用户名: 密码: 验证码:
湿地植物根表铁膜对磷、铅迁移转化及植物有效性影响的机理探讨
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人工湿地广泛用于处理生活污水和控制农业面源污染。湿地植物是人工湿地系统的重要组成部分,植物根系具有发达的通气组织,能将大气中和光合作用产生的氧运送到根部,在根系与土壤界面形成微氧化区域,使植物根表形成铁氧化物胶膜。铁膜的形成不仅影响根际土壤中物质的迁移和转化,而且影响植物对矿质元素的吸收利用。因此,研究湿地植物根表铁膜对磷、铅迁移、转化及植物有效性的影响,对深入了解湿地植物净化水质的内在机理有着积极的意义。
     本文通过调查采样研究了不同湿地植物在自然条件下形成根表铁膜的差异性以及对磷吸附的特征,探讨了根表铁膜形成对景观湿地植物不定根生长和根系活力的影响,同时也分析了湿地植物土壤微生物群落结构对外加铅、铁的响应。根据自然环境条件,并通过溶液培养试验和土壤盆栽试验系统地研究了根表铁膜影响磷、铅迁移、转化及植物有效性的机理,主要结果如下:
     (1)通过对不同生境的湿地植物采样分析,发现不同生境的湿地植物根表铁膜量差异较大,同一生境不同植物根表铁膜量差异明显,即同属于莎草科植物根表铁膜含量的顺序为:水毛花>蔗草>旱伞草,其中水毛花是旱伞草的6.5倍。
     (2)铅抑制湿地植物根表铁膜的形成与积累,添加铁促进根表铁膜的积累。溶液培养实验发现高铅对铁膜流失的影响大于低铅,根表铁膜量越大,其流失量更多。在铅污染土壤中,同一铅水平下,宽叶香蒲和黄菖蒲根表铁膜量都随铁添加量的增加呈上升趋势;在同一铁水平下,宽叶香蒲根表铁膜量随铅浓度的增加而降低,而黄菖蒲根表铁膜量并没有随铅浓度的增加而明显降低。
     (3)当铁浓度低于100 mg/L时,宽叶香蒲新形成不定根生物量随铁浓度的增加降低,但当铁浓度高于100 mg/L时,不定根生物量呈增加趋势;而黄菖蒲的新形成不定根的生物量与根表铁膜量的相关性不显著。植物根表形成铁膜后,宽叶香蒲根系活力与其根表铁膜量呈显著的负相关,相关系数为-0.861~*;而黄菖蒲在各处理之间的根系活力为2.36-5.48μg/g·h,总体变化幅度不大。
     (4)土壤微生物群落结构对外源铅铁的响应表现为:磷脂脂肪酸(PFLAs)表征的微生物总量在根际高于非根际,香农-维纳指数(H)在500 mg/kg铁处理水平下,非根际土中微生物群落结构多样性随铅浓度增加呈上升趋势,而根际土壤中H指数在高浓度铅(500、1000 mg/kg)处理时高于低铅处理。聚类分析表明根际土中微生物群落结构主要受铁的影响,而非根际土铅起主导作用。
     (5)不论是未污染土壤还是铅污染土壤,湿地植物根表吸附的磷与根表铁膜量呈明显的正相关。而对铅的吸附取决于铁膜厚度大小,铁膜量大时则呈正相关,否则相关性不显著。
     (6)溶液培养实验中,铁膜量较少时促进了宽叶香蒲对磷的利用,超出了30 g/kg则抑制了磷的利用;而根表铁膜对黄菖蒲地上部磷含量的影响表现出抑制作用。在50 mg/L铅处理中,根表铁膜提高了宽叶香蒲体内铅的含量;而对黄菖蒲而言,一定量根表铁膜促进了铅向根中迁移,但诱导铁浓度高于100 mg/L时则抑制铅向根中迁移。根表铁膜提高黄菖蒲地上部铅含量。铅污染土壤中,添加铁促进了根表铁膜的形成与积累,当铁与铅添加量之比值为1时有助于磷、铅在宽叶香蒲体内的积累,而当铁添加量为100 mg/kg时,却有助于磷、铅在黄菖蒲植株体内积累。
Constructed wetland was widely used in treating domestic sewage and controllingagricultural non-point source pollution. Wetland plant is one of the most essentialcomponents in constructed wetland system. The oxygen from atmosphere andphotosynthesis was transported to roots through aerenchyma. Micro-oxidation zoneformed in rhizosphere, leading to iron plaque formation on plant root surfaces. Formationof iron plaque not only affects the migration, transformation and absorption of mineralelements in rhizosphere, but also their utilization by plants. Therefore, it is very importantto study the effects of iron plaque on migration and bioavailability of phosphorus and leadin order to understand the mechanism of purifying water by wetland plants.
     The difference of iron plaque and characteristics of phosphorus adsorption wereinvestigated through sampling wetland plants under natural condition to determine ironplaque effects on root activity and growth of adventitious roots, and to examine the effectof lead and iron on soil microbial community structure. The formation of iron plaque onroot surface and its effects on utilization of phosphorus and lead by Typha latifolia andIris pseudacorus were studied under solution culture and pot experiments. The resultsshowed that the amount of iron plaque was affected by the addition of iron and lead, andthen influenced the utilization of phosphorus and lead by plants. The mechanism of ironplaque effect on bioavailability of phosphorus and lead by plants was discussed. The mainfindings are as follows:
     (1) The amount of iron plaque on the root surfaces varied greatly in various wetlandniches and species. For the Cyperaceae family plants, the amount of iron plaque followedthe order of Scirpus triangulates L.>Scirpus triqueter L.>Cyperus alternifolium L. ssp.Flabelliformis(Rottb.) Kuk. and was 6.5 times in Scirpus triangulates L.'s than Cyperusalternifolium L. ssp. Flabelliformis(Rottb.) Kuk.'s.
     (2) Formation and accumulation of iron plaques were inhibited by lead, butpromoted by iron. Solution culture experiment showed that higher concentration of lead caused more loss of iron plaque, and the loss of iron plaques was more when iron plaqueswere abundance. After iron was added to lead contaminated soil, the amount of ironplaque on the roots of broad-leaf cattail and yellow flag was increased with the increase ofiron addition. The amount of iron plaque on roots of broad-leaf cattail was decreased withaddition of lead, but that on root of yellow flag was not obviously influenced by theaddition of lead.
     (3) In solution culture experiment, the fresh weight of new adventitious roots inbroad-leaf cattail was decreased with the increase of ferrous concentration from 0 to 100mg/L, and then was increased after ferrous concentration was beyond 100 mg/L. Therewas no obvious correlation between fresh weight of adventitious roots in yellow flag andferrous concentration in solution, but a significantly negative correlation between rootactivity of broad-leaf cattail and amounts of iron plaque with a correlation coefficient of0.861. The root activity of yellow flag ranged from 2.36 to 5.48μg/g·h in this experiment.
     (4) The response of microbial community structure in the soil planted broad-leafcattail with the addition of iron and lead were as follows: the microbial biomasscharacterized by phospholipid fatty acid in the rhizosphere was more than that in the bulksoil. Shannon index(H) in the bulk soil was increased with lead of 500 mg Fe/kg level.The H index in the rhizosphere in treatments with 500 and 1000 mg/kg lead wassignificantly higher than that of low lead addition. Based on cluster analysis, themicrobiology community was mainly affected by lead nitrate in bulk soil, but by ferroussulfate in the rhizosphere.
     (5) There was significantly positive correlation between amounts of phosphorusadsorption and iron plaque on the roots surface of wetland plant planted in bothno-polluted soil and lead contaminated soil. The correlation between lead adsorption andiron plaque depended on the amounts of iron plaque.
