用户名: 密码: 验证码:
干旱区典型土壤—植物系统中主要重金属行为过程及风险性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤-植物系统重金属行为过程和风险的研究对于阻断重金属污染物进入食物链,防止对人体健康造成损害,促进土地资源的保护与可持续发展具有重要的意义;同时也为重金属污染土壤的修复和管理提供技术支撑。本文使用野外调查、野外淋滤试验、盆栽试验、室内淋滤试验、室内样品测试分析等方法以河西绿洲为例研究了干旱区典型土壤-植物系统中主要重金属行为过程及风险性,包括表层土壤重金属的空间变异规律、土壤重金属的纵向迁移机理、土壤重金属生物有效性以及潜在风险性。主要结论有:
     (1)金昌市表层土壤中Zn、Ni、Cu、Pb、Cd五种重金属元素的平均含量均超过了甘肃土壤背景值,其中Ni的平均含量还超过了国家土壤环境质量二级标准,Cu的平均含量甚至超过了国家土壤三级标准。不同土地类型下Zn含量的比较为林地>农田>居民区及公园>公路绿化带>戈壁;不同土地类型下Ni含量的比较为林地>居民区及公园>公路绿化带>农田>戈壁;不同土地类型下Pb含量的比较为农田>居民区及公园>公路绿化带>林地>戈壁;不同土地类型下Cu含量的比较为林地>公路绿化带>居民区及公园>农田>戈壁;不同土地类型下Cd含量的比较为林地>居民区及公园>公路绿化带>农田>戈壁。对于这五种元素来说,土地类型对土壤中重金属含量的影响程度为:Pb>Zn>Cd>Cu>Ni。
     (2)金昌市表层土壤中的Zn、Pb和Cd三种元的单因子污染均处于一级即清洁水平。相比之下,Ni和Cu的污染比较严重,其中,这五种土地类型土壤中的Ni均达到了四级即重度污染水平;公路绿化带、居民区及公园和林地土壤中的Cu均达到了四级即重度污染水平,戈壁和农田中的污染等级略低,均处于二级即轻度污染水平。五种土地类型下,Zn、Ni、Pb、Cu、Cd的内梅罗综合污染指数均为:Ni>Cu>Cd>Zn>Pb。地积累指数的结果表明,金昌市土壤中Zn和Pb的整体水平处于无污染程度,Cd处于轻度-中等污染程度,Ni处于中等污染程度,Cu的污染最为严重,处于中等-强污染程度。不同土地类型下土壤中重金属污染频率的结果显示,Pb不存在严重污染的情况,Zn和Cd严重污染的地区相对比较少,主要分布在农田和林地中;严重污染情况比较突出的Cu和Ni的不同土地类型比较为:Cu:公路绿化带>居民区及公园>林地>农田>戈壁;Ni:居民区及公园>林地>公路绿化带>农田>戈壁。地积累污染指数的空间分布结果跟各重金属污染浓度的分布结果一致。从分布范围上来看,Cu>Ni>Cd,Zn和Pb的污染范围均相对较小,并且Pb的污染水平也比较低。
     (3)金昌市农田土壤中重金属元素活化率中以Cu的活化率最高,虽然Cd的总量比较低,但其活化率却仅次于Cu,这两种元素的生物危害相性相对较大,研究区土壤中Zn、Pb的活化率相对较低,对作物的危害较小。Ni的活化率也不高,但由于其总量比较高,所以也存在一定程度的生物危害性。因子分析的结果为,研究区表层农田土壤中的Cu和Ni主要来源于工矿业活动;Zn、Cd、Pb则主要来源于农业生产活动。潜在生态风险评估则显示,接近一半的土壤样点的重金属潜在生态风险等级达到了中度及以上水平;从潜在生态危害单项系数来看,Cd>Cu>Ni>Pb>Zn,其中,Cu、Ni和Cd存在不同程度的潜在生态危害,Pb、Zn这两种元素的潜在生态风险则均处于低危害水平。有效态重金属Zn、Ni、Cu、Pb、Cd的含量均在白家咀和马家崖子附近存在高值区,并且Cu和Ni的EDTA提取态浓度值在东湾附近也比较高。此外,在中牌八队附近,EDTA提取态Cd的浓度值也偏高。寄予农产品质量安全的重要性,当地在进行粮食生产的同时,应增强农田土壤的安全性,严格控制土壤污染物,推行标准化农业生产。对于生态风险比较高的农田,应对其进行限制生产,并采取一定的措施进行修复。
     (4)野外淋滤试验和室内柱状实验中重金属的剖面分布特征相似,基本表现为外源重金属Cu、Zn、Pb、Cd进入土壤后,主要在表层10cm土层中富集,体现了重金属的表聚性;外源重金属进入土壤后,迁移距离短,试验时期内,迁移距离为15-20cm,自然剖面中迁移距离为45cm,外源重金属进入土壤后,虽然能在土壤中富集,但其土壤中富集的深度影响有限,目前未对地下水构成风险。野外调查所采集的耕作土壤剖面重金属变异规律研究中发现:Cu、Ni的表层富集现象明显,剖面各层Cu、Zn、Ni的总量分布差异较大。其中元素Cu和Ni分布规律相似,其浓度表现为表层至下先递减后稳定,同时这两中元素在各剖面中的迁移距离相当,基本在45cm附近,土壤剖面Zn的总量分布没有明显的规律性。受人类活动影响较大的五个剖面土壤的表层、亚表层中Cu含量和表层、亚表层以及心土层中的Ni含量基本超过中国环境质量二级标准,研究区域部分耕作土壤不再适合农作物生长,建议进行土壤修复。
     (5)外源重金属的加入,改变了重金属在土壤中的赋存形态,Cu、Zn、Pb主要表现为在表层0-10cm土层中碳酸盐态Cu,碳酸盐态Zn和铁锰氧化态Zn,碳酸盐态Pb所占比例较对照剖面明显增加。而元素Cd表现为剖面各土层中可交换态Cd含量均明显增加。虽然各元素含量分布特征受外源重金属的添加浓度和灌溉水pH影响不突出,但各元素的具体形态分布却在一定程度上受到影响。总体表现为Cd和Zn易受灌溉水pH值的影响,其中Cd影响最为明显。元素Cu和Pb易受外源添加量的影响。野外调查所采集的耕作土壤剖面中Cu主要以有机态和残渣态存在;Zn以参渣态为主要赋存形态;Ni主要以铁-锰氧化态和残渣态存在,三种元素的可交换态含量最少,不足1%。受外源Cu、Ni的影响,在土壤剖面中Cu和Ni有明显的形态变化层位,且该层位与它们在剖面中的迁移距离基本一致。0-45cm基本表现为有机态Cu>残渣态Cu>铁-锰氧化态Cu、碳酸盐态Cu>可交换态Cu;Ni的铁-锰氧化态>有机态、残渣态、碳酸盐态>可交换态。45cm后的各层中Cu、Ni主要以残渣态存在。Zn在所有土层中均以残渣态为主要赋存形态。金昌城郊耕作土壤中Cu、Ni主要受人为活动影响,Zn主要来源于母岩成土过程。人为活动增加了土壤中Cu、Ni的含量,增大了Cu、Ni的潜在生物效应。
     (6)元素Cu、Ni易于在金昌市种植的小麦根部蓄积,元素Zn易于在小麦籽粒中积累。Cu、Ni、Zn三种元素在小麦体内的迁移能力为:Zn>Cu>Ni。金昌市野外调查的小麦籽粒中Cu的平均含量为9.37mg/kg,最大含量为11.64mg/kg,其中有部分样品超过国家食物卫生标准,超标率为18.18%;Zn在籽粒中的平均含量为31.39mg/kg,最大含量为43.25mg/kg,所有样品均未超过国家食物卫生标准;小麦籽粒中Ni的平均含量为3.57mg/Kg,最大含量为5.5mg/kg,以人造奶油卫生标准的1.0mg/Kg作为参考值,研究中的所有小麦样品籽粒中Ni浓度均远高于该标准值,可见研究区域的小麦籽粒中Ni超标突出,造成通过饮食方式造成的健康风险较大,应对所研究的区域进行重金属污染的土壤进行修复或改变种植方式。
     (7)盆栽试验研究发现油菜的地上部、根部分别对Cd、Pb有较另外部分强的累积能力,油菜各部分对Zn的累积能力向差不多;芹菜的根部对Cd、Zn、Pb具有较地上部分更强的累积能力;胡萝卜地上部分对Cd的累积能力较根部略强,Zn、Pb均为低添加浓度下在胡萝卜地上部的累积能力较根部强,而在较高剂量的添加浓度下根部的累积能力略高于地上部分。从不同蔬菜相同部位的对比分析可知,三种蔬菜中胡萝卜对Cd、Zn、Pb的累积能力最差,芹菜的根部和油菜的地上部分累积能力相对比较强。
