用户名: 密码: 验证码:
肝细胞高胆固醇负荷活化未折叠蛋白应答介导细胞凋亡损伤的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
资料显示肝细胞胆固醇聚积可导致细胞损伤,为了探讨胆固醇负荷时肝细胞损伤作用及可能机制,我们体外检测了在胆固醇负荷条件下肝细胞的凋亡发生,未折叠蛋白应答活化,以及它们间的相关性。采用200μg/ml LDL或者200μg/ml LDL联合20μg/ml胆固醇酯化酶ACAT抑制剂58035孵育人正常肝L02细胞24h;采用胆固醇氧化酶胆固醇酯酶法联合高效液相色谱(HPLC)法检测胞内总胆固醇(TC),游离胆固醇(FC)和胆固醇酯(CE)的含量;RT-PCR分析UPR主要标志分子(BiP,XBP1,ATF6,ATF4,CHOP)基因mRNA表达水平;Western Blot检测BiP,ATF6表达及活化caspase-3蛋白片段的表达变化;Annexin V-FITC-PI荧光标记染色观察细胞凋亡;在LDL孵育的不同细胞组别中进一步添加3mM UPR抑制剂PBA,观察细胞凋亡及活性caspase-3的表达变化。结果发现,与对照组相比:用LDL孵育的细胞内胆固醇含量增加明显,对照组细胞FC含量为5.90±0.36μg/mg,LDL组中FC为11.17±0.35μg/mg,LDL+58035组为13.20±0.66μg/mg;LDL组中伴侣分子BiP mRNA和蛋白表达水平明显诱导上调,sXBP1和CHOP mRNA表达水平诱导增加,而LDL+58035组中它们的诱导表达增加更明显,同时还诱导上调ATF4,ATF6的表达;对照组中细胞凋亡率为1.1±0.6%,而LDL组中活化的caspase-3增加到4.8±0.21倍,细胞凋亡率上升到12.9±1.4%,LDL+58035组中活化的caspase-3增加到8.4±0.46倍,细胞凋亡率达到21.3±2.4%。进一步在LDL孵育的组别中添加UPR抑制剂PBA后分别检测细胞凋亡发生与活化caspase-3蛋白表达的变化,与对应的未加PBA的组别相比:LDL+PBA组和LDL+58035+PBA组中细胞凋亡率分别降至8.8±1.1%和14.9±1.6%,活化caspase-3蛋白表达减至对照组的2.5±0.13倍和5.7±0.35倍。以上结果表明胆固醇负荷能使L02肝细胞发生内质网应激,激活UPR,并引起细胞凋亡损伤,而活化的UPR介导了该凋亡损伤。
Reported data demonstrated that cholesterol loading in liver could cause the hepatic injury. To explore the possible mechanisms of cell damage resulted from cholesterol overloading in hepatocyte, the cell apoptosis, the unfolded protein response (UPR) and the correlation between them were tested in cholesterol-overloading human normal hepatic cell line L02. L02 cells were incubated with 200μg/ml of low density Hpoprotein (LDL) for 24h with or without 20μg/ml of 58035, an inhibitor of acyl-CoA:cholesterol acyltransferase (ACAT). In LDL+58035 group, the intracellular cholesterol level was dramatically increased, which was measured by an enzymetic combinated high performance liquid chromatography (HPLC) assay. The expression of immunoglobulin-binding protein (BiP), X-box binding protein (XBP1), activating transcription factor 6(ATF6), activating transcription factor 4(ATF4), CCAAT/enhancer-binding protein homologous protein-10 (CHOP), which were all the markers of endoplasmic reticulum (ERS)/UPR, were up-regulated by reverse transcription-polymerase chains reaction (RT-PCR) or Western Blot analysis. The rate of apoptotic cell death increased to 21.3±2.4%. Meanwhile, the active caspase-3 protein expression increased to 8.4 folds of that in the controls. Furthermore, 4-Phenylbutyric acid (PBA), an inhibitor of UPR, could partly reduce the cell apoptosis and activation of caspase-3. This study suggests that cholesterol overloading in hepatic L02 cells induced the ERS and activated UPR which partly leads to apoptotic damage of cells.
引文
1. Gaut JR and Hendershot LM: The modification and assembly of proteins in the endoplasmic reticulum. Curr Opin Cell Biol 5:589-95,1993.
    2. Ji C and Kaplowitz N: ER stress: can the liver cope? J Hepatol 45:321-33,2006.
    3. Malhotra JD and Kaufman RJ: The endoplasmic reticulum and the unfolded protein response. Semin Cell Dev Biol 18:716-3,2007.
    4. Sundar Rajan S, Srinivasan V, Balasubramanyam M and Tatu U: Endoplasmic reticulum (ER) stress & diabetes. Indian J Med Res 125:411-24,2007.
    5. Marciniak SJ and Ron D: Endoplasmic reticulum stress signaling in disease. Physiol Rev 86:1133-49,2006.
    6. Yoshida H: ER stress and diseases. FEBS J 274:630-58,2007.
    7. Feng B, Yao PM, Li Y, et ah The endoplasmic reticulum is the site of cholesterol-induced cytotoxicity in macrophages. Nat Cell Biol 5:769-70,2003.
    8. Li Y, Schwabe RF, DeVries-Seimon T, et at Free cholesterol-loaded macrophages are an abundant source of tumor necrosis factor-alpha and interleukin-6: model of NF-kappaB- and map kinase-dependent inflammation in advanced atherosclerosis. J Biol Chem 280:21763-72,2005.