     (6) Solution culture experiment showed that the small amounts of iron plaque formedon the roots surface of broad-leaf cattail would promote the phosphorus utilization,whereas, the inhibition was observed when the amount of iron plaque was 30 g/kg, exceptthe treatment of 200 mg Fe/L. Phosphorus content in over-ground parts of yellow flag wasdecreased with the formation of iron plaque. The formation of iron plaque on the roots of broad-leaf cattail could increase the content of lead in roots and over-ground at thetreatment of 250 mg Pb/L in solution. Content of lead in roots of yellow flag wasimproved by iron plaque in 10 mg Pb/L solution, and formation of iron plaque with thetreatment of ferrous less than 100 mg/L increase the content of lead in roots. Once theferrous concentration was beyond 100 mg/L, iron plaque would decrease the content oflead in roots. When the ratio of iron to lead added was 1, accumulation of phosphorus andlead in over-ground of broad-leaf cattail was more than that with other treatments, andlead content in over-ground parts of yellow flag was promoted by iron plaque. Theaccumulation of phosphorus and lead in yellow flag with the soil treatment of 100 mg/kgiron was more than that of 0 and 500 mg/kg iron, and amount of phosphorus and lead inroots was higher than that in over-ground parts.
引文
白军红,邓伟,张玉霞,王国平,徐小锋.洪泛区天然湿地有机质及氮素的空间分布特征[J],环境科学,2002,23(2):77-81
    白军红,邓伟,朱颜明,等.霍林流域湿地土壤碳氮空间分布特征及生态效应[J],应用生态学报,2003,14(9):1494-1498.
    白军红,邓伟,朱颜明,张玉霞,栾兆擎.水陆交错带土壤氮素空间分异规律研究-以月亮泡水陆交错带为例[J],环境科学学报,2002,22(3):343-348
    白军红,李晓文,崔保山,王庆改.湿地土壤氮素研究概述[J],土壤,2006,38(2):143-147.
    蔡妙珍,罗安程,章永松等.水稻根表铁膜对磷的富集作用及其水稻磷吸收的关系[J],中国水稻科学,2003,17(2):187-190.
    陈桂球,郑瑛.宽叶香蒲对铅锌的吸收、积累和迁移规律研究[J],中山大学学报:自然科学版,1993,32(1):87-93.
    陈世宝,朱永官,马义兵.不同磷处理对污染土壤中有效态铅及磷迁移的影响[J],环境科学学报,2006,26(7):1140-1144.
    成水平,吴振斌,况琪军.人工湿地植物研究[J],湖泊科学,2002,14(2):179-184.
    成水平,吴振斌,夏宜(?).水生植物的气体交换与输导代谢[J],水生生物学报,2003,27(4):413-417.
    迟传德.安徽省升金湖湿地土壤碳、磷的分布研究[D],硕士学位论文,南京:南京农业大学,2006.6.
    崔理华,朱夕珍,骆世明,等.垂直流人工湿地系统对污水磷的净化效果[J],环境污染治理技术与设备,2002,3(7):13-17.
    邓泓,叶志鸿,黄铭洪.湿地植物根系泌氧的特征[J],华东师范大学学报(自然科学版),2007,6:69-76.
    段晓男,王效科,欧阳志云.维管植物对自然湿地甲烷排放的影响[J],生态学报,2005,25(12):3375-3382.
    郝庆菊,王起超,王跃思.三江平原典型湿地土壤中硫的分布特征[J],土壤通报,2004,35(3):331-335.
    何池全,赵魁义,余国营.湿地克隆植物的繁殖对策与生态适应性[J],生态学杂志,1999,18(6):38-46.
    何春娥,刘学军,张福锁.植物根表铁膜的形成及其营养与生态环境效应[J],应用生态学报,2004,15(6):1069-1073.
    何艳.五氯酚的土水界面行为及其在毫米级根际微域中的消减作用[D],博士学位论文,杭州:浙江大学,2006,86.
    胡焕斌,王桂珍,冯俐,等.人工湿地处理矿山炸药废水[J],环境科学与技术,1997,(3):17-18.
    黄亚,傅以钢,赵建夫.富营养化水体水生植物修复机理的研究进展[J],农业环境科学学报,2005,24(增刊):379-383.
    雷泽湘,谢贻发,徐德兰,刘正文.大型水生植物对富营养化湖水净化效果的试验研究[J],安徽农业科学,2006,34(3):553-554.
    李华,程芳琴,王爱英,杜红梅.三种水生植物对Cd污染水体的修复研究,山西大学学报(自然科学版)[J],2005,28(3):325-327.
    李天煜,李洪敬,谢素霞.水生维管植物克隆繁殖方式的多样性[J],广西植物,2000,20(3):233-238.
    李学垣主编.土壤化学[M],北京:高等教育出版社,2003.
    李晔,王潮中,赵秀香,吴元华.铁营养对烟草幼苗生长及生理生化指标的影响[J],中国农学通报,2006,22(9):25-27.
    李志炎,唐宇力,杨在娟,岳春雷.人工湿地植物研究现状[J],浙江林业科技,2004,24(4):56-58.
    梁威,吴振斌.构建湿地基质微生物与净化效果及相关分析[J],中国环境科学,2002,22(3):282-285.
    刘凡,介晓磊,贺纪正,等.不同pH条件下针铁矿表面磷的配位形式及转化特点[J],土壤学报,1997,34:367-374.
    刘侯俊,胡向白,张俊伶,等.水稻根表铁膜吸附镉及植株吸收镉的动态[J],应用生态学报,2007,18(2):425-430.
    刘吉平,吕宪国,杨青,郗敏.三江平原环型湿地土壤养分的空间分布规律[J],土壤学报,2006,43(2):247-255.
    刘建武,林逢凯,王郁,等.水生植物根系对多环芳烃(萘)吸附过程研究[J],环境科学与技术,2003,26(1):23-25.
    刘景双,杨继松,于君宝,等.三江平原沼泽湿地土壤有机碳的垂直分布特征研究[J],水土保持学报,2003,17(3):5-8.
    刘敏超,李花粉,夏立江,等.根表铁锰氧化物胶膜对不同品种水稻吸镉的影响[J],生态学报,2001,21(4):598-562.
    刘文菊,胡莹,朱永官,等.磷饥饿诱导水稻根表铁膜形成机理初探[J],植物营养与肥料学报,2008,14(1):22-27.
    刘文菊,尹君,李习平,等.根表铁膜对水稻吸收污灌土壤中的锌的影响[J],土壤与环境,2001,10(4):270-272.
    刘文菊,张西科,张福锁.根表铁氧化物和缺铁根分泌物对水稻吸收镉的影响[J],土壤学报,1999,36(4):463-469.
    刘文菊,朱永官.湿地植物根表的铁锰氧化物膜[J],生态学报,2005,25(2):359-363.
    刘艳菊,朱永官,丁辉,等.水稻根表铁膜对水稻根吸收铅的影响[J].环境化学,2007,26(3):327-330.
    刘弋潞,何宗健.水生植物净化富营养化水质的机理探讨和研究进展[J],江西化工,2006,(1):27-30.
    柳丹,潘凡,杨肖娥.铅富集植物对铅吸收及其耐性生理机制进展研究[J],池州学院学报,2007,21(5):88-91.
    鲁如坤.土壤农化分析方法[M].北京:中国农业科技出版社,2000.
    罗雪梅,何孟常,刘昌明.黄河三角洲地区湿地土壤对多环芳烃的吸附特征[J],环境化学,2007,26(2):125-129.
    雒维国,王世和,黄娟,钱卫一.潜流型人工湿地低温域脱氮效果研究[J],中国给水排水,2005,21(8):37-40.
    孟冬梅,朱永官,周建国.水稻根系通气组织与根表铁膜关系研究[J],现代农业科学,2008,15(4):55-58.
    彭新湘,Minoru Yamauchi.植物对铁毒的抗性机理,植物生理学通讯[J],1996,32(6):465-469.
    邵兴华,章永松,林成永,等.三种铁氧化物的磷吸附解吸特性以及磷吸附饱和度的关系[J],植物营养与肥料学报,2006,12(2):208-212.
    施卫明.土壤中铁的根际效应及其吸收机理[J],植物生理学通讯,1990,(2):1-7.
    史锟,徐虹,田艳芬.根表铁胶膜对镉污染土壤水稻吸镉量的影响[J],垦殖与稻作,2003,7:35-37.
    唐述虞,吴博成,宋正达,等.金属矿酸性废水的湿地生态工程处理研究[J],中国环境科学,1993,13(5):356-360.