     种植三种蔬菜后土壤中Cd、Zn、Pb各形态的变化各不相同。油菜原状土壤中Cd主要以残渣态和碳酸盐结合态的形式存在,油菜试验土壤中的Cd则以碳酸盐结合态和铁锰氧化物结合态为主要的存在形式:芹菜原状土壤中Cd主要以铁锰氧化物结合态和碳酸盐结合态形式存在,芹菜试验土壤中的Cd则主要以碳酸盐结合态和可交换态的形式存在;胡萝卜原状土壤中Cd的主要存在形态为残渣态,在低Cd添加浓度下的胡萝卜试验土壤中,残渣态仍是主要的存在形态,但随着外源Cd添加量的增加,残渣态的比例大幅度降低,可交换态和碳酸盐结合态成为主要的存在形式。油菜原状土壤中Zn主要以残渣态的形式存在,油菜试验土壤中的Zn则以铁锰氧化物结合态和碳酸盐结合态为主要的存在形式;芹菜原状土壤中Zn主要以残渣态形式存在,芹菜试验土壤中的Zn则主要以铁锰氧化物结合态和碳酸盐结合态的形式存在;胡萝卜原状土壤中Zn的主要存在形态为残渣态,胡萝卜试验土壤中的Zn除铁锰氧化物结合态的含量比较高以外,残渣态的含量相对其他形态也比较高。油菜原状土壤中Pb主要以残渣态形式存在,油菜试验土壤中的Pb则以碳酸盐结合态和铁锰氧化物结合态为主要的存在形式;芹菜原状土壤中Pb主要以残渣态和铁锰氧化物结合态形式存在,芹菜试验土壤中的Pb主要以碳酸盐结合态和和铁锰氧化物结合态的形式存在;胡萝卜原状土壤中Pb的主要存在形态为残渣态,在胡萝卜试验土壤中以碳酸盐结合态和铁锰氧化物结合态为主要的存在形式。
     从生物有效性的角度出发,对土壤中各元素形态与蔬菜中重金属含量之间的相关分析可知,土壤中Cd的可交换态均为三种蔬菜的有效态,土壤中Zn的可交换态和碳酸盐结合态均为油菜和芹菜的有效态,Zn的碳酸盐结合态和铁锰氧化物结合态则为胡萝卜的有效态,对油菜吸收有效的Pb形态为土壤中的可交换态和碳酸盐结合态,对芹菜吸收有效的Pb有效态形式为土壤中的可交换态,对胡萝卜吸收Pb有效的形态则为碳酸盐结合态。Zn和Pb在三种蔬菜中的有效态形式存在一定的差异。
     对三种蔬菜富集系数的比较分析可知,芹菜对Cd、Zn、Pb的富集能力均为最强,胡萝卜对Cd和Zn的富集能力最弱,油菜对Pb的富集能力最弱:从转运系数的对比分析则可以看出,Cd、Zn、Pb在芹菜体内的迁移能力均是最弱的,在较低外源金属添加情况下,Cd和Zn均在胡萝卜中的迁移能力最强,随着添加浓度的增加,这两种元素在油菜中的迁移能力超过了在胡萝卜中的迁移能力,除对照点外,Pb在胡萝卜中的迁移能力一直为最强。
Behavioural process and ecological risk of heavy metal in soil-plant system play a dominantrole in hindering heavy metals passing into food chain and threatening human health. The study willnot only accelerate the land protection and sustainable development but also will providetechnological support for soil management and remediation of soils contaminated by heavy metals.Field-survey method, Field-leaching experiments, pot-culture experiments, laboratory-leachingexperiments and laboratory analysis were carried to study the chemical behavior and ecological riskon soil-plant system for representative soils in the arid area, which was taking the oasis in the Hexicorridor for an example. The main results show as follows:
     (1) The average content of Zn, Ni, Cu, Pb, Cd in surface soils all surpassed background value insoil from GanSu province. Moreover the average content of Ni surpassed theⅡgrade standard of soilenvironmental quality and the average content of Cu surpassed theⅢgrade standard of soilenvironmental quality. Zn content between different land use was as follows:woodland>farmland>residential areas>highway green belt>desert; Ni content was as follows:woodland>residential areas>highway green belt>farmland>desert; Pb content was as follows:farmland>residential areas>highway green belt>woodland>desert; Cu content was as follows:woodland>highway green belt>farmland>desert; Cd content was as follows: woodland>residentialareas>highway green belt>farmland>desert. Different land use had effect on heavy metal content insoils, and the degree was as follows: Pb>Zn>Cd>Cu>Ni.
     (3) Single factor index showed that Ni in all sites was in heavy polluted; Cu in soil from highwaygreen belt, residential areas and woodland was in heavy polluted; while other heavy metals were notpolluted states. Nemerow multi-factors index of heavy metals was as follows: Ni>Cu>ed>Zn>Pb. Thegeoaccumulation index indicated Zn and Pb were in unpolluted states, Cd was in light-middle polluted,Ni was in middle polluted and Cu was in middle-heavy polluted. There was some sites from farmlandand woodland, the Zn and Cd content of which were in heavy polluted. The content of Cu followingan order were highway green belt>residential aeras>woodland>farmland>Desert. While the content ofNi was as follows: residential aeras>woodland>highway green belt>farmland>desert.
