用户名: 密码: 验证码:
典型城市生态风险评价与管理对策研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生态风险是指一种或多种应力(物理、化学以及生物应力等)作用而导致生态系统某些负面生态效应发生的可能性。生态风险评价是对生态风险引起的负面生态效应发生概率进行评价,并实施风险管理、防止或降低风险的过程。其目的是通过风险评价,为风险对策提供科学的信息,以便使污染或其它的一些生态环境损害降到最低程度。早期的生态风险评价,绝大多数是针对于人类(或人类环境)所受的风险进行的。直到最近几年,由于全球生态环境的恶化,针对生态系统的风险评价才得到逐渐的重视。
     作为人类活动最集中的场所,城市是一类典型的社会-经济-自然复合生态系统,应成为生态风险研究的主要对象。城市生态问题的产生包括自然因素,如全球变化、地壳运动等;更主要的是人类自身生产、生活过程中造成的干扰。城市化是区域可持续发展的重要步骤,然而城市化过程与生态环境之间存在着各种各样的矛盾与胁迫,同时也伴随着生态风险的产生,评价城市化过程中诱发的生态风险,并找出各种生态风险变化的规律性,对城市未来的健康发展具有重要的现实意义。
     城市污染、气候变化(如洪涝灾害等)等生态风险是当前城市发展的重要瓶颈。当前关于区域生态风险评价的研究主要集中在自然生态系统,对于城市的生态风险评价研究并不多见。
     本文以典型滨海城市——青岛市崂山区作为研究区域,系统剖析该区域典型生态风险,研究这些风险的特征及变化趋势,根据可靠性数学理论构建生态风险评价指标及其计量模型,对典型滨海城市空气污染、气温改变、降水量变化等生态风险进行评价,深刻剖析了其生态风险特征,进行评价,并根据均生函数、人工神经网络等现代数学工具开展预测研究。在国际流行风险管理模型VaR的基础上,构建了区域生态风险管理的EVR模型,并开展了应用研究。考虑到城市生态系统的主体——人类对生态系统变化(风险)的响应,作者基于滨海城市这一人类生态系统的特征,构建了城市生态适宜度的数学模型,评价了研究区的生态适宜度及其演变趋势。最后,作者开发了滨海城市生态风险评估的决策支持系统软件,作为滨海城市生态风险管理的重要手段。
     主要研究内容与结论如下:
     (1)根据可靠性数学思想,用风险度、可靠性指数、风险指数、系统持续稳定性指数、系统恢复性指数、整体损失度等指标构建了城市生态风险评价模型。该模型具有指标意义明确、计算便捷、针对性强等特点,并在崂山区开展了应用研究。
     (2)根据生态风险评价模型,对青岛市崂山区2001-2005年空气污染生态风险及其演变趋势进行了研究。研究发现,2001-2005年间,多项风险评价指标均未见差异。但值得注意的是该区空气污染的恢复性指标明显提高。从2001年的45%,2002年的40%上升至2004年的60%、2005年的50%。这很大程度上反映了该区污染治理的力度加大;应对突发污染事件的能力增强,治理污染速度加快。同时,该区中度以上污染事故的发生率也明显减少。这是该区生态质量改善的重要标志之一。因此,整体损失度也呈下降趋势,2004年降为6.44%。冬春两季仍是空气污染事故的高发期。5年来,冬季空气质量状况并未好转,反略有进一步滑坡的趋势。应当引起足够的重视。
     (3)用趋势分析、相关分析等方法对崂山区近50年降水资料进行分析,用极值估算、均生函数等方法建立了降水预测模型。对崂山区2005-2010年的年降水、各季节降水、旱涝等级、夏季暴雨频数等进行了预测。预测结果与2006年的实况基本吻合。研究发现:崂山区降水量季节变化较大,降水主要集中在夏、秋两季,冬、春两季降水明显偏少。年降水量的变化近20年来有趋稳定的势头,但夏秋两季有逐年下降的风险。
     (4)研究了崂山区50年来气温变化趋势,发现该区发现,该区的气温升高主要发生在近20年间。1954-1975年共20年时间,未见明显的气温升高证据。而在1 981-2004年均升高气温最低在0.035℃,最高达到0.092℃,24年间平均每年升高0.052℃。这明显高于东南沿海地区平均水平。作者还建立了多输出的2类人工神经网络模型预测了未来10年温度变化趋势。
     (5)青岛市崂山区生态适宜度调控对策研究计算结果表明,1996-2004年,青岛市崂山区人类生态适宜度平均为57.40%,高于全国平均水平(50%)。同时,我们注意到,该区的人类生态适宜度在经历了一个短期回落以后,已进入快速增长的时期。特别是近3年来,崂山区的生态适宜度均远高于全国平均水平,充分显示了该区强劲的综合竞争能力和可持续发展能力。
     (6)构建了生态系统风险管理的EVR模型,并基于Monte Carlo方法,以青岛市崂山区为例开展了空气污染状况案例研究。
     (7)开发了“青岛崂山生态风险决策支持系统”。
     作者认为在城市生态风险评价中,应要充分体现人的主体地位。建议按照驱动力(D)-压力(P)-状态(S)-响应(R)-调控(C)的系统工程框架,开展区域生态风险评价,该框架是对当前广为使用的压力(P)-状态(S)-响应(R)框架的扩充。以人口迁移为主要指标,根据人口迁移的动力学机制,构建了人口迁移势、生态适宜度模型,通过分析区域人口迁移的特征,巧妙地利用少量的数据研究了崂山区生态适宜度变化趋势。另外,本文构建的生态风险管理模型EVR充分借鉴金融市场风险管理的最新理念,对于区域风险管理具有重要参考价值。
Ecological risk refers to the possibility of some adverse ecological effects due toone or more stress (physical,chemical and biological stress,etc.) Ecological riskassessment is the whole process,include conduct probability assessment of adverseecological effects,and implement risk management to prevent or reduce the risk.Itspurpose is to provide scientific information for risk management,and minimizedamage of pollution and ecological degradation.Early ecological risk assessmentfocus on the risk that human (or human environment) suffer.Recently risk assessmenton ecosystem attracts more and more attention due to the degradation of the globalenvironment.