    滕应,黄昌勇.重金属污染土壤的微生物生态效应及其修复研究进展[J],土壤与环境,2002,11(1):85-89
    田应兵,宋光煜,艾天成.湿地土壤及其生态功能[J],生态学杂志,2002,21(6):36-39.
    童昌华,杨肖娥,濮培民.水生植物控制湖泊底泥营养盐释放的效果与机理[J],农业环境科学学报,2003,22(6):673-676.
    屠晓翠,蔡妙珍,孙建国.大型水生植物对污染水体的净化作用和机理[J],安徽农业科学,2006,34(12):2843-2844,2867.
    王碧玲,谢正苗,孙叶芳,等.磷肥对铅锌矿污染土壤中铅毒的修复作用[J].环境科学学报,2005,25(6):189-1194.
    王大力,尹澄清.植物根孔在土壤生态系统中的功能[J],生态学报,2000,20(5):869-874.
    王贵民,陈国祥,杨艳华,等.亚铁对杂交水稻幼苗生长和部分生理生化特性的影响[J],南京师大学报:自然科学版,2003,26(2):56-60.
    王世和.人工湿地污水处理理论与技术[M],北京:科学出版社,2007.
    王新,周启星.外源锡铅铜锌在土壤中形态分布特性及改性剂的影响[J],农业环境科学学报, 2003,22(5):541-54
    吴建强,阮晓红,王雪.人工湿地中水生植物的作用和选择.水资源保护[J],2005,21(1):1-6.
    吴振斌,贺锋,程旺元,等.极谱法测定无氧介质中根系氧气输导[J],植物生理学报,2000,26(3):177-180.
    项学敏,宋春霞,李彦生,等.湿地植物芦苇和香蒲根际微生物特性研究[J],环境保护科学,2004,30(124):35-38.
    邢承华,蔡妙珍,刘鹏,等.植物根表铁锰氧化物胶膜的环境生态作用生态环境[J],2006,15(6):1380-1384.
    熊飞,李文朝,潘继征,等.人工湿地脱氮除磷的效果与机理研究进展.湿地科学[J],2005,3(3):228-234.
    徐德福,徐建民,王华胜,等.湿地植物对富营养化水体中氮[J],磷吸收能力研究,植物营养与肥料学报,2005,11(5):597-601.
    徐德福.富营养化水体人工湿地生态修复机理及应用研究[D],博士论文,杭州:浙江大学,2005.
    徐惠风,刘兴土,白军红.长白山沟谷湿地乌拉苔草沼泽湿地土壤微生物动态及环境效应研究[J],水土保持学报,2004,18(3):115-117.
    徐治国,何岩,闫百兴,等.营养物及水位对湿地植物的影响[J],生态学杂志,2006,25(1):87-92.
    杨刚,伍钧,唐亚.铅胁迫下植物抗性机制的研究进展[J],生态学杂志,2005,24(12):1507-1512.
    杨哗,陈英旭,重金属胁迫下根际效应的研究进展[J],农业环境保护,2001.20(1):55-58.
    杨永兴.国际湿地科学研究的主要特点、进展与展望.地理科学进展,2002,21(2):111-120.
    姚槐应,黄昌勇等编著.土壤微生物生态学及其实验技术[M],北京:科学出版社,2006,5-6.
    曾祥忠,吕世华,刘文菊等.根表铁、锰氧化物胶膜对水稻铁、锰和磷、锌营养的影响[J],西南农业学报,2001,14(4):34-38.
    张静.鄱阳湖南矶山湿地土壤对磷的吸附与释放特性的研究[D].硕士学位论文,南昌:南昌大学,2006.
    张磊,肖剑英,谢德体,等.长期免耕水稻田土壤的生物特征研究[J],水土保持学报,2002,16(2):111-114.
    张利红,李培军,李雪梅,孟雪莲,徐成斌.镉胁迫对小麦幼苗生长及生理特性的影响[J],生态学杂志,2005,24(4):458-460.
    张利红,李雪梅,陈强,何兴元.铅对不同品种玉米幼苗抗氧化酶活性及根系活力的影响[J],吉林农业大学学报,2006,28(2):119-123.
    张薇,魏海雷,高洪文,胡跃高.土壤微生物多样性及其环境影响因子研究进展[J],生态学杂志,2005,24(1):48-52.
    张西科,尹君,刘文菊,张福锁,毛达如.根系氧化力不同的水稻品种磷锌营养状况的研究[J],植物营养与肥料学报.2002,8(1):54-57.
    张西科,张福锁,毛达如.水稻根表铁氧化胶膜对水稻吸收Zn的影响[J],应用生态学报,1996,7(3):262-266.
    张西科,张福锁,毛达如.水稻根表铁氧化胶膜对水稻吸收磷的影响[J],植物营养与肥料学报,1997,3(4):295-299.
    张志良主编.植物生理学实验指导(第二版),北京:高等教育出版社,2001.
    赵先丽,周广胜,周莉,等.盘锦芦苇湿地土壤微生物特征分析[J],气象与环境学报,2006,22(4):64-67.
    邹元春,吕宪国,姜明.湿地克隆植物根茎对变境适应的表型可塑性[J],湿地科学,2007,5(4):305-310.
    Achtnich C F, Rude P D. Competition for electron donors among nitrate reducers, ferric iron reducers, sulfate reducers, and methaogensin anoxic paddy soil [J]. Biology Fertilizer Soils, 1988, 19: 65-72.
    Ali, N. A, Bernal, M. P, Ater, M., Tolerance and bioaccumulation of cadmium by Phragmites australis grown in the presence of elevated concentrations of cadmium, copper, and zinc [J]. Aquatic Botany, 2004, 80(3): 163-176.
    Armstrong J, Armstrong W, Beckett P M. Phragmites australis: venture- and humidity-induced pressure flows enhance rhizome aeration and rhizosphere oxidation [J]. New Phytologist, 1992, 120: 197-207.
    Armstrong J, Armstrong W. Rice and Phragmites: Effects of organic acids on growth, root permeability, and radial oxygen loss to the rhizosphere [J]. American Journal of Botany. 2001, 88: 1359-1370.
    Armstrong J, Armstrong W. Rice: Sulfide-induced barriers to root radial oxygen loss, Fe~(2+) and water uptake, and lateral root emergence [J]. Annals of Botany, 2005, 96(4): 625-638.
    Armstrong J, Jones R E, Armstrong W. Rhizome phyllosphere oxygenation in Phragmites and other species in relation to redox potential, convective gas flow, submergence and aeration pathways [J]. New Phytologist, 2006, 172 (4):719-731.
    Armstrong W, Cousins D, Armstrong J, Turner D W, Beckett P M. Oxygen distribution in wetland plant roots and permeability barriers to gas-exchange with the rhizosphere: a mieroelectrode and modelling study with Phragmites australis [J]. Annals of Botany, 2000, 86, (3): 687-703.
    Armstrong W, Strange M E, Cringle S, Beekett P M. Microelectrode and modeling study of oxygen distribution in roots [J]. Annals of Botany, 1994, 74: 287-299.
    Armstrong W. The Oxidising Activity of Roots in Waterlogged Soils [J]. Physiologia Plantarum, 1967, 20: 920-926.
    Azzoni R, Giordani C, Bartoli M, Welsh D T, Viaroli P. Iron, sulphur and phosphorus cycling in the rhiosphere sediments of a eutrophic Ruppia eirrhosa meadow (Valle Smarlacca, Italy) [J]. Journal of Sea Research, 2001, 45 (1): 15-26.
    Bacha R E, Hossner L R. Characteristics formed on rice roots as affected by Fe and Mn additions[J]. Soil Science Society of Americca Journal, 1977,41,931-935.
    Batty L C, Baker A J M, Wheeler B D, Curtis C D. The effect of pH and plaque on the uptake of Cu and Mn in Phragmites australis (Cav.) Trin ex. Steudel [J]. Annals of Botany, 2000, 86:647-653.
    Batty L C, Baker A J M, Wheeler B D. Aluminium and Phosphate uptake by Phragmites austrails: the role of Fe, Mn and Al root plaques [J]. Annals of Botany, 2002, 89,443-449.
