用户名: 密码: 验证码:
小麦蛋白质体系的结构与流变行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于合成高分子塑料的大量应用造成日益严重的白色污染,生物可降解材料的开发在国际上备受关注。小麦蛋白质来源丰富、价格低廉、可降解,在生物可降解环境友好材料的制备与应用方面有着巨大的潜在应用价值。
     本论文第一部分以小麦蛋白质粉为主要原料,以甘油为增塑剂,采用模压或浇铸法制备小麦蛋白质热压塑料、醇溶蛋白塑料与浇铸膜。研究了交联剂类型、模压温度以及甘油含量对热压蛋白质塑料结构与吸湿性、力学性能以及热降解性能等的影响,考察了交联剂用量和pH值对醇溶蛋白膜拉伸性能、吸湿性与透湿性的影响。第二部分采用70%(v/v)乙醇/水混合溶剂或50%(v/v)正丙醇/水混合溶剂从小麦蛋白质粉中提取醇溶蛋白,制备醇溶蛋白70%(v/v)乙醇/水溶液或50%(v/v)正丙醇/水溶液,并在适当条件下制备了醇溶蛋白凝胶。研究了醇溶蛋白溶液与凝胶的流变行为,考察了蛋白质浓度(C)、温度、pH值、金属离子浓度等对醇溶蛋白溶液与凝胶流变行为的影响。
     研究发现,交联剂类型、模压温度以及甘油含量显著影响蛋白质塑料的形态、玻璃化转变与力学性能。二硫键交联使体系相分离程度增大,导致蛋白质富集区玻璃化转变温度(T_g)升高。相比之下,醛类化合物交联可在一定程度上抑制相分离,降低蛋白质富集区的T_g,提高塑料的拉伸强度,同时降低杨氏模量与断裂伸长率。未添加任何交联剂时,仅将模压温度从25℃升高到125℃,可提高蛋白质网络的二硫键交联密度,导致拉伸强度和杨氏模量增高、松弛时间延长。甘油含量增高导致蛋白质富集区与甘油富集区T_g同时降低,醇溶蛋白塑料拉伸强度与杨氏模量降低,断裂伸长率增大。酸碱处理使醇溶蛋白膜的吸湿率稍有增大,但其拉伸强度显著增大。
     pH值显著影响醇溶蛋白溶液粘度与特征松弛时间。零剪切粘度(η_0)与力学松弛时间(τ_M)均随pH值增大而减小。在50%(v/v)正丙醇/水溶液中,醇溶蛋白溶液的动态流变行为符合杂化(Hybrid)模型,蛋白质分子受静电力作用而伸展,呈半柔性链。50℃、pH=9.3时,醇溶蛋白溶液(蛋白质浓度C=13 wt%)形成杂化程度较低的分子凝胶,凝胶时间为175 min,其平台模量(G_N)=434.4±13.7 Pa,对应有效弹性链段密度(ν_e)=(1.06±0.03)×10~(23) m~(-3)。20 g L~(-1)~200 g L~(-1)醇溶蛋白50%(v/v)正丙醇/水溶液呈牛顿流体特性,流动活化能(E_a)为23.5~27.3 kJ mol~(-1),特性粘数[η]随温度升高而增大。戊二醛、正十二硫醇与金属离子(Na~+、K~+、Mg~(2+)、Ca~(2+))均可提高醇溶蛋白溶液粘度。在一定浓度范围内,Ca~(2+)可促进C≥200 g L~(-1)醇溶蛋白溶液形成粒子网络凝胶。
Nowadays, much more attention has been paid to white pollution caused bynonbiodegradable synthetically polymers attracting worldwide concern on biodegradablepackage films and plastics made from renewable agricultural resource. Wheat proteinsexhibit the advantage for biodegradable materials because of their low cost, abundantresources and good biodegradability.
     In the first part of this dissertation, thermo-molded wheat gluten plastics, gliadinplastics and solution-casting films were prepared based on glycerol-plasticized wheatproteins. The influences of crosslinking type, molding temperature and glycerol contenton morphology, moisture absorption, mechanical and thermal properties of wheat proteinplastics were studied. In addition, influences of cross-linker concentration and pH of thefilm-forming solution on tensile properties, water absorption and water vaporpermeability of gliadin films were investigated. In the second part, gliadins wereextracted using 70% (v/v) aqueous ethanol and 50% (v/v) aqueous propanol to preparegliadin solutions. Gliadin gels were prepared through heating alkaline solution of 50%(v/v) aqueous propanol at pH = 9.3 and 50℃. Ca~(2+) induced wheat gliadin gels were alsoprepared. Effects of protein concentration (C), temperature, pH and metal ions onrheological behavior of gliadin solutions or gels were examined.
     Experiment results reveal that morphology, glass transition and mechanical propertiesof thermo-molded wheat protein plastics are related to crosslinking type, moldingtemperature and glycerol content. Crosslinking through disulphide bonding leads to ahigh degree of phase-separation and a high glass transition temperature T_g of thegluten-rich phase. Aldehyde-induced crosslinking reduces the degree of phase- separationand lowers T_g of the protein-rich phase, resulting in higher tensile strength and lowerYoung's modulus and elongation at break in comparison with the disulphide crosslinking.In the absence of additional cross-linker, increasing molding temperature from 25 to 125℃significantly enhances crosslinking density of the three-dimensional proteinnetwork through disulphide bonding, leading to increase of tensile strength, Young'smodulus and relaxation time. For gliadin plastics, increasing glycerol content causesdecrease of both T_g of gliadin-rich and glycerol-rich domains, which lowers tensilestrength and Young's modulus but improves ductility at room temperature. Gliadin filmscasting from acid or alkaline solutions exhibit higher tensile strength than that of thosefrom neutral solution. Meanwhile, acid or alkali treatment of the gliadin solutions slightlyincreases water absorption of the resulted films.
