用户名: 密码: 验证码:
以形态分析为基础的砷及砷生物代谢过程与产物的表征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以形态分析技术为主要研究手段,围绕与生物砷代谢相关的三个热点问题包括中药材,干海产品中砷的食用安全性、正常肝细胞与肝癌细胞代谢差异性以及砷生物代谢过程中砷蛋白的主要存在形态展开研究,获得了一系列有意义的结果及新认识。主要研究内容及所得成果总结如下:
     第一章,对国内外在砷形态分析及砷生物代谢的近期研究及相关研究成果进行了简单的介绍和评述,并在此基础上归纳出与砷生物代谢相关的三个砷的“矛盾”特性;确定了本研究论文的研究重点及主要研究内容。
     第二章,建立了三价无机砷(AsIII)、五价无机砷(AsV)、二甲基砷酸(DMA)、一甲基砷酸(MMA)、砷甜菜碱(AsB)和砷胆碱(AsC)六种形态砷的分离方法,采用梯度洗脱法使六种不同形态砷在15min内得到较好分离。并用盐酸浸提和超声溶剂提取两种前处理方法对中药材中不同形态砷进行提取,建立了高效液相色谱-电感耦合等离子体质谱(HPLC-ICP-MS)联用技术进行中药材中砷形态分析的方法,并用于6种中药材中砷形态的分析。研究发现中药材中砷主要以无机砷AsV和As III形态存在,此外动物性药材中还存在微量的砷甜菜碱(AsB)。
     第三章,根据干海产品中不同形态砷的性质不同,采用不同提取剂,建立了丙酮-甲醇-稀盐酸连续提取的方法,并对该方法所采用的各种试剂进行了优化。研究显示该提取方法对干海产品中的各种形态砷具有较高的提取效率,三步总提取效率可达87-115%。在此基础上对不同性质的干海产品中的砷代谢产物进行了分析,并采用高效液相色谱-电喷雾飞行时间质谱(HPLC-TOF-MS)对未知砷代谢产物进行了表征。结果显示,尽管干海产品中含砷量较高,但在动物性干海产品中砷主要以无毒的砷甜菜碱(AsB)形式存在,约占总可提取砷量的62.0-72.7%;而在植物性干海产品中砷主要以毒性较低的砷糖类物质存在,约占总可提取砷量的63.5-92.7%。因此可以推断干海产品的总体毒性较低。
     第四章,在对比了多种消解方法的基础上,建立了微波消解-电感耦合等离子体质谱法(Microwave digestion-ICP-MS)测定细胞中砷总量的分析方法。此外,本研究还建立了高效液相色谱-电感耦合等离子体质谱(HPLC-ICP-MS)联用技术进行正常人体肝细胞(Chang肝细胞)中砷形态的分析方法。研究发现Chang肝细胞中存在两种无法用已有商业化的砷形态标准表征的砷形态。本工作通过化学合成法制备了这两种砷形态标准,并采用标准加入法确定出该两种未知砷形态分别为一甲基亚砷酸(MMAIII)和一甲基一硫代砷酸(MMTA)。通过对正常肝细胞(Chang肝细胞)和肝癌细胞(QGY-7703肝癌细胞)砷代谢产物的对比发现,肝癌细胞对砷的代谢能力较弱。此外,由于在肝癌细胞中未检测到二甲基砷酸(DMAV)和一甲基一硫代砷酸(MMTA),因而可推测这两种代谢产物的缺失与肝癌细胞受到抑制有关,并在此研究基础上根据砷甲基化代谢的机理推测了肝癌细胞受到抑制的原因。
     第五章,采用组分分析法将染砷小鼠肝脏按其不同的物理化学特性分为多个组分分别加以分析。结果显示小鼠肝脏中砷主要以自由态存在,占总砷含量的42.3-72.8%。其次为砷与不可溶蛋白结合态,占总砷含量的18.4-33.4%。砷与可溶性蛋白结合态含量最少,占总砷含量的8.8-24.3%。此外,研究发现多种砷代谢产物均可与小鼠肝脏中的蛋白结合,其中又以二甲基砷-蛋白结合态的含量最高。通过对三价砷化物(AsIII、MMAIII和DMAIII)与五价砷化物(AsV、MMAV和DMAV)与小鼠肝脏蛋白的亲和力强弱关系的对比,发现三价砷化物与蛋白的亲和力约为五价砷蛋白结合率的2倍,结合体内实验结果最终确定出小鼠肝脏内的砷蛋白主要以二甲基亚砷酸与蛋白结合物(DMAIII-protein)形态存在。此外,本研究还发现一(二)硫代砷化物(MMTA,DMDTA)是砷代谢过程中较易出现的代谢产物,而且这类物质是以与其对应的一(二)甲基亚砷酸(MMAIII,DMAIII)为代谢起点。
     本文以形态分析技术为主要研究手段,较系统地探讨了干海产品和中药材中砷及其化合物的存在形态及分布特点,填补了该方面研究的空白;同时消除了国内外对我国海产品及中药材中砷毒性的猜测与质疑,具有重要的社会效益和经济效益。此外,通过对生物砷代谢过程中砷代谢产物的表征和对比研究,探讨了硫代砷化物的来源,砷对肝癌细胞生长有抑制作用这一现象的化学机理以及小鼠体内砷蛋白的主要存在形态,这些研究结果会为人们更好地理解砷生物代谢过程并利用砷的化合物进行癌症治疗提供相关的分析方法学,科学信息及技术支持。
Three hot topics related to arsenic metabolism were systematically studied in this dissertation, and these include: 1) consumption risk assessment of dry seafood products and Chinese traditional herbs, 2) the difference between normal liver cells and carcinogenic liver cells in arsenic metabolism , and 3) the major existing forms of arsenic-protein during arsenic metabolism in rats,. The contents and major results of the study are outlined as follows:
     A brief review related to arsenic speciation and arsenic metabolism was made in the first chapter. Three seemingly conflicting characteristics about arsenic metabolism were summarized based on the recent literature survey.