    Beg C B M, Kirk G J D, Mackenzie A F, Neue H U. Root-induced iron oxidation and pH changes in the lowland rice rhizosphere[J]. New Phytologist, 1994, 128:469-477.
    Bezbaruah A N, Zhang T C. Quantification of oxygen release by bulrush (Scirpus validus) roots in a constructed treatment wetland [J]. Biotechnology and Bioengineering, 2005, 89(3): 308-318.
    Blaylock M J, Salt D E, Dushenkov S, Zakharova O, Gussman C, KaPuinikY, Ensley D E and Raskin I. Enhanced accumulation of Pb in Indian mustard by soil applied chelating agents [J]. Environmental Science &Technology, 1997, 31: 860-865.
    Blom C W P M, Voesenek L A C J. Flooding: the survival strategies of plants [J]. Trends in Ecology and Evolution, 1996, 11: 290-295.
    Blute N K, Brabander D J, Hemond H F, Sutton S R, Newville M G, Rivers M L. Arsenic sequestration by ferric iron plaque on cattail roots [J]. Environmental Science & Technology, 2004,38(22): 6074-6077.
    Boone C M, Bristow J M, vanLoon G W. The relative efficiency of ionic iron(III) and iron(II) utilization by the rice plant[J], Journal of Plant Nutrition, 1983, 6(3): 201-218.
    Bowman J P, Skerratt J H, Nichols P D, Sly L I. Phospholipid fatty acid and lipopolysaccharide fatty acid signature lipids in methane-utilizing bacteria [J]. FEMS Microbiology Ecology, 1991, 85:15-22.
    Bridge T A M, Johnson D B. Reduction of soluble iron and reductive dissolution of ferric iron-containing minerals by moderately thermophilic iron-oxidizing bacteria [J]. Applied and Environmental Microbiology, 1998,64(6): 2181-2186.
    Brix H. Gas exchange through dead culms of reed, Phragmites australis (Cav. )Trin.Ex Steud [J]. Aquatic Botany, 1989, 35: 81-89.
    Brooks A S, Rozenwald M N, GeohringL D, et al. Phosphorus removal by wollastonite: A constructed wetland substrate [J]. Ecological Engineering, 2000,15: 121-132.
    Cacador I, Vale C, Caarino F. Accumulation of Zn、 Pb,、Cu、 Cr and Ni in sediments between roots of Tagus Estuary salt marshes, Portugal [J]. Estuarine, Coastal and Shelf Science, 1996, 42,393-403.
    Caetano M, Vale C. Retention of arsenic and phosphorus in iron-rich concretions of Tagus salt marshes [J]. Marine Chemistry, 2002, 79, (3-4): 261-271.
    Chabbi A, Hines M E, Rumpel C. The role of organic carbon excretion by bulbous rush roots and its turnover and utilization by bacteria under iron plaques in extremely acid sediments [J]. Environmental and Experimental Botany, 2001,46, (3): 237-245.
    Chen C C, Dixon J B, Turner F T. Iron Coatings on Rice Roots: Mineralogy and Quantity Influencing Factors [J], Soil Scienc Society of America Journal, 1980,44: 635-639.
    Chen J, Gu B H, Royer R A. The roles of natural organic matter in chemical and microbial reduction of ferric iron [J]. The Science of the Total Environment, 2003, 307 : 167-178.
    Chen R F, Shen R F, Gu P, Dong X Y, Du C W, Ma J F. Response of rice {Oryza sativa) with root surface iron plaque under aluminium stress [J]. Annals of Botany, 2006, 98(2): 389-395.
    Chen X P, Kong W D, He J Z, Liu W J, Smith S E, Smith F A, Zhu Y G. Do water regimes affect iron-plaque formation and microbial communities in the rhizosphere of paddy rice? [J]. Journal of Plant Nutrition and Soil Science-Zeitschrift Fur Pflanzenernahrung Und Bodenkunde, 2008, 171, (2): 193-199.
    Christensen K K, Jensen H S, Andersen F O, Wigand C, Holmer M. Interferences between root plaque formation and phosphorus availability for isoetids in sediments of oligotrophic lakes [J]. Biogeochemistry, 1998,43(2):107-128.
    Christensen K K, Sand-Jensen K. Precipitated iron and manganese plaques restrict root uptake of phosphorus in Lobelia dortmanna [J]. Canadian Journal of Botany-Revue Canadienne De Botanique, 1998, 76(12): 2158-2163.
    Christensen K K, Wigand C. Formation of root plaques and their influence on tissue phosphorus content in Lobelia dortmanna [J]. Aquanic Botany, 1998, 61: 111 -122.
    Christensen K K. Differences in iron, manganese, and phosphorus binding in freshwater sediment vegetated with Littorella uniflora and Benthic microalgae [J]. Water Air and Soil Pollution,1997, 99 (1-4): 265-273.
    Collins B S, Sharitz R R, Coughlin D P. Elemental composition of native wetland plants in constructed mesocosm treatment wetlands [J]. Bioresource Technology, 2005,96(8): 937-948.
    Colmer T D. Long-distance transport of gases in plants: a perspective on internal aeration and radial oxygen loss from roots [J]. Plant, Cell and Environment, 2003,26: 17-36.
    Cornell R M, Schwertmann U. The iron oxides: structure, properties, reactions, occurrences and uses; VCH: Weinheim, 1996; 573.
    Crawford R M M. Root survival in flooded soils. In Mires: Swamp, Bog, Fen and Moor. Ecosystems of the World, Vol. 4. Gore A A.( Eds.) Amsterdam. Elsevier Science, 1993, pp. 257-283.
    Crowder A, MacFie S M. Seasonal deposition of ferric hydroxide plaque on roots of wetland plants [J]. Canada Journal of Botany. 1986, 64,2120-2324.
    Crowder A, St -Cyr L. Iron oxide plaque on wetland roots [J]. Trend of soil Science, 1991, 1:315-329.
    Curl R, T ruelove B. The Rhizosphere. New York: Springer, 1986.
    Deiana S, Manunza B, Palma A, et al. Interactions and mobilization of metal ions at the soil-root interface. In: Ttrace metals in the rhizosphere, Gobran G R, Wenzel W W, Lombi E (Eds.) CRC Press, Boca Raton, London, New York, Washingtong, D. C. 2001, p: 127-145.
    Deng H, Ye Z H, Wong M H. Accumulation of lead, zinc, copper and cadmium by 12 wetland plant species thriving in metal-contaminated sites in China [J]. Environmental Pollution, 2004,132(1): 29-40.
    Doelman P, Haanstra L. Effects of lead on the decomposition of organic matter [J]. Soil Biology and Biochemistry, 1979, 11:481-485.
    Doelman P, Haanstra L. Short-term and long-term effects of cadmium, chromium, copper, nickel,lead and zinc on soil microbial respiration in relation to abiotic soil factors [J]. Plant and Soil,1984,79:317-327.
    Drew MC. Plant injury and adaptation to oxygen deficiency in the root environment: a review [J].Plant and Soil, 1983,75, 179-199.
    Ekelund F, Olsson S, Johansen A. Changes in the succession and diversity of protozoan and microbial populations in soil spiked with a range of copper concentrations [J]. Soil Biology and Biochemistry, 2003, 35(11): 1507-1516.
    Emerson D, Moyer C. Isolation and characterization of novel iron-oxidizing bacteria that grow at circumneutral pH [J]. Applied and Environmental Microbiology, 1997, 63, (12): 4784-4792.
    Emerson D, Weiss J V, Megonigal J P. Iron-oxidizing bacteria are associated with ferric hydroxide precipitates (Fe-plaque) on the roots of wetland plants [J]. Applied and Environmental Microbiology, 1999, 65(6): 2758-2761.
    Emerson D, Weiss J V. Bacterial iron oxidation in circumneutral freshwater habitats: Findings from the field and the laboratory [J]. Geomicrobiology Journal, 2004,21 (6): 405-414.
    Farmer L M, Pezeshki S R, Larsen D. Effects of hydroperiod and iron on Typha latifolia grown in a phosphorus-enhanced medium [J]. Journal of Plant Nutrition, 2005,28 (7): 1175-1190.