     (4) The activity index of Cu was higher than other heavy metals and the second of activityindex was Cd. These showed Cu and Cd had great potential harm to surroundings. While Zn activityindex and Pb activity index were relatively lower and they had less harm to surroundings. The totalcontent of Ni increased harm to biology although its activity index was lower. The results from factoranalysis suggested that Cu and Ni in top soil were mainly originated from industrial and miningactivities, while Zn, Pb and Cd were mainly originated from agricultural activities. The potentialecological risk assessment showed that the risk of about half sites were in middle-heavy level. Thesingle potential ecologicao risk index of heavy metal following an order was Cd>Cu>Ni>Pb>Zn.Moreover Cd, Cu, Ni existed different degrees of risk and the risk of Pb, Zn were in a low level. There were highest available concentrations of heavy metals neighbourhood BaiJiaZui and MaJiaYaZi.The Cu and Ni content extracted by EDTA was high neighbourhood DongWan. The Cdconcentrations extracted by EDTA was high neighbourhood ZhongPai.
     (5) Profile distribution of heavy metals are similar in soil through field-leaching experimentsand laboratory-leaching experiments. The result indicated that the maximum values of total Cu, Zn, Pband Cd were in the superficial horizons (0-10cm) in soil columns. The result indicated distance ofheavy metals downward movement were short in soil columns of leaching experiments during theperiod of test. Filed-survey result showed that action of distribution and transfer for total contents ofCu, Ni were similar in soil column from field-survey. Cu ,Ni were enriched in the upper layer andconcentrations decreased with increasing soil depth firstly and reached a steady level. The transferdepth of Cu and Ni down profiles reached 45centimeters. Moreover Cu content in top layer, inferiorlayer and Ni content in top layer, inferior layer, subsoil layer all surpass theⅡgrade standard of soilenvironmental quality. The results showed that although additive heavy metals were enriched in soilcolumn, the horizon depth which additive heavy metals reached was limited, heavy metals did not acthigh pollution risk to shallow groundwater.
     (6) Cu and Ni were riched in the roots, while Zn was riched in the seeds. Thetransfer capacity of Cu, Zn, Ni was as follows:Zn>Cu>Ni. The average concentrations ofCu in seeds was 9.37mg/kg, and the max concentrations was 11.64mg/kg. Cu contentabout 18.18% of sites exceeded the national hygienic limits for food in China. The averageconcents of Zn in seeds was 31.39mg/kg ,the max concents was 43.25mg/kg. The Zn content of allsites were below the national hygienic limits for food in China. The average content of Ni in seedswas 3.57mg/kg, the max content was 3.57mg/kg. The Ni content of all sites exceeded the referencevalue.
