[J].草业学报,2008,17(5):23-29.
    [197]韩发,李以康,周华坤,等.管理措施对三江源区“黑土滩”土壤肥力及土壤酶活性的影响[J].草业学报,2007,16(3):1-8.
    [198]赵兰坡,姜岩.土壤磷酸酶活性测定方法的探讨[J].土壤通报,1986,(3):138-141.
    [199]谈嫣蓉,蒲小鹏,张德罡,等.不同退化程度高寒草地土壤酶活性的研究[J].草原与草坪,2006,3:20-22.
    [200]Perucci P, Bonciarelli U, Bianchi A A, et al. Effect of rotation, nitrogen fertility and management of crop residues on some chemical, microbiological and biochemical activity of soils under cultivation [J]. Biology and Fertility of Soils, 1997, 13:242-247.
    [201]关松荫,沈桂琴,孟昭鹏,等.我国主要土壤剖面酶活性状况[J].土壤学报,1984(21):4.
    [202]赵林森,王九龄.杨槐混交林生长及土壤酶与肥力的相互关系[J].北京林业大学学报,1995,17(4):1-7.
    [203]陆梅,田昆,陈玉惠,等.高原湿地纳帕海退化土壤养分与酶活性研究[J].西南林学院学报,2004,24(1): 36-41.
    [204]薛立,陈红跃,徐英宝,等.混交林地土壤物理性质与微生物数量及酶活性的研究[J].土壤通报,2004,35(2):155-158.
    [205]郑诗樟,肖青亮,吴蔚东,等.丘陵红壤不同人工林型土壤微生物类群、酶活性与土壤理化性状关系的研究[J].中国生态农业学报,16(1):57-61.
    [206]Carpenter-Boggs L, Stahl P D, Lindstrom M J, et al. Soil microbial properties under permanent grass, conventional tillage, and no-till management in South Dakota [J]. Soil & Tillage Research, 2003, 71: 15-23.
    [207]赵之重.土壤酶与土壤肥力关系的研究[J].青海大学学报,1998,16(3):24-29.
    [208]周智彬,徐新文.塔里木沙漠公里防护林土壤酶分别布特征及其与有机质的关系[J].水土保持学报,2004,18(5):10-14.
    [209]齐文娟,龙瑞军,冯瑞章,等.江河源区不同建植年限人工草地土壤微生物及酶活性研究[J].水土保持学报,2007,21(4):145-149.
    [210]焦如珍,杨承栋,屠星南,等.杉木人工林不同发育阶段林下植被、土壤微生物、酶活性及养分的变化[J].林业科学研究.1997,10(4):373—379.
    [211]关松荫.棕壤的十二种土壤的酶活性[J].土壤肥料,1980,(2):19-21.
    [212]曹成有,朱丽辉,富瑶,等.科尔沁沙质草地沙漠化过程中土壤生物活性的变化[J].生态学杂志,2007,26(5):622-627.
    [213]腾应,黄昌勇,龙健,等.铅锌银尾矿污染区土壤微生物区系及主要生理类群研究[J].农业环境科学学报,2003,22(4):408-411.
    [214]Frankenberger WT, Dick WA. Relationships between enzyme activities and microbial growth and activity indices in soil [J].Soil Sci Soc Am J, 1983,47: 945-951.
    [215]薛立,陈红跃,邝立刚.湿地松混交林地土壤养分、微生物和酶活性的研究[J].应用生态学报,2003,14(1):157-159.
    [216]Welp G. Inhibitory effects of the total and water-soluble concentrations of nine different metals on the dehydrogenas activity of a loess soil [J].Biology and Fertility of Soils, 1999, 30: 132-139.
    [217]朱艳,曹卫星,戴廷波,等.小麦栽培氮肥运筹的动态知识模型[J].中国农业科学,2003,36(9):1006-1013.
    [218]张华,张甘霖,漆智平,等.热带地区农场尺度土壤质量现状的系统评价[J].土壤学报,2003,40(2):186-193.
    [219]张玉兰,陈利军,张丽莉.土壤质量的酶学指标研究[J].土壤通报,2005,26(4):598-604.
    [220]高雪峰,韩国栋,张功,等.荒漠草原不同放牧强度下土壤酶活性及养分含量的动态研究[J].草业科学,2007,24(2):10-13.