     pH significantly influences viscosity and characteristic relaxation times of wheatgliadin solutions. As far as gliadins in 50% (v/v) propanol/water solutions are concerned,both zero-rate viscosity and mechanical relaxation time decrease with increasing pH ofthe solution. The hybrid model is applicable to account for the dynamic data, suggestingthat gliadin macromolecules are partially flexible and are highly elongated due toelectrostatic interaction. Wheat gliadin in 50% (v/v) aqueous propanol solutions at 20 gL~(-1) to 200 g L~(-1) behave as Newtonian fluids with activity energy of flow E_a = 23.5~27.3kJ mol~(-1). The intrinsic viscosity ([η]) tends to increase with temperature due to improvedsolvation. The plateau modulus (G_N) of the alkaline gliadin gel is 434.4±13.7 Pa,corresponding to density of elastically effective chains v_e = (1.06±0.03)×10~(23) m~(-3).Morphological observation of dried gliadin gel reveals a very low degree of structuralheterogeneity involving in protein aggregation during the formation of the gel networkcomposing of crosslinked strands. Additions of glutaraidehyde, n-dodecanethiol or metalion (Na~+, K~+, Mg~(2+) or Ca~(2+)) bring increase of apparent viscosity of gliadin solutions.Additions of Ca~(2+) in gliadin solutions (C>200 g L~(-1)) lead to the formation of fractalweak gels containing abundant filaments as observed by scanning probe microscopy(SPM).
引文
1.姜浩然.生物可降解高分子材料的开发.盐城工学院学报2002;15:36-37.
    2.任杰.可降解与吸收材料.化学工业出报社;2003.
    3. Kester JJ, Fennema OR. Edible films and coatings: A review. Food Technology 1986; 40: 47-59.
    4.马海红,邱谨楠.生物降解高分子材料的研究进展.安徽化工2008;34:1-4.
    5. Jangchud A, Chinnan MS. Peanut protein film as affected by drying temperature and pH of film forming solution. Journal of Food Science 1999;64: 153-157.
    6. Zhang J, Mungara P, Jane J. Mechanical and thermal properties of extruded soy protein sheets. Polymer 2001; 42: 2569-2578.
    7. Di Gioia L, Guilbert S. Corn protein-based thermoplastic resins: effect of some polar and amphiphilic plasticizers. Journal of Agricultural and Food Chemistry 1999; 47: 1254-1261.
    8. Romero-Bastida CA, Flores-Huicochea E, Martin-Polo MO, Velazquez G,Torres JA. Compositional and moisture content effects on the biodegradability of zein/ethylcellulose films. Journal of Agricultural and Food Chemistry 2004; 52: 2230-2235.
    9. Grevellec J, Marquie C, Ferry L, Crespy A, Vialettes V. Processability of cottonseed proteins into biodegradable materials. Biomacromolecules 2001;2: 1104-1109.
    10. Cherian G, Gennadios A, Weller C, Chinachoti P. Thermomechanical behavior of wheat gluten films: Effect of sucrose, glycerin, and sorbitol.Cereal Chemistry 1995; 72: 1-6.
    11. Gontard N, Guilbert S, Cuq J-L. Edible wheat gluten films: Influence of the main process variables on film properties using response surface methodology. Journal of Food Science 1992; 57: 190-195.
    12. Irissin-Mangata J, Bauduin G, Boutevin B, Gontard N. New plasticizers for wheat gluten films. European Polymer Journal 2001; 37: 1533-1541.
    13. Mangavel C, Barbot J, Bervas E, Linossier L, Feys M, Gueguen J, Popineau Y. Influence of prolamin composition on mechanical properties of cast wheat gluten films. Journal of Cereal Science 2002; 36: 157-166.
    14. Osborne TB, Harris IF. The chemistry of the protein-bodies of the wheat kernel. Part I. The protein soluble in alcohol and its glutaminic acid content. American Journal of Physiology 1905; 13: 35-44.
    15. Wieser H. Chemistry of gluten proteins. Food Microbiology 2007; 24: 115-119.
    16. Fido RJ, Bekes F, Gras PW, Tatham AS. Effects of α-, β-, γ- and ω-gliadins on the dough mixing properties of wheat flour. Journal of Cereal Science 1997;26: 271-277.
    17. Tatham AS, Shewry PR. The conformation of wheat gluten proteins. The secondary structures and thermal stabilities of the α-, β-, γ- and ω- gliadins. Journal of Cereal Science 1985; 3: 103-113.
    18. Shewry PR, Tatham AS. Disulphide bonds in wheat gluten proteins. Journal of Cereal Science 1997; 25: 207-227.
    19. Schofield JDB, R. C.; Timms, M. F. The effect of heat on wheat gluten and the involvement of sulphydryl-disulphide interchange reactions. Journal of Cereal Science 1983; 1:241-253.
    20. Shewry PR, Halford NG, Tatham AS. High molecular weight subunits of wheat glutenin. Journal of Cereal Science 1992; 15: 105-120.
    21. Masci S, Lew EJL, Lafiandra D, Porceddu E, Kasarda DD. Characterization of low molecular weight glutenin subunits in durum wheat by reversed-phase High-Performance Liquid Chromatography and N-terminal sequencing. Cereal Chemistry 1995; 72: 100-104.
    22. Colot V, Bartels D, Thompson R, Flavell R. Molecular characterization of an active wheat LMW glutenin gene and its relation to other wheat and barley prolamin genes. Molecular and General Genetics 1989; 216: 81-90.
    23. Cassidy BG, Dvorak J, Anderson OD. The wheat low-molecular-weight glutenin genes: characterization of six new genes and progress in understanding gene family structure. Theoretical and Applied Genetics 1998; 96: 743-750.
    24. Grosch W, Wieser H. Redox reactions in wheat dough as affected by ascorbic acid. Journal of Cereal Science 1999; 29: 1-16.
    25. Domenek S, Feuilloley P, Gratraud J, Morel M-H, Guilbert S. Biodegradability of wheat gluten based bioplastics. Chemosphere 2004; 54: 551-559.