     In the 2nd chapter, the hyphenated technique of HPLC-ICP-MS was developed for the separation and sequential determination of 6 arsenic species including arsenobetaine (AsB), arsenocholine (AsC), arsenite (AsIII), arsenate (AsV), monomethylarsonic acid (MMAV) and dimethylarsinic acid (DMAV). The method developed was then applied for the speciation analysis of arsenic in a varity of Chinese medicinal herbs. The study indicated that As (Ⅴ), As (Ⅲ) were the main chemical species in Chinese medicinal herbs, however, only a limited amount of AsB was found in the animal herbs studied.
     In the 3rd chapter, a sequential extraction procedure followed by HPLC-ICP-MS analysis was developed for the quantitative analysis of arsenic species in dry seafood products (DSPs). The excellent extraction efficiency could be obtained after three steps extraction (87-115%). A variety of DSPs samples were analyzed using novel extraction method established in the present work. It was observed that the type of arsenic species in the animal DSPs are different from those of the botanic ones. In the animal DSPs, Arsenobetaine (AsB) was the dominate specie, which occupied 62.0-72.7% of the total extractable arsenic in DSPs. Contrary to this, in botanic DSPs, three arsenosugars, DMA-glycerol ribose, DMA-phosphate ribose and DMA-sulfate ribose, identified with HPLC-TOF-MS, were the dominate species. The total content of these 3 species in the samples were in the range of 63.5-92.7%, indicating that the overall toxicity of DSPs were relatively low.
     Three digestion methods including microwave digestion, cold digestion and obturator digestion were systematically studied in the 4th chapter. The comparative results showed that the microwave digestion was the most efficient method for arsenic determination in samples. Based on the total arsenic determination, arsenic speciation in Chang liver cells (reference material) were performed to identify the arsenic metabolites after their incubation. Two unknown arsenic metabolites, which were speculated as monomethylarsonous acid (MMAIII) and monomethylmonothioarsonic acid (MMTA), were found in the cells. Due to the absence of commercial standards, the MMAIII and MMTA in hepatocytes were tentatively identified and characterized using standard addition method. Furthermore, arsenic metabolites in normal liver cells (Chang liver cells) and carcinogenic liver cells (QGY-7703 cells) were compared by analyzing their arsenic metabolism efficiency. The results indicated that the arsenic metabolism efficiency of carcinogenic liver cells (QGY-7703 cells) was much lower than that of the normal liver cells. Based on the information that both DMAV and MMTA in QGY-7703 cells was undetected, it is speculated that the loss of those two arsenicals was related to the inhabitation of carcinogenic liver cells during arsenic metabolism.
     In the 5th chapter, arsenic metabolites in rat liver were characterized and speciated using fractional analysis. The rat liver homogenates were separated into 5 fractions based on their different physical and chemical properties and analyzed using HPLC-ICP-MS. The results showed that most of the arsenicals in rat liver exist in free states, which accounts for 42.3-72.8% of the total arsenic. The next was arsenicals binding to non-soluble protein, which accounts for 18.4-33.4%. Arsenicals bond to soluble protein was the least abundant component, which accounts for 8.8-24.3%. Moreover, several kinds of arsenicals could bind to protein in rat liver, and the major component was in the form of dimethylated arsenicals-protein. An investigation of the affinity between arsenicals with different valence and protein suggested that trivalent arsenicals were much easier to bind to protein than those of pentavalent arsenicals. The present study indicated that the dimethylarsinic acid bond to protein (DMAIII-protein) was the major forms of arsenical-protein binding in rat liver. In addition, Arsenicals incubation in vitro showed that mono (di) methylthioarsenicals, including Dimethyldithioarsinic acid (DMDTA) and monomethylmonothioarsonic acid (MMTA) were the common arsenic metabolites in rat liver, which were derived from the metabolism of Monomethylarsonous acid (MMAIII) and Dimethylarsinous acid (DMAIII) in mammals.