    9. Ji Zhou, Sarka Lhotak, Brooke A. Hilditch and Richard C. Austin: Activation of the Unfolded Protein Response Occurs at All Stages of Atherosclerotic Lesion Development in Apolipoprotein E-Deficient Mice. Circulation 111:1814-1821, 2005.
    10. Maxfield FR and Tabas I: Role of cholesterol and lipid organization in disease. Nature 438:612-21,2005.
    11. Tabas I: Consequences of cellular cholesterol accumulation: basic concepts and physiological implications. J Clin Invest 110:905-11, 2002.
    12. Ji C, Chan C and Kaplowitz N: Predominant role of sterol response element binding proteins (SREBP) lipogenic pathways in hepatic steatosis in the murine intragastric ethanol feeding model. J Hepatol 45:717-24, 2006.
    13. Kim DS, Jeong SK, Kim HR, Kim DS, Chae SW and Chae HJ: Effects of triglyceride on ER stress and insulin resistance. Biochem Biophys Res Commun 363:140-5, 2007.
    14. Ota T, Gayet C and Ginsberg HN: Inhibition of apolipoprotein B100 secretion by lipid-induced hepatic endoplasmic reticulum stress in rodents. J Clin Invest 118:316-32,2008.
    15. Wang D, Wei Y and Pagliassotti MJ: Saturated fatty acids promote endoplasmic reticulum stress and liver injury in rats with hepatic steatosis. Endocrinology 147:943-51,2006.
    16. Werstuck GH, Lentz SR, Dayal S, et ah Homocysteine-induced endoplasmic reticulum stress causes dysregulation of the cholesterol and triglyceride biosynthetic pathways. J Clin Invest 107:1263-73,2001.
    17. Tardif KD, Waris G and Siddiqui A: Hepatitis C virus, ER stress, and oxidative stress.Trends Microbiol 13:159-63,2005.
    18. Colgan SM, Tang D, Werstuck GH and Austin RC: Endoplasmic reticulum stress causes the activation of sterol regulatory element binding protein-2.Int J Biochem Cell Biol 39:1843-51, 2007.
    19. Man M, Caballero F, Colell A, et ah Mitochondrial free cholesterol loading sensitizes to TNF- and Fas-mediated steatohepatitis. Cell Metab 4:179-81,2006.
    20. Eduardo P. Beltroy, Benny Liu, John M. Dietschy and Stephen D. Turley: Lysosomal unesterified cholesterol content correlates with liver cell death in murine Niemann-Pick type C disease. Journal of Lipid Research Volume 48:869-881, 2007.
    21. Ross AC, Go KJ, Heider JG and Rothblat GH: Selective inhibition of acyl coenzyme Axholesterol acyltransferase by compound 58-035. J Biol Chem 259:815-9,1984.
    22. Ron D and Oyadomari S: Lipid phase perturbations and the unfolded protein response.Dev Cell 7:287-8, 2004.
    23. Pahl HL: Signal transduction from the endoplasmic reticulum to the cell nucleus. Physiol Rev 79:683-701,1999.
    24. Malhotra JD and Kaufman RJ: Endoplasmic reticulum stress and oxidative stress: a vicious cycle or a double-edged sword? Antioxid Redox Signal 9:2277-93,2007.
    25. Birrell MA, Catley MC, Hardaker E, et ah Novel role for the liver X nuclear receptor in the suppression of lung inflammatory responses. J Biol Chem 282:31882-90, 2007.
    26. Soccio RE and Breslow XL: Intracellular cholesterol transport. Arterioscler Thromb Vase Biol 24:1150-60,2004.
    27. Ikonen E: Mechanisms for cellular cholesterol transport: defects and human disease.Physiol Rev 86:1237-61,2006.
    28. Ye J: Reliance of host cholesterol metabolic pathways for the life cycle of hepatitis C virus. PLoS Pathog 3:el08,2007.
    29. Ye J, Rawson RB, Komuro R, et al:ER stress induces cleavage of membrane-bound ATF6 by the same proteases that process SREBPs. Mol Cell 6:1355-64, 2000.
    30. O K, Lynn EG, Chung YH, Siow YL, Man RY and Choy PC: Homocysteine stimulates the production and secretion of cholesterol in hepatic cells. Biochim Biophys Acta 1393:317-24,1998.
    31. Bao S, Li Y, Lei X, et ah Attenuated free cholesterol loading-induced apoptosis but preserved phospholipid composition of peritoneal macrophages from mice that do not express group VIA phospholipase A2. J Biol Chem 282:27100-14,2007.
    32. Li Y, Ge M, Ciani L, et ah Enrichment of endoplasmic reticulum with cholesterol inhibits sarcoplasmic-endoplasmic reticulum calcium ATPase-2b activity in parallel with increased order of membrane lipids: implications for depletion of endoplasmic reticulum calcium stores and apoptosis in cholesterol-loaded macrophages. J Biol Chem 279:37030-9,2004.
    33. Contreras JA, Castro M, Bocos C, Herrera E and Lasuncion MA: Combination of an enzymatic method and HPLC for the quantitation of cholesterol in cultured cells. J Lipid Res 33:931-6, 1992.
    34. Gamble W, Vaughan M, Kruth HS and Avigan J. Procedure for determination of free and total cholesterol in micro- or nanogram amounts suitable for studies with cultured cells. J Lipid Res. 1978 Nov;19(8): 1068-70.
