用户名: 密码: 验证码:
固体氧化物燃料电池Pd-YSZ阴极及其性能优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
固体氧化物燃料电池(Solid Oxide Fuel Cell,SOFC)是一种高效、清洁、安静、可靠的全固态电化学能量转化装置。传统SOFC工作温度通常在1000℃左右,具有相当高的能量转化效率和功率密度;但是,高温对材料的限制阻碍了SOFC技术的发展和推广。因此,工作温度降低于800℃并具有高温SOFC功率密度的中低温SOFC是目前发展的方向。温度降低后阴极所产生的活化损耗过高问题一直是制约中温SOFC(Intermediate Temperature SOFC,IT-SOFC)发展的主要技术难点之一。本文研究以IT-SOFC为背景,研究了Pd修饰的金属-陶瓷复合阴极,力求开发满足IT-SOFC发展需要的阴极材料。
     首先确定了最佳电极制备方法-溶液浸渍法,并以此制备了具有阴极与电解质一体化离子传导路径的纳米结构Pd浸渍YSZ阴极。在此基础上,研究了阴极的微观形貌、电化学活性和纳米颗粒/基体界面特征之间的关系。其次,采用Pd浸渍和结构优化的方法对传统LSM阴极进行了改性,系统研究了改性后的阴极相结构、微观形貌、阴极阻抗和单电池性能。为更好地理解Pd的氧还原催化作用,较为深入地研究了不同粒径Pd颗粒的氧化-还原性能,以及附着在YSZ基体上的纳米Pd颗粒氧化-还原的特殊性,并对Pd的氧还原催化机制进行了探索。最后,研究了纳米Pd的热稳定性,探索了合金化对纳米Pd阴极微观形貌稳定性的影响。上述研究结果表明:
     (1)浸渍法是制备具有阴极—电解质一体化离子传导路径的纳米复合阴极的有效方法。在相对低的温度范围内(<750℃),可以获得均匀附着于多孔电解质上的纳米催化活性材料。在极大地增加三相反应界面的同时,避免了传统陶瓷阴极制备中的高温烧结(>1200℃),回避了高温下催化活性材料与电解质材料不相匹配(热膨胀系数和化学相容性)的问题,从而使得阴极材料的选择范围更广。
     (2)浸渍法制备的Pd-YSZ纳米复合阴极具有很高的氧还原催化活性。在担载量约为4 wt.%时,750℃的阴极极化阻抗最低可达0.11Ωcm~2,此时的氧还原反应活化能仅为105 kJ mol~(-1),能够满足IT-SOFC阴极材料的需要。Pd良好的氧还原催化活性与Pd的氧化-还原特性相关,Pd和PdO的共存和相互转变,有利于氧分子在其上的吸附-解离,是催化氧还原反应的重要条件。电流极化处理可增强Pd与YSZ之间的接触,并改变其界面特征,进一步改善阴极的活性。
     (3)在750℃,传统的LSM-YSZ复合陶瓷阴极对氧还原的催化活性较差,以其制备的单电池的最高功率密度仅为0.20 W cm~(-2)。通过浸渍法改变LSM为纳米颗粒分布与YSZ多孔基体之中,单电池性能得到很大地提升,750℃的峰值功率密度为0.83 W cm~(-2)。Pd的浸渍,对传统LSM-YSZ阴极的性能带来极大的改善,使其单电池的功率密度可高达1.42 W cm~(-2)。由此可见,通过浸渍技术纳米化LSM以及引入Pd纳米颗粒可以极大地改善LSM-YSZ复合陶瓷阴极的电化学活性,使得LSM阴极材料可以成功地用于IT-SOFC。
     (4)Pd粉末颗粒的抗烧结性能较差,在温度和工作电流作用下,Pd纳米颗粒易于长大团聚,使其催化性能随时间退化。合金化是增强Pd抗烧结性能的有效方法,Mn或Co均能与Pd形成固溶体,抑制阴极工作条件的扩散传质过程,从而提高Pd纳米颗粒和复合阴极的微观结构稳定性以及阴极性能的稳定性。
Solid oxide fuel cell (SOFC)is a solid electrochemical energy conversion device,with properties of high efficient,clean,quiet and reliable.Traditionally,SOFC is operatedat temperatures as high as 1000℃,which offers SOFC high chemical-to-electrical energyconversion efficiency and high power density.However the stability and reliability ofmaterials and component operated at high temperature confines the development of SOFCtechnology.Thus it is necessary to reduce the operating temperature of SOFCs from1000℃to intermediate temperature range of 600~800℃.However,the reduction inoperating temperature results in a significant increase in electrode polarization losses,especially in the cathode side.Thus the development of high performance cathodesbecomes increasingly.critical for the intermediate temperature SOFC (IT-SOFC).In thisthesis,Pd containing metal-ceramic composite cathodes were studied thoroughly todevelop novel cathodes for IT-SOFC application.
     In this thesis,the solution impregnation method was chosen for fabricatingnanostructured electrodes with high mixed ionic and electronic conductivity.Therelationship between the microstructure,the performance and the interface properties ofPd/YSZ were studied.Two modification approaches on LSM-based nanostructured Pdimpregnated LSM/YSZ and LSM impregnated YSZ cathodes were developed by Pdmodification.The phase composition,microstructure and electrochemical performance ofthe modified cathodes were investigated in detail.The redox property of Pd with variousparticle sizes and nano-sized Pd in Pd impregnated YSZ cathode was also investigated.According to the relationship between the redox property of Pd and electrochemicalperformance of Pd containing cathodes,the mechanism for oxygen reduction reaction(ORR)in Pd cathode was carried out.Finally,the stability of nano-sized Pd with thealloying of manganese and colbalt was also discussed.The conclusions of the thesis arelisted as below.
     (1)Solution impregnation is an effective method for fabricating nano-scaledcomposite cathodes with continuous ion transportation from the cathode to the electrolyte.At temperatures below 750℃,nano-sized active materials can be uniformly distributedinto porous electrolyte structures,which significantly increases the triple phase boundary,avoids the high temperature (>1200℃)sintering process required in traditional cathodefabrication,circumvents the possible issues caused by the mismatch in thermal expansionand chemical compatibility.As a result,the selection of cathode materials can be facilitated.
     (2)The Pd-YSZ nano-scaled composite cathode fabricated by solutionimpregnation is electrocatalytically active for the O_2 reduction reaction.With a weightloading of 4 %,the cathode polarization resistance can be as low as 0.11Ωcm~2 and theactivation energy for the reaction is 105 kJ mo1~(-1),which can satisfy the requirements forIT-SOFC cathode materials.The electrochemical activity of Pd for the O_2 reductionreaction is related to the oxidation-reduction behavior of Pd,the coexistence of Pd andPdO and conversion between each other enhance the adsorption and dissociation processesof O_2 molecules.Current polarization treatment strengthens the contact between Pd andYSZ,and consequently,the interface characteristics are changed and the electrochemicalactivity of the cathode is further improved..
     (3)The electrochemical activity of the traditional LSM-YSZ composite cathode isnot adequately high,with which the cell power density can only reach 0.20 W cm~(-2)However,the performance of the cell with the LSM impregnated YSZ composite cathodecan be significantly improved,the power density of the cell can be as high as 0.83 W cm~(-2).The activity of the traditional LSM-YSZ cathode can be greatly increased by Pdimpregnation,leading to a maximum power density of 1.42 W cm~(-2)for a cell with such amodified cathode.Therefore,it can be noted that the performance of LSM-YSZ compositecathodes can be substantially enhanced by nano-sizing LSM particles and introducing Pdnano particles,so that LSM can be successfully used in IT-SOFC.
     (4)Pd powder is poor in resistance to high temperature sintering.Under the actionof temperature and working current Pd particles tend to grow and coalescence,resultingperformance degradation with time.Alloying is an effective method for increasing thesintering resistance of Pd,the atom diffusion and mass transport processes areconsiderably slowed in Pd-Mn and Pd-Co solid solutions.And the microstructure andperformance stabilities of the nano-sized Pd-YSZ composite cathode are increased.