     As most activities are centralized in the city,city is a typical complex ecosystemwith society system,economy system and nature system,which becomes the mainresearch target of ecological risk assessment.The reason causing urban ecologicalproblems include natural factors,such as global change,crustal movement etc.Anddisturbance from human production and daily life is another important reason.Theurbanization is an important step to realize regional sustainable development.Butthere are various conflicts and stress between the urbanization and ecologicalenvironment and ecological risk will occur simultaneously.It plays an important rolefor urban sustainable development to assess the ecological risk in the urbanizationprocess,and find out the laws of ecological risk.
     Urban pollution,climate change (such as floods etc.),and other ecological risk isthe major obstacle for urban development.At present the study about the regionalecological risk assessment mainly focus on natural ecosystems,the studys on urbanecological risk assessment are rare.
     As a typical coastal city,Laoshan district in Qingdao is selected as the study area.The ecological risk and the character in this area are analyzed.According to reliablemathematical theory,ecological risk assessment indicators and models are established.And the ecological risk is estimated including air pollution,change in temperature andchange in precipitation in Laoshan district.The characters of the above risk arepresented and forecast research is conducted according to Mean Generation Function,artificial neural networks and other modern mathematical tools.Based oninternational VaR model,EVR model of ecological risk management is establishedand it is applied in Laoshan District.Considering the response of human to ecologicalrisk and the character of coastal ecosystem,niche-fitness model is established and it'sused to assess the niche-fitness of the studied area and its trend.Finally,decisionsupport system software of ecological risk assessment in coastal city is developed andused for an important means for ecological risk management.
     The main results and conclusions are as follows:
     (1)According to reliable mathematical theory,urban ecological risk assessmentmodel is established including the following indicator:risk degree,reliability index,risk index,system continued stability index,system restoration index and the overallloss.This model has the character of clear indicators,calculated convenient,well-targeted.And application research is conducted in the Laoshan District.
     (2)According to ecological risk assessment model,air pollution and ecologicalrisk evolution in Laoshan district of Qingdao City from 2001 to 2005 is studied.Theresult indicates that a number of risk assessment indicators are no differences from2001 to 2005.But it is worth noting that the restoration index of air pollution in thisarea increases significantly.It increases from 45% in 2001,40% in 2002 to 60% in2004 and 50% in 2005.This reflects that more efforts in pollution control,theimprovement of capacity to deal with the unexpected pollution incidents,and thequick treatment for pollution.At the same time.the incidence of moderate pollutionaccidents also decrease significantly.which indicates that ecological quality improves.Therefore,the overall loss show a downward trend.reduced to 6.44% in 2004.In winter and spring,there is still high incidence of pollution accidence.Over the pastfive years,air quality in winter has not improved,but there is the trend of furtherlandslides.More attention should be paid to this problem.