    26. Payne PI, Corfield KG. Subunit composition of wheat glutenin proteins, isolated by gel filtration in a dissociating medium. Planta 1979; 145: 83-88.
    27. Gennadios A, Weller CL, Testin RF. Modification of physical and barrier properties of edible wheat gluten-based films. Cereal Chemistry 1993; 70: 426-429.
    28. Kayserilio BS, Stevels WM, Mulder WJ, Akka N. Mechanical and biochemical characterisation of wheat gluten films as a function of pH and co-solvent. Starch/Staerke 2001; 53: 381-386.
    29. Roy S, Weller CL, Gennadios A, Zeece MG, Testin RF. Physical and molecular properties of wheat gluten films cast from heated film-forming solutions. Journal of Food Science 1999; 64: 57-60.
    30. Gontard N, Guilbert S, Cuq J. Water and glycerol as plasticizers affect mechanical and water vapor barrier properties of an edible wheat gluten film. Journal of Food Science 1993; 58: 206-211.
    31. Gao C, Stading M, Wellner N, Parker ML, Noel TR, Mills ENC, Belton PS. Plasticization of a protein-based film by glycerol: A spectroscopic, mechanical, and thermal study. Journal of Agricultural and Food Chemistry 2006; 54: 4611-4616.
    32. Jerez A, Partal P, Martinez I, Gallegos C, Guerrero A. Rheology and processing of gluten based bioplastics. Biochemical Engineering Journal 2005; 26:131-138.
    33. Jerez A, Partal P, Martinez I, Gallegos C, Guerrero A. Protein-based bioplastics: effect of thermo-mechanical processing. Rheologica Acta 2007; 46:711-720.
    34. Marveev YI, Grinberg VY, Tolstoguzov VB. The plasticizing effect of water on proteins, polysaccharides and their mixtures. Glassy state of biopolymers, food and seeds. Food Hydrocolloids 2000; 14: 425-437.
    35. Hernandez-Munoz P, Kanavouras A, Ng PKW, Gavara R. Development and characterization of biodegradable films made from wheat gluten protein fractions. Journal of Agricultural and Food Chemistry 2003; 51: 7647-7654.
    36. Hernandez-Munoz P, Villalobos R, Chiralt A. Effect of cross-linking using aldehydes on properties of glutenin-rich films. Food Hydrocolloids 2004; 18: 403-411.
    37. Rayas LM, Hernandez RJ, Ng PKW. Development and characterization of biodegradable/edible wheat protein films. Journal of Food Science 1997; 62: 160-162.
    38. Hernandez-Munoz P, Kanavouras A, Lagaron JM, Gavara R. Development and characterization of films based on chemically cross-linked gliadins. Journal of Agricultural and Food Chemistry 2005; 53: 8216-8223.
    39. Marquie C. Chemical reactions in cottonseed protein cross-linking by formaldehyde, glutaraldehyde, and glyoxal for the formation of protein films with enhanced mechanical properties. Journal of Agricultural and Food Chemistry 2001; 49: 4676-4681.
    40. Swain SN, Rao KK, Nayak PL. Biodegradable polymers: Ⅳ. Spectral, thermal, and mechanical properties of cross-linked soy protein concentrate. Polymer International 2005; 54: 739-743.
    41. Heralp TJ, Gnanasambandam R, McGuire BH, Hachmeister KA. Degradable wheat gluten films: preparation, properties and applications. Journal of Food Science 1995; 60: 1147-1150.
    42. Hernandez-Munoz P, Villalobos R, Chiralt A. Effect of thermal treatments on functional properties of edible films made from wheat gluten fractions. Food Hydrocolloids 2004; 18: 647-654.
    43. Micard V, Belamri R, Morel MH, Guilbert S. Properties of chemically and physically treated wheat gluten films. Journal of Agricultural and Food Chemistry 2000; 48: 2948-2953.
    44. Kokini JL, Cocero AM, Madeka H. State diagrams help predict rheology of cereal proteins. In: Symposium on Chemical and Rheological Changes during Phase Transition in Food, at the Annual Meeting of the Institute-of-Food-Technologists; 1994; Atlanta, Ga. 74-82.
    45. Sarwin R, Laskawy G, Grosch W. Changes in the levels of glutathione and cysteine during the mixing of doughs with L-threo-ascorbic and D-erythro-ascorbic acid. Cereal Chemistry 1993; 70: 553-557.
    46. Strecker TD, Cavalieri RP, Zollars RL, Pomeranz Y. Polymerization and mechanical degradation kinetics of gluten and glutenin at extruder melt-section temperatures and shear rates. Journal of Food Science 1995; 60: 532-537.
    47. Cuq B, Boutrot F, Redl A, Lullien-Pellerin V. Study of the temperature effect on the formation of wheat gluten network: Influence on mechanical properties and protein solubility. Journal of Agricultural and Food Chemistry 2000; 48:2954-2959.
    48. Mangavel C, Rossignol N, Perronnet A, Barbot J, Popineau Y, Gueguen J. Properties and microstructure of thermo-pressed wheat gluten films: A comparison with cast films. Biomacromolecules 2004; 5: 1596-1601.
    49. Pommet M, Redl A, Guilbert S, Morel M-H. Intrinsic influence of various plasticizers on functional properties and reactivity of wheat gluten thermoplastic materials. Journal of Cereal Science 2005; 42: 81-91.
    50. Mclntire TM, Lew EJL, Adalsteins AE, Blechl A, Anderson OD, Brant DA, Kasarda DD. Atomic force microscopy of a hybrid high-molecular-weight glutenin subunit from a transgenic hexaploid wheat. Biopolymers 2005; 78: 53-61.
    51. McMaster TJ, Miles MJ, Kasarda DD, Shewry PR, Tatham AS. Atomic force microscopy of α-gliadin fibrils and in situ degradation. Journal of Cereal Science 2000; 31: 281-286.
    52. McMaster TJ, Miles MJ, Wannerberger L, Eliasson AC, Shewry PR, Tatham AS. Identification of microphases in mixed α- and ω-gliadin protein films investigated by atomic force microscopy. Journal of Agricultural and Food Chemistry 1999; 47: 5093-5099.