引文
[1]Hickner M A,Ghassemi H,Kim Y S,Einsla B R,McGrath J E.Alternative polymer systems for proton exchange membranes (PEMs).Chemical Reviews,2004,104(10):4587.
    [2]Minh N Q,Montgomery K.Performance of reduced-temperature,SOFC stacks.5th International Symposium on Solid Oxide Fuel Cells (SOFC-V) Aachen,Germany,1997.153.
    [3]Singh P,Minh N Q.Solid oxide fuel cells:Technology status.International Journal of Applied Ceramic Technology,2004,1(1):5.
    [4]Steele B C H,Heinzel A.Materials for fuel-cell technologies.Nature,2001,414(6861):345.
    [5]Campbell A B,Ferrall J F,Minh N Q,Ieee.Solid oxide fuel cell power system.29th Annual Conference of the IEEE Industrial-Electronics-Society,Roanoke,VA,2003.1580.
    [6]Doshi R,Chung B W,Guan J,Lear G R,Montgomery K,Ong E T,Minh N Q.Solid state devices based on thin-film zirconia electrolytes.Solid-State Ionic Devices Symposium at the 195th Electrochemical-Society Meeting (Eds.:Wachsman E D,Akridge J R,Liu M,Yamazoe N),Seattle,Wa,1999.268.
    [7]Minh N Q.CERAMIC FUEL-CELLS.Journal of the American Ceramic Society,1993,76(3):563.
    [8]Murray E P,Tsai T,Barnett S A.A direct-methane fuel cell with a celia-based anode.Nature,1999,400(6745):649.
    [9]查全性.燃料电池技术的发展与我国应有的对策.应用化学,1993,10(38.
    [10]Minh N Q.DEVELOPMENT OF MONOLITHIC SOLID OXIDE FUEL-CELLS FOR AEROSPACE APPLICATIONS.Journal of the Electrochemical Society,1988,135(8):C344.
    [11]Singhal S C.Solid oxide fuel cells for stationary,mobile,and military applications.International Conference on Solid State Ionics,Cairns,Australia,2001.405.
    [12]李箭.固体氧化物燃料电池:发展现状与关键技术.功能材料与器件学报,2007,13(6):683.
    [13]Jiang S P.Development of lanthanum strontium manganite perovskite cathode materials of solid oxide fuel cells:a review.Journal of Materials Science,2008, 43(21):6799.
    [14]McNicol B D,Rand D A J,Williams K R.Fuel cells for road transportation purposesyes or no? Journal of Power Sources,2001,100(1-2):47.
    [15]Staniforth J,Kendall K.Biogas powering a small tubular solid oxide fuel cell.5th Grove Fuel Cell Symposium on Fuel Cells-Investing in a Clean Future,London,England,1997.275.
    [16]Yamamoto O.Solid oxide fuel cells:fundamental aspects and prospects.Electrochimica Acta,2000,45(15-16):2423.
    [17]Rogers W A,Collins D,Khaleel M A,Lara-Curzio E.SOFC modeling and simulation.8th International Symposium on Solid Oxide Fuel Cells (Eds.:Singhal S C,Dokiya M),Paris,France,2003.1378.
    [18]Williams M C,in 3rd International German Hydrogen Energy Congress,Essen,GERMANY,2007.78.
    [19]Singhal S C.Solid oxide fuel cells:status,challenges and opportunities.Industrial Ceramics,2008,28(1):53.
    [20]Surdoval W A,Singhal S C,McVay G L.The solid state energy conversion Alliance (SECA).7th International Symposium on Solid Oxide Fuel Cells (Eds.:Yokokawa H,Singhal S C),Tsukuba,Japan,2001.53.
    [21]George R A,in 6th Grove Fuel Cell Symposium Fuel Cells-The Competitive Option for Sustainable Energy Supply,London,England,1999.134.
    [22]Jiang S P.A review of wet impregnation-An alternative method for the fabrication of high performance and nano-structured electrodes of solid oxide fuel cells.Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing,2006,418(1-2):199.
    [23]Jiang S P,Chen X J,Chan S H,Kwok J T.GDC-impregnated,(La_(0.75)Sr_(0.25))(Cr_(0.5)Mn_(0.5))O_3 anodes for direct utilization of methane in solid oxide fuel cells.Journal of the Electrochemical Society,2006,153(5):A850.
    [24]Wang W,Jiang S P.A mechanistic study on the activation process of (La,Sr)MnO_3 electrodes of solid oxide fuel cells.Solid State Ionics,2006,177(15-16):1361.
    [25]毛宗强,黄建兵,王诚,刘志祥.低温固体氧化物燃料电池研究进展.电源技术,Chinese Journal ofPower Sources,2008.
    [26]Song C S,in 222nd ACS National Meeting,Chicago,Illinois,2001.17.
    [27]Steele B C H.Fuel processing for low-temperature and high-temperature fuel cells.10th International Conference on Solid State Ionics (SSI-10),Singapore,Singapore, 1995.1223.
    [28]Koyama M,Wen C,Yamada K.La_(0.6)Ba_(0.4)CoO_3 as a cathode material for solid oxide fuel cells using a BaCeO_3 electrolyte.Journal of the Electrochemical Society,2000,147(1):87.
    [29]Dyck C R.Synthesis and Characterization of Gd_((1-x))Sr_xCo_((1-y))Fe_yO_3 as a cathode material for Intermediate Temperature Solid Oxide Fuel Cells.Dissertation,Queen's University,Canada,2003.
    [30]Minh N Q.Science and Technology of Ceramic Fuel Cells.Amsterdam:Elsevier Science,1995.
    [31]Steele B C H.Material science and engineering:The enabling technology for the commercialisation of fuel cell systems.Journal of Materials Science,2001,36(5):1053.
    [32]Vohs J M,Gorte R J.High-Performance SOFC Cathodes Prepared by Infiltration.Advanced Materials,2009,21 (9):943.
    [33]Adler S B.Factors governing oxygen reduction in solid oxide fuel cell cathodes.Chemical Reviews,2004,104(10):4791.
    [34]Horita T,Yamaji K,Sakai N,Yokokawa H,Weber A,Ivers-Tiffee E.Electrode reaction of La_(1-x)Sr_xCoO_3 cathodes on La_(0.8)Sr_(0.2)Ga_(0.8)Mg_(0.2)O_(3-y) electrolyte in solid oxide fuel cells.Journal of the Electrochemical Society,2001,148(5):A456.
    [35]Horita T,Yamaji K,Sakai N,Xiong X P,Kato T,Yokokawa H,Kawada T.Imaging of oxygen transport at SOFC cathode/electrolyte interface by a novel technique.7th Grov Fuel Cell Symposium,London,England,2001.224.
    [36]Jiang S P.Activation,microstructure,and polarization of solid oxide fuel cell cathodes.Journal of Solid State Electrochemistry,2007,11 (1):93.
    [37]Jiang S P,Love J G.Origin of the initial polarization behavior of Sr-doped LaMnO_3 for O_2 reduction in solid oxide fuel cells.Solid State Ionics,2001,138(3-4):183.
    [38]Jiang S P,Love J G.Observation of structural change induced by cathodic polarization on (La,Sr)MnO_3 electrodes of solid oxide fuel cells.Solid State Ionics,2003,158(1-2):45.
    [39]Jiang S P,Wang W.Effect of polarization on the interface between (La,Sr) MnO_3 electrode and Y_2O_3-ZrO_2 electrolyte.Electrochemical and Solid State Letters,2005,8(2):All5.
    [40]Subhash C.Singhal K K,韩敏芳.高温固体氧化物燃料电池.科学出版社,book,2007.
    [41]Steele B C H.Materials for high-temperature fuel cells.Philosophical Transactions of the Royal Society of London Series a-Mathematical Physical and Engineering Sciences,1996,354(1712):1695.