     (7) The percent of Cu in carbonate fraction, Zn in carbonate fraction, Zn in Fe-Mn oxidefraction, Pb in carbonate fraction in soil horizon (0-10cm) of leaching experiments column werehigher than they in original soil column, while percent of Cd in exchange fraction in all layer werehigher . Although total content distribution of heavy metals in soil column were not impactedseriously by additive heavy metals content and the pH of irrigation water, distribution of forms forheavy metals were impacted. Distribution of forms for Cd and Zn were influenced by the pH ofirrigation water, while Cu and Ni were influenced by additive heavy metals content. Field-surveyresult showed that Copper was distributed mainly in the organic fraction and the residual fraction, Zndistributed mainly in the residual fraction, Ni was distributed mainly in the Fe-Mn oxide fraction andthe residual fraction. The percent of Cu, Zn, Ni in the exchange fraction waslower than one percent..From 0 to 45 centimeters, Cu was distributed as follow: organic fraction>residual fraction>Fe-Mnoxide fraction、carbonate fraction>exchangeable fraction, The content of Ni was Fe-Mn oxidefraction>organic fraction、residual fraction、carbonate fraction>exchangeable fraction., while Cu andNi were mainly in the residual fraction after 45 centimeter horizon. Zn was distributed in the residual fraction in all layer. Cd,Pb content in shoot and root of rape were more than other organs. Zn contentin organs of rape was not very different. Cd,Zn,Pb content in shoot of Celery was more. Cd contentin shoot of carrot was more than that of in the root slightly. The distribution of Zn, Pbin shoot and in root was different with additive heavy metals content increasing.Comparative analysis revealed that the accumulation level of Cd, Zn, Pb by carrot wasthe worst, while the accumulation level of Cd, Zn, Pb by the root of Celery and the shootof rape were the most. Distribution of forms for heavy metals were different. Cd was mainlydistributed in the residual fraction and carbonate fraction in original soil planted rape, while Cd wasmainly distributed in the Fe-Mn oxide fraction in polluted soil. Cd distributed mainly in Fe-Mn oxidefraction and carbonate fraction in original soil while Cd distributed mainly in the carbonate fractionand exchange fraction in polluted soil with planting Celery. For carrot, Cd was mainly distributed inthe residual fraction in original soil, while distribution of Cd in polluted was different with additiveheavy metal content increasing. Zn was mainly distributed in the residual fraction in original soilplanted rape, while Zn was mainly distributed in the Fe-Mn oxide fraction and carbonate fraction inpolluted soil. Zn distributed mainly in the residual fraction in original soil while Zn distributed mainlyin the Fe-Mn oxide fraction and carbonate fraction in polluted soil with planting Celery. For carrot, Znwas mainly distributed in the residual fraction in original soil. while distribution of Zn in polluted soilwas mainly in the Fe-Mn oxide fraction and residual fraction.Pb was mainly distributed in the residualfraction in original soil planted rape, while Pb was mainly distributed in the Fe-Mn oxide fraction andcarbonate fraction in polluted soil. Pb distributed mainly in the residual fraction and Fe-Mn oxidefraction in original soil while Pb distributed mainly in the Fe-Mn oxide fraction and carbonate fractionin polluted soil with planting Celery. For carrot, Pb was mainly distributed in the residual fraction inoriginal soil. while distribution of Pb in polluted soil was mainly in the Fe-Mn oxide fraction andcarbonate fraction.
     Correlation analysis showed that Cd in the exchange fraction was more available to rape, celeryand carrot. Zn in the exchange fraction and carbonate fraction was more available to rape, celery;while Zn in the carbonate fraction and Fe-Mn oxide fraction was more available to carrot. Pb in theexchange fraction and carbonate fraction was was more available to rape. Pb in the exchange fractionwas more available to celery. Pb in the carbonate fraction was more available to carrot.
     The BCF of celery for Cd, Zn, Pb was highest while BCF of carrot for Cd, Zn was lowest. ForPb, the accumulation level of carrot was worst. The transfer level of celery for Cd, Zn, Pb was worst.Under different content, transfer level of carrot and rape for Cd, Zn were different. The TF of carrotfor Pb was highest.
引文
[1] 吴立新,侯恩科.西北五省(区)矿产资源开发与水资源保护对策[J].西安科技学院学报,2000,15,15(S1):63-67.
    [2] 廖晓勇,陈同斌,武斌等.典型矿业城市的土壤重金属分布特征与复合污染评价-以“镍都”金昌市为例[J].地理研究,2006,25(15):843-852.
    [3] Nan Zhongren, Zhao Chuanyan.Heavy metal concentrations in gray calcareous soils of Baiyin region, Gansu province, P.R.China[J].Water, Air, and Soil pollution, 2000,118:131-141.
    [4] 南忠仁,李吉均,张建明等.白银市区土壤作物系统重金属污染分析与防治对策研究[J].环境污染与防治,2002,24(3):170-173.
    [5] 夏立江,王宏康.土壤污染及其防治[M].上海:华东理工大学出版社,2001,37-38.
    [6] 陈同斌,黄铭洪,黄焕忠.香港土壤中的重金属含量及其污染现状.地理学报,1997.52:229-236.
    [7] Chen T.B., Wong J.W.C., Zhou H.Y.,et al.Assessment of trace metal distribution and contamination in surface soils of Hong Kong[J].Environ.Pollution.1997, 96,61-68.