     (3)The rainfall data in the past 50 years is analyzed using trend analysis,correlation analysis and other methods.And the precipitation forecast model isestablished using extreme estimates method,Mean Generation Function etc.Annualrainfall,the seasonal rainfall,drought and flood levels,frequency,such as the summerstorm in Laoshan district are forecast from 2005 to 2010.The forecast results arebasically consistent with the facts in 2006.The result shows that there are largerchanges in precipitation season in Laoshan District,and precipitation is mainlyconcentrated in the summer and autumn,and in winter and spring precipitation issignificantly less.Changes in precipitation in the past 20 years show a more stabletrend,but precipitation in summer and fall has decreased year by year.
     (4) The change in temperature in the past 50 years is analyzed.The result showthat the temperature increase occurred mainly in the past 20 years.From 1954 to1975,there is no obvious evidence of warming.But from 1981 to 2004 the minimum of theaverage annual increase in temperature is 0.035℃,the maximum is 0.092℃,andaverage annual increase is 0.052℃.This is obviously higher than the average level ofthe southeast coastal areas.A multi-output of two kinds of artificial neural networkmodel is established to predict the temperature trends in the next 10 years.
     (5) The result of niche-fitness research in Laoshan district shows that the averageniche-fitness is 57.40%,higher than the national average (50%).At the same time,wenote that the niche-fitness in this area has entered a period of rapid growth after ashort-term decrease.Especially in the last three years,niche-fitness are far higher thanthe national average,fully shows the area has strong competitive ability and capacityfor sustainable development.
     (6) Establish EVR model of ecological risk management,and conductapplication study in Laoshan district based on the Monte Carlo method.
     (7) Develop“Decision support system software of ecological risk assessment inLaoshan district of Qingdao”
     It is necessary to fully reflect the dominant position of human in urban ecologicalrisk assessment.It is recommended to conduct regional ecological risk assessmentaccording to the system engineering framework:Driver (D)-Pressor (P)-State(S-Response(R)-Control(C).The framework is an expansion of the current widely usedpressure (P)-Status (S)-Response (R) framework.Take population migration as themain indicators,human ecological momentum and niche-fituess model is establishedaccording to the dynamics mechanism of population migration.Based on analysis ofthe characteristics of regional population migration and clever use of small amountsof data,the change in niche-fitness in Laoshan district is analyzed.In addition,EVRmodel of ecological risk management fully draw the concept of risk management onthe financial markets,which is very important for regional risk management.
引文
[1] Abdel-Aal R.E. Improving electric load forecasts using network committees. Electric Power Systems Research, 2005, 74(1): 83-94.
    [2] Abdel-Aal R.E. Improving electric load forecasts using network committees. Electric Power Systems Research, 2005, 74(1): 83-94.
    [3] Anderson, E. L., Hattis, D. Uncertainty and Variability. Risk Analysis, 1999, 19( 1 ):47-49.
    [4] Barnthonse L W, Suter II G. W.Use manual for ecological risk assessment[C]. ORNL, 1988, 6251.
    [5] Bamthouse LW, Suter II GW. Use Manual for Ecological Risk Assessment. ORNL-6251, 1988.
    [6] Bartell SM, Lefebvre G, Kaminshi G, et al. An Ecosystem Model for Assessing Ecological Risks in Quebec Rivers, Lakes, and Reservoirs. Ecological Modelling, 1999, 124: 43-67.
    [7] C. S. Findly , L.Zheng. Estimating ecosystem risks using cross-validated multiple regression and cross-validated holographic neural networks.Ecological Modelling, 1999, (19): 57-72.
    [8] Calabrese EJ, Baldwin LA. Performing Ecological Risk Assessment. Boca Raton: Lewis Publishers, 1993.1-257.
    [9] Chapman and Hall, London. Claassen M. Ecological Risk Assessment as a Framework for Environmental Impact Assessment. Water Science Technology. 1999, 39(10-11): 151-154.
    [10] Cornford, Dan. A Bayesian state space modelling approach to probabilistic quantitative precipitation forecasting. Journal of Hydrology, 2004, 288(1-2):92-104.