    [42]Bae J M,Steele B C H.Properties of La_(0.6)Sr_(0.4)Co_(0.2)Fe_(0.8)O_(3-delta) (LSCF) double layer cathodes on gadolinium-doped cerium oxide (CGO) electrolytes-I.Role of SiO_2.Solid State Ionics,1998,106(3-4):247.
    [43]Steele B C H,Bae J M.Properties of La_(0.6)Sr_(0.4)Co_(0.2)Fe_(0.8)O_(3-x) (LSCF) double layer cathodes on gadolinium-doped cerium oxide (CGO) electrolytes-II.Role of oxygen exchange and diffusion.Solid State Ionics,1998,106(3-4):255.
    [44]Waller D,Lane J A,Kilner J A,Steele B C H.The effect of thermal treatment on the resistance of LSCF-electrodes.10th International Conference on Solid State Ionics (SSI-10),Singapore,Singapore,1995.767.
    [45]Waller D,Lane J A,Kolner J A,Steele B C H.The structure of and reaction of A-site deficient La_(0.6)Sr_(0.4-x)Co_(0.2)Fe_(0.8)O_(3-delta).Materials Letters,1996,27(4-5):225.
    [46]Beckel D,Dubach A,Studart A R,Gauckler L J.Spray pyrolysis of La_(0.6)Sr_(0.4)Co_(0.2)Fe_(0.8)O_(3-delta) thin film cathodes.Journal of Electroceramics,2006,16(3):221.
    [47]Horita T,Yamaji K,Sakai N,Yokokawa H,Weber A,Ivers-Tiffee E.Stability at La_(0.6)Sr_(0.4)CoO_3 cathode/La_(0.8)Sr_(0.2)Ga_(0.8)Mg_(0.2)O_(2.8) electrolyte interface under current flow for solid oxide fuel cells.Solid State Ionics,2000,133(3-4):143.
    [48]Srdic V V,Omorjan R P,Seydel J.Electrochemical performances of (La,Sr)CoO_3 cathode for zirconia-based solid oxide fuel cells.Materials Science and Engineering B-Solid State Materials for Advanced Technology,2005,116(2):119.
    [49]Swierczek K,Marzec J,Palubiak D,Zajac W,Molenda J.LFN and LSCFN perovskites-structure and transport properties.15th International Conference on Solid State Ionics,Baden Baden,GERMANY,2006.1811.
    [50]Shao Z P,Haile S M.A high-performance cathode for the next generation of solid-oxide fuel cells.Nature,2004,431 (2005):170.
    [51]Wei B,Lu Z,Huang X Q,Miao J P,Sha X Q,Xin X S,Su W H.Crystal structure,thermal expansion and electrical conductivity of perovskite oxides BaxSr_(1-x)Co_(0.8)Fe_(0.2)O_(3-delta) (0.3 <= x <= 0.7).Journal of the European Ceramic Society,2006,26(13):2827.
    [52]Zhou W,Ran R,Shao Z P,Cai R,Jin W Q,Xu N P,Ahn J.Electrochemical performance of silver-modified Ba_(0.5)Sr_(0.5)Co_(0.8)Fe_(0.2)O_(3-delta) cathodes prepared via electroless deposition. Electrochimica Acta, 2008, 53(13): 4370.
    [53] Zhou W, Ran R, Shao Z P, Jin W Q, Xu N P. Evaluation of A-site cation-deficient (Ba_(0.5)Sr_(0.5))_((1-chi))Co_(0.8)Fe_(0.2)O_(3-delta) (chi > 0) perovskite as a solid-oxide fuel cell cathode. Journal of Power Sources, 2008,182(1): 24.
    [54] Zhou W, Ran R, Shao Z P, Zhuang W, Jia J, Gu H X, Jin W Q, Xu N P. Barium- and strontium-enriched (Ba_(0.5)Sr_(0.5))_((1+x))Co_(0.8)Fe_(0.2)O_(3-delta) oxides as high-performance cathodes for intermediate-temperature solid-oxide fuel cells. Acta Materialia, 2008,56(12): 2687.
    [55] Zhou W, Shao Z P, Jin W Q. A novel route to synthesize nano-crystalline Ba_(0.5)Sr_(0.5)Co_(0.8)Fe_(0.2)O_(3-delta) perovskite oxide at high temperature. Chinese Chemical Letters, 2006, 17(10): 1353.
    [56] Zhou W, Shao Z P, Ran R, Zeng P Y, Gu H X, Jin w Q, Xu N P.Ba_(0.5)Sr_(0.5)Co_(0.8)Fe_(0.2)O_(3-delta)+LaCoO_3 composite cathode for Sm_(0.2)Ce_(0.8)O_(1.9)-electrolyte based intermediate-temperature solid-oxide fuel cells. Journal of Power Sources,2007,168(2): 330.
    [57] Chiba R, Yoshimura F, Sakurai Y. Properties of LSCF as a cathode material for a low-temperature operating SOFC. International Conference on Solid State Ionics,Cairns, Australia, 2001. 575.
    [58] Fu Q X, Tietz F, Stover D. La_(0.4)Sr_(0.6)Ti_(1-x)Mn_xO_(3-delta) perovskites as anode materials for solid oxide fuel cells. Journal of the Electrochemical Society, 2006,153(4): D74.
    [59] Hrovat M, Katsarakis N, Reichmann K, Bernik S, Kuscer D, Holc J.Characterisation of LaNi_(1-x)Co_xO_3 as a possible SOFC cathode material. Solid State Ionics, 1996, 83(1-2): 99.
    [60] Huang K Q, Goodenough J B. A solid oxide fuel cell based on Sr- and Mg- doped LaGaO_3. 22nd Rare Earth Research Conference, Argonne, Illinois, 1999. 454.
    [61] Knudsen J, Friehling P B, Bonanos N. Effect of A-site stoichiometry on phase stability and electrical conductivity of the perovskite Las(Ni_(0.59)Fe_(0.41))O_(3-delta) and its compatibility with (La_(0.85)Sr_(0.15))_(0.91)MnO_(3-delta) and Zr_(0.85)Y_(0.15)O_(2.925). Solid State Ionics,2005, 176(17-18): 1563.
    [62] Lee K T, Manthiram A. Comparison of Ln_((0.6))Sr_((0.4))CoO_((3.delta)) (Ln - La, Pr, Nd, Sm,and Gd) as cathode materials for intermediate temperature solid oxide fuel cells.Journal of the Electrochemical Society, 2006, 153(4): A794.
    [63] Petitjean M, Caboche G, Siebert E, Dessemond L, Dufour L C, in 9th Electroceramics Congress, Cherbourg, FRANCE, 2004. 2651.
    [64] Sakaki Y, Takeda Y, Kato A, Imanishi N, Yamamoto O, Hattori M, Iio M, Esaki Y.Ln_((1-x))Sr_((x))MnO_((3)) (Ln = Pr, Nd, Sm and Gd) as the cathode material for solid oxide fuel cells. Solid State Ionics, 1999, 118(3-4): 187.
    [65] Yu H C, Fung K Z. La_(1-x)SrCuO_(2.5-delta) as new cathode materials for intermediate temperature solid oxide fuel cells. Materials Research Bulletin, 2003, 38(2): 231.
    [66] de Larramendi I R, Anton R L, de Larramendi J I R, Baliteau S, Mauvy F, Grenier J C, Rojo T, in 2nd National Congress on Fuel Cells, Madrid, SPAIN, 2006. 35.
    [67] Lalanne C, Mauvy F, Siebert E, Fontaine M L, Bassat J M, Ansart F, Stevens P,Grenier J C. IT-SOFC single cell test using Nd_(1.95)NiO_4 as cathode. International Conference on Electroceramics, Toledo, SPAIN, 2006. 4195.