     In the present work, the chemical species and distributions of arsenic in dry seafood products and Chinese traditional herbs were systematically studied. The results might play an important role in well understanding the principle of arsenic toxicity in seafood and Chinese herbs. Moreover, on a basis of the identification and comparison of arsenic metabolites obtained in vivo/vitro, the origination of Thioarsenicals, mechanism of grown inhibition of carcinogenic liver cells after arsenic incubation and major components of arsenic-protein in rat liver were discussed. The above studies and the scientific results might offer useful analytical methodology, scientific information and technical support to the scientists who are working in these areas.
引文
[1] K. Agata, N. Jacek. The role of speciation in analytical chemistry. Trends in Analytical Chemistry, 2000, 19 (2 + 3): 69-79.
    [2] D.M. Templeton, F. Ariese, R. Cornelis, L. Danielsson, H. Muntau, H.P. Van Leeuwen and R. ?obiński, Guidelines for terms related to chemical speciation and fractionation of elements. Definitions, structural aspects, and methodological approaches, Pure and Applied Chemistry, 2000, 72: 1453-1470.
    [3]王小如,孙大海,庄峙厦.中药复杂体系中重大科学问题探讨.厦门:厦门大学出版社, 1998. 121-123.
    [4] X. R. Zhang, C. Zhang.“Detection by AAS and AES”In:Handbook of Trace Element Speciation Edit by Cornelis R, John Wiley&Sons Publisher, 2002. 67-69.
    [5]韦超.砷元素形态分析的方法研究及其在食品安全领域的应用[硕士学位论文].北京:清华大学化学系, 2004.
    [6]黄业茹,杨福全.色谱技术在有机金属化合物形态分析中的应用进展.环境科学研究, 1999,12(2): 60-64.
    [7] E. A.Laws (余刚张祖麟等译).水污染导论.北京:科学出版社. 2004. 6-7.
    [8]辛伟红,侯铁宁.松花江甲基汞污染区流行病学调查.中国地方病防治杂志, 2003,18(2): 103-104.
    [9]王宁,朱颜明,朴明玉,孟丹.松花江上游地区汞污染的化学生态效应.地理科学, 2005,25(6): 737-741.
    [10]李静,叶琳,高婷,胡梦林,金明华,李娟.松花江汞污染综合治理后环境现状调查.中国公共卫生, 2005, 21(12):1494-1495.
    [11] Q. F. Zhou, G. B. Jiang, J. Y. Liu. Organotin pollution in China. The Scientific World Journal, 2002, 2: 655-659.
    [12]刘桂华,汪丽. HPLC-ICP-MS在紫菜中砷形态分析的应用.分析测试学报, 2002, 21(4): 88-90.
    [13] J. A. Brisbin, C. B'Hymer, J. A. Caruso. A gradient anion exchange chromatgraphic method for the speciation of arsenic in lobster tissue extracts. Talanta, 2002, 58(1): 133-145.
    [14] C. B’Hymer, J.A. Caruso. Arsenic and its speciation analysis using high-performance liquid chromatography and inductively coupled plasma mass spectrometry. Journal of Chromatography A, 2004, 1045: 1-13.
    [15] N. N. Greenwood, A. Earnshaw, Chemistry of the Elements, firsted. Oxford, UK: Pergamon Press, 1984. 132-142.
    [16] M. Morita, J. S. Edmonds, Determination of arsenic species in environmental and biological samples. Pure and Applied Chemistry. 1992, 64: 575-590.
    [17] A. J. L. Murer, A. O.M. Abildtrup, J. M. Poulsen Christense. Effect of seafood consumption on the urinary level of total hydride-generating arsenic compounds. Instability of arsenobetaine and arsenocholine. The Analyst. 1992, 117(3): 677-680.
    [18] M. O. Andreae, in: P.J. Craig (Ed.), Organometallic Compounds in the environment: Principles and Reactions, Longman, London, 1986, 198–228.
    [19] B. Venupopal, T.D. Luckey. Metal Toxicity in Mammals, vol. 2., Plenum Press, New York, 1978.
    [20] W. P. Tseng, H.M. Chu, S.W. How, J.M. Fong, C.S. Lin, S.J. Yen, Prevalence of Skin Cancer in an Endemic Area of Chronic Arsenicism in Taiwan. Journal of the National Cancer Institute. 1968, 40(3): 453-463.
    [21] NRC: National Research Council Report: Arsenic in the Drinking Water. Washington, DC: National Academy Press, 1999. 113-121.
    [22] J. L. Brown, K. T. Kitchin, M. George. Dimethylarsinic acid treatment alters six different rat biochemical parameters: relevance to arsenic carcinogenesis. Teratog Carcinog Mutagen. 1997, 17(2):71–84.
    [23] V. Foa, A. Colombi, M. Maroni, M. Buratti, in: L. Alessio, A. Berlin, M. Bori, R. Roi (Eds.), Arsenic in Biological Indicators for the Assessment of Human Exposure to Industrial Chemicals, CEC ISPRA, Luxenbourg, 1987, 25-28.
    [24] B. K. Mandal, K.T. Suzuki, Arsenic round the world: a review. Talanta 2002, 58(1):201-235.