    [11] EC. Technical Guidance Document in Support of the Commission Directive 93/67/EEC on Risk Assessment for New Notified Substances and Commission Regulation 1488/94/EEC on Risk Assessment for Existing Chemicals. Brussels, European Commission, 1996.
    [12] Elman, J.L. Finding structure in time. Cognitive Sci.. 1990. 14:179-211.
    [13] Engineering and System Saftey. 1996, 54(2): 113-118.
    [14]Esa Ranta,Jan Lindstrom,Hanna Kokko著,汪业勖译.生态风险分析:Saimaa环斑豹案例[J].人类环境杂志,1996,25(5) :362-364.
    [15]Esa Ranta et al著,江业勤译.生态风险分析:Saimaa环斑豹案例[J].人类环境杂志,1996, 25(5):362-364。.
    [16]Fava JA, Adams WJ, Larson RJ, et al.Research Priorities in Environmental Risk Assessment Toxicological Chemistry, 1987,(10): 949-960.
    [17]Gelman, A.Carlin, J.B.,Stern.H.S., and Rubin, D.B.(1995).Bayesian Data Analysis,
    [18]Hertz DB,Thomas H.Risk Analysis and its Application.John Wiley &Sons, 1983.
    [19]Hilbert D.W., Ostendorf B.The utility of artificial neural networks for modelling the distribution of vegetation in past.present and future climates.Ecological Modelling, 2001,146:311-327.
    [20]Hilbert D.W., Ostendorf B.The utility of artificial neural networks for modelling the distribution of vegetation in past, present and future climates.Ecological Modelling, 2001,146:311-327.
    [21]Honghua Shi, Wei Zheng, Zhaohui Zhang, et al.BCA of Risk Management Option of Fishery Sustainable Use in Bohai Sea.China.International forum on marine science & technology and economic development, 2005.Qingdao.China.475-483.
    [22]Hunsaker CT, Grahm RL, Suter GW, et al.Assessing Ecological Risk on a Regional Scale.Environmental Management,1990.(14): 325-332.
    [23]John F.EC Approach to Environmental Risk Assessment of New Substances.The Science of the Total Environment.1995.171:275-279.
    [24]Jorion P.Value ant risk:The new benchmark for controlling market risk.New york::McGraw-Hill Companies, Inc,1997.
    [25]Kaplan, S.(1997).The words of risk analysis.Risk Analysis,17,407-417.
    [26]Kong Y., Li L., Li H., et al.Application of Comprehensive Decision in Synoptic Climate Forecasting:Integrative Forecasting Technology.Advances in Systems Science and Applications, 2003, 3(1): 138-142.
    [27] Kong Y., Li L., Li H., et al. Application of Comprehensive Decision in Synoptic Climate Forecasting: Integrative Forecasting Technology. Advances in Systems Science and Applications, 2003, 3(1): 138-142.
    [28] Li. P.W., Lai, Edwin ST. Short-range quantitative precipitation forecasting in Hong Kong. Journal of Hydrology, 2004, 288(1 -2): 189-209.
    [29] Li. P.W., Lai, Edwin S.T. Short-range quantitative precipitation forecasting in Hong Kong. Journal of Hydrology, 2004. 288(1-2): 189-209.
    [30] Liao X., Fu Y., Xie S. Zhang C. An Application of Neural Networks on Queuing System. Advances in Systems Science and Applications, 2005, 5 (2): 179-188.
    [31] Liao X., Fu Y., Xie S, Zhang C. An Application of Neural Networks on Queuing System. Advances in Systems Science and Applications, 2005, 5 (2): 179-188.
    [32] Lindley, D. The philosophy of statistics. The Statistician, 2000, 49(3): 293-337.
    [33] Lipton J, Galbraith H, Burger J, et al. A Paradigm for Ecological Risk Assessment. Environmental Management, 1993(17): 125.
    [34] Marzban C., Witt Arthur. A Bayesian neural network for severe-hail size prediction .Weather and Forecasting, 2000, 16(5): 600-601.
    [35] Mcdaniel T L , Axelrod L J. Slovic P. Perception of ecological risk to water environments[J]. Risk A nalysis, 1997, 17(3): 291-298.
    [36] Mcdaniel T L, Axelrod L J, Slovic P. Perception of ecological risk to water environments[J]. Risk Analysis, 1997, 17(3): 291-298.