    [68] Lalanne C, Prosperi G, Bassat J M, Mauvy F, Fourcade S, Stevens P, Zahid M,Diethelm S, Van Herle J, Grenier J C. Neodymium-deficient nickelate oxide Nd_(1.95)NiO_(4+delta) as cathode material for anode-supported intermediate temperature solid oxide fuel cells. Journal of Power Sources, 2008,185(2): 1218.
    [69] Mauvy F, Bassat J M, Boehm E, Manaud J P, Dordor P, Grenier J C. Oxygen electrode reaction on Nd_2NiO_(4+delta) cathode materials: impedance spectroscopy study. Solid State Ionics, 2003,158(1-2): 17.
    [70] Mauvy F, Lalanne C, Bassat J M, Grenier J C, Zhao H, Huo L H, Stevens P.Electrode properties of Ln_((2))NiO_((4+delta)) (Ln = La, Nd, Pr) - AC impedance and DC polarization studies. Journal of the Electrochemical Society, 2006,153(8): A1547.
    [71] Zhao H, Mauvy F, Lalanne C, Bassat J M, Fourcade S, Grenier J C. New cathode materials for ITSOFC: Phase stability, oxygen exchange and cathode properties of La_(2-x)NiO_(4+delta). Solid State Ionics, 2008,179(35-36): 2000.
    [72] Chen J, Liang F L, Liu L N, Jiang S P, Chi B, Pu J, Li J. Nano-structured (La, Sr)(Co,Fe)O_3+YSZ composite cathodes for intermediate temperature solid oxide fuel cells.Journal of Power Sources, 2008, 183(2): 586.
    [73] Chen J, Liang F L, Liu L N, Pu J, Chi B, Li J. Preparation and Electrochemical Performance of (La,Sr) (Co,Fe)O_(3-delta) Cathode for Solid Oxide Fuel Cells. Chinese Journal of Catalysis, 2009, 30(2): 131.
    [74] Haanappel V A C, Rutenbeck D, Mai A, Uhlenbruck S, Sebold D, Wesemeyer H,Rowekamp B, Tropartz C, Tietz F. The influence of noble-metal-containing cathodes on the electrochemical performance of anode-supported SOFCs. Journal of Power Sources, 2004,130(1-2): 119.
    [75] Huang Y, Vohs J M, Gorte R J. SOFC cathodes prepared by infiltration with various LSM precursors. Electrochemical and Solid State Letters, 2006, 9(5): A237.
    [76] Liang F L, Chen J, Cheng J L, Jiang S P, He T M, Pu J, Li J. Novel nano-structured Pd plus yttrium doped ZrO_2 cathodes for intermediate temperature solid oxide fuel cells. Electrochemistry Communications, 2008,10(1): 42.
    [77] Liang F L, Chen J, Jiang S P, Chi B, Pu J, Jian L. Development of Nanostructured and Palladium Promoted (La,Sr)MnO_3-Based Cathodes for Intermediate-Temperature SOFCs. Electrochemical and Solid State Letters, 2008, 11(12): B213.
    [78] Sahibzada M, Benson S J, Rudkin R A, Kilner J A. Pd-promoted LSCF cathodes.11th International Conference on Solid State Ionics (SSI-11), Honolulu, Hi, 1997.285.
    [79] Simner S P, Bonnett J R, Canfield N L, Meinhardt K D, Shelton J P, Sprenkle V L,Stevenson J W. Development of lanthanum ferrite SOFC cathodes. Journal of Power Sources, 2003, 113(1): 1.
    [80] Uchida H, Arisaka S, Watanabe M. High performance electrodes for medium-temperature solid oxide fuel cells: Activation of La(Sr)CoO_3 cathode with highly dispersed Pt metal electrocatalysts. 12th International Conference on Solid State Ionics, Halkidiki, Greece, 1999. 347.
    [81] Mizusaki J, Mori N, Takai H, Yonemura Y, Minamiue H, Tagawa H, Dokiya M,Inaba H, Naraya K, Sasamoto T, Hashimoto T. Oxygen nonstoichiometry and defect equilibrium in the perovskite-type oxides La_(1-x)Sr_xMnO_3. Solid State Ionics, 2000,129(1-4): 163.
    [82] Mizusaki J, Yonemura Y, Kamata H, Ohyama K, Mori N, Takai H, Tagawa H,Dokiya M, Naraya K, Sasamoto T, Inaba H, Hashimoto T. Electronic conductivity,Seebeck coefficient, defect and electronic structure of nonstoichiometric La_(1-x)Sr_xMnO_3. Solid State Ionics, 2000, 132(3-4): 167.
    [83] Zheng F, Pederson L R. Phase behavior of lanthanum strontium manganites. Journal of the Electrochemical Society, 1999,146(8): 2810.
    [84] Jiang S P, Love J G, Zhang J P, Hoang M, Ramprakash Y, Hughes A E, Badwal S P S,in 11th International Conference on Solid State Ionics (SSI-11), Honolulu, Hawaii,1997. 1.
    [85] Mitchell J F, Argyriou D N, Potter C D, Hinks D G, Jorgensen J D, Bader S D.Structural phase diagram of La_(1-x)Sr_xMnO_(3+delta): Relationship to magnetic and transport properties. Physical Review B, 1996, 54(9): 6172.
    [86] Alonso J A, MartinezLope M J, Casais M T. High oxygen pressure synthesis of LaMnO_(3+delta) With high delta values (delta<=0.31). European Journal of Solid State and Inorganic Chemistry, 1996, 33(4): 331.
    [87] Alonso J A, MartinezLope M J, Casais M T, MacManusDriscoll J L, deSilva P,Cohen L F, FernandezDiaz M T. Non-stoichiometry, structural defects and properties of LaMnO_(3+delta) with high delta values (0.1<=delta<=0.29). Journal of Materials Chemistry, 1997, 7(10): 2139.
    [88] Mclntosh S, Adler S B, Vohs J M, Gorte R J. Effect of polarization on and implications for characterization of LSM-YSZ composite cathodes. Electrochemical and Solid State Letters, 2004, 7(5): A111.
    [89] Phillipps M B, Sammes N M, Yamamoto O. Gd_((1-x))A_((x))Co_((1-y))Mn_((y))O_((3)) (A = Sr, Ca) as a cathode for the SOFC. Solid State Ionics, 1999,123(1-4): 131.
    [90] Mori M, Yamamoto T, Ichikawa T, Takeda Y. Dense sintered conditions and sintering mechanisms for alkaline earth metal (Mg, Ca and Sr)-doped LaCrO_3 perovskites under reducing atmosphere. Solid State Ionics, 2002,148(1-2): 93.
    [91] Mori M, Hiei Y, Yamamoto T, Itoh H. Lanthanum alkaline-earth manganites as a cathode material in high-temperature solid oxide fuel cells. Journal of the Electrochemical Society, 1999,146(11): 4041.
    [92] Mori M, Yamamoto T, Itoh H, Watanabe T. Compatibility of alkaline earth metal (Mg, Ca, Sr)-doped lanthanum chromites as separators in planar-type high-temperature solid oxide fuel cells. Journal of Materials Science, 1997, 32(9):2423.
    [93] Aruna S T, Muthuraman M, Patil K C. Combustion synthesis and properties of strontium substituted lanthanum manganites La_(1-x)Sr_xMnO_3 (0<=x<=0.3). Journal of Materials Chemistry, 1997, 7(12): 2499.
    [94] Carter S, Selcuk A, Chater R J, Kajda J, Kilner J A, Steele B C H. Oxygen-transport in selected nonstoichiometric perovskite-structure oxides. 8th International Conf on Solid State Ionics ( Ssi-8 ), Lake Louise, Canada, 1991. 597.
    [95] Yasuda I, Ogasawara K, Hishinuma M, Kawada T, Dokiya M. Oxygen tracer diffusion coefficient of (La,Sr)MnO_(3+/-delta-) 10th International Conference on Solid State Ionics (SS-10), Singapore, Singapore, 1995. 1197.
