用户名: 密码: 验证码:
废水厌氧生物除磷技术的基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国的水体富营养化问题日益严重,磷元素是导致水体富营养化的主要因素之一,控制磷排放已成为解决水体富营养化问题的重要途径。近十多年来,厌氧生物工艺在有机废水处理上得到广泛应用,其中上流式厌氧污泥床(UpflowAnaerobic Sludge Blanket,简称UASB)已成为厌氧生物工艺的杰出代表而倍受人们青睐。但是,人们对厌氧生物工艺的关注,焦点集中在除碳功能上,对其除磷功能,则迄今未见系统的研究报道。本课题选用UASB反应器作为工作平台,深入系统地探索了厌氧生物工艺的除磷性能,获得了以下结果:
     厌氧生物反应器具有良好的除磷效能。在水力停留时间(Hydrulic RetentionTime,简称HRT)为24 h、进水COD和磷酸盐浓度分别为5000~10000 mg/L和5~30 mgP/L的条件下,UASB反应器的容积磷去除率可高达21.4 mgP/L·d,磷酸盐去除率可高达99.0%以上,出水磷浓度低于0.5 mgP/L,达到国家《污水综合排放标准》(GB8978-1996)中的一级排放标准。
     厌氧生物反应器的除磷功能主要来自厌氧微生物的同化作用。将废水中的磷酸盐用作营养物质,使之从废水中转移至厌氧微生物体内(磷由水相转移至固相),再通过泥水分离,使之从废水中去除,这是UASB反应器实现除磷功能的重要途径。
     厌氧生物反应器的除磷效能受多种因素的制约。进水COD浓度、磷酸盐浓度以及COD/P值皆为UASB反应器除磷效能的显著影响因子。提高进水COD浓度,有利于提高容积磷去除率和磷酸盐去除率。提高进水磷酸盐浓度,有助于提高容积磷去除率,但会降低磷酸盐去除率。提高进水COD/P值,有利于提高磷酸盐去除率,但会限制容积磷去除率。
     厌氧生物反应器的除磷效能与除碳效能密切相关。提高反应器的除碳效能有助于提高除磷效能,但除碳效能受除磷效能的影响较小。在进水COD/P值较高的条件下(1000:1),依然能够获得较高的除碳效能(10 gCOD/L·d),碳磷去除比例达1182:1;而在COD/P值较低(1000:2~1000:3)的条件下,碳磷去除比例平均值为655:1,并随容积COD去除率的提高而降低至500:1左右。
     厌氧生物反应器的除磷效能与除氮效能联系紧密。在除氮效能较高的运行条件下,除磷效能相应较高,但在除磷效能较低的情况下,除氮效能也受影响。在进水COD/P值较低(1000:2~1000:3)的条件下,氮磷去除比例稳定在8.6左右,基本不受进水N/P值以及容积氮去除率的影响;而在磷酸盐浓度较低的情况下(1000:1),氮磷去除比例增高,最高达18.8。
     厌氧生物反应器的除磷效能与生物相组成相关。PCR-DGGE分析以及扫描电镜观察表明,在UASB反应器的运行过程中,颗粒污泥的微生物组成逐步从以甲酸甲烷杆菌(Methanobacterium formicicum)等杆菌和球菌为主,转变为以理事会鬃毛甲烷菌(Methanosaeta concilii)等丝状菌为主。就出水磷浓度而言,以丝状菌为主的UASB反应器优于以球菌和杆菌为主的UASB反应器。
     厌氧生物反应器的生物相变化与进水有机负荷及COD/P值密切相关。在污泥负荷(0.36~0.86 gCOD/gVSS·d)较低、进水COD/P值(1000:1~1000:2)较高的条件下,容易引发颗粒污泥丝状菌膨胀,导致污泥流失而使反应器运行失稳,影响除磷效能。
     厌氧生物反应器的除磷效能可受硫酸盐的干扰。当进水COD/SO_4~(2-)值从7.0降低至2.3时,UASB反应器中的产甲烷过程受到抑制,容积磷去除率由9.6mgP/L·d降至2.0 mgP/L·d。硫酸盐还原成为主导反应时,UASB反应器的除磷效能降低。在进水COD、SO_4~(2-)和磷酸盐浓度分别为3500 mg/L、1500 mg/L和15~25mgP/L条件下,容积磷去除率为2.0~4.3 mgP/L·d,磷酸盐去除率为12.3%~26.2%。
Eutrophication has been one of the main water pollution problems in China, andit is important to control phosphorus discharge into waters to relieve the severity asphosphorus is the key factor to cause eutrophication. In recent years, great advanceshave been achieved in anaerobic biotechnology for wastewater treatment. The UASB(Upflow Anaerobic Sludge Blanket) process has become one of the most popularanaerobic treatment processes and has been applied in various wastewaters. Thefunction of UASB reactor for removal of organic pollutants has drawn a lot ofattention, but its function for removal of phosphorus has so far been ignored.