    [8] Li X.D.,Poon C.S.,Liu P.S.Heavy metal contamination of urban soils and street dusts in hong Kong[J].Applied geochemistry,2001,16,1361-1368.
    [9] Li, X.D.,Lee S.L.,Wong S.C.,et al.The study of metal contamination in urban soils of Hong Kong using a GIS-based approach[J].Environmental Pollution,2004,129,113-124.
    [10] 贾华清,章明奎.杭州市城市土壤重金属的积累和释放潜力及其空间分异[J].浙江大学学报(农业与生命科学版),2007,33(6):677-684.
    [11] 王美青,章明奎.杭州市城市和郊区土壤重金属含量和形态的研究[J].环境科学学报,2002,22:603-608.
    [12] 吴新民,李恋卿,潘根兴等.南京市不同功能区土壤中重金属Cu、Zn、Pb和Cd的污染特征[J].环境科学,2003,24:105-111.
    [13] 郑袁明,余轲,吴泓涛等.北京市城市公园土壤铅含量及其污染评价[J].地理研究,2002,21:418-424.
    [14] 王贵,丛艳静,曹霞.包头公园土壤重金属形态分布特征及环境意义[J].西北农业报,2007,16 (6):273-276.
    [15] 林啸,刘敏,侯立军等.上海城市土壤和地表灰尘重金属污染现状及评价[J].中国环境科学,2007,27(5):613-618.
    [16] 刘玉燕,刘敏.乌鲁木齐城市土壤性质及污染研究[J].干旱区研究,2007,24(1):66-69.
    [17] 管东生,陈玉娟,阮国标.广州城市及近郊土壤重金属含量特征及人为活动的影响[J].中山大学学报(自然科学版),2001,40:93-98.
    [18] 陈华林,周江敏,金煜彬等.温州城市土壤Cu,Zn,Pb含量及其形态研究[J].水土保持学报,2007,21(6):75-78.
    [19] Wong C.S.C., Li X.D.,Thornton.I.Urban environmental geochemistry of trace metals[J].Environmental Pollution,2006,142: 1-16.
    [20] 段雪梅,沈明洁,胡守云等.首钢工业区土壤剖面重金属含量及其结合态的磁指示作用的研究[J].地球物理学进展.2008.23(1):225-232..
    [21] Fernandez C.,Labanowski J., Cambier P.,et al.Fate of airborne metal pollution in soils as related to agricultural management.1.Zn and Pb distributions in soil profiles[J].European Journal of Soil Science,2007,58:547-559.
    [22] 余尚平,陶澍,曹军等.天津地区土壤中微量元素含量的纵向分异[J].中国环境科学,1999,19(3): 226-229.
    [23] 南忠仁,李吉均.干旱区耕作土壤中重金属镉铅镍剖面分布及行为研究-以白银市区灰钙土为例[J].干旱区研究,2000,17(4):39-45.
    [24] 曹淑萍.重金属污染元素在天津土壤剖面中的纵向分布特征[J].地质找矿论丛,2004,19(4):270-274.
    [25] 郑国璋.关中娄土剖面中重金属元素的垂直分布规律研究[J].地球学报,2008,29(1):109-115.
    [26] 徐友宁,张江华,陈社斌等.小秦岭金矿区不同污染方式土壤剖面上重金属含量分布特征[J].农业环境科学学报,2008,27(1):200-206.
    [27] 王立仙,马文丽,杨广怀,刘春生.铜在土壤中的淋溶迁移特征研究.水土保持学报[J],2007,21(4):21-24.
    [28] 杨军,郑袁明,陈同斌等.中水灌溉下重金属在土壤中的垂直迁移及其对地下水的污染风险[J].地理研究,2006,25(3):451-456.
    [29] Nelson A T.Use of Biominitoring of Control Toxics in the US, EPA /600/R - 3 - 157 Fish Physiology, Toxicology,and Water Quality Management [J].Processings of an International Symposium Sacramento,California, USA,Sep.1993:18-19.
    [30] McCarty, L.S., and D.Mackay.Enhancing ecotoxicological modeling and assessment,body residues and modes of action[J].Environmental Science and Technology,1993,7:1719-1728.
    [31] 周启星,宋玉芳.污染土壤修复原理与方法[M].北京:科学出版社,2004.
    [32] 戴树桂.环境化学[M].北京:高等教育出版社,1996.
    [33] Hardiman R.t., Jacoby B.,Banin A.Factors affecting the distribution of cadmium, copper and lead and their effect upon yield and zinc content in bush beans(Phaseolus vulgaris L.) [J].Plant Soil,1984,81:17-27.
    [34] Pierzynski,G.M.,Sims,et alF.Soils and environmental quality[M],CRC press,2005.
    [35] 田毅,张玉龙.过磷酸钙对土壤中铅的形态及其生物有效性的影响[J].沈阳农业大学学报,2007,38(3):327-330.
    [36] 郭胜利,余存祖,戴鸣均.有机肥对石灰性土壤中锌、锰生物有效性的影响[J].华北农学报,1996,11(4):63-68.
    [37] 余贵芬,蒋新,孙磊等.有机物质对土壤镉有效性的影响研究综述[J].生态学,2002,22(5):770-775.
    [38] 张秋芳,王果,杨佩艺等.有机物料对土壤镉形态及其生物有效性的影响[J].应用生态学报,2002,13(12):1659-1662.
    [39] 郑明霞,冯流,刘洁等.螯合剂对土壤中镉赋存形态及其生物有效性的影响.环境化学,2007,26(5):606-609.