    35. Baryshev M, Sargsyan E, Wallin G, Lejnieks A, Furudate S, Hishinuma A and Mkrtchian S: Unfolded protein response is involved in the pathology of human congenital hypothyroid goiter and rat non-goitrous congenital hypothyroidism. J Mol Endocrinol 32:903-20,2004.
    36. Munro S and Pelham HR: An Hsp70-like protein in the ER: identity with the 78 kd glucose-regulated protein and immunoglobulin heavy chain binding protein. Cell 46:291-300,1986.
    37. Lee K, Tirasophon W, Shen X, et al; IRE1-mediated unconventional mRNA splicing and S2P-mediated ATF6 cleavage merge to regulate XBPl in signaling the unfolded protein response. Genes Dev 16:452-66,2002.
    38. Haze K, Yoshida H, Yanagi H, Yura T and Mori K: Mammalian transcription factor ATF6 is synthesized as a transmembrane protein and activated by proteolysis in response to endoplasmic reticulum stress. Mol Biol Cell 10:3787-99,1999.
    39. Oyadomari S and Mori M: Roles of CHOP/GADD153 in endoplasmic reticulum stress.Cell Death Differ 11:381-9,2004.
    40. Marchand A, Tomkiewicz C, Magne L, Barouki R and Garlatti M: Endoplasmic reticulum stress induction of insulin-like growth factor-binding protein-1 involves ATF4. J Biol Chem 281:19124-33,2006.
    41. Ma Y, Brewer JW, Diehl JA and Hendershot LM: Two distinct stress signaling pathways converge upon the CHOP promoter during the mammalian unfolded protein response. J Mol Biol 318:1351-65, 2002.
    42. Chen YX, Ruan XZ, Huang AL, Li Q, Moorhead JF and Varghese Z: Mechanisms of dysregulation of low-density lipoprotein receptor expression in HepG2 cells induced by inflammatory cytokines. Chin Med J (Engl) 120:2185-90, 2007.
    43. Parini P, Davis M, Lada AT, et al: ACAT2 is localized to hepatocytes and is the major cholesterol-esterifying enzyme in human liver. Circulation 110:2017-23, 2004.
    44. Musanti R, Giorgini L, Lovisolo PP, Pirillo A, Chiari A and Ghiselli G: Inhibition of acyl-CoAxholesterol acyltransferase decreases apolipoprotein B-100-containing Hpoprotein secretion from HepG2 cells. J Lipid Res 37:1-14,1996.
    45. Wilcox LJ, Barrett PH, Newton RS and Huff MW: ApoBIOO secretion from HepG2 cells is decreased by the AC AT inhibitor CI-1011: an effect associated with enhanced intracellular degradation of ApoB. Arterioscler Thromb Vase Biol 19:939-49,1999.
    46. Yoshida H: Unconventional splicing of XBP-1 mRNA in the unfolded protein response.Antioxid Redox Signal 9:2323-33,2007.
    47. Iwawaki T and Akai R: Analysis of the XBPl splicing mechanism using endoplasmic reticulum stress-indicators. Biochem Biophys Res Commun 350:709-15,2006.
    48. Lin JH, Li H, Yasumura D, et al: IRE1 signaling affects cell fate during the unfolded protein response. Science 318:944-9,2007.
    49. Ginsberg HN: Is the slippery slope from steatosis to steatohepatitis paved with triglyceride or cholesterol? Cell Metab 4:179-81,2006.
    50. Lin JH, Walter P and Yen TS: Endoplasmic reticulum stress in disease pathogenesis.Annu Rev Pathol 3:399-425, 2008.
    51. Yao PM and Tabas I: Free cholesterol loading of macrophages induces apoptosis involving the fas pathway. J Biol Chem 275:23807-13, 2000.
    52. Devries-Seimon T, Li Y, Yao PM, et al: Cholesterol-induced macrophage apoptosis requires ER stress pathways and engagement of the type A scavenger receptor. J Cell Biol 171:61-73, 2005.
    53. Hung JH, Su IJ, Lei HY, et al: Endoplasmic reticulum stress stimulates the expression of cyclooxygenase-2 through activation of NF-kappaB and pp38 mitogen-activated protein kinase. J Biol Chem 279:46384-92,2004.
    54. Momoi T: Caspases involved in ER stress-mediated cell death. J Chem Neuroanat 28:101-546.2004.
    55. Oyadomari S, Araki E and Mori M: Endoplasmic reticulum stress-mediated apoptosis in pancreatic beta-cells. Apoptosis 7:335-345,2002.
    56. Nakagawa T, Zhu H, Morishima N, Li E, Xu J, Yankner BA and Yuan J: Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-beta.Nature: 403:98-103,2000.
    57. McCullough KD, Martindale JL, Klotz LO, Aw TY and Holbrook NJ: Gadd153 sensitizes cells to endoplasmic reticulum stress by down-regulating Bcl2 and perturbing the cellular redox state. Mol Cell Biol 21:1249-1259, 2001.
    58. Vilatoba M, Eckstein C, Bilbao G, et al: Sodium 4-phenylbutyrate protects against ischemia reperfusion injury by inhibition of endoplasmic reticulum-stress mediated apoptosis. Surgery 138:342-351,2005.
    59. Ozcan U, Yilmaz E, Ozcan L, et al: Chemical chaperones reduce ER stress and restore glucose homeostasis in a mouse model of type 2 diabetes. Science 313:1137-40,2006.