    Fekete S, Mandy A, Stefanovits-Banyai E. Change of peroxidase enzyme activities in annual cuttings during rooting [J]. Acta Biologica Szegediensis, 2002,46 (3-4): 29-31.
    Findlay R H, Dobbs F C. Quantitative description of microbial communities using lipid analysis. In: Handbook of Methods in Aquatic Microbial Ecology (P. F. Kemp, B. F. Sheer, E. B. Sheer and J. J. Cole eds). London: Taylor & Francis press, 1993,271-284.
    Fitzgerald E J, Caffrey J M, Nesaratnam S T, McLoughlin P. Copper and lead concentrations in salt marsh plants on the Suir Estuary, Ireland [J]. Environmental Pollution, 2003,123(1): 67-74.
    Forsberg L S, Ledin S. Effects of iron precipitation and organic amendments on porosity and penetrability in sulphide mine tailings [J]. Water Air and Soil Pollution, 2003, 142 (1-4):395-408.
    Frosteg(?)rd A, Baath E, Tunlid A, Shifts in the structure of soil microbial communities in limed forests as revealed by phospholipid fatty acid analysis[J]. Soil Biology and Biochemistry, 1993,25(6): 723-730.
    Frosteg(?)rd (?), Tunlid A, B(?)(?)th E. Phospholipids fatty composition, biomass, and activity of microbial communities from two soil types experimentally exposed to different heavy metals[J]. Applied and Environmental Microbiology, 1993, 59(11): 3605-3617.
    Giller K E, Witter E, Mcgrath S P. Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils: A review [J]. Soil Biology and Biochemistry, 1998,30(10-11): 1389-1414.
    Golden D C, Turner F T, SittertzBhatkar H, Dixon J B. Seasonally precipitated iron oxides in a vertisol of southeast Texas [J]. Soil Science Society of America Journal, 1997, 61, (3): 958-964.
    Grace J B, Wetzel R G. Variations in growth and reproduction within populations of two rhizomatous plant species, Typha latifolia and Typha angustifolia[J]. Oecologia, 1982, 53: 258-263.
    Greipsson S. Effect of iron plaque on roots of rice on growth of plants in excess zinc and accumulation of phosphorus in plant in excess copper or nickel [J]. Journal of Plant Nutrition, 1995,18(8): 1659-1665.
    Grosse W, Jovy K, Tiebel H. Influence of plants on redox potentials and methane production in water-saturated soil [J]. Hydrobiologia, 1996, 340: 93-99.
    Guo W, Zhu Y G, Liu W J, Liang Y C, Geng C N, Wang S G. Is the effect of silicon on rice uptake of arsenate (As-v) related to internal silicon concentrations, iron plaque and phosphate nutrition? [J]. Environmental Pollution, 2007,148 (1): 251-257.
    Halliwell B, Guueddge J M C. Oxygen toxicity, oxygen radicals, transition metals and disease [J]. Biochemistry Journal, 1984,219:1-4.
    Hansel C. M, Fendorf S, Sutton S, Newville M. Characterization of Fe plaque and associated metals on the roots of mine-waste impacted aquatic plants [J]. Environmental Science & Technology,2001,35, (19): 3863-3868.
    He Y, Xu J M, Ma Z H, Wang H Z, Wu Y P. Profiling of PLFA: Implications for nonlinear spatial gradient of PCP degradation in the vicinity of Lolium perenne L. roots [J]. Soil Biology and Biochemistry, 2007, 39(5): 1121-1129.
    Hendry G A F, Brocklebank K J. Iron-induced oxygen radical metabolism in waterlogged plants [J]. New Phytologist, 1985, 101,199-206.
    Hinojosa M B, Carreira J A, Roberto G R, Richard P D. Microbial response to heavy metal-polluted soils: Community analysis from phospholipid-linked fatty acids and ester-linked fatty acids extracts [J]. Journal of Environmental Quality, 2005, 34: 1789-1800.
    Hinsinger P. Bioavailability of trace elements as related to root-induced chemical changes in the rhizosphere. In: Trace elements in the rhizosphere, George R. Gobran, Enzo Lombi & Walter W.Wenzel (eds.), CRC press, Washington, DC. 2002, p. 25-42.
    Hiroki M. Effects of heavy metal contamination on soil microbial populations [J]. Soil Science and Plant Nutrition, 1992,38(1): 141-147.
    Holmer M, Duarte C M, Marba N. Iron additions reduce sulfate reduction rates and improve seagrass growth on organic-enriched carbonate sediments [J]. Ecosystems, 2005, 8 (6): 721-730.
    Howeler R H. Iron-induced oranging disease of rice in relation to physio-chemical changes in a flooded oxisol [J]. Soil Science Society of American Proceeding. 1973, 37: 898.
    Howells J C, Caporn S. Remediation of contaminated land by formation of heavy metal phosphates [J]. Applied Geochemistry, 1996,11:335-342.
    Hu Q, Qi H Y, Zeng J H, Zhang H X. Bacterial diversity in soils around a lead and zinc mine. Journal of Environmental Sciences, 2007,19: 74-79.
    Hu Y, Li J H, Zhu Y G, Huang Y Z, Hu H. Q, Christie P. Sequestration of As by iron plaque on the roots of three rice {Oryza sativa L.) cultivars in a low-P soil with or without P fertilizer [J]. Environmental Geochemistry and Health, 2005,27 (2): 169-176.
    Hu Z Y, Zhu Y G, Li M, Zhang L G, Cao Z H, Smith E A. Sulfur (S)-induced enhancement of iron plaque formation in the rhizosphere reduces arsenic accumulation in rice {Oryza sativa L.) seedlings [J]. Environmental Pollution, 2007,147 (2): 387-393.
    Hung L Q, Asaeda T, FujinoT, Mnaya B J. Inhibition of Zizania latifolia growth by Phragmites australis: an experimental study [J]. Wetland Ecology and Management, 2007, 15(2): 105-111. Hupfer M, Dollan A. Immobilization of phosphorus by iron-coated roots submerged macrophytes [J]. Hydrobiologia, 2003, 506-509: 635-640.
    Hupfer M, Fischer P, Friese K. Phosphorus retention mechanisms in the sediment of an eutrophic mining lake [J]. Water Air and Soil Pollution, 1998, 108, (3-4): 341-352.
    Jackson M B, Drew M C, Giffard S C. Effects of applying ethlene to the root system of Zea mays on growth and nutrient concentration in relation to flooding tolerance[J]. Physiologia Plantarum,1981,52:23-28.
    Jackson T A. The biogeochemical and ecological significance of interactions between colloidal minerals and trace elements. In Environmental Interactions of Clays, Parker A, Rae J E (Eds.), Springer-Verlag: Berlin, 1998, 93-205.
    Jacob D L, Otte M L. Influence of Typha latifolia and fertilization on metal mobility in two different Pb-Zn mine tailings types [J]. Science of the Total Environment, 2004, 333, (1-3): 9-24.
    James R E, Ferris F G, Scott S D. Assessment of iron oxides associated with mixed neutrophilic iron-oxidizing bacteria [J]. Geochimica Et Cosmochimica Acta, 2004,68 (11): 1387-1396.
    Jespersen D N, Sorrell B K, Brix H. Growth and root oxygen release by Typha latifolia and its effects on sediment methanogenesis [J]. Aquatic Botany, 1998, 61(3): 165-180.
    Jobbagy E G, Jackson R B. The vertical distribution of soil organic carbon and it's relation to climate and vegetation [J]. Ecological Applications, 2002, 10(2): 423- 436.
    Johnson D B, Okibe N, Hallberg K B. Differentiation and identification of iron-oxidizing acidophilic bacteria using cultivation techniques and amplified ribosomal DNA restriction enzyme analysis [J]. Journal of Microbiological Methods, 2005, 63(2): 216-217.
    Jones R. Comparative studies of plant growth and distribution in relation to waterlogging VII. The influence of water-table fluctuations on iron and manganese availability in Dune slack soils [J]. The Journal of Ecology, 1973, 61(1): 107-116.
    Jugsujinda A. Growth and nutrient up take by rice under controlled oxidation reduction and pH conditions in a flooded soil. Ph D Thesis. Baton Rouge, LA: Louisiana State University and A griculture and Mechanical College, 1975.