    [96] Horita T, Tsunoda T, Yamaji K, Sakai N, Kato T, Yokokawa H. Imaging of oxygen transport at SOFC cathode/electrolyte interfaces by a novel technique. International Conference on Solid State Ionics, Cairns, Australia, 2001. 439.
    [97] Ji Y, Kilner J A, Carolan M F. Electrical properties and oxygen diffusion in yttria-stabilised zirconia (YSZ)-La_(0.8)Sr_(0.2)MnO_(3+/-delta) (LSM) composites. Solid State Ionics, 2005,176(9-10): 937.
    [98] Murray E P, Barnett S A. (La,Sr) MnO_3-(Ce,Gd)O_(2-x) composite cathodes for solid oxide fuel cells. Solid State Ionics, 2001, 143(3-4): 265.
    [99] Murray E P, Tsai T, Barnett S A. Oxygen transfer processes in (La,Sr)MnO_3/Y_2O_3-stabilized ZrO_2 cathodes: an impedance spectroscopy study.Solid State Ionics, 1998, 110(3-4): 235.
    [100] Jiang S P, Zhen Y D, Zhang S. Interaction between Fe-Cr metallic interconnect and (La,Sr)MnO_3/YSZ composite cathode of solid oxide fuel cells. Journal of the Electrochemical Society, 2006,153(8): A1511.
    [101] Murray E P, Barnett S A. Improved performance in (La,Sr)MnO_3 and (La,Sr)(Co,Fe)O_3 cathodes by the addition of a Gd-doped ceria second phase. 6th International Symposium on Solid Oxide Fuel Cells, Honolulu, Hi, 1999. 369.
    [102] Zhen Y D, Jiang S P. Transition behavior for O_2 reduction reaction on (La,Sr)MnO_3/YSZ composite cathodes of solid oxide fuel cells. Journal of the Electrochemical Society, 2006, 153(12): A2245.
    [103] Zhao H, Huo L H, Gao S. Electrochemical properties of LSM-CBO composite cathode. Journal of Power Sources, 2004,125(2): 149.
    [104] Jiang S P, Leng Y J, Chan S H, Khor K A. Development of (La, Sr)MnO_3-based cathodes for intermediate temperature solid oxide fuel cells. Electrochemical and Solid State Letters, 2003, 6(4): A67.
    [105] Armstrong T J, Prouse D W, Virkar A V. La_(0.8)Sr_(0.2)MnO_3-La_(0.9)Sr_(0.1)Ga_(0.8)Mg_(0.2)O_3 composite cathodes for anode supported solid oxide fuel cells. 4th International Symposium on Ionic and Mixed Conducting Ceramics, San Francisco, 2001. 319.
    [106] Armstrong T J, Virkar A V. Performance of solid oxide fuel cells with LSGM-LSM composite cathodes. Journal of the Electrochemical Society, 2002, 149(12): A1565.
    [107] Wang W G, Barfod R, Larsen P H, Kammer K, Bentzen J J, Hendriksen P V,Mogensen M. Improvement of LSM cathode for high power density SOFCs. 8th International Symposium on Solid Oxide Fuel Cells, Paris, France, 2003. 400.
    [108] Choi J H, Jang J H, Oh S M. Microstructure and cathodic performance of La_(0.9)Sr_(0.1)MnO_3/yttria-stabilized zirconia composite electrodes. Electrochimica Acta,2001, 46(6): 867.
    [109] Juhl M, Primdahl S, Manon C, Mogensen M. Performance/structure correlation for composite SOFC cathodes. 4th Grove Fuel Cell Symposium on Opportunities, Progress and Challenges, London, England, 1995. 173.
    [110] Kenjo T, Nishiya M. LaMno_3 air cathodes containing ZRO_2 electrolyte for high-temperature solid oxide fuel-cells. Solid State Ionics, 1992, 57(3-4): 295.
    [111] LuZG, Jiang Y, Yan J W, Dong Y L, Zhang Y H. Preparation and structure and performance examination of double-layer LSM/LSM plus YSZ composite electrodes. Acta Physico-Chimica Sinica, 2000,16(10): 941.
    [112] Yamahara K, Jacobson C P, Visco S J, De Jonghe L C. Catalyst-infiltrated supporting cathode for thin-film SOFCs. Solid State Ionics, 2005,176(5-6): 451.
    [113] Tanner C W, Fung K Z, Virkar A V. The effect of porous composite electrode structure on solid oxide fuel cell performance .1. Theoretical analysis. Journal of the Electrochemical Society, 1997,144(1): 21.
    [114] Kim J W, Virkar A V, Fung K Z, Mehta K, Singhal S C. Polarization effects in intermediate temperature, anode-supported solid oxide fuel cells. Journal of the Electrochemical Society, 1999,146(1): 69.
    [115] Kharton V V, Yaremchenko A A, Viskup A P, Mather G C, Naumovich E N,Marques F M B. Synthesis, physicochemical characterization and ionic conductivity of LaGa_(0.4)Mg_(0.2)M_(0.4)O_(3-delta) (M = Cr, Mn, Fe, Co). Journal of Electroceramics, 2001,7(1): 57.
    [116] Leonidov I A, Kozhevnikov V L, Mitberg E B, Patrakeev M V, Kharton V V,Marques F M B. High-temperature electrical transport in La_(0.3)Sr_(0.7)Fe_(1-x)Ga_xO_(3-x) (x=0-0.5). Journal of Materials Chemistry, 2001,11(4): 1201.
    [117] Holme T P, Lee C, Prinz F B. Atomic layer deposition of LSM cathodes for solid oxide fuel cells. 16th International Conference on Solid State Ionics, Shanghai,CHINA, 2007. 1540.
    [118] Liu Y C C, Liu M Nano structured and functionally grade Cathodes for intermediate temperature SOFCs. Fuel Cells Buletin, 2004,10(12).
    [119] Holtappels P, Bagger C. Fabrication and performance of advanced multi-layer SOFC cathodes. Journal of the European Ceramic Society, 2002, 22(1): 41.
    [120] Gao J F, Liu X Q, Peng D K, Meng G Y. Electrochemical behavior of Ln_((0.6))Sr_((0.4))Co_((0.2))Fe_((0.8))O_((3-delta)) (Ln = Ce, Gd, Sm, Dy) materials used as cathode of IT-SOFC.5th International Conference on Catalysis in Membrane Reactors (ICCMR-2002), Dalian, Peoples R China, 2002. 207.
    [121] Haanappel V A C, Mertens J, Mai A. Performance improvement of (La, Sr)MnO_3 and (La, Sr) _x (Co, Fe)O_3-type anode-supported SOFCs. Conference on European Fuel Cell Technology and Applications,Rome,ITALY,2005.263.
    [122]Sirman J D,Kilner J A.Surface exchange properties of Ce_(0.9)Gd_(0.1)O_(2-x) coated with La_(1-x)Sr_xFe_yCo_(1-y)O_(3-delta).Journal of the Electrochemical Society,1996,143(10):L229.
    [123]Huang Y Y,Vohs J M,Gorte R J.Fabrication of Sr-doped LaFeO_((3))YSZ composite cathodes.Journal of the Electrochemical Society,2004,151 (4):A646.
    [124]Haanappel V A C,Mai A,Mertens J.Electrode activation of anode-supported SOFCs with LSM- or LSCF-type cathodes.15th International Conference on Solid State Ionics,Baden Baden,GERMANY,2006.2033.
    [125]Yang K,Shen J H,Yang K Y,Hung I M,Fung K Z,Wang M C.Characterization of the yttria-stabilized zirconia thin film electrophoretic deposited on La_(0.8)Sr_(0.2)MnO_3 substrate.Journal of Alloys and Compounds,2007,436(1-2):351.
    [126]Zhang M,Yang M,Hou Z F,Dong Y L,Cheng M J.A bi-layered composite cathode.of La_(0.8)Sr_(0.2)MnO_3-YSZ and La_(0.8)Sr_(0.2)MnO_3-La_(0.4)Ce_(0.6)O_(1.8) for IT-SOFCs.Electrochimica Acta,2008,53(15):4998.