    [25] R. Ritsema, L. Dukan, T.R.I. Navarro, W. van Leeuwen, N. Oliveira, P. Wolfs, E. Lebret, Applied Organometallic Chemistry. Speciation of arsenic compounds in urine by LC-ICP-MS. 1998, 12: 591-599.
    [26] W. R. Penrose, Arsenic in the marine and aquatic environments. Analysis, occurrence and significance. CRC Critical Reviews in Environmental Control. 1974, 5: 465-482.
    [27] S. Lin, W.R. Cullen, D.J. Thomas, Methylarsenicals and arsinothiols are potent inhibitors of mouse liver thioredoxin reductase. Chemical Research and Toxicology. 1999, 12: 924-930.
    [28] M. Styblo, S.V. Serves, W.R. Cullen, D.J. Thomas, Comparative inhibition of yeast glutathione reductase by arsenicals and arsenothiols. Chemical Research and Toxicology. 1997, 10: 27-33.
    [29] M. Styblo, L.M. Del Razo, L. Vega, D.R. Germolec, E.L. LeCluyse, G.A. Hamilton, W. Reed, C. Wang, W. R. Cullen, D. J. Thomas, Comparative toxicity of trivalent and pentavalentinorganic and methylated arsenicals in rat and human cells. Archives of Toxicology. 2000, 74(6): 289-299.
    [30] R. W. Whitacre, C. S. Pearse, Arsenic and the Environment, Mineral Industries Bulletin, Colorado, School of Mines, 1972, 1-2.
    [31] J. T. Hindmarsh, R. F. McCurdy, Clinical and environmental aspects of arsenic toxicity. CRC critical reviews in clinical laboratory sciences. 1986, 23(4): 315-347.
    [32] L. Vega, M. Styblo, R. Patterson, W. Cullen, C. Wang, D. Germolec. Differential Effects of Trivalent and Pentavalent Arsenicals on Cell Proliferation and Cytokine Secretion in Normal Human Epidermal Keratinocytes. Toxicology and Applied Pharmacology. 2002, 172(3): 225-232.
    [33] F. Challenger. Biological methylation. Chemical Review. 1945, 36: 315-361.
    [34] W. R. Cullen, and K. J. Reimer. Arsenic speciation in the environment. Chemical Review. 1989, 89, 713-764.
    [35] M. Vahter. Mechanisms of arsenic biotransformation, Toxicology. 2002, 181-182: 211-217.
    [36] T.W. Gebel. Arsenic methylation is a process of detoxification through accelerated excretion, International Journal of Hygiene and Environmental Health. 2002, 205(6): 505-508.
    [37] A. D. Kligerman, C. L. Doerr, A. H. Tennant, K. Harrington Brock, J. W. Allen, E. Winkfield, P. Poorman-Allen, B. Kundu, K. Funasaka, B. C. Roop, M. J. Mass, D. M. DeMarini. Methylated trivalent arsenicals as candidate ultimate genotoxic forms of arsenic: induction of chromosomal mutations but not gene mutations, Environmental and Molecular Mutagenesis. 2003, 42(3): 192-205.
    [38] R. A. Goyer (Chair), Arsenic in Drinking Water, National Academy Press, Washington, DC, 1999, 152-192.
    [39] J. S. Petrick, B. Jagadish, E.A. Mash, H.V. Aposhian, Monomethylarsonous acid (MMA(III)) and arsenite: LD(50) in hamsters and in vitro inhibition of pyruvate dehydrogenase, Chemical Research and Toxicology. 2001, 14: 651-656.
    [40] S. Lin, L.M. Del Razo, M. Styblo, C. Wang, W. R. Cullen, D.J. Thomas, Arsenicals inhibit thioredoxin reductase in cultured rat hepatocytes, Chemical Research and Toxicology. 2001, 14: 305-311.
    [41] K. Yamanaka, F. Takabayashi, M. Mizoi, Y. An, A. Hasegawa, S. Okada, Oral exposure of dimethylarsinic acid, a main metabolite of inorganic arsenics, in mice leads to an increase in 8-oxo-2’-deoxyguanosine level, specifically in the target organs for arsenic carcinogenesis, Biochemical and Biophysical Research Communicaitons. 2001, 287(1): 66-70.
    [42] K. Kato, H. Hayashi, A. Hasegawa, K. Yamanaka, S. Okada, DNA damage induced in cultured human alveolar (L-132) cells by exposure to dimethylarsinic acid, Environmental Health Perspective. 1994, 102 (Suppl. 3): 285-288.
    [43] T. Schwerdtle, I. Walter, I. Mackiw, A. Hartwig, Induction of oxidative DNA damage by arsenite and its trivalent and pentavalent methylated metabolites in cultured human cells andisolated DNA, Carcinogenesis. 2003, 24: 967-974.
    [44] M.B.Shimkin, Contrary to Nature. U.S. Department of Health, Education, and Welfare, Washington, D.C. 1977. 121-134.
    [45] IARC, Arsenic. Overall Evaluations of Carcinogenicity. An Updating of IARC Monographs 1 to 42. International Agency for Research on Cancer, Lyon, France. 1987. 100-106.