    Kalin M. Biogeochemical and ecological consideration in designing wetland treatment systems in post-mining landscapes [J]. Waste Management, 2001,21(2): 191-196.
    Kaur A, Chaudhary A, Kaur A, Choudhary R, Kaushik R. Phospholipid fatty acid-A bioindicator of environment monitoring and assessment in soil ecosystem. Current Science, 2005, 89(7):1103-1112.
    Kludze H K, and DeLaune R D. Soil redox iIntensity effects on oxygen exchange and growth of cattail and sawgrass [J], Soil Science Society of America Journal, 1996, 60: 616-621.
    Kludze H K, DeLaune R D, and Patrick W H. Aerenchyma formation and methane and oxygen exchange in rice [J]. Soil Science Society of America Journal, 1993, 57: 386-391.
    Kludze H K, Pezeshki S R, and DeLaune R D. Evaluation of root oxygenation and growth in baldcypress in response to short-term soil hypoxia [J]. Canadian Journal of Forest Research,1994,24:804-809.
    Koncalova H. Anatomical adaptations to waterlogging in roots of wetland graminoids: limitations and drawbacks [J]. Aquatic Botany, 1990, 38: 127-134.
    Kuo S. Concurrent sorption of phosphate and zinc, cadmium, or calcium by a hydrous ferric oxide [J]. Soil Science Society of America Journal, 1986, 50: 1412-1419.
    Kupka D, Lovas M, Sepelak V. Deferrization of kaolinic sand by iron oxidizing and iron reducing bacteria [J]. Biohydrometallury: From the Single Cell to the Environment, 2007, 20-21:130-133,667.
    Laan P, Smolders A, Blom C W P M, Armstrong W. The relative roles of internal aeration, radial oxygen losses, iron exclusion and nutrient balances in flood-tolerance of Rumex species [J], Acta Botanica Neerlandica, 1989, 38: 131-145.
    Laskov C, Horn O, Hupfer M. Environmental factors regulating the radial oxygen loss from roots of Myriophyllum spicatum and Potamogeton crispus [J]. Aquatic Botany, 2006, 84 (4): 333-340.
    Laurentius A.C, Voesenek J, Banga M, Rijnders JG H M, Visser E J W, and Blom C W P M.Hormone sensitivity and plant adaptations to flooding. Folia Geobotanica Phytotaxonomica [J],1996,31:47-56.
    Lewandowski J, Schauser I, Hupfer M. Long term effects of phosphorus precipitations with alum in hypereutrophic Lake Susser See (Germany) [J]. Water Research, 2003, 37, (13): 3194-3204.
    Li M, Jones M B. CO_2 and O_2 transport in the aerenchyma of Cyperus papyrus L. Aquatic Botany,1995,52:93-106.
    Liang Y, Zhu Y. G, Xia Y, Li Z, Ma Y. Iron plaque enhances phosphorus uptake by rice (Oryza sativa) growing under varying phosphorus and iron concentrations [J]. Annals of Applied Biology, 2006, 149, (3): 305-312.
    Liu H J, Zhang J L, Christie P, Zhang F S. Influence of external zinc and phosphorus supply on Cd uptake by rice (Oryza sativa L.) seedlings with root surface iron plaque [J]. Plant and Soil, 2007,300(1-2): 105-115.
    Liu H J, Zhang J L, Zhang F S. Role of iron plaque in Cd uptake by and translocation within rice (Oryza sativa L.) seedlings grown in solution culture [J]. Environmental and Experimental Botany, 2007, 59 (3): 314-320.
    Liu H. J, Zhang J. L, Christie P, Zhang F. S. Influence of iron plaque on uptake and accumulation of Cd by rice (Oryza sativa L.) seedlings grown in soil [J]. Science of the Total Environment, 2008, 394 (2-3): 361-368.
    Liu W J, Zhu Y G, Smith F A, Smith S E. Do phosphorus nutrition and iron plaque alter arsenate (As) uptake by rice seedlings in hydroponic culture? [J]. New Phytologist, 2004,162 (2): 481-488.
    Liu W J, Zhu Y G, Smith F A. Effects of iron and manganese plaques on arsenic uptake by rice seedlings (Oryza sativa L.) grown in solution culture supplied with arsenate and arsenite [J]. Plant and Soil, 2005,277 (1-2): 127-138.
    Lovley D R. Fe (III) and Mn(IV) reduction. p. 3-30. In D.R Lovley (ed.) Environmental microbe-metal interactions. ASM Press, Washington, DC. 2000.
    Lovley D R. Organic matter mineralization with the reduction of ferric iron: A review [J], Geomicrobiology Journal, 1987,5(3,4): 375-399.
    Lynch J P, Brown K M. Ethylene and plant response to nutritional stress [J]. Physiologia Plantarum,1997, 100: 613-619.
    Macfie S M, Crowder A A. Soil factors influencing ferric hydroxide plaque-formation on roots Typha Latifolia [J]. Plant and Soil, 1987,102:177-184.
    Machado W, Gueiros B B, Lisboa-Filho S D, Lacerda L D. Trace metals in mangrove seedlings: role of iron plaque formation [J], Wetlands Ecology and Management, 2005,13: 199-206.
    Maddison M, Soosaar K, Lohmus K, Mander U. Cattail population in wastewater treatment wetlands in Estonia: Biomass production, retention of nutrients, and heavy metals in phytomass [J]. Journal of Environmental Science and Health Part a-Toxic/Hazardous Substances & Environmental Engineering, 2005,40 (6-7): 1157-1166.
    Manios T, Stentiford E I, Millner P. Removal of heavy metals from a metaliferous water solution by Typha latifolia plants and sewage sludge compost [J]. Chemosphere, 2003,53(5): 487-494.
    Matsui T, Tsuchiya T. A method to estimate practical radial oxygen loss of wetland plant roots [J]. Plant and Soil, 2006,279 (1-2): 119-128.
    McCabe O M, Baldwin J L, Otte M L. Metal tolerance in wetland plants? [J]. Minerva Biotecnologica, 2001, 13 (2): 141-149.
    McCarty D K, Moore J N, Marcus W A. Mineralogy and trace element association in an acid mine drainage iron oxide precipitate; comparison of selective extractions [J]. Applied Geochemistry,1998, 13 (2): 165-176.
    McKinney R A, Nelson W G, Charpentier M A, Wigand C. Ribbed mussel nitrogen isotope signatures reflect nitrogen sources in coastal salt marshes [J]. Ecological Applications, 2001,11(1): 203-214
    McLaughlin M R. Factors affecting iron sulfide-enhanced bacteriophage plaque assays in Salmonella [J]. Journal of Microbiological Methods, 2007, 68 (2): 442-443.
    McLaughlin R L, Brindle I D. A laboratory-scale investigation into the use of powdered iron for in situ removal of phosphorus from treated sewage effluent with constructed wetlands [J]. Water Quality Research Journal of Canada, 2001, 36 (4): 759-779.
    Mendelssohn ] A , Kleiss B A, Wakeley J S. Factors controlling the formation of oxidized root channels: A review [J]. Wetlands, 1995,15(1): 37-46.
    Merila P, Stromner R, Fritze H. Soil microbial activity and community structure along a primary succession transect on the land uplift coast in western Finland [J]. Soil Biology and Biochemistry, 2002, 34(11): 1647-1654.
    Mersie W, Seybold C. Adsorption and desorption of atrazine, deethylatrazine, deisopropylatrazine, and hydroxyatrazine on Levy wetland soil [J]. Journal of Agriculture and Food Chemistry,1996,44(7): 1925-1929
    Mikutta C, Lang F, Kaupenjohann M. Kinetics of phosphate sorption to polygalacturonate-coated goethite [J]. Soil Science Society of America Journal, 2006, 70(2): 541-549.
    Mitsui S, Kumazawa K, Yazaki J, Hirata H, Ishizuka K. Dynamic aspects of N, P, K uptake and O_2 secretion in relation to metabolic pathways within the plant roots. Soil Science and Plant Nutrition, 1962, 8: 25-30.