    [127]Serra J M,Vert V B,Betz M,Haanappel V A C,Meulenberg W A,Tietz F.Screening of A-substitution in the system A_((0.68))Sr_((0.3))Fe_((0.8))Co_((0.2))O_((3-delta)) for SOFC cathodes.Journal of the Electrochemical Society,2008,155(2):B207.
    [128]Hunsom M,Dunyushkina L A,Adler S B.Investigation of La_(0.8)Sr_(0.2)CoO_3/Ce_(0.85)Sm_(0.15)O_(2-x) cathode performance of solid oxide fuel cell by electrochemical impedance spectroscopy:Effect of firing temperature.Korean Journal of Chemical Engineering,2006,23(5):720.
    [129]Jiang Y,Virkar A V.La_(1-x)Sr_xCoO_(3-delta) (LSC)-Ce_(0.8)Sm_(0.2)O_2 (SDC) composite cathodes for anode supported,YSZ-SDC bi-layer electrolyte,thin film,solid oxide fuel cells.4th International Symposium on Ionic and Mixed Conducting Ceramics,San Francisco,Ca,2001.374.
    [130]Leng Y J,Chan S H,Khor K A,Jiang S P.(La_(0.8)Sr_(0.2))_((0.9))MnO_3-Gd_(0.2)Ce_(0.8)O_(1.9) composite cathodes prepared from (Gd,Ce)(NO_3)(x)-modified (La_(0.8)Sr_(0.2))_((0.9))MnO_3 for intermediate-temperature solid oxide fuel cells.Journal of Solid State Electrochemistry,2006,10(6):339.
    [131]Kostogloudis G C,Ftikos C.Properties of A-site-deficient La_(0.6)Sr_(0.4)Co_(0.2)Fe_(0.8)O_3-delta-based perovskite oxides.Solid State Ionics,1999,126(1-2):143.
    [132]Kharton V V,Figueiredo F M,Navarro L,Naumovich E N,Kovalevsky A V, Yaremchenko A A, Viskup A P, Carneiro A, Marques F M B, Frade J R. Ceria-based materials for solid oxide fuel cells. Journal of Materials Science, 2001, 36(5): 1105.
    [133] Lanzini A, Leone P, Santarelli M, Asinari P, Cali M, Asm. Performance and degradation effects of anode-supported cells with LSM and LSCF cathode. ASME International Mechanical Engineering Congress and Exposition, Seattle, WA, 2007.665.
    [134] Adler S B, Lane J A, Steele B C H. Electrode kinetics of porous mixed-conducting oxygen electrodes. Journal of the Electrochemical Society, 1996,143(11): 3554.
    [135] Doshi R, Richards V L, Carter J D, Wang X P, Krumpelt M. Development of solid-oxide fuel cells that operate at 500 degrees C. Journal of the Electrochemical Society, 1999,146(4): 1273.
    [136] Esquirol A, Kilner J, Brandon N. Oxygen transport in La_(0.6)Sr_(0.4)Co_(0.2)Fe_(0.8)O_(3-delta)/Ce_(0.8)Ge_(0.2)O_(2-x) composite cathode for IT-SOFCs. 14th International Conference on Solid State Ionics, Monterey, CA, 2003. 63.
    [137] Steele B C H, Hori K M, Uchino S. Kinetic parameters influencing the performance of IT-SOFC composite electrodes. 12th International Conference on Solid State Ionics, Halkidiki, Greece, 1999. 445.
    [138] Kindermann L, Das D, Nickel H. Chemical compatibility of the LaFeO3 base perovskites (La_(0.6)Sr_(0.4))_((z))Fe_((0.8))M_((0.2))O_((3-delta)) (z=1, 0.9; M=Cr, Mn, Co, Ni) with yttria stabilized zirconia. Solid State Ionics, 1996, 89(3-4): 215.
    [139] Tu H Y, Takeda Y, Imanishi N, Yamamoto O. Ln_((0.4))Sr_((0.6))Co_((0.8))Fe_((0.2))O_((3-delta)) (Ln = La, Pr, Nd, Sm, Gd) for the electrode in solid oxide fuel cells. Solid State Ionics,1999,117(3-4): 277.
    [140] Mai A, Haanappel V A C, Tietz F, Stover D. Structure and electrical-properties of La_(1-x)Sr_xCo_(1-y)Fe_yO_3 .1. The system La_(0.8)Sr_(0.2)Co_(1-y)Fe_yO_3. 15th International Conference on Solid State Ionics, Elsevier Science Bv, Baden Baden, GERMANY,2006. 2103.
    [141] Tai L W, Nasrallah M M, Anderson H U, Sparlin D M, Sehlin S R. Structure and Electrical-Properties of La_(1-x)Sr_xCo_(1-y)Fe_yO_3 .1. The System La_(0.8)Sr_(0.2)Co_(1-y)Fe_yO_3.Solid State Ionics, 1995, 76(3-4): 259.
    [142] Petric A, Huang P, Tietz F. Evaluation of La-Sr-Co-Fe-0 perovskites for solid oxide fuel cells and gas separation membranes. 12th International Conference on Solid State Ionics, Elsevier Science Bv, Halkidiki, Greece, 1999. 719.
    [143] Chai Y L, Ray D T, Chen G J, Chang Y H. Synthesis of thin films for high sensitivity CO sensing material using the Pechini process. Journal of Alloys and Compounds, 2002, 333(1-2): 147.
    [144] Shaw C K M, Kilner J A, Skinner S J. Mixed cobalt and nickel containing perovskite oxide for intermediate temperature electrochemical applications. 12th International Conference on Solid State Ionics, Halkidiki, Greece, 1999. 765.
    [145] Zhao F, Wang X F, Wang Z Y, Peng R R, Xia C R, in 16th International Conference on Solid State Ionics, Shanghai, Peoples R China, 2007. 1450.
    [146] Vashook V V, Tolochko S P, Yushkevich L, Makhnach L V, Kononyuk I F, Altenburg H, Hauck J, Ullmann H. Oxygen nonstoichiometry and electrical conductivity of the solid solutions La_(2-x)Sr_xNiO_y (0 <= x <= 0.5). Solid State Ionics, 1998,110(3-4): 245.
    [147] Vashook V V, Ullmann H, Olshevskaya O P, Kulik V P, Lukashevich V E,Kokhanovskij L V. Composition and electrical conductivity of some cobaltates of the type La_(2-x)Sr_xCoO_(4.5-x/2+/-delta-). Solid State Ionics, 2000,138(1-2): 99.
    [148] Vashook V V, Yushkevich, ?, Kokhanovsky L V, Makhnach L.V, Tolochko S P,Kononyuk I F, Ullmann H, Altenburg H. Composition and conductivity of some nickelates. 5th International Symposium on Systems with Fast Ionic Transport,Warsaw, Poland, 1998. 23.
    [149] Boehm E, Bassat J M, Steil M C, Dordor P, Mauvy F, Grenier J C. Oxygen transport properties of La_2Ni_(1-x)Cu_xO_(4+delta) mixed conducting oxides. Solid State Sciences,2003, 5(7): 973.
    [150] Sasaki K, Tamura J, Dokiya M. Pt-cermet cathode for reduced temperature SOFCs.Solid State Ionics, 2001, 144(3-4): 223.
    [151] Sasaki K, Tamura J, Dokiya M. Noble metal alloy-Zr(Sc)O_2 cermet cathode for reduced-temperature SOFCs. Solid State Ionics, 2001,144(3-4): 233.
    [152] Sasaki K, Tamura J, Hosoda H, Lan T N, Yasumoto K, Dokiya M. Pt-perovskite cermet cathode for reduced-temperature. International Conference on Materials for Advanced Technologies (ICMAT2001), Singapore, Singapore, 2001. 551.