    60. Qi X, Hosoi T, Okuma Y, Kaneko Mand Nomura Y: Sodium 4-phenylbutyrate protects against cerebral ischemic injury. Mol Pharmacol 66:899-908,2004.
    1. Gaut JR, Hendershot LM. The modification and assembly of proteins in the endoplasmic reticulum. Curr Opin Cell Biol. 1993 Aug;5(4):589-95.
    2. Wonnald MR, Dwek RA. Glycoproteins: glycan presentation and protein-fold stability.Structure. 1999 Jul 15;7(7):R155-60.
    3. Ellgaard L, Helenius A. ER quality control: towards an understanding at the molecular level. Curr Opin Cell Biol. 2001 Aug;13(4):431-7.
    4. Ellgaard L, Molinari M, Helenius A. Setting the standards: quality control in the secretory pathway. Science. 1999 Dec 3;286(5446):1882-8.
    5. Trombetta ES, Helenius A. Conformational requirements for glycoprotein reglucosylation in the endoplasmic reticulum. J Cell Biol. 2000 Mar 20;148(6): 1123-29.
    6. Koch GL. The endoplasmic reticulum and calcium storage. Bioessays. 1990 Nov;12(ll):527-31.
    7. Ma Y, Hendershot LM. The mammalian endoplasmic reticulum as a sensor for cellular stress. Cell Stress Chaperones. 2002 Apr;7(2):222-9.
    8. Rutkowski DT, Kaufman RJ. A trip to the ER: coping with stress. Trends Cell Biol. 2004 Jan;14(l):20-8.
    9. Sidrauski C, Chapman R, Walter P. The unfolded protein response: an intracellular signalling pathway with many surprising features. Trends Cell Biol. 1998 Jun;8(6):245-9.
    10. Hampton RY. ER stress response: getting the UPR hand on misfolded proteins. Curr Biol. 2000 Jul 13;10(14):R518-21.
    11. Ma Y, Hendershot LM. The unfolding tale of the unfolded protein response. Cell. 2001 Dec28;107(7):827-30.
    12. Shen X, Zhang K, Kaufman RJ. The unfolded protein response-a stress signaling pathway of the endoplasmic reticulum. J Chem Neuroanat. 2004 Sep;28(l-2):79-92.
    13. Kim PS, Arvan P. Endocrinopathies in the family of endoplasmic reticulum (ER) storage diseases: disorders of protein trafficking and the role of ER molecular chaperones. Endocr Rev. 1998 Apr; 19(2): 173-202.
    14. Rutishauser J, Spiess M. Endoplasmic reticulum storage diseases. Swiss Med Wkly.2002 May 4;132(17-18):211-22.
    15. Xu C, Bailly-Maitre B, Reed JC. Endoplasmic reticulum stress: cell life and death decisions. J Clin Invest. 2005 Oct;115(10):2656-64.
    16. Mori K. Tripartite management of unfolded proteins in the endoplasmic reticulum. Cell 2000 May 26;101(5):451-4.
    17. Liu CY, Kaufman RJ. The unfolded protein response. J Cell Sci. 2003 May 15;116(Pt10):1861-2.
    18. Shi Y, Vattem KM, Sood R, An J, Liang J, Stramm L, Wek RC. Identification and characterization of pancreatic eukaryotic initiation factor 2 alpha-subunit kinase, PEK,involved in translational control. Mol Cell Biol. 1998 Dec;18(12):7499-509.
    19. Haze K, Yoshida H, Yanagi H, Yura T, Mori K. Mammalian transcription factor ATF6 is synthesized as a transmembrane protein and activated by proteolysis in response to endoplasmic reticulum stress. Mol Biol Cell. 1999 Nov;10(11):3787-99.
    20. Haze K, Okada T, Yoshida H, Yanagi H, Yura T, Negishi M, Mori K. Identification of the G13 (cAMP-response-element-binding protein-related protein) gene product related to activating transcription factor 6 as a transcriptional activator of the mammalian unfolded protein response. Biochem J. 2001 Apr l;355(Pt 1):19-28.
    21. Tirasophon W,Welihinda AA,Kaurman RJ. A stress reponse pathway from the endoplamic reticulum to the nucleus requires a novel bifunctional prcotein kinase/endoribonuclease(Irelp) in mammalian cells.Genes Dev.1998 Jun 15;12(12):1812-24
    22. Wang XZ, Harding HP, Zhang Y, Jolicoeur EM, Kuroda M, Ron D. Cloning of mammalian Irel reveals diversity in the ER stress responses. EMBO J. 1998 Oct 1;17(19):5708-17.
    23. Iwawaki T, Hosoda A, Okuda T, Kamigori Y, Nomura-Furuwatari C, Kimata Y, Tsuru A, Kohno K. Translational control by the ER transmembrane kinase/ribonuclease IRE1 under ER stress. Nat Cell Biol. 2001 Feb;3(2): 158-64.
    24. Lee AS, Delegeane AM, Baker V, Chow PC. Transcriptional regulation of two genes specifically induced by glucose starvation in a hamster mutant fibroblast cell line. J Biol Chem. 1983 Jan 10;258(l):597-603.
    25. Munro S, Pelham HR. An Hsp70-like protein in the ER: identity with the 78 kd glucose-regulated protein and immunoglobulin heavy chain binding protein. Cell.1986 Jul 18;46(2):291-300.