    [46] IARC, IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. Some Drinking-Water Disinfectants and Contaminants, Including Arsenic. International Agency for Research on Cancer, Lyon, France. 2003. 245-259.
    [47] K.T. Kitchin. Recent advances in arsenic carcinogenesis: modes of action, animal model systems, and methylated arsenic metabolites. Toxicology and Applied Pharmacology. 2001, 172: 249-261.
    [48] K. Yamanaka, A. Hasegawa, R. Sawamura. Dimethylated arsenics induce DNA strand breaks in lung via the production of active oxygen in mice. Biochemical and Biophysical Research Communicaitons, 1989, 165: 43-50.
    [49] K. Yamanaka, K. Kato, M. Mizoi. The role of active arsenic species produced by metabolic reduction of dimethylarsinic acid in genotoxicity and tumorigenesis[J].Toxicology and Applied Pharmacology. 2004, 198: 385-393.
    [50]安艳,李全太.无机砷甲基化代谢诱发氧化应激与砷致癌作用机制研究进展.中国地方学病杂志. 2006, 25(1): 115-117.
    [51] D. Bradley. Therapeutic needs revive arsenic compound. Pharmaceutical Science and Technology Today 2000, 3: 401-406.
    [52] Z. S. lejkoveca, I. Falnogaa, W. Goesslerb, J. T. van Elterenc, R. Ramlb, H. Podgornikd, P. C. ernelcd. Analytical artefacts in the speciation of arsenic in clinical samples. Analytica Chimica Acta. 2008, 607: 83-91.
    [53] Y. Jing, J. Dai, R.M.E. Chalmers-Redman. Arsenic trioxide selectively induces acute promyelocytic leukemia cell apoptosis via hydrogen peroxide-dependent pathway. Blood. 1999, 94(6): 2102-2111.
    [54] D. Douer, M.S. Tallman. Arsenic trioxide: New clinical experience with an old medication in hematologic malignancies. Journal Clinical Oncology. 2005, 23(10): 2396-2410.
    [55] W. H. Miller Jr., H. M. Schipper, J. S. Lee, J. Singer, S. Waxman, Mechanisms of Action of Arsenic Trioxide. Cancer Research. 2002, 62: 3893-3903.
    [56]郝继辉,俞呜,李强.三氧化二砷诱导肝癌细胞株凋亡的实验研究.中华肝胆外科杂志. 2004, l0(6): 414-416.
    [57]张靖宇,刘宝刚.三氧化二砷在抗肝癌中的研究进展.实用肿瘤学杂志. 2008, 22(2): 192-194.
    [58]刘佳,张大方,李超英.三氧化二砷的抗肝癌作用研究.长春中医药大学学报. 2008, 24(3): 252-253.
    [59] M. Oketani, K. Kohara, D. Tuvdendorj. Inhibition by arsenic trioxide of human hepatoma cell growth. Cancer Letter. 2002, 183: 147–153.
    [60]刘秀丽,杨冬梅,刘志萍.三氧化二砷对人肾癌细胞A-704的抑制作用研究.实用肿瘤学杂志. 2008, 22(3): 237-241.
    [61]王德林,米粲,陈在贤.三氧化二砷抑制肾癌细胞系786-0增殖及诱导调亡的研究.中华实验外科杂志. 2005, 22(5): 558-560.
    [62] A. Yacoub, C. Mitchell, J. Brannon. MDA-7 (interleukin-24) inhibits the proliferation of renal carcinoma cells and interacts with free radicals to promote cell death and loss of reproductive capacity. Molecular Cancer Therapy 2003, 2: 623–632.
    [63]鞠培新,石文军.三氧化二砷在诱导非小细胞肺癌NCI-H157细胞凋亡过程中对Survivin基因表达Caspase-3的影响. 2007, 34(19). 1097-1100.
    [64] H. R. Kim, E. J. Kim, S. H. Yang. Combination treatment with arsenic trioxide and sulindac augments their apoptotic potential in lung cancer cells through activation of caspase cascade and mitochondrial dysfunction. International Journal of Clinical Oncology. 2006. 28: 1401–1418.
    [65]程洪军,包国建,叶炬伟,曹远志,陈斌.三氧化二砷对肝癌细胞株SMMC-7721[Ca2+]i的影响.肝胆胰外科杂志. 2008, 20(4): 251-254.
    [66]冯觉平,黄涛,王亚平,方静,李敏,孔庆志.三氧化二砷抑制肝癌HepG2细胞侵袭转移及对RhoC基因表达的影响.肿瘤防治研究. 2008, 35(11): 775-778.
    [67]王兴武,孙菊杰,魏玲,宋现让.三氧化二砷对人肝癌细胞的体外作用及其机制.中国医院药学杂志. 2006, 26(12): 1500-1504.
    [68] T. Zhang, S. S. Wang, L. Hong, X. L. Wang, Q. H. Qi. Arsenic trioxide induces apoptosis of rat hepatocellular carcinoma cells in vivo. Journal of Experimental & Clinical Cancer Research. 2003, 22: 61–68.