    53. Paananen A, Tappura K, Tatham AS, Fido R, Shewry PR, Miles M, McMaster TJ. Nanomechanical force measurements of gliadin protein interactions. Biopolymers 2006; 83: 658-667.
    54. Blanch EW, Kasarda DD, Hecht L, Nielsen K, Barron LD. New insight into the solution structures of wheat gluten proteins from Raman optical activity. Biochemistry 2003; 42: 5665-5673.
    55. Feeney KA, Wellner N, Gilbert SM, Halford NG, Tatham AS, Shewry PR, Belton PS. Molecular structures and interactions of repetitive peptides based on wheat glutenin subunits depend on chain length. Biopolymers 2003; 72: 123-131.
    56. Georget DMR, Belton PS. Effects of temperature and water content on the secondary structure of wheat gluten studied by FTIR spectroscopy. Biomacromolecules 2006; 7: 469-475.
    57. Li W, Dobraszczky BJ, Dias A, Gil AM. Polymer conformation structure of wheat proteins and gluten subfractions revealed by ATR-FTIR. Cereal Chemistry 2006; 83: 407-410.
    58. Pezolet M, Bonenfant S, Dousseau F, Popineau Y. Conformationof wheat gluten proteins - Comparison between functional and solution states as determined by infrared spectroscopy. Febs Letters 1992; 299: 247-250.
    59. Alberti E, Humpfer E, Spraul M, Gilbert SM, Tatham AS, Shewry PR, Gil AM. A high resolution ~1H magic angle spinning NMR study of high-M_r subunit of wheat glutenin. Biopolymers 2001; 58: 33-45.
    60. Thomson NH, Miles MJ, Popineau Y, Harries J, Shewry P, Tatham AS. Small angle X-ray scattering of wheat seed-storage proteins: α-, γ- and ω-gliadins and the high molecular weight (HMW) subunits of glutenin. Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology 1999; 1430: 359-366.
    61. Kieffer R, Schurer F, Kohler P, Wieser H. Effect of hydrostatic pressure and temperature on the chemical and functional properties of wheat gluten: Studies on gluten, gliadin and glutenin. Journal of Cereal Science 2007; 45: 285-292.
    62. Cole EW, Kasarda DD, Lafiandra D. The conformational structure of α-gliadin: Intrinsic viscosities under conditions approaching the native state and under denaturing conditions. Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology 1984; 787: 244-251.
    63. Ewart JAD. Loaf volume and the intrinsic viscosity of glutenin. Journal of the Science of Food and Agriculture 1980; 31: 1323-1336.
    64. Field JM, Tatham AS, Shewry PR. The structure of a high-M_r subunit of durum-wheat (Triticum durum) gluten. Biochemical Journal 1987; 247: 215-221.
    65. Wannerberger L, Nylander T, Eliasson AC, Tatham AS, Fido RJ, Miles MJ, McMaster TJ. Interaction between a-gliadin layers. Journal of Cereal Science 1997; 26: 1-13.
    66. Yasar F, Celik S, Koksel H. Molecular modeling of various peptide sequences of gliadins and low-molecular-weight glutenin subunits. Nahrung-Food 2003; 47: 238-242.
    67. Ferry JD. Viscoelastic properties of polymers. New York: John Wiley & Sons, Inc.; 1980.
    68. Xu J, Tseng Y, Carriere CJ, Wirtz D. Microheterogeneity and microrheology of wheat gliadin suspensions studied by multiple-particle tracking. Biomacromolecules 2002; 3: 92-99.
    69. Khatkar BS, Fido RJ, Tatham AS, Schofield JD. Functional properties of wheat gliadins. Ⅱ. Effects on dynamic rheological properties of wheat gluten. Journal of Cereal Science 2002; 35: 307-313.
    70. Xu J, Bietz JA, Carriere CJ. Viscoelastic properties of wheat gliadin and glutenin suspensions. Food Chemistry 2007; 101: 1025-1030.
    71. Martling SE, Mulvaney SJ, Cohen C. Effect of moisture content on viscoelastic properties of hydrated gliadin. Cereal Chemistry 2004; 81: 207-219.
    72. Wu YV, Cluskey JE, Sexson KR. Effect of ionic strength on the molecular weight and conformation of wheat gluten proteins in 3M urea solutions. Biochimica et Biophysica Acta(BBA)- Protein Structure 1967; 133: 83-90.
    73. Wu YV, Dimler RJ. Conformational studies of wheat gluten, glutenin and gliadin in urea solutions at various pHs. Archives of Biochemistry and Biophysics 1964; 107:435-440.
    74. Bryant CM, McClements DJ. Influence of NaCl and CaCl_2 on cold-set gelation of heat-denatured whey protein. Journal of Food Science 2000; 65: 801-804.
    75. Hongsprabhas P, Barbut S, Marangoni AG. The structure of cold-set whey protein isolate gels prepared with Ca~(++). LWT-Food Science and Technology 1999;32: 196-202.
    76. Vardhanabhuti B, Foegeding EA, McGuffey MK, Daubert CR, Swaisgood HE. Gelation properties of dispersions containing polymerized and native whey protein isolate. Food Hydrocolloids 2001; 15: 165-175.
    77. Bryant CM, McClements DJ. Influence of sucrose on NaCl-induced gelation of heat denatured whey protein solutions. Food Research International 2000; 33:649-653.
    78. Ferreira RB, Franco E, Teixeira AR. Calcium- and magnesium-dependent aggregation of legume seed storage proteins. Journal of Agricultural and Food Chemistry 1999; 47: 3009-3015.
    79. Pouzot M, Nicolai T, Visschers RW, Weijers M. X-ray and light scattering study of the structure of large protein aggregates at neutral pH. Food Hydrocolloids 2005; 19: 231-238.
    80. Guerrero A, Carmona JA, Martinez I, Cordobes F, Partal P. Effect of pH and added electrolyte on the thermal-induced transitions of egg yolk. Rheologica Acta 2004; 43: 539-549.