     A laboratory scale UASB reactor was operated to investigate its performance onphosphorus removal, and the feasibility of its applications in treating phosphoruscontaining wastewater was assessed as well. The main results of the research weresummarized as follows:
     High performance on phosphorus removal was shown in the laboratory scaleUASB reactor. The volumetric phosphorus removal rate of 21.4 mgP/L·d, the removalrate efficiency above 99 % and the effluent PO_4~(3-)-P concentration below 0.5 mg/L(the requirement in the general discharge standards of wastewater )could be achieved during the operation, when the influent COD and PO_4~(3-)-Pconcentrations were 5000~10000 mg/L and 5~30 mg/L, respectively.
     The microbial assimilation was supposed to be the most important pathway forphosphorus removal in UASB reactor. The microorganisms in the sludge uptake thephosphate as nutrient during their growth (the phosphorus was transferred from theliquid phase to the solid phase), then phosphorus was removed by separating thesludge from the effluent.
     The influent concentration of COD and phosphate and the COD/P ratio were themain factors affecting phosphorus removal efficiency. Higher volumetric phosphorusremoval rate was achieved at higher influent COD and phosphate concentrations. Theincrease in influent phosphorus concentration could result in lower phosphorusremoval efficiency but higher volumetric phosphorus removal rate. Larger COD/Pratio ensured higher phosphorus removal efficiency, but limited the furtherimprovement in volumetric phosphorus removal rate.
     The volumetric removal rates of COD and phosphorus were highly correlated.The volumetric phosphorus removal rate increased as the COD removal rate elevated,while the volumetric COD removal rate was hardly affected by volumetricphosphorus removal rate. With the influent COD/P ratio of 1000:1, a volumetric CODremoval rate of 10 gCOD/L·d was achieved, meanwhile, the ratio of the consumedCOD to phosphorus reached a relatively high value of 1182:1. The ratio of consumedCOD to phosphorus was about 655:1 when the influent COD/P ratio was between1000:2 and 1000:3, and it decreased to about 500:1 as the volumetric COD removalrate increased.
     The removal rate of ammonia nitrogen was proportional to that of phosphorus,but it was limited by the phosphorus concentration. At the high influent COD/P ratio(1000:1), the ratio of the consumed nitrogen to phosphorus was increased to 18.8:1,otherwise the ratio was relatively steady at 8.0:1 (with influent COD/P ratio of1000:2~1000:3), which was not affected by influent N/P ratio or volumetric nitrogenremoval rate under most conditions.