    [37] Megill RE. An Introduction to Risk Analysis. Petroleum Publishing Company, 1977.
    [38] MHPPE. Premises for Risk Management: Risk Limits in the Context of Environmental Policy. Directorate General for Environmental Protection. The Netherlands: The Hague, 1989.
    [39] Nickerson, David M., Madsen, Brooks C. Nonlinear regression and AR1MA models for precipitation chemistry in East Central Florida from 1978 to 1997. Environmental Pollution, 2005, 135(3):371-379.
    [40] Nickerson, David M., Madsen, Brooks C. Nonlinear regression and ARIMA models for precipitation chemistry in East Central Florida from 1978 to 1997. Environmental Pollution, 2005, 135(3):371-379.
    [41] Nilsson A. Predicting the mean temperature of the transfer bar after rolling in the rougher using a neural network. Journal of Materials Processing Technology, 1998, 80-81: 469-474.
    [42] NRC. Science and Judgment in Risk Assessment. Washington D C: National Academy Press, 1994.
    [43] Obery AM, Landis WG. A Regional Multiple Stressor Risk Assessment of the Codorus Creek Watershed Applying the Relative Risk Model. Human and Ecological Risk Assessment, 2002, 8(2): 405-428.
    [44] Ouderri B N, Sulliram W G.A semi-variance model for incorporating risk into capital investment analysis. Journal of Engineering Economist. 1991, 36(2): 35-39.
    [45] Pasini A. M.Lor'e. Ameli F. Neural network modelling for the analysis of forcings/temperatures relationships at different scales in the climate system. Ecological Modelling, 2006, 191:58-67.
    [46] Peter Calow. Ecological Risk Assessment: Risk for What? How do We Decide Ecotoxicology and Environmental Safety, 1998(40): 15-18.
    [47] Power M, McCarty LS. Trends in the Development of Ecological Risk Assessment and Management Framework. Human and Ecological Risk Assessment, 2002, 8(1): 7-18.
    [48] Proceedings of European Saftey and Reliability Conference (ESREL), 2000. Edinburgh, 21-28.
    [49] Rao V. Kolluru, Steven M. Bartell, Robin M. Pitblado, et al. Risk assessment and management handbook. McGraw-Hill, Inc., New York. 1996.
    [50] Robert Costanza, Ralph d Arge, Rudolf de Groot. et al. The value of the world s ecosystem services and natural capital [J].Nature, 1997, 387 (15): 253-260.
    [51] Rolf FH. Outline on Risk Assessment Programme of Existing Substances in the European Union. Environmental Toxicology and Pharmacology, 1996, 2: 93-96.
    [52] Rubenstein M. Patterns in Problem Solving. New Jersey: Prentice Hall Inc. 1975.
    [53] Santomero M A. Financial risk management: the whys and hows. Financial Markets, Institutions & Instruments, 1995,4(5): 1-13.
    [54] Sanzogni L., Kerr D. Milk production estimates using feed forward artificial neural networks. Computers and Electronics in Agriculture, 2001, 32(1): 21-30.
    [55] Sanzogni L., Kerr D. Milk production estimates using feed forward artificial neural networks. Computers and Electronics in Agriculture, 2001, 32(1): 21-30.
    [56] Sergeant A. Management Objectives for Ecological Risk Assessment Developments at US EPA. Environmental Science & Policy, 2000, 3: 295-298.
    [57] Sharpe W F. Portfolio theory and capital markets. McGram-Hill lnc,1970.
    [58] SuterGW. Applicability of indicator monitoring to ecological risk assessment. Ecological Indicators, 2001, 1:101-112.
    [59] Sztobryn, Marzenna. Forecast of storm surge by means of artificial neural network. Journal of Sea Research, 2003, 49(4):317-322.
    [60] Sztobryn, Marzenna. Forecast of storm surge by means of artificial neural network. Journal of Sea Research, 2003, 49(4):317-322.
    [61] UKDOE. A Guide to Risk Assessment and Risk Management for Environmental Protection. Her Majesty' s Stationery Office, London, UK, 1995.
    [62] US EPA. Clinch and Powell Valley Watershed Ecological Risk Assessment, EPA/600R/-01/050, 2002.
    [63] US EPA. Guidelines for Ecological Risk Assessment. U.S. Environmental Protection Agency, Risk Assessment Forum, Washington, DC, EPA/630/R095/002F, 1998.
    |64] US EPA. 1992. Framework for Ecological Risk Assessment. EPA / 630 / R92 / 001.