    81. Gontard N, Ring S. Edible wheat gluten film: Influence of water content on glass transition temperature. Journal of Agricultural and Food Chemistry 1996; 44: 3474-3478.
    82. Weegels PL, Verhoek JA, de Groot AMG, Hamer RJ. Effects on gluten of heating at different moisture contents. Ⅰ. Changes in functional properties. Journal of Cereal Science 1994; 19: 31-38.
    83. Kalichevsky MT, Jaroszkiewicz EM, Blanshard JMV. Glass transition of gluten. 1: Gluten and gluten-sugar mixtures. International Journal of Biological Macromolecules 1992; 14: 257-266.
    84. Ogale AA, Cunningham P, Dawson PL, Acton JC. Viscoelastic, thermal, and microstructural characterization of soy protein isolate films. Journal of Food Science 2000; 65: 672-679.
    85. Graveland A, Bosveld P, Lichtendonk WJ, Marseille JP, Moonen JHE, Scheepstra A. A model for the molecular-structure of the glutenins from wheat flour. Journal of Cereal Science 1985; 3: 1-16.
    86. Chen P, Zhang L. New evidences of glass transitions and microstructures of soy protein plasticized with glycerol. Macromolecular Bioscience 2005; 5: 237-245.
    87. Wrigley CW. Biopolymers - Giant proteins with flour power. Nature 1996; 381:738-739.
    88. Shewry PR, Tatham AS, Forde J, Kreis M, Miflin BJ. The classification and nomenclature of wheat gluten proteins: A reassessment. Journal of Cereal Science 1986; 4: 97-106.
    89. Hernandez-Munoz P, Kanavouras A, Villalobos R, Chiralt A. Characterization of biodegradable films obtained from cysteine-mediated polymerized gliadins. Journal of Agricultural and Food Chemistry 2004; 52:7897-7904.
    90. Hernandez-Munoz P, Lagaron JM, Lopez-Rubio A, Gavara R. Gliadins polymerized with cysteine: Effects on the physical and water barrier properties of derived films. Biomacromolecules 2004; 5: 1503-1510.
    91. 黄曼,卞科.交联剂对大豆分离疏水性的影响.郑州工程 学院学报 2002; 23:5-9.
    92. Fraenkelconrat H, Olcott HS. Reaction of formaldehyde with proteins. 6. Cross-linking of amino groups with phenol, imidazole, or indole groups. Journal of Biological Chemistry 1948; 174: 827-843.
    93. Tae HJ. Bifunctional reagents. Methods in Enzymology 1983; 91: 580-609.
    94. Mizuno A, Mitsuiki M, Motoki M. Effect of transglutaminase treatment on the glass transition of soy protein. Journal of Agricultural and Food Chemistry 2000; 48: 3286-3291.
    95. Mizuno A, Mitsuiki M, Motoki M, Ebisawa K, Suzuki E. Relationship between the glass transition of soy protein and molecular structure. Journal of Agricultural and Food Chemistry 2000; 48: 3292-3297.
    96. Galietta G, Di Gioia L, Guilbert S, Cuq B. Mechanical and thermomechanical properties of films based on whey proteins as affected by plasticizer and crosslinking agents. Journal of Dairy Science 1998; 81: 3123-3130.
    97. Frater R, Hird FJR, Moss HJ, Yates JR. Role for thiol and disulphide groups in determining the rheological properties of dough made from wheaten flour. Nature 1960; 186:451-454.
    98. Woerdeman DL, Veraverbeke WS, Parnas RS, Johnson D, Delcour JA, Verpoest I, Plummer CJG. Designing new materials from wheat protein. Biomacromolecules 2004; 5: 1262-1269.
    99. Kayserilioglu BS, Bakir U, Yilmaz L, Akkas N. Drying temperature and relative humidity effects on wheat gluten film properties. Journal of Agricultural and Food Chemistry 2003; 51: 964-968.
    100. Ali Y, Ghorpade VM, Hanna MA. Properties of thermally-treated wheat gluten films. Industrial Crops and Products 1997; 6: 177-184.
    101. Bloksma AH. Dough structure, dough rheology, and baking quality. Cereal Foods World 1990; 35:237-244.
    102. Haward RN. Strain-hardening of thermoplastics. Macromolecules 1993; 26: 5860-5869.
    103. Hiss R, Hobeika S, Lynn C, Strobl G. Network stretching, slip processes, and fragmentation of crystallites during uniaxial drawing of polyethylene and related copolymers. A comparative study. Macromolecules 1999; 32: 4390-4403.
    104. Redl A, Morel MH, Bonicel J, Vergnes B, Guilbert S. Extrusion of wheat gluten plasticized with glycerol: Influence of process conditions on flow behavior, rheological properties, and molecular size distribution. Cereal Chemistry 1999; 76: 361-370.
    105. Redl A, Guilbert S, Morel MH. Heat and shear mediated polymerisation of plasticized wheat gluten protein upon mixing. Journal of Cereal Science 2003; 38:105-114.
    106. Fu J, Mulvaney SJ, Cohen C. Effect of added fat on the rheological properties of wheat flour doughs. Cereal Chemistry 1997; 74: 304-311.
    107. Chen P, Zhang L, Cao F. Effects of moisture on glass transition and microstructure of glycerol-plasticized soy protein. Macromolecular Bioscience 2005; 5: 872-880.
    108. Mathew AP, Dufresne A. Plasticized waxy maize starch: Effect of polyols and relative humidity on material properties. Biomacromolecules 2002; 3: 1101-1108.
    109. Hochstetter A, Talja RA, Helen HJ, Hyvonen L, Jouppila K. Properties of gluten-based sheet produced by twin-screw extruder. LWT - Food Science and Technology 2006; 39: 893-901.
    110. Tsang CF, Hui HK. Multiplexing frequency mode study of packaging epoxy molding compounds using dynamic mechanical analysis. Thermochimica Acta 2001; 367-368: 93-99.