    [69] B. Tan, J. F. Huang, Q. Wei, H. Zhang, R. Z. Ni. Anti-hepatoma effect of arsenic trioxide on experimental liver cancer induced by 2-acetamidofluorene in rats. World Journal Gastroenterology 2005, 11: 5938–5943.
    [70] K. T. Suzuki. Metablolonmic of arsenic based on speciation studies. Analytica Chimica Acta. 2005, 540: 71-76.
    [71] J. Borak, H. D. Hosgood. Seafood arsenic: Implications for human risk assessment. Regulatory Toxicology and Pharmacology. 2007, 47: 204-212.
    [72] W. H. Li, C. Wei, C. Zhang, M. V. Hulle, R. Cornelis, X. R. Zhang. A survey of arsenic species in Chinese seafoods. Food Chem Toxicology, 2003, 41(8): 1103-1110.
    [73] D. Velez, R. Montoro. Arsenic speciation in manufactured seafood products. Journal Food Protect. 1998, 61(9): 1240-1245.
    [74] M. C. Villa-Lojo, E. Alonso-Rodriguez, P. Lopez-Mahia. Coupled high performance liquidchromatography-microwave digestion-hydride generation-atomic absorption spectrometry for inorganic and organic arsenic speciation in fish tissue. Talanta. 2002, 57(4): 741-750.
    [75] J. A. Brisbin, C. B'Hymer, J. A. Caruso. A gradient anion exchange chromatographic method for the speciation of arsenic in lobster tissue extracts.Talanta 2002, 58(1): 133-145.
    [76] J. J. Sloth, E. H. Larsen, K. Julshamn. Determination of organoarsenic species in marine samples using gradient elution cation exchange HPLC-ICP-MS. Journal of Analytical Atom Spectromety. 2003, 18(5): 452-459.
    [77] Y. Yukiho, L. C. Marvelisa, M. O. Jose, J. Kazuo, S. Yasuyuki. Arsenic compounds in marine sponge (Haliclona permolis, Halichondria japonica, Halichondria okadai and Haliclona sp. white) from Seto Inland Sea, Japan. Applied Organometallic Chemistry. 2001, 15(4): 261-265.
    [78] K. A. Francesconi, J. S. Edmonds. Arsenic species in marine samples. Croactica Chemica Acta. 1998, 71: 343–359.
    [79] WHO, Environmental Health Criteria 2 Arsenic and Arsenic Compounds. World Health Organization, Geneva. 2001, 24-27.
    [80] M. O. Andreae. Arsenic speciation in seawater and interstitial waters: the infuence of biological–chemical interactions on the chemistry of a trace element. Limnology. Oceanography. 1979, 24: 440-452.
    [81] M. O. Andreae. Distribution and speciation of arsenic in natural waters and some marine algae. Deep Sea Research. 2005, 25: 391-402.
    [82] K. A. Francesconi, J. S. Edmonds. Biotransformation of arsenic in the marine environment. In: Nriagu, J.O. (Ed.), Arsenic In The Environment. Part I: Cycling and Characterization John Wiley, New York, 1994, 221–261.
    [83] A. A. Meharg, J. Hartley-Whitaker. Arsenic uptake and metabolism in arsenic resistant and nonresistant plant species. New Phytologist. 2002, 154: 29-43.
    [84] C. I. Ullrich-Eberius, A. Sanz, A. J. Novacky. Evaluation of arsenate and vanadateassociated changes of electrical membrane potential and phosphate transport in Lemna gibba. Journal of Experimental Botany. 2005, 40: 119-128.
    [85] D. J. H. Phillips. Arsenic in aquatic organisms: a review, emphasizing chemical speciation. Aquatic Toxicology. 1990, 16: 151-186.
    [86] S. Tamaki, W. T. Frankenberger. Environmental biochemistry of arsenic. Reviews of Environmental Contamination and Toxicology. 1992, 124: 79-110.
    [87] J. G. Sanders, R. W. Osman, G. F. Reidel. Pathways of arsenic uptake and incorporation in estuarine phytoplankton and the Wlterfeeding invertebrates Eurytemora affinis, Balanus improvisus and Crassostrea virginica. Marine Biology. 1989, 103: 319-325.
    [88] J. S. Edmonds. Isolation, crystal structure and synthesis of arsenobetaine, the arsenical constituents of the western rock lobster Panulirus longipes cygnus George. TetrahedronLetter. 1997, 18: 1543-1546.
    [89] J. S. Edmonds, K. A. Francesconi. The origin of arsenobetaine inmarine animals. Applied Organometallic Chemistry. 1988, 2: 297-302.
    [90] K. Hanaoka, H. Yamamoto, K .Kawashima, S. Tagawa, T. Kaise. Ubiquity of arsenobetaine in marine animals and degradation of arsenobetaine by sedimentary micro-organisms. Applied Organometallic Chemistry. 1988, 2: 371-376.