    [65] Wang G. et al. Demographic uncertainty in ecologicalrisk assessments.EcoIogical Modelling, 2001. (136): 362-364.
    [66]Wu X., Ding L., Cai X.Deformation Predication of Deep Excavation Pit Support Structure Based on Fuzzy Neural Network.Advances in Systems Science and Applications, 2006, 6 (1):119-126.
    [67]Wu X., Ding L., Cai X.Deformation Predication of Deep Excavation Pit Support Structure Based on Fuzzy Neural Network.Advances in Systems Science and Applications, 2006, 6(1):119-126.
    [68]Yan S., Peng Y., Guo G.Monthly mean temperature prediction based on a multi-level mapping model of neural network BP type.Adv.Atm.Sci., 1995,12(2):225-232.
    [69]Yan S., Peng Y., Guo G.Monthly mean temperature prediction based on a multi-level mapping model of neural network BP type.Adv.Atm.Sci., 1995, 12(2):225-232.
    [70]Zhao X., Liao X., Jia X.The Neural Networks of Regression Analysis and Its Application.Advances in Systems Science and Applications, 2006, 6(1):7-15.
    [71]#12
    [72]保罗萨缪尔森著.萧琛等译.微观经济学.北京:华夏出版社,1999.
    [73]曹洪法,沈英娃.生态风险评价研究概述,环境化学.1991, 10(3): 26-30.
    [74]曹鸿兴.多步预测的降水时序模型,应用气象学报,1993, 4 (2).
    [75]曹鸿兴.统计模型的双评分准则及其在气象、水文预报中的应用.数理统计与应用概率,1989(1).
    [76]陈辉,刘劲松,曹宇,等.生态风险评价研究进展.生态学报,2006, 26(5): 1558-1566.
    [77]法博齐(美)著,周刚等译.投资管理学(第二版)——当代金融名著译丛.北京:经济科学出版社,1999.
    [78]范维澄,孙金华,陆守香,等.火灾风险评估方法学.北京:科学出版社,2006.
    [79]付在毅,许学工,林辉平,等.辽河三角洲湿地区域生态风险评价.生态学报,2001,21(3):365-373.
    [80]付在毅,许学工区域生态风险评价[J].地球科学进展,2001, 16(2):267-271.
    [81]国家科委、国家计委、国家经贸委、自然灾害综合研究组.中国自然灾害区划研究进展.北京:海洋出版社,1998.
    [82]黄崇福.自然灾害风险分析.北京:北京师范大学出版社,2001.
    [83]黄光宇,陈勇.论城市生态化与生态城市.城市环境与城市生态,1999, 12 (6) :28-31
    [84]蒋维,金磊.中国城市综合减灾对策.北京:中国建筑工业出版社,1992.
    [85]鞠笑生.我国单站旱涝指标确定和区域旱涝级别划分的研究.应用气象学报,1997,8(1):26-33.
    [86]李春,孙照渤,陈海山.华北夏季降水的年代际变化及其与东亚地区大气环流的联系.南京气象学院学报,2002, 25 (4): 455-462.
    [87]李春,孙照渤.中纬度阻塞高压指数与华北夏季降水的联系.南京气象学院学报,2003,26(4):458-464.
    [88]李国旗,安树青,陈兴龙,等.生态风险研究述评.生态学杂志,1999,18(4) :57-64.
    [89]李自珍,何俊红.生态风险分析与风险决策模型及应用——以河西走廊荒漠绿洲开发为例.兰州大学学报(自然科学版),1999, 35 (3): 149-156.
    [90]李自珍,李维德,石洪华等.生态风险灰色评价模型及其在绿洲盐渍化农田生态系统中的应用.2002, 22(6): 617-622.
    [91]李自珍,韦惠兰,白建明.人口数学教程.兰州:甘肃科学技术出版社,1993.
    [92]李自珍.应用生态学研究——生态系统的分析、调控与模拟.兰州:甘肃科学技术出版社,1991.
    [93]林潜.空气污染指数与健康.安全与健康,2005年4月.
    [94]林义.风险管理.成都:西南财经大学出版社,1988.
    [95]刘成,王兆印,何耘,等.环渤海湾诸河口潜在生态风险评价.环境科学研究,2002,15(5): 33-37.