    [153] Sasaki K, Hosoda K, Lan T N, Yasumoto K, Wang S, Dokiya M. Ag-Zr(SC)O_2 cermet cathode for reduced temperature SOFCs. Solid State Ionics, 2004, 174(1-4):97.
    [154] Wang S R, Kato T, Nagata S, Honda T, Kaneko T, Iwashita N, Dokiya M.Performance of a La_(0.6)Sr_(0.4)Co_(0.8)Fe_(0.2)O_3-Ce_(0.8)Gd_(0.2)O_(1.9)-Ag cathode for ceria electrolyte SOFCs. Solid State Ionics, 2002, 146(3-4): 203.
    [155] Watanabe M, Uchida H, Shibata M, Mochizuki N, Amikura K. High-performance catalyzed-reaction layer for medium-temperature operating solid oxide fuel-cells.Journal of the Electrochemical Society, 1994, 141(2): 342.
    [156] Erning J W, Hauber T, Stimming U, Wippermann K. Catalysis of the electrochemical processes on solid oxide fuel cell cathodes. 4th Grove Fuel Cell Symposium on Opportunities, Progress and Challenges, London, England, 1995.205.
    [157] Wang S, Kato T, Nagata S, Kaneko T, Iwashita N, Honda T, Dokiya M. Electrodes and performance analysis of a ceria electrolyte SOFC. International Conference on Solid State Ionics, Cairns, Australia, 2001. 477.
    [158] Esquirol A, Brandon N P, Kilner J A, Mogensen M. Electrochemical characterization of La_(0.6)Sr_(0.4)Co_(0.2)Fe_(0.8)O_3 cathodes for intermediate-temperature SOFCs. Journal of the Electrochemical Society, 2004,151(11): A1847.
    [159] Mauvy F, Bassat J M, Boehma E, Dordor P, Loup J P. Measurement of chemical and tracer diffusion coefficients of oxygen in La_2Cu_(0.5)Ni_(0.5)O_(4+delta-) Solid State Ionics,2003, 158(3-4): 395.
    [160] Huang X Q, Liu J, Lu Z, Liu W, Pei L, He T M, Liu ZG, Su W H. Properties of nonstoichiometric Pr_(0.6-x)Sr_(0.4)MnO_3 as the cathodes of SOFCs. Solid State Ionics,2000,130(3-4): 195. :
    [161] Li S Y, Lu Z, Ai N, Chen K F, Su W H. Electrochemical performance of (Ba_(0.5)Sr_(0.5))_((0.9))Sm_(0.1)Co_(0.8)Fe_(0.2)O_(3-delta) as an intermediate temperature solid oxide fuel cell cathode. Journal of Power Sources, 2007,165(1): 97.
    [162] Pena-Martinez J, Marrero-Lopez D, Perez-Coll D, Ruiz-Morales J C, Nunez P.Performance of XSCoF (X = Ba, La and Sm) and LSCrX ' (X ' = Mn, Fe and A1) perovskite-structure materials on LSGM electrolyte for IT-SOFC. Electrochimica Acta, 2007, 52(9): 2950.
    [163] Minh N Q. Solid oxide fuel cell technology-features and applications. Solid State Ionics, 2004, 174(1-4): 271.
    [164] Mertens J, Haanappel V A C, Wedershoven C, Buchkremer H P. Sintering behavior of (La,Sr)MnO_3 type cathodes for planar anode-supported SOFCs. 1st Conference on European Fuel Cell Technology and Applications, Rome, ITALY, 2005. 415.
    [165] Stover D, Buchkremer H P, Uhlenbruck S. Processing and properties of the ceramic conductive multilayer device solid oxide fuel cell (SOFC). 3rd Asian Meeting on Electroceramics (AMEC-3), Singapore, SINGAPORE, 2003. 1107.
    [166] Yokokawa H, Tu H Y, Iwanschitz B, Mai A. Fundamental mechanisms limiting solid oxide fuel cell durability. International Workshop on Degradation Issues in Fuel Cells, Crete, GREECE, 2007. 400.
    [167] Kleveland K, Einarsrud M A, Schmidt C R, Shamsili S, Faaland S, Wiik K, Grande T. Reactions between strontium-substituted lanthanum manganite and yttria-stabilized zirconia: ?, diffusion couples. Journal of the American Ceramic Society, 1999, 82(3): 729.
    [168] Gorte R J, Park S, Vohs J M, Wang C H. Anodes for direct oxidation of dry hydrocarbons in a solid-oxide fuel cell. Advanced Materials, 2000, 12(19): 1465.
    [169] He H P, Huang Y Y, Regal J, Boaro M, Vohs J M, Gorte R J. Low-temperature fabrication of oxide composites for solid-oxide fuel cells. Journal of the American Ceramic Society, 2004, 87(3): 331.
    [170] Craciun R, Park S, Gorte R J, Vohs J M, Wang C, Worrell W L. A novel method for preparing anode cermets for solid oxide fuel cells. Journal of the Electrochemical Society, 1999,146(11): 4019.
    [171] Kim H, Lu C, Worrell W L, Vohs J M, Gorte R J. Cu-Ni cermet anodes for direct oxidation of methane in solid-oxide fuel cells. Journal of the Electrochemical Society, 2002,149(3): A247.
    [172] Jiang S P, Wang W. Fabrication and performance of GDC-impregnated (La,Sr)MnO_3 cathodes for intermediate temperature solid oxide fuel cells. Journal of the Electrochemical Society, 2005,152(7): A1398.
    [173] Sholklapper T Z, Radmilovic V, Jacobson C P, Visco S J, De Jonghe L C.Nanocomposite Ag-LSM solid oxide fuel cell electrodes. Journal of Power Sources,2008, 175(1): 206.
    [174] Sholklapper T Z, Kurokawa H, Jacobson C P, Visco S J, De Jonghe L C.Nanostructured solid oxide fuel cell electrodes. Nano Letters, 2007, 7(7): 2136.
    [175] Sholklapper T Z, Lu C, Jacobson C P, Visco S J, De Jonghe L C. LSM-infiltrated solid oxide fuel cell cathodes. Electrochemical and Solid State Letters, 2006, 9(8):A376.
    [176] Sholklapper T Z, Radmilovic V, Jacobson C P, Visco S J, De Jonghe L C. Synthesis and stability of a nanoparticle-infiltrated solid oxide fuel cell electrode.Electrochemical and Solid State Letters, 2007, 10(4): B74.
    [177] Winkler J, Hendriksen P V, Bonanos N, Mogensen M. Geometric requirements of solid electrolyte cells with a reference electrode. Journal of the Electrochemical Society, 1998, 145(4): 1184.
    [178] Yajima T, Wakabayashi N, Uchida H, Watanabe M. Adsorbed water for the electro-oxidation of methanol at Pt-Ru alloy. Chemical Communications, 2003: 828.
    [179] Mavrikakis M, Hammer B, Norskov J K. Effect of strain on the reactivity of metal surfaces. Physical Review Letters, 1998, 81(13): 2819.
    [180] Yang B, Lu Q Y, Wang Y, Zhuang L, Lu J T, Liu P F. Simple and low-cost preparation method for highly dispersed PtRu/C catalysts. Chemistry of Materials,2003, 15(18): 3552.
    [181] Gharbage B, Pagnier T, Hammou A. Oxygen reduction at La_(0.5)Sr_(0.5)MnC_3 thin-filmYttria-stabilized Zirconia interface studied by impedance spectroscopy. Journal of the Electrochemical Society, 1994, 141(8): 2118.
    [182] Zhen Y D, Li J, Jiang S P. Oxygen reduction on strontium-doped LaMnO_3 cathodes in the absence and presence of an iron-chromium alloy interconnect. Journal of Power Sources, 2006,162(2): 1043.
    [183] Kim J D, Kim G D, Moon J W, Park Y I, Lee W H, Kobayashi K, Nagai M, Kim C E.Characterization of LSM-YSZ composite electrode by ac impedance spectroscopy.Solid State Ionics, 2001,143(3-4): 379.