     The performance of the phosphorus removal in UASB reactor had relationshipwith the microbial community in its granular sludge. The results of PCR-DGGE(Polymerase Chain Reaction-Denaturing Gradient Gel Electrophoresis) and SEM(Scanning Electronic Microscope) showed that the microbial community in thegranular sludge shifted during the operation of the UASB reactor. The dominantmicroorganisms in the granules were rod-shaped and coccus in the early stage of theoperation, one of which was identified as Methanobacterium formicicum, while thefilaments became the predominant microorganisms in the latter stage, one of whichwas identified as Methanosaeta concilii. Lower effluent phosphorus concentrationcould be achieved when the granules was dominated by filaments in the UASBreactor.
     The structure of the granular sludge was affected by the operational condition ofthe UASB reactor. Higher COD/P ratio (1000:1~1000:2) in influent and lower sludgeorganic loading rate (0.36~0.86 gCOD/gVSS·d) were prone to cause the granules todisaggregate and to be washed out.
     The performance of the UASB reactor in phosphorus removal decreased with theaddition of sulfate. The volumetric phosphorus removal rate decreased from 9.6mgP/L·d to 2.0 mgP/L·d when the COD/sulfate ratio in influent decreased from 7.0 to2.3. The volumetric phosphorus removal rate was in the range of 2.0~4.3 mgP/L, and its phosphorus removal efficiency was 12.3 %~26.2 %, with the influent containing3500 mg/L COD, 1500 mg/L SO_4~(2-) and 15~25 mg/L PO_4~(3-).
引文
Alphenaar, P.A., Sleyster, R., De Reuver, P., Lighthart, G.J., and Lettinga, G. Phosphorus requirement in high-rate anaerobic wastewater treatment [J]. Water Research, 1993, 27(5): 749-756.
    Bortone, G., Saltarelli, R., Alonso, V., Sorm, R., Wanner, J., and Tilche, A. Biological anoxic phosphorus removal-the dephanox process [J]. Water Science and Technology, 1996,34(1-2): 119-128.
    Cech, J.S., and Hartman, P. Competition between polyphosphate and polysaccharide accumulating bacteria in enhanced biological phosphate removal systems [J]. Water Research, 1993,27(7): 1219-1225.
    de-Bashan, L.E., and Bashan, Y. Recent advances in removing phosphorus from wastewater and its future use as fertilizer (1997-2003) [J]. Water Research, 2004, 38(19): 4222-4246.
    Delbes, C, Leclerc, M, Zumstein, E., Godon, J.J., and Moletta, R. A molecular method to study population and activity dynamics in anaerobic digestors [J]. Water Science and Technology, 2001, 43(1): 51-57.
    Devai, I., Felfoldy, L., Wittner, I., and Plosz, S. Detection of phosphine: new aspects of the phosphorus cycle in the hydrosphere [J]. Nature, 1988, 333: 343-345.
    Doyle, J.D., and Parsons, S.A. Struvite formation, control and recovery [J]. Water Research, 2002, 36(16): 3925-3940.
    Dries, J., De Smul, A., Goethals, L., Grootaerd, H., and Verstraete, W. High rate biological treatment of sulfate-rich wastewater in an acetate-fed EGSB reactor [J]. Biodegradation, 1998, 9(2): 103-111.
    Elferink, O. Sulfate reduction in methanogenic bioreactors [J]. FEMS Microbiology Reviews, 1994, 15: 119-136(2).
    Fourest, E., Craperi, D., Deschamps-Roupert, C, Pisicchio, J.L., and Lenon, G. Occurrence and control of filamentous bulking in aerated wastewater treatment plants of the French paper industry [J]. Water Science and Technology, 2004, 50(3): 29-37.
    Foy, R.H., Smith, R.V., Jordan, C, and Lennox, S.D. Upward trend in soluble phosphorus loadings to Lough Neagh despite phosphorus reduction at sewage treatment works [J]. Water Research, 1995, 29(4): 1051-1063.
    Gerloff, G.C., and Skoog, F. Cell Contents of Nitrogen and phosphorous as a measure of their availability for growth of microcystis aeruginosa [J]. Ecology, 1954, 35(3): 348-353.