    26. Dorner AJ, Wasley LC, Kaufman RJ. Overexpression of GRP78 mitigates stress induction of glucose regulated proteins and blocks secretion of selective proteins in Chinese hamster ovary cells. EMBO J. 1992 Apr; 11(4): 1563-71.
    27. Bertolotti A, Zhang Y, Hendershot LM, Harding HP, Ron D. Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response. Nat Cell Biol. 2000 Jun;2(6):326-32.
    28. Shen J, Chen X, Hendershot L, Prywes R. ER stress regulation of ATF6 localization by dissociation of BiP/GRP78 binding and unmasking of Golgi localization signals. Dev Cell. 2002 Jul;3(l):99-lll.
    29. Liu CY, Wong HN, Schauerte JA, Kaufman RJ. The protein kinase/endoribonuclease IREl alpha that signals the unfolded protein response has a luminal N-terminal ligand-independent dimerization domain. J Biol Chem. 2002 May 24;277(21):18346-56.
    30. Schroder M, Kaufman RJ. The mammalian unfolded protein response. Annu Rev Biochem. 2005;74:739-89.
    31. Ji C, Kaplowitz N. ER stress: can the liver cope? J Hepatol. 2006 Aug;45(2):321-33.
    32. Harding HP, Novoa I, Zhang Y, Zeng H, Wek R, Schapira M, Ron D. Regulated translation initiation controls stress-induced gene expression in mammalian cells. Mol Cell. 2000 Nov;6(5):1099-108.
    33. Harding HP, Zeng H, Zhang Y, Jungries R, Chung P, Plesken H, Sabatini DD, Ron D. Diabetes mellitus and exocrine pancreatic dysfunction in perk-/- mice reveals a role for translational control in secretory cell survival. Mol Cell. 2001 Jun;7(6):1153-63.
    34. Harding HP, Zhang Y, Ron D. Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase. Nature. 1999 Jan 21;397(6716):271-4.
    35. Boyce M, Bryant KF, Jousse C, Long K, Harding HP, Scheuner D, Kaufman RJ, Ma D,Coen DM, Ron D, Yuan J. A selective inhibitor of eIF2alpha dephosphorylation protects cells from ER stress. Science. 2005 Feb 11 ;307(5711):935-9.
    36. Harding HP, Zhang Y, Zeng H, Novoa I, Lu PD, Calfon M, Sadri N, Yun C, Popko B,Paules R, Stojdl DF, Bell JC, Hettmann T, Leiden JM, Ron D. An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Mol Cell.2003Mar;ll(3):619-33.
    37. Yoshida H, Matsui T, Yamamoto A, Okada T, Mori K. XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell. 2001 Dec 28;107(7):881-91.
    38. Calfon M, Zeng H, Urano F, Till JH, Hubbard SR, Harding HP-, Clark SG, Ron D. IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA. Nature. 2002 Jan 3;415(6867):92-6.
    39. Lee AH, Iwakoshi NN, Glimcher LH. XBP-1 regulates a subset of endoplasmic reticulum resident chaperone genes in the unfolded protein response. Mol Cell Biol.2003 Nov;23(ii):7448-59.
    40. Sriburi R, Jackowski S, Mori K, Brewer JW. XBP1: a link between the unfolded protein response, lipid biosynthesis, and biogenesis of the endoplasmic reticulum. J Cell Biol. 2004 Oct 11;167(1):35-41.
    41. Oda Y, Okada T, Yoshida H, Kaufman RJ, Nagata K, Mori K. Derlin-2 and Derlin-3 are regulated by the mammalian unfolded protein response and are required for ER-associated degradation. J Cell Biol. 2006 Jan 30;172(3):383-93.
    42. Kaneko M, Nomura Y. ER signaling in unfolded protein response. Life Sci. 2003 Dec 5;74(2-3):199-205.
    43. Yoshida H, Matsui T, Hosokawa N, Kaufman RJ, Nagata K, Mori K. A time-dependent phase shift in the mammalian unfolded protein response. Dev Cell. 2003 Feb;4(2):265-71.
    44. Lee AH, Chu GC, Iwakoshi NN, Glimcher LH. XBP-1 is required for biogenesis of cellular secretory machinery of exocrine glands. EMBO J. 2005 Dec 21; 24(24):4368-80.
    45. Reimold AM, Etkin A, Clauss I, Perkins A, Friend DS, Zhang J, Horton HF, Scott A,Orkin SH, Byrne MC, Grusby MJ, Glimcher LH. An essential role in liver development for transcription factor XBP-1. Genes Dev. 2000 Jan 15;14(2): 152-7.
    46. Reimold AM, Iwakoshi NN, Manis J, Vallabhajosyula P, Szomolanyi-Tsuda E,Gravallese EM, Friend D, Grusby MJ, Alt F, Glimcher LH. Plasma cell differentiation requires the transcription factor XBP-1. Nature. 2001 Jul 19;412(6844):300-7.
    47. Zhang K, Wong HN, Song B, Miller CN, Scheuner D, Kaufman RJ. The unfolded protein response sensor IRElalpha is required at 2 distinct steps in B cell lymphopoiesis. J Clin Invest. 2005 Feb;115(2):268-81.
    48. Li J, Lee B, Lee AS. Endoplasmic reticulum stress-induced apoptosis: multiple pathways and activation of p53-up-regulated modulator of apoptosis (PUMA) and NOXAby p53. J Biol Chem. 2006 Mar 17;281(ll):7260-70.