    [40] 王昌全,代天飞,李冰等.稻麦轮作下水稻土重金属形态特征及其生物有效性[J].生态学报,2007,27(3):889-897.
    [41] 陈俊,范文宏,孙如梦等.新河污灌区土壤中重金属的形态分布和生物有效性研究[J].环境科学学报,2007,27(5):831-837.
    [42] 周启星,孙福红,郭观林等.乙草胺对东北黑土铅形态及生物有效性的影响[J].应用生态学报,2004,15(10):1883-1886.
    [43] 郑明霞,黄斌,陈明等.土壤中铬对油菜生物有效性的研究[J].有色金属,2007,59(2):95-99.
    [44] 朱波,青长乐,牟树森.紫色土外源锌、镉形态的生物有效性[J].应用生态学报,2002,13(5):555-558.
    [45] 黄凤球,纪雄辉,鲁艳红等.不同工业废弃物对稻田土壤中镉铅生物有效性及其形态的影响[J].农业环境科学学报,2007,26(4):1316-1321.
    [46] 柴世伟,温琰茂,张云霓等.广州市郊区农业土壤重金属生物有效性[J].城市环境与城市生态,2003,16(6):123-125.
    [47] 周国华,吴小勇,周建华.浙北地区土壤元素有效量及其影响因素研究[J].第四纪研究,2005,25(3):316-322.
    [48] 曹会聪,王金达,张学林.黑土中Cd、Pb、As复合污染对油菜的影响研究[J].农业系统科学与综合研究,2007,23(3):293-296.
    [49] 朱维晃,杨元根,毕华等.海南土壤中Zn、Pb、Cu、Cd四种重金属含量及其生物有效性的研究[J].矿物学报,2004,24(3):239-244.
    [50] 章明奎,方利平,周翠.污染土壤重金属的生物有效性和移动性评价:四种方法比较[J].应用生态学报,2006,17(8):1501-1504.
    [51] 钟晓兰,周生路,李江涛等.长江三角洲地区土壤重金属生物有效性的研究.以江苏昆山市为例[J].土壤学报.2008.45(2):240-248.
    [52] Meers E.,Samson R., Tack F.M.G.Phytoavailability assessment of heavy metals in soils by single extractions and accumulation by Phaseolus vulgaris[J].Environmental and Experimental Botany,2007(60): 385-396.
    [53] Menzies NW, Donn MJ,Kopittke PM.Evaluation of extractants for estimation of the phytoavailable trace metals in soils[J].Environmental Pollutution,2007 (145): 121-130.
    [54] Nolan A.L.,Zhang H., McLaughlin M.J.Prediction of zinc,cadmium,lead,and copper availability to wheat in contaminated soils using chemical speciation,diffusive gradients in thin films,extraction, and isotopic dilution techniques[J].J.Environ.Qual.2005(34): 496-507.
    [55] Li J.X.,Yang X.E., He Z.,et al.Fractionation of lead in paddy soils and its bioavailability to rice plants [J].Geoderma,2007,141(3-4): 174-180.
    [56] 窦磊,周永章,高全洲等.土壤环境中重金属生物有效性评价方法及其环境学意义[J].土壤通报,2007,38(3):576-583.
    [57] 尚爱安,刘玉荣,梁重山等.土壤中重金属的生物有效性研究进展[J].土壤,2000,6:294-299.
    [58] 刘思玲,王亮.土壤中重金属污染元素的形态分布及其生物有效性[J].安徽农业科学,2006,34(3):547-548,557.
    [59] 高军锋,毛玉红.土壤中重金属生物有效性与植物效应研究[J].四川环境,2008,27(3):110-112.
    [1] TESSTER A,CAMPBELL P G C,BISSON M.Sequeatial extraction procedure for the speciation of partieulate metals[J].Analytical Chemistry, 1979,51 (7):844-851.
    [1] 2007年金昌市环境质量状况公报.
    [2] 金昌市“十五”环境质量报告书.
    [1] 刘敬勇,常向阳,涂湘林.矿山开发过程中重金属污染研究综述[J].矿产与地质,2006,20(6):645-650.
    [2] Myung Chae Jung.Contamination by Cd,Cu,Pb,and Zn in mine wastes from abandoned metal mines classified as mineralization types in Korea[J].Environ Geochem Health,2008,0:205-217.
    [3] P.Alvarenga,P.Palma, A.P.Goncalves,etal.Evaluation of tests to assess the quality of mine-contaminated soils[J].Environ Geochem Health,2008,30:95-99.
    [4] J.Martinez,J.F.Llamas,E.de Miguel,etal.Soil contamination from urban and industrial activity:example of the mining district of Linares(southern Spain) [J].Environ Geol,2008,54:669-677.
    [5] 孟宪丽.GIS支持下的吉林省黑土区土壤重金属污染评价研究[D].东北师范大学,2008.
    [6] 徐理超.阜新市农田土壤重金属污染的空间分析及污染评价[D].西南大学,2007.
    [7] 杜平.铅锌冶炼厂周边土壤中重金属污染的空间分布及其形态研究[D].中国环境科学研究院,2007.
    [8] 李小虎.大型金属矿山环境污染及防治研究-以甘肃金川和白银为例[D].兰州大学,2007.
    [9] 赵雅芳.金昌市环境中铜的来源调查分析[J].中国环境管理干部学院学报,2005,15(3):70-73.
    [10] 廖晓勇,陈同斌,武斌等.典型矿业城市的土壤重金属分布特征与复合污染评价-以“镍都”金昌市为例[J].地理研究,2006,25(5):843-852.