    Glindemann, D., Edwards, M., Liu, J., and Kuschk, P. Phosphine in soils, sludges, biogases and atmospheric implications - a review [J]. Ecological Engineering, 2005, 24(5): 457-463.
    Grady, C.P.L., Daigger, G.T., and Lim, H.C. Biological wastewater treatment.2~(nd) ed [M]. New York: Marcel Dekker, 1999.
    Greenwood, N.N., and Earnshaw, A. Chemistry of the Elements [M]. Oxford: Pergamon Press, 1997.
    Henze, M., and Harremoes, P. Anaerobic treatment of wastewater in fixed film reactors: a literature review [J]. Water Science and Technology, 1983, 15(8-9): 1-102.
    Hooker, H.D. Liebig's law of the minimum in relation to general biological problems [J]. Science, 1917,46(1183): 197-204.
    Hulshoff Pol, L.W., de Castro Lopes, S.I., Lettinga, G., and Lens, P.N.L. Anaerobic sludge granulation [J]. Water Research, 2004, 38(6): 1376-1389.
    Janssen, P.M.J., Meinemam, K., and van der Roest, H.F. Biological Phosphorus Removal: Manual for Design and Operation [M]: IWA Publishing, 2002.
    Jarrell, K.F., and Kalmokoff, M.L. Nutritional requirements of the methanogenic archaebacteria [J]. Canadian Journal of Microbiology, 1988, 34(5): 557-576.
    Jetten, M.S.M., Stams, A.J.M., and Zehnder, A.J.B. Methanogenesis from acetate: a comparison of the acetate metabolism in Methanothrix soehngenii and Methanosarcina spp [J]. FEMS Microbiology Letters, 1992, 88(3-4): 181-198.
    Khoshmanesh, A., Hart, B.T., Duncan, A., and Beckett, R. Luxury uptake of phosphorus by sediment bacteria [J]. 2002, Water Research, 36(3): 774-778.
    Korner, S., and Vermaat, J.E. The relative importance of Lemna gibba L., bacteria and algae for the nitrogen and phosphorus removal in duckweed-covered domestic wastewater [J]. Water Research, 1998, 32(12): 3651-3661.
    Kuba, T., van Loosdrecht, M.C.M., and Heijnen, J.J. Phosphorus and nitrogen removal with minimal COD requirement by integration of denitrifying dephosphatation and nitrification in a two-sludge system [J]. Water Research, 1996,30(7): 1702-1710.
    Kuba, T., Wachtmeister, A., van Loosdrecht, M.C.M., and Heijnen, J.J. Effect of nitrate on phosphorus release in biological phosphorus removal systems [J]. Water Science and Technology, 1994, 30(6): 263-269.
    Kumar, S., Tamura, K., and Nei, M. MEGA3: Integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment [J]. Briefings in Bioinformatics, 2004, 5(2): 150-163.
    Lens, P.N.L., Visser, A., Janssen, A.J.H., Pol, L.W.H., and Lettinga, G. Biotechnological Treatment of Sulfate-Rich Wastewaters [J]. Critical Reviews in Environmental Science and Technology, 1998(1), 28: 41-88.
    Lettinga, G., and Hulshoff Pol, L.W. UASB-process design for various types of wastewaters [J]. Water Science and Technology, 1991, 24(8): 87-107.
    Lettinga, G., M, v.V.A.F., W., H.S., W., d.Z., and A., K. Use of the upflow sludge blanket (USB) reactor concept for biological wastewater treatment, especially for anaerobic treatment [J]. Biotechnology and Bioengineering, 1980, 22(4): 699-734.
    Linda, L.B., Gregory, R.C., Aaron, M.S., and Philip, L.B. A review and update of the microbiology of enhanced biological phosphorus removal in wastewater treatment plants [J]. Antonie van Leeuwenhoek, 2002, 81(1): 681-691.