    49. Yan W, Frank CL, Korth MJ, Sopher BL, Novoa I, Ron D, Katze MG. Control of PERK eIF2alpha kinase activity by the endoplasmic reticulum stress-induced molecular chaperone P58IPK. Proc Natl Acad Sci USA. 2002 Dec 10;99(25):15920-5.
    50. Ladiges WC, Knoblaugh SE, Morton JF, Korth MJ, Sopher BL, Baskin CR, MacAuley A, Goodman AG, LeBoeuf RC, Katze MG. Pancreatic beta-cell failure and diabetes in mice with a deletion mutation of the endoplasmic reticulum molecular chaperone gene P58IPK. Diabetes. 2005 Apr;54(4):1074-81.
    51. van Huizen R, Martindale JL, Gorospe M, Holbrook NJ. P58IPK, a novel endoplasmic reticulum stress-inducible protein and potential negative regulator of eIF2alpha signaling. J Biol Chem. 2003 May 2;278(18): 15558-64.
    52. Nishitoh H, Saitoh M, Mochida Y, Takeda K, Nakano H, Rothe M, Miyazono K, Ichijo H. ASK1 is essential for JNK/SAPK activation by TRAF2. Mol Cell. 1998 Sep;2(3):389-95.
    53. Hatai T, Matsuzawa A, Inoshita S, Mochida Y, Kuroda T, Sakamaki K, Kuida K,Yonehara S, Ichijo H, Takeda K. Execution of apoptosis signal-regulating kinase 1(ASK1)-induced apoptosis by the mitochondria-dependent caspase activation. J Biol Chem. 2000 Aug 25;275(34):26576-81.
    54. Nishitoh H, Matsuzawa A, Tobiume K, Saegusa K, Takeda K, Inoue K, Hori S,Kakizuka A, Ichijo H. ASK1 is essential for endoplasmic reticulum stress-induced neuronal cell death triggered by expanded polyglutamine repeats. Genes Dev. 2002 Jun l;16(ll):1345-55.
    55. Urano F, Wang X, Bertolotti A, Zhang Y, Chung P, Harding HP, Ron D'. Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1. Science. 2000 Jan 28;287(5453):664-6.
    56. Davis RJ. Signal transduction by the JNK group of MAP kinases. Cell. 2000 Oct 13;103(2):239-52.
    57. Welihinda AA,Kaurman RJ The unfolded protein respose pathway in Saccharmyces cereviseae.Oligomerization and trans-phosphorylation of Irelp(Ernlp) are required for kinase activation.J Biol Chem.1996 Jul 26;271(30):18181-7.
    58. Chen X, Shen J, Prywes R. The luminal domain of ATF6 senses endoplasmic reticulum (ER) stress and causes translocation of ATF6 from the ER to the Golgi. J Biol Chem. 2002 Apr 12;277(15):13045-52.
    59. Shen J, Prywes R. Dependence of site-2 protease cleavage of ATF6 on prior site-l protease digestion is determined by the size of the luminal domain of ATF6. J Biol Chem. 2004 Oct 8;279(41):43046-51.
    60. Shen J, Snapp EL, Lippincott-Schwartz J, Prywes R. Stable binding of ATF6 to BiP in the endoplasmic reticulum stress response. Mol Cell Biol. 2005 Feb;25(3):921-32.
    61. Ye J, Rawson RB, Komuro R, Chen X, Dave UP, Prywes R, Brown MS, Goldstein JL.ER stress induces cleavage of membrane-bound ATF6 by the same proteases that process SREBPs. Mol Cell. 2000 Dec;6(6):1355-64.
    62. Yoshida H, Haze K, Yanagi H, Yura T, Mori K. Identification of the cis-acting endoplasmic reticulum stress response element responsible for transcriptional induction of mammalian glucose-regulated proteins. Involvement of basic leucine zipper transcription factors. J Biol Chem. 1998 Dec 11;273(50):33741-9.
    63. Anderson RG. Joe Goldstein and Mike Brown: from cholesterol homeostasis to new paradigms in membrane biology. Trends Cell Biol. 2003 Oct;13(10):534-9.
    64. Zhang K, Shen X, Wu J, Sakaki K, Saunders T, Rutkowski DT, Back SH, Kaufman RJ.Endoplasmic reticulum stress activates cleavage of CREBH to induce a systemic inflammatory response. Cell. 2006 Feb 10;124(3):587-99.
    65. Kondo S, Murakami T, Tatsumi K, Ogata M, Kanemoto S, Otori K, Iseki K, Wanaka A,Imaizumi K. OASIS, a CREB/ATF-family member, modulates UPR signalling in astrocytes. Nat Cell Biol. 2005 Feb;7(2): 186-94.
    66. Nagamori I, Yabuta N, Fujii T, Tanaka H, Yomogida K, Nishimune Y, Nojima H.Tisp40, a spermatid specific bZip transcription factor, functions by binding to the unfolded protein response element via the Rip pathway. Genes Cells. 2005 Jun;10(6):575-94.
    67. Yoshida H, Okada T, Haze K, Yanagi H, Yura T, Negishi M, Mori K. ATF6 activated by proteolysis binds in the presence of NF-Y (CBF) directly to the cis-acting element responsible for the mammalian unfolded protein response. Mol Cell Biol. 2000 Sep;20(18):6755-67.
    68. Zeng L, Lu M, Mori K, Luo S, Lee AS, Zhu Y, Shyy JY. ATF6 modulates SREBP2-mediated lipogenesis. EMBO J. 2004 Feb 25;23(4):950-8.