    [184] Adler S B. Mechanism and kinetics of oxygen reduction on porous La_(1-x)Sr_xCoO_(3-delta) electrodes. Solid State Ionics, 1998, 111(1-2): 125.
    [185] Jiang S P. A comparison of O_2 reduction reactions on porous (La,Sr)MnO_3 and (La,Sr)(Co,Fe)O_3 electrodes. Solid State Ionics, 2002, 146(1-2): 1.
    [186] Wolf M M, Zhu H Y, Green W H, Jackson G S. Kinetic model for polycrystalline Pd/PdO_x in oxidation/reduction cycles. Applied Catalysis a-General, 2003, 244(2):323.
    [187] Kalimeri K, Pekridis G, Vartzoka S, Athanassiou C, Marnellos G. Effect of palladium oxidation state on the kinetics and mechanism of the charge transfer reaction taking place at the Pd/YSZ interface. Solid State Ionics, 2006, 177(11-12):979.
    [188] Jiang S P, Zhang J P, Foger K. Deposition of chromium species at Sr-doped LaMnO_3 electrodes in solid oxide fuel cells - ?. Effect on O_2 reduction reaction. Journal of the Electrochemical Society, 2000, 147(9): 3195.
    [189] Leng Y J, Chan S H, Khor K A, Jiang S P. Development of LSM/YSZ composite cathode for anode-supported solid oxide fuel cells. Journal of Applied Electrochemistry, 2004, 34(4): 409.
    [190] Ralph J M, Schoeler A C, Krumpelt M. Materials for lower temperature solid oxide fuel cells. Journal of Materials Science, 2001, 36(5): 1161.
    [191] Jiang S P. Issues on development of (La,Sr)MnO_3 cathode for solid oxide fuel cells.Journal of Power Sources, 2003,124(2): 390.
    [192] Chen X J, Chan S H, Khor K A. Simulation of a composite cathode in solid oxide fuel cells. Electrochimica Acta, 2004,49(11): 1851.
    [193] Yeager E. Electrocatalysts for O_2 reduction. Electrochimica Acta, 1984, 29(11):1527.
    [194] 查全性.电极过程力学-第三版.科学出版社,book, 2003.
    [195] Huang Y Y, Vohs J M, Gorte R J. Characterization of LSM-YSZ composites prepared by impregnation methods. Journal of the Electrochemical Society, 2005,152(7): A1347.
    [196] Jiang S P, Wang W. Sintering and grain growth of (La,Sr)MnO_3 electrodes of solid oxide fuel cells under polarization. Solid State Ionics, 2005,176(13-14): 1185.
    [197] Farrauto R J, Lampert J K, Hobson M C, Waterman E M. Thermal-decomposition and reformation of PdO catalysts - Support Effects. Applied Catalysis B-Environmental, 1995, 6(3): 263.
    [198] Wang D, Clewley J D, Flanagan T B, Balasubramaniam R, Shanahan K L. Enhanced rates of hydrogen absorption resulting from oxidation of Pd or internal oxidation of Pd-A1 alloys. Journal of Alloys and Compounds, 2000,298(1-2): 261.
    [199] Zhang H, Gromek J, Fernando G W, Boorse S, Marcus H L. PdO/Pd system equilibrium phase diagram under a gas mixture of oxygen and nitrogen. Journal of Phase Equilibria, 2002, 23(3): 246.
    [200] T Chou K, R Farrauto,. US Patent 5169300.
    [201] Wilson J R, Sase M, Kawada T, Adler S B. Measurement of oxygen exchange kinetics on thin-film La_(0.6)Sr_(0.4)CoO_(3-delta) using nonlinear electrochemical impedance spectroscopy. Electrochemical and Solid State Letters, 2007, 10(5): B81.
    [202] Tanaka H, Tan I, Uenishi M, Kimura M, Dohmae K. Regeneration of palladium subsequent to solid solution and segregation in a perovskite catalyst: an intelligent catalyst. 5th Congress on Catalysis and Automotive Pollution Control (CAPoC5),Brussels, Belgium, 2000. 63.
    [203] Penner S, Bera P, Pedersen S, Ngo L T, Harris J J W, Campbell C T. Interactions of O_2 with Pd nanoparticles on alpha-A1_2O_3(0001) at low and high O_2 pressures.Journal of Physical Chemistry B, 2006, 110(48): 24577.
    [204] Christou S Y, Costa C N, Efstathiou A M. A novel method for preparing anode cermets for solid oxide fuel cells.6th International Congress on Catalysis and Automotive Pollution Control (CAPoC_6),Brussels,BELGIUM,2003.325.
    [205]Ye Y M,He T M,Li Y,Tang E H,Reitz T L,Jiang S P.Pd-promoted La_(0.75)Sr_(0.25)Cr_(0.5)Mn_(0.5)O_3/YSZ composite anodes for direct utilization of methane in SOFCs.Journal of the Electrochemical Society,2008,155(8):B811.
    [206]Zhang H,Gromek J,Augustine M,Fernando G,Boorse R S,Marcus H L.Study of novel nanostructured Pd-Mn oxides.Physica B-Condensed Matter,2004,344(1-4):278.
    [207]Zhang H,Gromek J,Fernando G,Marcus H L.Novel nanostructred Pd-Zr oxides.Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing,2004,366(2):248.
    [208]Yamahara K,Jacobson C P,Visco S J,Zhang X F,de Jonghe L C.Thin film SOFCs with cobalt-infiltrated cathodes.Solid State Ionics,2005,176(3-4):275.
    [209]Hammouche A,Siebert E,Hammou A,Kleitz M,Caneiro A.Electrocatalytic Properties and Nonstoichiometry of the High-Temperature Air Electrode La_(1-x)Sr_xMno_3.Journal of the Electrochemical Society,1991,138(5):1212.
    [210]崔国文.缺陷、扩散与烧结.清华大学出版社,Book,1990.
    [211]Feng Y J,Alonso-Vante N.Nonprecious metal catalysts for the molecular oxygen-reduction reaction.Physica Status Solidi B-Basic Solid State Physics,2008,245(9):1792.
    [212]Kim J H,Ishihara A,Mitsushima S,Kamiya N,Ota K I.Catalytic activity of titanium oxide for oxygen reduction reaction as a non-platinum catalyst for PEFC.Electrochimica Acta,2007,52(7):2492.
    [213]Sarkar A,Murugan A V,Manthiram A.Synthesis and characterization of nanostructured Pd-Mo electrocatalysts for oxygen reduction reaction in fuel cells.Journal of Physical Chemistry C,2008,112(31):12037.
    [214]Fernandez J L,Walsh D A,Bard A J.Thermodynamic guidelines for the design of bimetallic catalysts for oxygen electroreduction and rapid screening by scanning electrochemical microscopy.M-Co (M:Pd,Ag,Au).Journal of the American Chemical Society,2005,127(1):357.
    [215]索艳格.聚合物电解质燃料电池非Pt阴极催化剂研究.武汉大学硕士毕业论文,2008.
    [216]Fernandez J L,Raghuveer V,Manthiram A,Bard A J.Pd-Ti and Pd-Co-Au electrocatalysts as a replacement for platinum for oxygen reduction in proton exchange membrane fuel cells. Journal of the American Chemical Society, 2005,127(38): 13100.
    [217] Shao M H, Sasaki K, Adzic R R. Pd-Fe nanoparticles as electrocatalysts for oxygen reduction. Journal of the American Chemical Society, 2006,128(11): 3526.
    [218] Suo Y G, Zhuang L, Lu J T. First-principles considerations in the design of Pd-alloy catalysts for oxygen reduction. Angewandte Chemie-International Edition, 2007,46(16): 2862.
    [219] Nishihata Y, Mizuki J, Akao T, Tanaka H, Uenishi M, Kimura M, Okamoto T,Hamada N. Self-regeneration of a Pd-perovskite catalyst for automotive emissions control. Nature, 2002, 418(6894): 164.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700