    [91] S. McSheehy, J. Szpunar, R. Lobinski, V. Haldys, J. Tortajada, J. S. Edmonds, Characterization of arsenic species in kidney of the clam Tridacna derasa by multidimensional liquid chromatography-ICPMS and electrospray time-of-Fight tandem mass spectrometry.Analytical Chemistry. 2002, 74(10): 2370–2378.
    [92] J. S. Edmonds, K. A. Francesconi. Arsenic in seafoods: human health aspects and regulations. Marine Pollution Bulletin. 1993, 26: 665-674.
    [93] National Research Council, Arsenic in Drinking Water. National Academy Press, Washington, DC. 1999.
    [94] H. Norin, A. Christakopoulos, M. Sandstrom. Mass fragmentographic estimation of trimethylarsine oxide in aquatic organisms. Chemosphere. 1985, 14: 313-323.
    [95] K. Hanaoka, S. Tagawa, T. Kaise. The fate of organoarsenic compounds in marine ecosystems. Applied Organometallic Chemistry. 1992, 6: 139-146.
    [96] K. Hanaoka, K. Uchidak, S. Tagawa, T. Kaise. Uptake and degradation of arsenobetaine by the microorganisms occurring in sediments. Applied Organometallic Chemistry. 1995, 9: 573–579.
    [97] J. Kirby, W. Maher. Tissue accumulation and distribution of arsenic compounds in three marine Wsh species: relationship to trophic position. Applied Organometallic Chemistry. 2002, 16: 108-115.
    [98] T. Kaise, K. Hanaoka, S. Tagawa, T. Hirayama, S. Fukui. Distribution of inorganic arsenic and methylated arsenic in marine organisms. Applied Organometallic Chemistry. 1988, 2: 539-546.
    [99] R. A. Schoof. J. Eickhoff, L. J. Yost, D. W. Cragin. D. M. Meacher, D. B. Menzel, Dietary exposure to inorganic arsenic. In: W. R. Chappell. C. O. Abernathy, R. L. Calderon, (Eds.), Arsenic Exposure and Health Effects. Elsevier, Amsterdam, 1999. 81-88.
    [100] R. A. Schoof, L. J. Yost, J. Eickhoff, E. A. Crecelius, D. W. Cragin, D. M. Meacher, D. B. Menzel. A market basket survey of inorganic arsenic in food. Food Chemistry and Toxicology. 1999. 37: 839-846.
    [101] J. M. Donohue, C. O. Abernathy. Exposure to inorganic arsenic from fish and shellfish. In: W. R. Chappell. C. O. Abernathy, R. L. Calderon, (Eds.), Arsenic Exposure and Health Effects. Elsevier Science, Amsterdam, 1999, 89–98.
    [102] M. W. Arbouine, H. K. Wilson. The effect of seafood consumption on the assessment of occupational exposure to arsenic by urinary arsenic speciation measurements. Journal TraceElement Electrolytes Health Disease. 1992, 6:153-160.
    [103] R. Heinrich-Ramm, S. Mindt-Prufert, D. Szadkowski. Arsenic species excretion after controlled seafood consumption. Journal of Chromatograghy B 2002, 778: 263–273.
    [104] S. Branch, L. Ebdon, P. O’Neill. Determination of arsenic species in fish by directly coupled high-performance liquid chromatography inductively coupled plasma mass spectrometry. Journal of Analytical and Atom Spectrometry. 1994, 9: 33-37.
    [105] U. Ballin, R. Kruse, H. A. Russel. Determination of total arsenic and speciation of arsenobetaine in marine fish by means of reaction-headspace gas chromatography utilizing flame-ionization detectionand element specific spectrometric detection. Fresenius Journal of Analytical Chemistry. 1994, 350: 54-61.
    [106] G. K. H. Tam, S. M. Charbonneau, F. Bryce. E. Sandi. Excretion of a single oral dose of fish-arsenic in man. Bulletin of Environmental Contamination and Toxicology.1982, 28: 669-673.
    [107] R. M. Brown, D. Newton, C.J. Pickford J.C. Sherlock. Human metabolism of arsenobetaine ingested with fish. Hum. Exp. Toxicol. 1990, 9: 41-46.
    [108] W. M. F. Jongen, J. M. Cardinaals, P. M. J. Bos. Genotoxicity testing of arsenobetaine, the predominant form of arsenic in marine fishery products. Food Chemistry and Toxicology. 1985, 23: 669-673.
    [109] T. Sakurai, K. Fujiwara. Modulation of cell adhesion and viability of cultured murine bone marrow cells by arsenobetaine, a major organic arsenic compound in marine animals. British Journal of Pharmacology. 2001, 132: 143-150.
    [110] T. Sakurai, C. Kojima, M. Ochiai, T. Ohta, K. Fujiwara. Evaluation of in vivo acute immunotoxicity of a major organic arsenic compound arsenobetaine in seafood. International Immunopharmacology. 2004, 4(2): 179-184.
    [111] T. R. Irvin, K. J. Irgolic. Arsenobetaine and arsenocholine: two marine arsenic compounds without embryotoxicity. Applied Organometallic Chemistry. 1988, 2: 509-514.