    [96]刘新立.区域水灾风险评估的理论与实践.北京:北京大学出版社,2005.卢宏玮,曾光明,谢更新,张硕辅,黄国和,金相灿,刘鸿亮.洞庭湖流域区域生态风险评价.生态学报,2003, 23 (12): 2520-2530.
    [97]马世骏,王如松.社会-经济-自然复合生态系统生态学报,4 (1): 1-9.
    [98]毛小苓,刘阳生.国内外环境风险评价研究进展.应用基础与工程科学学报,2003, 11(3): 266-273.
    [99]毛小苓,倪晋仁.生态风险评价研究述评.北京大学学报(自然科学版),2005, 41(4)-646-654.
    [100]彭羽,刘雪华,张爽,靳强.基于综合生态损失度的顺义区生态风险评价.清华大学学报(自然科学版),2008, 48 (3) :367-370.
    [101]萨缪尔森,诺德豪斯著,萧琛等译.微观经济学.北京:华夏出版社,1999.
    [102]尚惠华,金洪钧,崔玉霞.水环境毒物污染点源的生态风险管理现状与展望.应用生态学报,2002, 13(5): 620-624.
    [103]沈英娃,曹洪法.生态风险评价方法简述.中国环境科学,1991, 11(6): 464-468.
    [104]石洪华.风险决策的理论与方法及其在生态系统中的应用研究.兰州:兰州大学硕士学位论文,2003.
    [105]世界商业评论.http://www.icxo.com/(日期:2005-06-03)
    [106]孙祈祥.保险学.北京:北京大学出版社,1996.
    [107]孙儒泳.动物生态学原理(第三版).北京:北京师范大学出版杜,2001.
    [108]孙铁珩,周启星,李培军.污染生态学[M].北京:科学出版社:2001.
    [109]孙心亮,方创琳.干旱区城市化过程中的生态风险评价模型及应用.干旱区地理,29(5):668-684.
    [110]谭桂荣,孙照渤,陈海山.旱涝指数的研究.南京气象学院学报,2002, 25(2):153-158.
    [111]王春峰.金融市场风险管理.天津:天津大学出版社,2001.
    [112]王明涛.证券投资风险计量、预测与控制.上海:上海财经大学出版社,2003.
    [113]王让回,樊自立.干旱区内陆河流域生态脆弱性评价——以新疆塔里木河流域为例.生态学杂志,2001, 20 (3): 63-68.
    [114]王如松,迟计,欧阳志云.中小城镇可持续发展的生态整合方法.北京:气象出版社,2001.
    [115]王如松,周启星,胡聃.城市生态调控方法.北京:气象出版社,2000.
    [116]王如松.自然科学与社会科学的桥梁c人类生态学研究进展.中国生态学发展战略研究.北京:中国经济出版社.
    [117]王晓军保险精算学.北京:中国人民大学出版社,1995.
    [118]王子健,吕怡兵,王毅,等.淮河水体取代苯类污染及其生态风险.环境科学学报,2002,22(3): 300-304.
    [119]魏凤英.现代气候统计诊断预测技术.北京:气象出版社,1999。
    [120]吴国富.一个考虑风险的证券价值评价公式的推导.系统工程理论与实践,1998,18(11).
    [121]肖洁.我国东南部快速城市化加快气温上升.科学时报,2004.06.28.
    [122]徐镜波,王咏.生态风险评价.松辽学刊(自然科学版),1999, 2: 10-13.
    [123]许学工,林辉平,付在毅,等.黄河三角洲湿地区域生态风险评价.北京大学学报(自然科学版),2001, 37(1):111-120.
    [124]阳文锐,王如松,黄锦楼,等.生态风险评价及研究进展.应用生态学报,2007, 18(8):1869-1876.
    [125]殷浩文.生态风险评价.上海:华东理工大学出版社,2001.
    [126]殷浩文.水环境生态风险评价程序.上海环境科学,1995, 14(2):11-14.
    [127]张永春.有害废物生态风险评价北京:中国环境科学出版社,2002.
    [128]张志良.人口承载力与人口迁移.兰州:甘肃科学技术出版社,1993.
    [129]张志强.期权理论与公司理财.北京:华夏出版社,2000.
    [130]钟政林,曾光明,杨春平.环境风险评价研究进展.环境科学进展,1996, 4(6):17-21.
    [131]周成虎.洪水灾情评估信息系统研究.地理学报,48 (1): 1993

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700