    69. Ma Y, Brewer JW, Diehl JA, Hendershot LM. Two distinct stress signaling pathways converge upon the CHOP promoter during the mammalian unfolded protein response. J Mol Biol. 2002 May 17;318(5): 1351-65.
    70. Ron D, Habener JF. CHOP, a novel developmentally regulated nuclear protein that dimerizes with transcription factors C/EBP and LAP and functions as a dominant-negative inhibitor of gene transcription. Genes Dev. 1992 Mar;6(3):439-53.
    71. Zinszner H, Kuroda M, Wang X, Batchvarova N, Lightfoot RT, Remotti H, Stevens JL,Ron D. CHOP is implicated in programmed cell death in response to impaired function of the endoplasmic reticulum. Genes Dev. 1998 Apr l;12(7):982-95.
    72. Novoa I, Zeng H, Harding HP, Ron D. Feedback inhibition of the unfolded protein response by GADD34-mediated dephosphorylation of eIF2alpha. J Cell Biol. 2001 May 28;153(5):1011-22.
    73. Marciniak SJ, Yun CY, Oyadomari S, Novoa I, Zhang Y, Jungreis R, Nagata K,Harding HP, Ron D. CHOP induces death by promoting protein synthesis a(?)id oxidation in the stressed endoplasmic reticulum. Genes Dev. 2004 Dec 15;18(24):3066-77.
    74. Yamaguchi H, Wang HG. CHOP is involved in endoplasmic reticulum stress-induced apoptosis by enhancing DR5 expression in human carcinoma cells. J Biol Chem. 2004 bet 29;279(44):45495-502.
    75. Sok J, Wang XZ, Batchvarova N, Kuroda M, Harding H, Ron D. CHOP-Dependent stress-inducible expression of a novel form of carbonic anhydrase VI. Mol Cell Biol.1999 Jan; 19(l):495-504.
    76. Wang XZ, Kuroda M, Sok J, Batchvarova N, Kimmel R, Chung P, Zinszner H, Ron D. Identification of novel stress-induced genes downstream of chop. EMBO J. 1998 Jul l;17(13):3619-30.
    77. Mauro C, Crescenzi E, De Mattia R, Pacifico F, Mellone S, Salzano S, de Luca C, D'Adamio L, Palumbo G, Formisano S, Vito P, Leonardi A. Central role of the scaffold protein tumor necrosis factor receptor-associated factor 2 in regulating endoplasmic reticulum stress-induced apoptosis. J Biol Chem. 2006 Feb 3;281(5):2631-8.
    78. Yoneda T, Imaizumi K, Oono K, Yui D, Gomi F, Katayama T, Tohyama M. Activation of caspase-12, an endoplastic reticulum (ER) resident caspase, through tumor necrosisfactor receptor-associated factor 2-dependent mechanism in response to the ER stress.J Biol Chem. 2001 Apr 27;276(17): 13935-40.
    79. Zhang C, Kawauchi J, Adachi MT, Hashimoto Y, Oshiro S, Aso T, Kitajima S.Activation of JNK and transcriptional repressor ATF3/LRF1 through the IRE1/TRAF2 pathway is implicated in human vascular endothelial cell death by homocysteine. Biochem Biophys Res Commun. 2001 Dec 7;289(3):718-24.
    80. Yang Q, Kim YS, Lin Y, Lewis J, Neckers L, Liu ZG. Tumour necrosis factor receptor 1 mediates endoplasmic reticulum stress-induced activation of the MAP kinase JNK.EMBO Rep. 2006 Jun;7(6):622-7.
    81. Hu P, Han Z, Couvillon AD, Kaufman RJ, Exton JH. Autocrine tumor necrosis factor alpha links endoplasmic reticulum stress to the membrane death receptor pathway through IRE 1 alpha-mediated NF-kappaB activation and down-regulation of TRAF2 expression. Mol Cell Biol. 2006 Apr;26(8):3071-84.
    82. Ji C, Deng Q, Kaplowitz N. Role of TNF-alpha in ethanol-induced hyperhomocysteinemia and murine alcoholic liver injury. Hepatology. 2004 Aug;40(2):442-51.
    83. Cheung HH, Lynn Kelly N, Liston P, Korneluk RG. Involvement of caspase-2 and caspase-9 in endoplasmic reticulum stress-induced apoptosis: a role for the IAPs. Exp Cell Res. 2006 Jul 15;312(12):2347-57.
    84.Dahmer MK.Caspases-2,-3,and -7 are involved in thapsigargin-induced apoptosis of SH-SY5Y neuroblastoma cells.J Neurosci Res.2005 May 15;80(4):576-83.
    85.Di Sano F,Ferraro E,Tuff R,Achsel T,Piacentini M,Cecconi F.Endoplasmic reticulum stress induces apoptosis by an apoptosome-dependent but caspase 12-independent mechanism.J Biol Chem.2006 Feb 3;281 (5):2693-700.
    86.Hitomi J,Katayama T,Eguchi Y,Kudo T,Taniguchi M,Koyama Y,Manabe T,Yamagishi S,Bando Y,Imaizumi K,Tsujimoto Y,Tohyama M.Involvement of caspase-4 in endoplasmic reticulum stress-induced apoptosis and Abeta-induced cell death.J Cell Biol.2004 May 10;165(3):347-56.