    M(?)ller C L, Sand-Jensen K. Iron plaques improve the oxygen supply to root meristems of the freshwater plant, Lobelia dortmanna [J], New Phytologist, 2008,179(3): 848-856.
    Nagarajah S, Posner A M, Quirk J P. Competitive adsorption of phosphate with polygalacturonate and other organic anions on kaolinite and oxide surfaces [J]. Nature (London), 1970,228,83-84.
    Neubauer S C, Emerson D, Megonigal J P. Life at the energetic edge: Kinetics of circumneutral iron oxidation by lithotrophic iron-oxidizing bacteria isolated from the wetland-plant rhizosphere [J]. Applied and Environmental Microbiology, 2002, 68(8): 3988-3995.
    Neubauer S C, Givler K, Valentine S K, Megonigal J P. Seasonal patterns and plant-mediated controls of subsurface wetland biogeochemistry [J]. Ecology, 2005, 86 (12): 3334-3344.
    Neubauer S C, Toledo-Duran G E, Emerson D, Megonigal J P. Returning to their roots: Iron-oxidizing bacteria enhance short-term plaque formation in the wetland-plant rhizosphere [J]. Geomicrobiology Journal, 2007, 24 (1): 65-73.
    O'Reilly S E, Hochella M F. Lead sorption efficiencies ofhatural and synthetic Mn and Fe-oxides [J]. Geochim Cosmochim Acta, 2003, 67: 4471-4487
    Otte M L, Dekker M, Rozema J. et al. Uptake of orsenic by Aster tripolium in relation to rhizo sphere oxidation [J]. Canada Journal of Botany, 1991,69:2670-2677.
    Otte M L, Matthews D J, Jacob D L, Morana B M, Baker A J M. Biogeochemistry of Metals in the Rhizosphere of WetlandPlants - An Explanation for "Innate" Metal Tolerance? In: Wetlands Ecosystem in Asia, Wong M H (Ed.), Hong Kong, 2004, p. 87-94.
    Otte M L, Rozema J, Koster L, et al. Iron plaque on roots of Aster tripolium L. interaction with zinc uptake [J]. New Phytologist, 1989, 111: 309-317.
    Paige C R, Snodgrass W J, Nicholson R V, Scharer J M. An arsenate effect on ferrihydrite dissolution kinetics under acidic oxic conditions [J]. Water Research, 1997, 31(9): 2370-2382.
    Parke R J, Dowling N J E, White D C, Herbert R A, Gibson G R. Characterization of sulphate-reducing bacterial populations within marine and estuarine sediments with different rates of sulphate reduction [J]. FEMS Microbiology Letters, 1993,102(3-4): 235-250.
    Pennanen T, Frostegard A, Fritze H, and B(?)(?)th E. Phospholipid fatty acid composition and heavy metal tolerance of soil microbial communities along two heavy metal-polluted gradients in coniferous forests [J]. Applied and Environmental Microbiology, 1996, 62(2): 420-428.
    Rajapaksha R M C P, Tobor-Kap(?)on M A, B(?)(?)th E. Metal toxicity affects fungal and bacterial activities in soil differently [J]. Applied and Environmental Microbiology, 2004, 70(5): 2966-2973.
    Robie J V, White D C. Lipid analysis in microbial ecology: Quantitative approaches to the study of microbial communities [J]. Bioscience, 1989, 39(8): 535-541.
    Roden E E, and Wetzel R G. Competition between Fe(III)-reducing and methanogenic bacteria for acetate in iron-rich freshwater sediments[J], Microbial Ecology, 2003,45(3): 252-258.
    Russell E W. Soil conditions and plant growth. Longman Group Limited, London, UK, 1973.
    Russell R A, Holden P J, Wilde K L, Neilan B A. Demonstration of the use of Scenedesmus and Carteria biomass to drive bacterial sulfate reduction by Desulfovibrio alcoholovorans isolated from an artificial wetland [J]. Hydrometallurgy, 2003,71(1-2): 227-234.
    Schwertmann U, and Thalmann H. The influence of [Fe(II)], [Si], and pH on the formation of lepidocrocite and ferrihydrite during oxidation of aqueous FeCl_2 solutions[J], Clay Minerals, 1976, 11 (3): 189-200.
    Schwertmann U, Kodama H, Fisher WR. Mutual interactions between organics and iron oxides. In Interactions of soil minerals with natural organics and microbes, Huang PM, Schnitzer M (eds) Soil Science Society of American, Madison WI, USA, 1986, p: 223-250.
    Sheoran A S, Sheoran V. Heavy metal removal mechanism of acid mine drainage in wetlands: A critical review [J]. Minerals Engineering, 2006, 19(2): 105-116.
    Smolders A J P, Lucassen E C H E, Roelofs JGM. The isoetid environment: biogeochemistry and threats [J]. Aquatic Botany, 2002, 73: 325-350.
    Snowden R E D, Wheeler B D. Chemical changes in selected wetland plants pecies with increasing Fe supply, with specific reference to root precipitates and Fe tolerance [J]. New Phytologist,1995,131,503-520.
    Soderberg K H, B(?)(?)th E. Bacterial activity along a young barley root measured by the thymidine and leucine incorporation techniques [J]. Soil Biology and Biochemistry, 1998, 30(10-11):1259-1268.
    Sogaard E G, Medenwaldt R, Abraham-Peskir J V. Conditions and rates of biotic and abiotic iron precipitation in selected Danish freshwater plants and microscopic analysis of precipitate morphology [J]. Water Research, 2000, 34 (10):2675-2682.
    Sprecher S W. Basic concepts of soil science. In Wetland soil-genesis, hydrology, landscapes, and classification, Richardson J L and Vepraskas M J (Eds.), Lewis Publishers Boca raton London, New York, Washington, D. C. 2001, pp. 3-18.
    St-Cyr L, Campbell P G C. Metals (Fe, Mn, Zn) in the root plaque of submerged aquatic plants collected in situ: Relations with metal concentrations in the adjacent sediments and in the root tissue [J]. Biogeochemistry, 1996, 33:45-76.
    St-Cyr L, Crowder A A. Factors affecting iron plaque on the roots of Phragmites australis (Cav.) Trin. ex Steudel [J]. Plant and Soil, 1989, 116: 85-93.
    St-Cyr L, Crowder A A. Iron oxide deposits on the roots of Phragmites australis related to the iron bound to carbonates in the soil [J]. Journal of Plant Nutrition, 1988, 11:1253-1261.
    St-Cyr L, Crowder A A. Manganese and copper in the root plaque of Phragmites australis (Cav.) Trin. ex Steudel [J]. Soil Science, 1990,149: 191-198.
    St-Cyr L, Fortin D, Campbell P G C. Microscopic observations of the iron plaque of a submerged aquatic plant {Vallisneria americana Michx) [J]. Aquatic Botany, 1993, 46: 155-167.
    Steingruber S M, Friedrich J, Gachter R, Wehrli B. Measurement of denitrification in sediments with the 15N isotope pairing technique [J]. Applied and Environmental Microbiology, 2001, 67(9):3771-3778.
    Stottmeister U, Wionβner A, Kuschk P, Kappelmeyer. U, Kastner M, Bederski O, M(?)ller R A, and Moormann H. Effects of plants and microorganisms in constructed wetlands for wastewater treatment [J]. Biotechnology Advances, 2003, (22): 93-117.
    Sundby B, Caetano M, Vale C, Gobeil C, Luther G. W, Nuzzio D B. Root-induced cycling of lead in salt marsh sediments [J]. Environmental Science & Technology, 2005, 39, (7): 2080-2086.
    Sundby B, Vale C, Cacador I, Catarino F, Madureira M J, Caetano M. Metal-rich concretions on the roots of salt marsh plants: Mechanism and rate of formation [J]. Limnology and Oceanography, 1998,43 (2): 245-252.
    Sundby B, Vale C, Caetano M, Luther G W. Redox chemistry in the root zone of a salt marsh sediment in the Tagus Estuary, Portugal [J]. Aquatic Geochemistry, 2003,9(3): 257-271.
    Takashima C, Kano A, Naganuma T, Tazaki K. Laminated iron texture by iron-oxidizing bacteria in a calcite travertine [J]. Geomicrobiology Journal, 2008,25(3-4): 193-202.