    111. Shewry PR, Popineau Y, Lafiandra D, Belton P. Wheat glutenin subunits and dough elasticity: findings of the EUROWHEAT project. Trends in Food Science & Technology 2000; 11: 433-441.
    112. Sue HJ, Wang S, Jane JL. Morphology and mechanical behaviour of engineering soy plastics. Polymer 1997; 38: 5035-5040.
    113. Green JL, Fan J, Angell CA. The protein-glass analogy. Some insights from homopeptide comparisons. Journal of Physical Chemistry 1994; 98: 13780-13790.
    114. Pommet M, Morel M-H, Redl A, Guilbert S. Aggregation and degradation of plasticized wheat gluten during thermo-mechanical treatments, as monitored by rheological and biochemical changes. Polymer 2004; 45: 6853-6860.
    115. Noel TR, Parker R, Ring SG, Tatham AS. The glass-transition behaviour of wheat gluten proteins. International Journal of Biological Macromolecules 1995;17: 81-85.
    116. Pouplin M, Redl A, Gontard N. Glass transition of wheat gluten plasticized with water, glycerol, or sorbitol. Journal of Agricultural and Food Chemistry 1999; 47:538-543.
    117. Bengoechea C, Arrachid A, Guerrero A, Hill SE, Mitchell JR. Relationship between the glass transition temperature and the melt flow behavior for gluten, casein and soya. Journal of Cereal Science 2007; 45: 275-284.
    118. Zhang X, Burgar I, Do MD, Lourbakos E. Intermolecular interactions and phase structures of plasticized wheat proteins materials. Biomacromolecules 2005; 6:1661-1671.
    119. Redl A, Morel MH, Bonicel J, Guilbert S, Vergnes B. Rheological properties of gluten plasticized with glycerol: dependence on temperature, glycerol content and mixing conditions. Rheologica Acta 1999; 38:311-320.
    120. Madeka H, Kokini JL. Changes in rheological properties of gliadin as a function of temperature and moisture: Development of a state diagram.Journal of Food Engineering 1994; 22: 241-252.
    121.姜爱莉,孙莉芹.大豆蛋白膜的制备及其性质研究.郑州工程学院学报2003:24:67-70.
    122. Suyatma NE, Tighzert L, Copinet A. Effects of hydrophilic plasticizers on mechanical, thermal, and surface properties of chitosan films. Journal of Agricultural and Food Chemistry 2005; 53: 3950-3957.
    123.徐旭凡,周小红,王善元.防水透湿织物的透湿机理探析.上海纺织科技2005:33:58-60.
    124. Higuchi T, Aguiar A. A study of permeability to water vapor of fats, waxes,and other enteric coating materials. Journal of the American Pharmaceutical Association 1959; 48: 574-583.
    125. Khalil KE, Ramakrishna P, Nanjudaswamy AM, Patwardhan MV.Rheological behavior of clarified banana juice: effect of temperature and concentration. Journal of Food Engineering 1989; 10:231-240.
    126. Fu D, Weller CL. Rheology of zein solutions in aqueous ethanol. Journal of Agricultural and Food Chemistry 1999; 47:2103-2108.
    127. Nishinari K, Zhang H, Ikeda S. Hydrocolloid gels of polysaccharides and proteins. Current Opinion in Colloid & Interface Science 2000; 5: 195-201.
    128. Warren TC, Schrag JL, Ferry JD. Infinite-dilution viscoelastic properties of poly-γ-benzyl-_L-glutamate in helicogenic solvents. Biopolymers 1973; 12:1905-1915.
    129. Fu BX, Sapirstein HD. Procedure for isolating monomeric proteins and polymeric glutenin of wheat flour. Cereal Chemistry 1996; 73: 143-152.
    130. AbdelAal ESM, Salama DA, Hucl P, Sosulski FW, Cao W. Electrophoretic characterization of spring spelt wheat gliadins. Journal of Agricultural and Food Chemistry 1996; 44:2117-2123.
    131. Chakraborty K, Khan K. Biochemical and breadmaking properties of wheat protein components.1. Compositional differences revealed through quantitation and polyacrylamide-gel electrophoresis of protein-fractions from various isolation procedures. Cereal Chemistry 1988; 65: 333-340.
    132. Huebner FR, Bietz JA. Improved chromatographic separation and characterization of ethanol-soluble wheat proteins. Cereal Chemistry 1993; 70:506-511.
    133. Koga K, Takada A, Nemoto N. Dynamic light scattering and dynamic viscoelasticity of poly(vinyl alcohol) in aqueous borax solutions. 5. Temperature effects. Macromolecules 1999; 32: 8872-8879.
    134. Pelletier E, Viebke C, Meadows J, Williams PA. Solution rheology of kappa-carrageenan in the ordered and disordered conformations. Biomacromolecules 2001; 2: 946-951.
    135. Carreau PJ, De Kee DCR, Lin JH. Rheology of polymeric system: Principles and applications. New York: Hanser Publishers; 1997.
    136. Chamberlain EK, Rao MA. Rheological properties of acid converted waxy maize starches in water and 90% DMSO/10% water. Carbohydrate Polymers 1999; 40: 251-260.
    137. Xu X, Liu W, Zhang L. Rheological behavior of Aeromonas gum in aqueous solutions. Food Hydrocolloids 2006; 20: 723-729.
    138. Chronakis IS, Alexandridis P. Rheological properties of oppositely charged polyelectrolyte-surfactant mixtures: Effect of polymer molecular weight and surfactant architecture. Macromolecules 2001; 34: 5005-5018.
    139. Bandyopadhyay R, Sood AK. Rheology of semi-dilute solutions of calf-thymus DNA. Pramana-Journal of Physics 2002; 58: 685-694.
    140. Zimm BH. Dynamic of polymer molecules in dilute solution-viscoelasticity, flow birefringence and dielectric loss. Journal of Chemical Physics 1956; 24:269-278.