    [221]Gil-Sotres F, Trasar-Cepeda C, Leiros MC, et al. Different approaches to evaluating soil quality using biochemical properties [J]. Soil Biology and Biochemistry, 2005, 37:877-887.
    [222]Doran J W, Parkin T B. Quantitative indicators of soil quality: a minimum data set Methods for assessing soil quality. Soil Science Society of America special Publication [C]. SSSA, Madison, Wisconsin, USA, 1996, 49:25-37.
    [223]唐玉姝,魏朝富,颜廷梅,等.土壤质量生物学指标研究进展[J].土壤,2007,39(20):157-163.
    [224]何同康.土壤(土地)资源评价的主要方法及其特点比较[J].土壤学进展,1983,11(6):1-12.
    [225]骆伯胜,钟继洪,陈俊坚.土壤肥力数值化综合评价研究[J].土壤,2004,36(1):104-106.
    [226]曹承绵,严长生,张志明,等.关于土壤肥力数值化综合评价的探讨[J].土壤通报,1983,(4):13-15.
    [227]苏金明.统计软件SPSS12.0 for Windows应用及开发指南[M].北京:电子工业出版社,2004.
    [228]茹淑华,张宝悦,孙世友,等.河北平原土壤质量的模糊数学方法综合评价[J].河北农业科学,2005,9(3):44-48.
    [229]李桂林,陈杰,孙志英,等.基于土壤特征和土地利用变化的土壤质量评价最小数据集确定[J].生态学报,2007,27(7):2715-2724.
    [230]许咏梅,王讲利,刘骅.应用综合评分法评价新疆灰漠土土壤质量的研究[J].土壤通报,2005,36(4):465-468.
    [231]李文忠,贺永元,张伟华,等.北川河流域退耕还林草对土壤质量影响的评价[J].水土保持研究,2005,12(6):1-3.
    [232]章予舒,王立新,张红旗,等.塔里木河下游沙漠化土壤性质及分形特征[J].资源科学,2004,26(5):11-17.
    [233]范燕敏,朱进忠,武红旗.北疆退化荒漠草地土壤颗粒的分形特征[J].草原与草坪,2008,4:10-13,19.
    [234]李新举.黄河三角洲土壤质量时空演变及可持续利用评价研究[D].山东农业大学博士论文,2005.
    [235]王瑞玲.农田土壤环境质量预警—以郑州市郊区为例[D].中国农业科学院硕士论文,2005.
    [236]王雄军.太原盆地土壤重金属元素分布特征及预警模型研究[D].中南大学硕士论文,2005.
    [237]詹晓燕.环境安全预警系统研究—以浙江省农业地质环境安全预警系统为例[D].浙江大学硕士论文,2005.
    [238]聂庆华,包浩生,王海英.基于GIS农田土地质量评价与立地分析—以京郊房山区良乡为例[J].地理科学,2000,20(4):307-312.
    [239]王君厚,廖雅萍,林进.土地沙漠化评价预警模型的建立及北方12省(市、区)分县预警[J].林业科学,2001,37(1):58-63.
    [240]李方敏,周治安,等.渍害土壤肥力综合评价[J].资源科学,200,24(1):25-29.
    [241]叶伦文.区域环境预警研究—以四川省邛崃市为例[D].四川大学硕士论文,2003.
    [242]牛志毅.广州市森林生态经济预警系统研究[D].中南林业科技大学硕士论文,2006.
    [243]郑昭佩,刘作新.土壤质量及其评价[J].应用生态学报,2003,14(1):131-134.
    [244]Doran JW, Parkin TB.. Defining and assessing soil quality In: Doran JW eds. Defining Soil Quality for A Sustainable Environment [C]. SSSA Spec. Pub. 35. SSSA and ASA, Madison, WI. 1994,3-21.
    [245]黎孟波,张先婉.土壤肥力研究进展[M].北京:中国科学出版社,1991.
    [246]刘世梁,傅伯杰,陈利顶,等.两种土壤质量变化的定量评价方法比较[J].长江流域资源与环境,2003,5:422-426.
    [247]于法展,李保杰,尤海梅,等.多元统计分析方法在徐州城区公园绿地土壤肥力评价中的应用[J].水土保持研究,2007,14(4):159-161.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700