    Madigan, M.T., Martinko, J.M., and Parker, J. Brock biology of microorganisms [M]: NJ: Prentice Hall Upper Saddle River, 2000.
    McCarty, P.L., and Smith, D.P. Anaerobic wastewater treatment. [J] Environmental Science and Technology, 1986,20(12): 1200-1206.
    Mino, T., Liu, W.T., Kurisu, F., and Matsuo, T. Modelling glycogen storage and denitrification capability of microorganisms in enhanced biological phosphate removal processes [J]. Water Science and Technology, 1995, 31(2): 25-34.
    Mino, T., van Loosdrecht, M.C.M., and Heijnen, J.J. Microbiology and biochemistry of the enhanced biological phosphate removal process [J]. Water Research, 1998, 32(11): 3193-3207.
    Moss, B., Madgwick, J., and Phillips, G. A Guide to the Restoration of Nutrient-Enriched Shallow Lakes [M]. UK Broads Authority, 1996.
    Oehmen, A., Lemos, P.C., Carvalho, G., Yuan, Z., Keller, J., Blackall, L.L., and Reis, M.A.M. Advances in enhanced biological phosphorus removal: From micro to macro scale [J]. Water Research, 2007, 41(11): 2271-2300.
    Omil, F., Lens, P., Visser, A., Hulshoff Pol, L.W., and Lettinga, G. Long-term competition between sulfate reducing and methanogenic bacteria in UASB reactors treating volatile fatty acids [J]. Biotechnology and Bioengineering, 1998, 57(6): 676-685.
    Peng, J., Wang, B., Song, Y., Yuan, P., and Liu, Z. Adsorption and release of phosphorus in the surface sediment of a wastewater stabilization pond [J]. Ecological Engineering, 2007, 31(2): 92-97.
    Pol, L.W.H., Lens, P.N.L., Stams, A.J.M., and Lettinga, G. Anaerobic treatment of sulphate-rich wastewaters [J]. Biodegradation, 1998, 9(3-4): 213-224.
    Rabus, R., Nordhaus, R., Ludwig, W., and Widdel, F. Complete oxidation of toluene under strictly anoxic conditions by a new sulfate-reducing bacterium [J]. Applied and Environmental Microbiology, 1993,59(5): 1444-1451.
    Rinzema, A., and Lettinga, G. Anaerobic treatment of sulfate-containing waste water [J]. Biotreatment Systems, 1988, 3: 65-109.
    Rittmann, B.E., and McCarty, P.L. Environmental Biotechnology: Principles and Applications [M]: McGraw-Hill, 2001.
    Roels, J., and Verstraete, W. Biological formation of volatile phosphorus compounds [J]. Bioresource Technology, 2001, 79(3): 243-250.
    Schindler, D.W. Evolution of Phosphorus Limitation in Lakes [J]. Science, 1977, 195(4275): 260-262.
    Schmidt, J.E., and Ahring, B.K. Granular sludge formation in upflow anaerobic sludge blanket (UASB) reactors [J]. Biotechnology and Bioengineering, 1996, 49(3): 229-246.
    Seghezzo, L., Zeeman, G., van Lier, J.B., Hamelers, H.V.M., and Lettinga, G. A review: The anaerobic treatment of sewage in UASB and EGSB reactors [J]. Bioresource Technology, 1998,65(3): 175-190.
    Singh, R.P., Kumar, S., and Ojha, C.S.P. Nutrient requirement for UASB process: a review [J]. Biochemical Engineering Journal, 1999, 3(1): 35-54.
    Smil, V. Phosphorus in the environment: Natural flows and human interferences [J]. Annual Review of Energy and the Environment, 2000, 25(1): 53-88.
    Smith, V.H., Tilman, G.D., and Nekola, J.C. Eutrophication: impacts of excess nutrient inputs on freshwater, marine, and terrestrial ecosystems [J]. Environmental Pollution, 1999, 100(1-3): 179-196.