    141. Carriere CJ, Amis EJ, Schrag JL, Ferry JD. Dilute-solution dynamic viscoelastic properties of schizophyllan polysaccharide. Macromolecules 1985; 18:2019-2023.
    142. Rosser RW, Schrag JL, Ferry JD, Greaser M. Viscoelastic properties of very dilute paramyosin solutions. Macromolecules 1977; 10: 978-980.
    143. Kasarda DD, Bernardi.Je, Gaffield W. Circular dichroism and optical rotatory dispersion of α-gliadin. Biochemistry 1968; 7: 3950-3957.
    144. Kasarda DD, Bernardi.Je, Thomas RS. Reversible aggregation of a-gliadin to fibrils. Science 1967; 155: 203-205.
    145. Avanza MV, Puppo MC, Anon MC. Rheological characterization of amaranth protein gels. Food Hydrocolloids 2005; 19: 889-898.
    146. Pilosof AMR. Gelation. Buenos Aires: Cyted-Eudeba; 2000.
    147. Olabarrieta I, Cho SW, Gallstedt M, Sarasua JR, Johansson E, Hedenqvist MS. Aging properties of films of plasticized vital wheat gluten cast from acidic and basic solutions. Biomacromolecules 2006; 7: 1657-1664.
    148. Friedman M. Chemistry, biochemistry, nutrition, and microbiology of lysinoalanine, lanthionine, and histidinoalanine in food and other proteins. Journal of Agricultural and Food Chemistry 1999; 47: 1295-1319.
    149. Lee CC, Mulvaney SJ. Dynamic viscoelastic and tensile properties of gluten and glutenin gels of common wheats of different strength. Journal of Agricultural and Food Chemistry 2003; 51: 2317-2327.
    150. Alting AC, Hamer RJ, de Kruif CG, Paques M, Visschers RW. Number of thiol groups rather than the size of the aggregates determines the hardness of cold set whey protein gels. Food Hydrocolloids 2003; 17: 469-479.
    151. Marangoni AG. Elasticity of high-volume-fraction fractal aggregate networks: A thermodynamic approach. Physical Review B (Condensed Matter and Materials Physics) 2000; 62: 13951-13955.
    152. Hagiwara T, Kumagai H, Matsunaga T. Fractal analysis of the elasticity of BSA and β-Lactoglobulin Gels. Journal of Agricultural and Food Chemistry 1997; 45:3807-3812.
    153. Hagiwara T, Kumagai H, Matsunaga T, Nakamura K. Analysis of aggregate structure in food protein gels with the concept of fractal. Bioscience, Biotechnology and Biochemistry 1997; 61: 1663-1667.
    154. Alting AC, de Jongh HHJ, Visschers RW, Simons JWFA. Physical and chemical interactions in cold gelation of food proteins. Journal of Agricultural and Food Chemistry 2002; 50: 4682-4689.
    155. Lefebvre J, Pruska-Kedzior A, Kedzior Z, Lavenant L. A phenomenological analysis of wheat gluten viscoelastic response in retardation and in dynamic experiments over a large time scale. Journal of Cereal Science 2003; 38: 257-267.
    156. Krause WE, Bellomo EG, Colby RH. Rheology of sodium hyaluronate under physiological conditions. Biomacromolecules 2001; 2: 65-69.
    157. Dobrynin AV, Colby RH, Rubinstein M. Scaling theory of polyelectrolyte solutions. Macromolecules 1995; 28: 1859-1871.
    158. Montalvo G, Khan A. Rheological properties of a surfactant-induced gel for the lysozyme-sodium dodecyl sulfate-water system. Colloid and Polymer Science 2005; 283: 402-412.
    159. Monkos K. Viscosity analysis of the temperature dependence of the solution conformation of ovalbumin. Biophysical Chemistry 2000; 85: 7-16.
    160. Huggins ML. The viscosity of dilute solutions of long-chain molecules. Ⅳ. Dependence of concentration. Journal of the American Chemical Society 1942; 64: 2716-2718.
    161. Ross-Murphy SB. Rheological method. New York: Blackie Academic and Professional; 1994.
    162. Baniel A, Caer D, Colas B, Gueguen J. Functional properties of glycosylated derivatives of the 11S storage protein from pea (Pisum sativum L.). Journal of Agricultural and Food Chemistry 1992; 40: 200-205.
    163. Hahn DK, Aragon SR. Intrinsic viscosity of proteins and platonic solids by boundary element methods. Journal of Chemical Theory and Computation 2006; 2: 1416-1428.
    164. Kumar KG, Venkataraman LV. Chickpea seed proteins-Isolation and characterization of 10.3S protein. Journal of Agricultural and Food Chemistry 1980; 28: 524-529.
    165. Lee J, Tripathi A. Intrinsic viscosity of polymers and biopolymers measured by microchip. Analytical Chemistry 2005; 77: 7137-7147.
    166. Monkos K. A comparison of solution conformation and hydrodynamic properties of equine, porcine and rabbit serum albumin using viscometric measurements. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics 2005; 1748: 100-109.
    167. Monkos K. On the hydrodynamics and temperature dependence of the solution conformation of human serum albumin from viscometry approach. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics 2004; 1700: 27-34.
    168. Monkos K. Concentration and temperature dependence of viscosity in lysozyme aqueous solutions. Biochimica et Biophysica Acta (BBA)-Protein Structure and Molecular Enzymology 1997; 1339: 304-310.
    169. Schwenke KD, Linow KJ, Zirwer D. Modification of the oligomeric structure of 11 S globulin from sunflower (Helianthus annuus L.) and rape (Brassica napus L.) seeds by succinylation. Nahrung-Food 1986; 30: 263-270.
    170. Tanford C. Intrinsic viscosity and kinematic viscosity. Journal of Physical Chemistry 1955; 59: 798-799.
    171. Bohidar HB. Light scattering and viscosity study of heat aggregation of insulin. Biopolymers 1998; 45: 1-8.
    172. Britten M, Giroux HJ. Acid-induced gelation of whey protein polymers: effects of pH and calcium concentration during polymerization. Food Hydrocolloids 2001; 15: 609-617.