    [11] 王利.上海高架道路沿线街道灰尘中重金属分布及污染评价[D].华东师范大学,2007.
    [12] Ph.Quevauviller.Operationally defined extraction procedures for soil and sediment analysis Ⅰ.Standardization [J].trends in analytical chemistry,1998,17(5):289-298.
    [13] 王美青,章明奎.杭州市城郊土壤重金属含量和形态的研究[J].环境科学学报,2002,22(5):603-608.
    [14] Muller G.Index of geoaccumulation in sediments of the Rhine river[J].Geojournal, 1969,2(3):108.
    [15] 柴世伟,温琰茂,张亚雷等.地积累指数法在土壤重金属污染评价中的作用[J].同济大学学报(自然科学版),2006,34(12):1657-1661.
    [16] K.M.Banat,F.M.Howari, A.A.Al-Hamad.Heavy metals in urban soils of central Jordan:Should we worry about their environmental risks [J].Environmental Research,2005,97:258-273.
    [17] 郑喜珅,鲁安怀,高翔等.土壤中重金属污染现状与防治方法[J].土壤与环境,2002,11(1):79-84.
    [18] 王焕校.污染生态学[M].北京:高等教育出版社,2000,188-213.
    [19] 《甘肃年鉴》编委会.甘肃年鉴[M].北京:中国统计出版社,2005,452-455.
    [20] 陈怀满.土壤-植物系统中的重金属污染[M].北京:科学出版社,1996,7-8.
    [21] 郭平,谢忠雷,李军等.长春市土壤重金属污染特征及其潜在生态风险评价[J].地理科学,2005,25(1):108-112.
    [22] Lars Hakanson.An Ecological Risk Index for Aquatic Pollution Control.A Sedimentological Appoach[J].Water Research, 1980,14(8):975-1001.
    [23] 赵沁娜,徐启新,杨凯.潜在生态危害指数法在典型污染行业土壤污染评价中的作用[J].华东师范大学学报(自然科学版),2005,1:111-116.
    [24] 曹会聪,王金达,张学林.吉林黑土中Cd、Pb、As的空间分布及潜在生态风险[J].中国环境科学,2007,27(1):89-92.
    [25] 刘小红,周东美,郝秀珍等.九华铜矿重金属环境污染状况研究[J].土壤,2007,39(4):497-502.
    [26] 柴世伟,温琰茂,韦献革等.珠江三角洲主要城市郊区农业土壤的重金属含量特征[J].中山大学学报(自然科学版),2004,43(4):90-94.
    [27] 张虎才.元素表生地球化学特征及理论基础[M].兰州:兰州大学出版社,1997,26-48.
    [1] 周启星,宋玉芳.污染土壤修复原理与方法[M].北京:科学出版社,2004,16-18.
    [2] Elrashidi MA,O'Connor GA.Influence of Solution Composition on Soprtion of Zinc by Soils[J].Soil Sci.Soc.Am.J, 1982,46:1153-1158
    [3] Zhou LX,Wong JWC.Effect of Dissolved Organic Matter from Sludge and Sludge Compost on Soil Copper Sorption [J].Environ.Qual,2001,30:878-883.
    [4] Naidul R, Sumner ME, Harter RD.Sorption of heavy metals in strongly weathered soil: an overview[J].Environmental Geochemistry and Health, 1998 20:5-9.
    [5] 陈怀满.土壤-植物系统中的重金属污染[M].北京:科学出版社,1996,168-194.
    [6] Green-Pedersen, H.Jensen,G.Pind N..Nickel adsorption on MnO_2-Fe(OH)_3,montmorillonite, humic acid and calcite: a comparatively study[J].Environ.Sci.Technol.1997,18, 807-815.
    [7] Patricia Miretzky, Carolina Mun~oz,Alejandro Carrillo-Cha'vez.Experimental Zn(∏)retention in a sandy loam soil by very small colunms[J].Chemosphere,2006,65:2082.
    [8] 吕兴,朱英存,戴燕棠.模拟酸雨对土壤中的铜释放与缓冲作用研究[J].污染防治技术,2007 3(20):20-22.
    [9] 黄进.模拟酸雨淋溶对土壤镉迁移的影响[J].淮阴师范学院学报(自然科学版),2006,3(5):223-228.
    [10] 黄现民,史衍玺.王玉军等.污泥中重金属在棕壤和褐土上的淋洗特性的研究[J].农业环境保护,2002,21(1):19-22.
    [11] 杨军,郑袁明,陈同斌等.中水灌溉下重金属在土壤中的垂直迁移及其对地下水的污染风险[J].地理研究,2006,3(25):449-456.
    [12] 鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社,2000.
    [13] Tessier A,et al.Sequential Extraction Procedure for the speciation of Particulate Trace Metals[J].Analytical Chemistry, 1979,51(7):844-851.
    [14] 田均良,李雅琦,陈代中.中国黄土元素背景值分异规律研究[J].环境科学学 报,199,11(3):253-262.
    [15] 中国环境监测总站主编.中国土壤元素背景值[M].中国环境科学出版社,1990:349,367,381.
    [16] 刘霞,刘树庆,土壤重金属形态分布特征与生物效应的研究进展[J].农业环境科学学报.2006,25(增刊):407-410.
    [1] 仲维科,樊耀波,王敏健.我国农作物的重金属污染及其防止对策[J].农业环境保护.2001.20(4):270-271.
    [2] 胡宁静,李泽琴等.我国部分市郊农田的重金属污染与防治途径[J].矿物岩石地球化学通报.2003,22(3):251-254.