    Taylor G J and Crowder A A. Use of the DCB technique for extraction of hydrous iron oxides from roots of wetland plants [J]. American Journal of Botany, 1983,70(8): 1254-1257.
    Taylor G J, Crowder A A, Rodden R. Formation and morphology an iron plaque on the roots of Tapha Latifolia L. growth in solution culture [J]. American Journal of Botany, 1984, 71(5):666-675.
    Thursby G B. Root-exuded oxygen in the aquatic angiosperm Ruppia maritime [J]. Marine ecology,1984, 16(33): 303-305.
    Trivedi P, Dyer J A, Sparks D L. Lead sorption onto ferrihydrite. 1. A macroscopic and sp ectroscopic assessment [J], Environmental Science & Technology, 2003, 37(5): 908-914.
    Trolldenier G. Visualisation of oxidizing power of rice roots and of possible participation of bacteria in iron deposition [J]. Zeitschrift fur Pflanzenernahrung und Bodenkunde, 1988, 151,117-121.
    Tsai T M, Huang H J. Effects of iron excess on cell viability and mitogen-activated protein kinase activation in rice roots [J]. Physiologia Plantarum, 2006,127 (4): 583-592.
    Van der Welle M E W, Roelofs J G M, Den CampH J M O, Lamers L P M. Predicting metal uptake by wetland plants under aerobic and anaerobic conditions [J]. Environmental Toxicology and Chemistry, 2007, 26 (4): 686-694.
    Vartapetian B B, Jackson M B. Plant adaptations to anaerobic stress [J]. Annals of Botany, 1997, 79:3-20.
    Vepraskas M J and Faulkner S P. Redox chemistry of hydric soils. In Wetland soil-genesis,hydrology, landscapes, and classification. Richardson J L and Vepraskas M J (Eds.) Lewis Publishers Boca raton London, New York, Washington, D. C. 2001, pp. 85-105.
    Vestal J R, White D C. Lipid analysis in microbial ecology - Quantitative approaches to the study of microbial communities. BioScience, 1989,39(8): 535-541.
    Violante A, Barberis E, Pigna M, Boero V. Factors affecting the formation, nature, and properties of iron precipitation products at the soil-root interface. Journal of Plant Nutrition, 2003, 26 (10-11): 1889-1908.
    Violante A, Krishnamurti G R S, Huang P M. Impact of organic substances on the formation of metal oxides in soil environments. In interactionsbetween soil particles and microorganisms and their impact on the terrestrial environment; Huang P M, Bollag J-M. Senesi N (Eds.), John Wiley & Sons: 2002; Chap. 4, 134-188.
    Visser E J W, Blom C W P M, Voesenek L A C J. Flooding induced adventitious rooting in Rumex: morphology and development in an ecological perspective [J]. Acta Botanica Neerlandica, 1996,45, 17-28.
    Wang T, Peverly J H. Oxidation states and fractions of plaque iron on roots of common reeds [J]. Soil Science Society of American Journal, 1996, 60, 323-329.
    Weis J S, Weis P. Metal uptake, transport and release by wetland plants: implications for phytoremediation and restoration [J]. Environmental International, 2004,30(5): 685-700.
    Weisner S E B, Strand J A. Rhizome architecture in Phragmites australis in relation to water depth: implications for within-plant oxygen transport distances [J]. Folia Geobotanica Phytotaxonomica, 1996, 31: 91-97.
    Weiss J V, Emerson D, Backer S M, Megonigal J P. Enumeration of Fe (?)-oxidizing and Fe(?)-reducing bacteria in the root zone of wetland plants: Implications for a rhizosphere iron cycle [J]. Biogeochemistry, 2003,64 (1): 77-96.
    Weiss J V, Emerson D, Megonigal J P. Geochemical control of microbial Fe(?) reduction potential in wetlands: comparison of the rhizosphere to non-rhizosphere soil [J]. FEMS Microbiology Ecology, 2004,48(1): 89-100.
    Weiss J V, Emerson D, Megonigal J P. Rhizosphere iron(?) deposition and reduction in a Juncus effusus L.dominated wetland [J]. Soil Science Society of America Journal, 2005,69 (6):1861-1870.
    Weiss J V, Rentz J A, Plaia T, Neubauer S C, Merrill-Floyd M, Lilburn T, Bradburne C, Megonigal J P, Emerson D. Characterization of neutrophilic Fe(?)-oxidizing bacteria isolated from the rhizosphere of wetland plants and description of Ferritrophicum radicicola gen. nov sp nov., and Sideroxydans paludicola sp nov. [J]. Geomicrobiology Journal, 2007, 24(7-8): 559-570.
    Weiss J, Hondzo N, Biesboer D, Semmens N. Laboratory study of heavy metal phytoremediation by three wetland macrophytes [J]. International Journal of Phytoremediation, 2006, 8(3):245-259.
    Wieβner A, Kuschk P, Stottmeister U. Oxygen release by roots of Typha latifolia and Juncus effuses in laboratory hydroponic system [J], Acta Biotechnology, 2002,22, 209-226.
    Willby N J, Pulford I D, Flowers T H. Tissue nutrient signatures predict herbaceous wetland community responses to nutrient availability [J]. New Phytologist, 2001, 152:463 -481.
    Wright R J, Hossner L R. Cultivar differences in iron coatings formed on rice roots [J]. Cereal Research Communications, 1984, 12: 265-266.
    Xu D F, Xu J M, He Y, Huang P M. Effect of iron plaque formation on phosphorus accumulation and availability in the rhizosphere of wetland plants[J]. Water Air and Soil Pollution. 2009,200: 79-87.
    Xu D F, Xu J M, Wu J J, Muhammad A. Studies on the phosphorus sorption capacity of substrates used in constructed wetland systems [J]. Chemosphere, 2006, 63(2): 344-352.
    Yang B, Lan C Y, Yang C S, Liao W B, Chang H, Shu W S. Long-term efficiency and stability of wetlands for treating wastewater of a lead/zinc mine and the concurrent ecosystem development [J]. Environmental Pollution, 2006,143(3): 499-512.
    Ye Z H, Baker A J M, Wong M H, Willis A J. Zinc, lead and cadmium tolerance, uptake and accumulation by Typha latifolia [J]. New Phytologist, 1997, 136 (3): 469-480.
    Ye Z H, Baker A J M, Wong M H, et al. Zinc, lead and cadmium accumulation and tolerance in Typha latifolia as affected by iron plaque on the root surface [J]. Aquatic Botany, 1998, 61(1):55-67.
    Ye Z H, Cheung K C, Wong M H. Cadmium and nickel adsorption and uptake in cattail as affected by iron and manganese plaque on the root surface [J]. Communications in Soil Science and Plant Analysis, 2003,34 (19-20): 2763-2778.
    Zelles I, Bai Q Y, Beck T, Beese F. Signature fatty acids in phospholipids and lipopolysaccharides as indicators of microbial biomass and community structure in agriculture soils [J]. Soil Biology and Biochemistry, 1992,24(4): 317-323.
    Zhang F, Shen J, Li L, Liu X. An overview of rhizosphere processes related with plant nutrition in major cropping systems in China [J]. Plant and Soil 2004,260 (1-2): 89-99.
    Zhang X K, Zhang F S, Mao D R. Effect of iron plaque outside roots on nutrient uptake by rice (Oryza sativa L.): Phosphorus uptake [J]. Plant and Soil, 1999,209(2): 187-192.
    Zheng G D, Lang Y H, Miyahara M, Nozaki T, Haruaki T. Iron oxide precipitate in seepage of groundwater from a landslide slip zone [J]. Environmental Geology, 2007, 51(8): 1455-1464.
    Zhou X B, Shi W M, Zhang L H. Iron plaque outside roots affects selenite uptake by rice seedlings (Oryza sativa L.) grown in solution culture [J]. Plant and Soil, 2007,290 (1-2): 17-28.
    Zhou X B, Shi W M. Effect of root surface iron plaque on se translocation and uptake by Fe-deficient rice [J]. Pedosphere, 2007, 17 (5): 580-587

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700