    87.Kim S J,Zhang Z,Hitomi E,Lee YC,Mukherjee AB.Endoplasmic reticulum stress-induced caspase-4 activation mediates apoptosis and neurodegeneration in INCL.Hum Mol Genet.2006 Jun 1;15(11):1826-34.
    88.Liu N,Scofield VL,Qiang W,Yan M,Kuang X,Wong PK.Interaction between endoplasmic reticulum stress and caspase 8 activation in retrovirus MoMuLV-ts1-infected astrocytes.Virology.2006 May 10;348(2):398-405.
    89.Rao RV,Ellerby HM,Bredesen DE.Coupling endoplasmic reticulum stress to the cell death program.Cell Death Differ.2004 Apr;11 (4):372-80.
    90.Reddy RK,Mao C,Baumeister P,Austin RC,Kaufman RJ,Lee AS.Endoplasmic reticulum chaperone protein GRP78 protects cells from apoptosis induced by topoisomerase inhibitors:role of ATP binding site in suppression of caspase-7 activation,J Biol Chem.2003 Jun 6;278(23):20915-24.
    91.Song L,De Sarno P,Jope RS.Central role of glycogen synthase kinase-3beta in endoplasmic reticulum stress-induced caspase-3 activatlon.J Biol Chem.2002 Nov 22;277(47):44701-8.
    92.Warnakulasuriyarachchi D,Cerquozzi S,Cheung HH,Holcik M.Translational induction of the inhibitor of apoptosis protein HIAP2 during endoplasmic reticulum stress attenuates cell death and is mediated via an inducible internal ribosome entry site element. J Biol Chem. 2004 Apr 23;279(17):17148-57.
    93. Tan Y, Dourdin N, Wu C, De Veyra T, Elce JS, Greer PA. Ubiquitous calpains promote caspase-12 and JNK activation during endoplasmic reticulum stress-induced apoptosis.J Biol Chem. 2006 Jun 9;281(23):16016-24.
    94. Morishima N, Nakanishi K, Takenouchi H, Shibata T, Yasuhiko Y. An endoplasmic reticulum stress-specific caspase cascade in apoptosis. Cytochrome c-independent activation of caspase-9 by caspase-12. J Biol Chem. 2002 Sep 13;277(37):34287-94.
    95. Nakagawa T, Yuan J. Cross-talk between two cysteine protease families. Activation of caspase-12 by calpain in apoptosis. J Cell Biol. 2000 Aug 21;150(4):887-94.
    96. Bitko V, Bank S. An endoplasmic reticulum-specific stress-activated caspase (caspase-12) is implicated in the apoptosis of A549 epithelial cells by respiratory syncytial virus. J Cell Biochem. 2001;80(3):441-54.
    97. Kouroku Y, Fujita E, Jimbo A, Kikuchi T, Yamagata T, Momoi MY, Kominami E,Kuida K, Sakamaki K, Yonehara S, Momoi T. Polyglutamine aggregates stimulate ER stress signals and caspase-12 activation. Hum Mol Genet. 2002 Jun 15;ll(13):1505-15.
    98. Mouw G, Zechel JL, Gamboa J, Lust WD, Selman WR, Ratcheson RA. Activation of caspase-12, an endoplasmic reticulum resident caspase, after permanent focal ischemia in rat. Neuroreport. 2003 Feb 10; 14(2): 183-6.
    99. Nakagawa T, Zhu H, Morishima N, Li E, Xu J, Yankner BA, Yuan J. Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-beta.Nature. 2000 Jan 6;403(6765):98-103.
    100.Ji C, Kaplowitz N. Hyperhomocysteinemia, endoplasmic reticulum stress, and alcoholic liver injury. World J Gastroenterol. 2004 Jun 15;10(12):1699-708.
    101.Kaplowitz N, Ji C. Unfolding new mechanisms of alcoholic liver disease in the endoplasmic reticulum. J Gastroenterol Hepatol. 2006 Oct;21 Suppl 3:S7-9.
    102.Ji C, Kaplowitz N. Betaine decreases hyperhomocysteinemia, endoplasmic reticulum stress, and liver injury in alcohol-fed mice. Gastroenterology. 2003 May;124(5):1488-99.
    103.Ji C, Mehrian-Shai R, Chan C, Hsu YH, Kaplowitz N. Role of CHOP in hepaticapoptosis in the murine model of intragastric ethanol feeding. Alcohol Clin Exp Res.2005 Aug;29(8):1496-503.
    104.Arai M, Kondoh N, Imazeki N, Hada A, Hatsuse K, Kimura F, Matsubara O, Mori K,Wakatsuki T, Yamamoto M. Transformation-associated gene regulation by ATF6alpha during hepatocarcmogenesis. FEBS Lett. 2006 Jan 9;580(l): 184-90. 105.Chiang PC, Chien CL, Pan SL, Chen WP, Teng CM, Shen YC, Guh JH. Induction of endoplasmic reticulum stress and apoptosis by a marine prostanoid in human hepatocellular carcinoma. J Hepatol. 2005 Oct;43(4):679-86.
    106.Shuda M, Kondoh N, Imazeki N, Tanaka K, Okada T, Mori K, Hada A, Arai M,Wakatsuki T, Matsubara O, Yamamoto N, Yamamoto M. Activation of the ATF6,XBP1 and grp78 genes in human hepatocellular carcinoma: a possible involvement of the ER stress pathway in hepatocarcmogenesis. J Hepatol. 2003 May;38(5):605-14.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700