    [3] 李海华,刘建武,李树人等.土壤-植物系统中重金属污染及作物富集研究进展[J].河南农业大学学报,2000,34(1):1-3.
    [4] 杨科壁.中国农田土壤重金属污染与其植物修复研究[J].世界农业.2007.8:1-2.
    [5] 余守武,刘宜柏.土壤-水稻系统重金属污染的研究现状和展望[J].江西农业学报.2004.16(1):41-48.
    [6] 张翠花,赵政阳.陕西苹果产区果实重金属含量水平调查[J].西北农业学报.2006,15(4):126-128.
    [7] 张航,杨庆娥等.不同水质灌溉对作物中重金属积累和分布影响的研究[J].科技情报开发与经济.2007,17(24):1.
    [8] 南忠仁,李吉均.干旱区污灌土壤作物系统Cu、zn的行为特性[J].盐湖研究,2001,9(1):4.
    [9] 韩晋仙,马建华.污灌区土壤-小麦系统重金属污染、迁移和积累-以开封市化肥河污灌区为例[J].生态环境.2004,13(4)。
    [10] 李田玲,赵雅芳,马兰等.金昌市沙尘暴中重金属Ni、Cu、Pb、Cd、As分布及污染分析[J].中国环境管理,2004,6:1.
    [11] 田均良,李雅琦,陈代中.中国黄土元素背景值分异规律研究[J].环境科学学报,1991,11(3):253-262.
    [12] 廖小勇,陈同斌,武斌等.典型矿业城市的土壤重金属分布特征与复合污染评价-以“镍都”金昌市为例[J].地理研究,2006,25(5):2,5,7.
    [13] N.Sridhara Chary, C.T.Kamala,D.Samuel Suman Raj.Assessing risk of heavy metals from consuming food grown on sewage irrigated soils and food chain transfer.Ecotoxicology and Environmental Safety, 2008,69:519.
    [14] 许嘉琳.陆地生态系统中的重金属[M].北京:中国环境科学出版社,1995,175-177.
    [15] 陈怀满.土壤-植物系统中的重金属污染[M].北京:科学出版社,1996,182-184,288-290.
    [16] Sutapa Bose,A.K.Bhattacharyya.He.Heavy metal accumulation in wheat plant grown in soil amended with industrial sludge.Chemosphere.2008, 70:1267.
    [17] 程金沐.土壤环境生态对重金属元素迁移影响分析[J].广东微量元素科学,2005:12(6):13.
    [1] R.Sanghi,K.S.Sasi.Pesticides and heavy metals in agricultural soil of Kanpur India[J].Bull.Environ.Contam.Toxicol, 2001, 67:446-454.
    [2] 丁真真.中国农田土壤重金属污染与其植物修复研究[J].水土保持研究,2007,14(3):19-20.
    [3] M.Peris,L.Recatala, C.Mico, et al.Increasing the knowledge of heavy metal contents and sources in agricultural soils of the European Mediterranean Region[J].Water Air Soil Pollut,2008.
    [4] 孟昭福,薛澄泽,张增强等.土壤中重金属复合污染的表征[J].农业环境保护,1999,18(2):87-91.
    [5] Ramos L,Hernandez L M,Gonzalez M J.Sequential fractionation of copper, cadmium and zinc in soil from or near Donana Nation Park[J].J Environ Qual,1994, 23,50-57.
    [6] 刘清,王子健,汤鸿霄.重金属形态与生物毒性及生物有效性关系的研究进展.[J]环境科学,1996,17(1):89-92.
    [7] 鲁如坤.土壤农业化学分析方法[M].北京:中国农业科学出版社,1999,147-211.
    [8] Tessier A,et al.Sequential extraction procedure for the speciation of particulate trace metals[J].Analytical chemistry, 1979,51(7):844-851.
    [9] 刘凤枝.农业环境监测实用手册[M].北京:中国标准出版社,2001,97-107.
    [10] Alina Kabata-Pendias,Henry Pendias.Trace elements in soils and plants[M].CRC Press LLC,2001,217.
    [11] 杨崇杰.几种金属元素进入土壤后的迁移转化规律及吸附机理的研究[J].环境科学,1989,10(3):2-9.
    [12] 李忠海等.土壤镉、锌、铅复合污染对芹菜的影响[J].中南林学院学报,2002,3(1):36-39.
    [13] 吕建波,徐应明,贾堤.土壤镉、铅污染对油菜生长行为及重金属累积效应的影响[J].天津城市 建设学院学报,2005,11(2):107-110.
    [14]南忠仁,程国栋.干旱区污灌农田作物系统重金属Cd Pb生态行为研究[J].农业环境保护,2001,20(4):210-213.
    [15]郭观林,周启星.污染黑土中重金属的形态分布与生物活性研究[J].环境化学,2005,24(4):383-388.
    [16]王友保,张莉,沈章军等.铜尾矿库区土壤与植物中重金属形态分析[J].应用生态学报,2005,16(12):2418-2422.
    [17]代天飞.成都平原土壤重金属形态特征及其生物有效性研究[D].成都:四川农业大学,2006.
    [18]王玮,袁大伟,汪雅各.土壤重金属的形态特征及其对蔬菜重金属含量的影响[J].上海农业学报,1991,7(4):54-60.
    [19]陈素华,孙铁珩,周启星.重金属复合污染对小麦种子根活力的影响[J].应用生态学,2003,4(14):577-580.
    [20]李博文,杨志新,谢建治.土壤Cd Zn Pb复合污染对植物吸收重金属的影响[J].农业环境科学学报,2004,23(5):08-911.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700