    Song, Y.C., Piak, B.C., Shin, H.S., and La, S.J. Influence of electron donor and toxic materials on the activity of sulfate reducing bacteria for the treatment of electroplating wastewater [J]. Water Science and Technology, 1998, 38(4-5): 187-194.
    Suzuki, K., Tanaka, Y., Kuroda, K., Hanajima, D., Fukumoto, Y., Yasuda, T., and Waki, M. Removal and recovery of phosphorus from swine wastewater by demonstration crystallization reactor and struvite accumulation device [J]. Bioresource Technology, 2007, 98(14): 1573-1578.
    Thauer, R.K., Jungermann, K., and Decker, K. Energy conservation in chemotrophic anaerobic bacteria [J]. Bacteriologyl Review, 1977, 41(1): 100-180.
    Thomas, M, Wright, P., Blackall, L., Urbain, V., and Keller, J. Optimisation of Noosa BNR plant to improve performance and reduce operating costs [J]. Water Scence and Technol, 2003, 47(12): 141-148.
    Tsukada, H., Tsujimura, S., and Nakahara, H. Effect of nutrient availability on the C, N, and P elemental ratios in the cyanobacterium Microcystis aeruginosa [J]. Limnology, 2006, 7(3): 185-192.
    van Loosdrecht, M.C.M., Hooijmans, C.M., Brdjanovic, D., and Heijnen, J.J. Biological phosphate removal processes [J]. Applied Microbiology and Biotechnology, 1997, 48(3): 289-296.
    Veeresh, G.S., Kumar, P., and Mehrotra, I. Treatment of phenol and cresols in upflow anaerobic sludge blanket (UASB) process: a review [J]. Water Research, 2005, 39(1): 154-170.
    Widdel, F., and Hansen, T.A. The dissimilatory sulfate-and sulfur-reducing bacteria. In The Prokaryotes 2nd ed Balows, A., Tr(?)per, H.G., Dworkin, M., Harder, W., and Schleifer, K.H. (eds) [M] . New York: Springer-Verlag, 1992, 2: 583-624.
    Wu, W., Jain, M.K., and Zeikus, J.G. Formation of fatty acid-degrading, anaerobic granules by defined species [J]. Applied Environmental Microbiology, 1996, 62(6): 2037-2044.
    Young, J.C., and McCarty, P.L. The anaerobic filter for waste treatment [J]. Journal of Water Pollution Control Fed, 1969, 41: R160.
    Zhou, W., Imai, T., Ukita, M., Li, F., and Yuasa, A. Effect of loading rate on the granulation process and granular activity in a bench scale UASB reactor [J]. Bioresource Technology, 2007, 98(7): 1386-1392.
    成水平,吴振斌,等.人工湿地植物研究[J].湖泊科学,2002,14(2):179-184.
    成小英,李世杰.长江中下游典型湖泊富营养化演变过程及其特征分析[J].科学通报,2006,51(7):848-855.
    丁丽丽,朱益新,梁瀚文,等.大型UASB系统磷化氢分布及磷平衡研究[J].南京大学学报(自然科学版),2005,41(6):620-626.
    丁文明,黄霞.废水吸附法除磷的研究进展[J].环境污染治理技术与设备,2002,3(10):23-27。
    方萍,何延.试验设计与统计[M].杭州:浙江大学出版社,2003.
    国家环境保护局.水和废水监测分析方法[M].北京:中国环境科学出版社,2002.
    国家环境保护局中国环境状况公报[R].北京:中国环境科学出版社,2006.
    国家环境保护局,国家技术监督局.中华人民共和国国家标准-污水综合排放标准(GB8978-1996)[S].1997.
    贺延龄.废水的厌氧生物处理[M].北京:中国轻工业出版社,1998.
    贾晓燕.废水除磷技术的研究进展[J].重庆环境科学,2003,25(12):191-192.
    姜永军,丁敏,丁磊.水体富营养化控制因子及其污染途径研究[J].甘肃科技,2003,19(10):91-92.