    173. Curvale R, Masuelli M, Padilla AP. Intrinsic viscosity of bovine serum albumin conformers. International Journal of Biological Macromolecules 2008;42:133-137.
    174. Vardhanabhuti B, Foegeding EA. Rheological properties and characterization of polymerized whey protein isolates. Journal of Agricultural and Food Chemistry 1999; 47: 3649-3655.
    175. Wilcox CP, Swaisgood HE. Modification of the rheological properties of whey protein isolate through the use of an immobilized microbial transglutaminase. Journal of Agricultural and Food Chemistry 2002; 50: 5546-5551.
    176. Lonetti B, Fratini E, Chen SH, Baglioni P. Viscoelastic and small angle neutron scattering studies of concentrated protein solutions. Physical Chemistry Chemical Physics 2004; 6: 1388-1395.
    177. Batista AP, Portugal CAM, Sousa I, Crespo JG, Raymundo A. Accessing gelling ability of vegetable proteins using rheological and fluorescence techniques. International Journal of Biological Macromolecules 2005; 36:135-143.
    178. Ahmad F, Salahuddin A. Influence of temperature on the intrinsic viscosities of proteins in random coil conformation. Biochemistry 1974; 13: 245-249.
    179. Shen JL. Solubility profile, intrinsic viscosity, and optical rotation studies of acid precipitated soy protein and of commercial soy isolate. Journal of Agricultural and Food Chemistry 1976; 24: 784-788.
    180. Tanford C, Kawahara K, Lapanje S. Proteins as random coils. I. Intrinsic viscosities and sedimentation coefficients in concentrated guanidine hydrochloride. Journal of the American Chemical Society 1967; 89: 729-736.
    181. Hamada D, Goto Y. The equilibrium intermediate of beta-lactoglobulin with non-native alpha-helical structure. Journal of Molecular Biology 1997; 269: 479-487.
    182. Monkos K. Viscosity of bovine serum albumin aqueous solutions as a function of temperature and concentration. International Journal of Biological Macromolecules 1996; 18: 61-68.
    183. Monkos K, Turczynski B. A comparative study on viscosity of human, bovine and pig IgG immunoglobulins in aqueous solutions. International Journal of Biological Macromolecules 1999; 26: 155-159.
    184. Bakk A. Two-state protein model with water interactions: Influence of temperature on the intrinsic viscosity of myoglobin. Physical Review E 2001; 63.
    185. Privalov PL, Griko YV, Venyaminov SY, Kutyshenko VP. Cold denaturation of myoglobin. Journal of Molecular Biology 1986; 190: 487-498.
    186. Herschel WH, Bulkley R. Konsistenzmessungen von Gummi- Benzollosungen. Kolloid Zeitschrift 1926; 39: 291-300.
    187. Harrison LJ, Cunningham FE. Influence of frozen storage time on properties of salted yolk and its functionality in mayonnaise. Journal of Food Quality 1986;9:167-174.
    188. Puppo MC, Afnon MC. Soybean protein dispersions at acid pH. Thermal and rheological properties. Journal of Food Science 1999; 64: 50-56.
    189. Sisko AW. The flow of lubricating greases Industrial and Engineering Chemistry 1989; 50: 1789-1792.
    190. Bryant CM, McClements DJ. Molecular basis of protein functionality with special consideration of cold-set gels derived from heat-denatured whey. Trends in Food Science & Technology 1998; 9: 143-151.
    191. Foegeding EA, Bowland EL, Hardin CC. Factors that determine the fracture properties and microstructure of globular protein gels. Food Hydrocolloids 1995; 9:237-249.
    192. Barbut S, Foegeding EA. Ca~(2+)-induced gelation of pre-heated whey protein isolate. Journal of Food Science 1993; 58: 867-871.
    193. Roff CF, Foegeding EA. Dicationic-induced gelation of pre-denatured whey protein isolate. Food Hydrocolloids 1996; 10: 193-198.
    194. Keller M, Tharmann R, Dichtl MA, Bausch AR, Sackmann E. Slow filament dynamics and viscoelasticity in entangled and active actin networks. Philosophical Transactions of the Royal Society of London Series a-Mathematical Physical and Engineering Sciences 2003; 361: 699-711.
    195. Tixier T, Tordjeman P, Cohen-Solal G, Mutin PH. Structural effects on the viscoelasticity of polydimethylsiloxane networks close to the sol-gel threshold. Journal of Rheology 2004; 48: 39-51.
    196. Stradner A, Romer S, Urban C, Schurtenberger P. Aggregation and gel formation in biopolymer solutions. Trends in Colloid and Interface Science Xv 2001; 118: 136-140.
    197. Muthukumar M. Screening effect on viscoelasticity near the gel point. Macromolecules 1989; 22: 4656-4658.
    198. Bijsterbosch BH, Bos MTA, Dickinson E, van Opheusden JHJ, Walstra P. Brownian dynamics simulation of particle gel formation: From argon to yoghurt. Faraday Discussions 1995; 101: 51-64.
    199. Ikeda S, Foegeding EA, Hagiwara T. Rheological study on the fractal nature of the protein gel structure. Langmuir 1999; 15: 8584-8589.
    200. Labropoulos KC, Rangarajan S, Niesz DE, Danforth SC. Dynamic rheology of agar Cel based aqueous binders. Journal of the American Ceramic Society 2001; 84:1217-1224.
    201. Weijers M, van de Velde F, Stijnman A, van de Pijpekamp A, Visschers RW. Structure and rheological properties of acid-induced egg white protein gels. Food Hydrocolloids 2006; 20: 146-159.
    202. Olhero SM, Ferreira JMF. Influence of particle size distribution on rheology and particle packing of silica-based suspensions. Powder Technology 2004; 139:69-75.
    203. Zaman AA, Moudgil BM. Role of Electrostatic Repulsion on the Viscosity of Bidisperse Silica Suspensions. Journal of Colloid and Interface Science 1999; 212: 167-175.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700