    劳家柽.土壤农化分析手册[M].北京:农业出版社,1988.
    李金页,郑平.鸟粪石沉淀法在废水除磷脱氮中的应用[J].中国沼气,2004,22(1):7-10.
    李金页,郑平,梅玲玲.反硝化除磷工艺及其特点[J].科技通报,2006,22(6):882-886.
    李乔,刘伟利.浅谈水体的富营养化[J].水利天地,2004,2:31-31.
    林丰妹,陈健松,郑平.气提式内循环硝化反应器运行性能的研究[J].生物工程学报,2002,18(4):492-496.
    林晓,刘婧,徐厚坤.富营养化水体中磷的控制方法初探[J].城镇供水,2003 2:39-40.
    刘用场.水体富营养化的发生,危害及防治[J].福建农业科技,2003,6:48-49.
    刘志杰,谢华.厌氧污泥胞外聚物的提取,测定法选择[J].环境科学,1994,15(4):23-26.
    卢峥.利用营养调控防制畜产公害[J].中国畜牧杂志1998,34:51-52.
    秦伯强,王小冬,汤祥明,等.太湖富营养化与蓝藻水华引起的饮用水危机--原因与对策[J].地球科学进展,2007,9:896-906.
    秦伯强,吴庆农.太湖地区的水资源与水环境--问题,原因与管理[J].自然资源学报,2002,7(2):221-228.
    秦煊.论江汉湖群湿地的环境保护[J].环境科学与技术,2001,24(z1):13-14.
    邱维,张智.城市污水化学除磷的探讨[J].重庆环境科学,2002,24(2):81-84.
    沈耀良,杨铨大.新型废水处理技术--人工湿地[J].污染防治技术1996,9(1):1-8.
    斯皮思,R.E.,李亚新,马志毅.v工业废水的厌氧生物技术[M]:北京:中国建筑工业出版社.2001.
    汪儆.我国饲用酶制剂的应用现状及发展前景[J].中国家禽2001,23:35-37.
    王苏民,窦鸿身.中国湖泊志[M]:北京:科学出版社.1998.
    徐丰果,罗建中,凌定勋.废水化学除磷的现状与进展[J].工业水处理,2003,23(5):18-20.
    阎自申.前置库在滇池流域运用研究[J].云南环境科学1996,15(2):33-35.
    杨斌,程巨元农业非点源氮磷污染对水环境的影响研究[J].江苏环境科技,1999,12(3):19-20.
    杨丽华,卓奋.湖泊水体磷污染及其防治对策[J].污染防治技术,1996,9(1):47-49.
    于虹漫,冷云.浅谈蓝藻水华的危害与防治[J].内陆水产,2003,28(12):31-31.
    张德安.考马斯亮蓝法测定蛋白质.生物大分子实验手册[M].长春:吉林大学出版社,1991.
    张良轶,韦进宝.武汉东湖的污染现状与可持续发展对策研究[J].武汉大学学报:自然科学版,1998,44(6):665-668.
    张书杰,李绍钰,林东康.畜牧生产中磷污染及治理措施[J].河南畜牧兽医,2003,24(7):10-11.
    张锡辉,刘勇弟.废水生物处理:第二版[M].北京:化学工业出版社,2003.
    张英雄,李晶,等.磷对环境的污染及防治对策[J].化工环保,2002,22(2):68-70.
    郑平,冯孝善.废物生物处理[M].北京:高等教育出版社,2006.
    郑兴灿,李亚新.污水除磷脱氮技术[M].北京:中国建筑工业出版社,1998.
    朱其太.植酸酶在家禽养殖业中的应用[J].中国家禽,2001,23(16):39-41.
    朱益新 丁丽丽,任洪强,等.结合态磷化氢在厌氧微生物产酸过程中的释放行为[J].环境科学,2005,26(4):139-142.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700