    [112] J. Borak, H. D. Hosgood. Seafood arsenic: Implications for human risk assessment. Regulatory Toxicology and Pharmacology. 2007, 47: 204-212.
    [113] Y. Oya-Ohta, T. Kaise, T. Ochi. Induction of chromosomal aberrations in cultured human fibroblasts by inorganic and organic arsenic compounds and the different roles of glutathione in such induction. Mutation Research. 1996, 357: 123-129.
    [114] E. Marafante, M. Vahter, L. Dencker, Metabolism of arsenocholine in mice, rats and rabbits. Science of Total Environment. 1984: 34, 223–240.
    [115] A. Christakopoulos, H. Norin, M. Sandstr?m, H. Thor, P. Moldeus, R. Ryhage. Cellular metabolism of arsenocholine. Journal of Applied Toxicology. 1988, 8: 119-127.
    [116] T. Kaise, Y. Horiguchi, S. Fukui, K. Siomi and M. Chino and T. Kikuchi. Acute toxicity and metabolism of arsenocholine in mice. Applied Organometallic Chemistry. 1992. 6, 369-373.
    [117] H. Norin, R. Ryhage, A. Christakopoulos, M. Sandstr?m. New evidence for the presence ofarsenocholine in shrimps (Pandalus borealis) by use of pyrolysis gas chromatography atomic absorption mass spectrometry. Chemosphere. 1983, 12(3): 299-315.
    [118] J. F. Lawrence, P. Michalik, G. Tam, H. B. S. Conacher. Identification of arsenobetaine and arsenocholine in Canadianfish and shellfish by high-performance liquid chromatography with atomic absorption detection and confirmation by fast atom bombardments mass spectrometry. Journal of Agriculture and Food Chemistry. 1986, 34: 315-319.
    [119] T. Sakurai, Biological effects of organic arsenic compounds in seafood. Applied Organometallic Chemistry. 2002, 16, 401-405.
    [120] Agency for Toxic Substances and Disease Registry, Toxicological Profile for Arsenic (Update). U.S. Department of Health and Human Services, Atlanta. 2000.
    [121] D. J. H. Phillips. Arsenic in aquatic organisms: a review, emphasizing chemical speciation. Aquatic Toxicology. 1990. 16, 151-186.
    [122] X. C. Le, M. Ma, V. W. M. Lai. Exposure to arsenosugars from seafood ingestion and speciation of urinary arsenic metabolites. In: W. R. Chappell, C. O. Abernathy, R. L. Calderon (Eds.), Arsenic Exposure and Health Effects. Elsevier Science, Amsterdam, 1999. 69–88.
    [123] T. Sakurai, T. Kaise, T. Ochi, T. Saitoh. C. Matsubara. Study of in vitro cytotoxicity of a water soluble organic arsenic compound, arsenosugar, in seaweed. Toxicology 199, 122: 205-212.
    [124] P. Andrewes, D. M. DeMarini, K. Funasaka, K. Wallace, V. W. M. Lai, H. S. Sun, W. R. Cullen, K. T. Kitchin. Do arsenosugars pose a risk to human health?The comparative toxicities of a trivalent and pentavalent arsenosugar. Environmental Science and Technology. 2004, 38: 4140-4148.
    [125] ICES Marine Habitat Committee, Report of the Marine Chemistry Working Group: ICES CM 2004/E: 03. International Council for the Exploration of the Sea, Copenhagen. 2004.
    [126] H. Yamauchi, B. A. Fowler. Toxicity and metabolism of inorganic and methylated arsenicals. In: J.O. Nriagu, (Ed.), Arsenic in the environment, Part II: Human Health and Ecosystem Effects. John Wiley,New York, 1994.35-53.
    [127] T. Kaise, H. Yamauchi, Y. Horiguchi , T. Tani, S. Watanabe, T. Hirayama, S. Fukui. A comparative study on acute toxicity of methylarsonic acid, dimethylarsinic acid and trimethylarsine oxide in mice. Applied Organometallic Chemistry. 1989, 3: 273-277.
    [128] T. Kaise, S. Watanabe, K. Itoh. The acute toxicity of arsenobetaine. Chemosphere 1985, 14: 1327-1332.
    [129] M. A. Suner, V. Devesa, M. Jesús Clemente, D. Vélez, R. Montoro, I. Urieta, M. Jalón, M. L. Macho Organoarsenical species contents in fresh and processed seafood products. Journal Agriculture and Food Chemistry. 2002, 50, 924-932.
    [130] V. Devesa, M. A. Sú?er, S. Algora, D. Vélez, R. Montoro, M. Jalón, I. Urieta, M. L. Macho Organoarsenical species contents in cooked seafood. Journal of Agriculture and FoodChemistry. 2005, 53: 8813-8819.
    [131] K. Shiomi. Arsenic in marine organisms: chemical forms and toxicological aspects. In: Nriagu, J.O. (Ed.), Arsenic in The Environment.Part II: Human Health and Ecosystem EVects John Wiley, New York, 1994, 261-282.
    [132] V. Devesa, A. Martínez, M. A. Sú?er, D. Vélez, C. Almela, and R. Montoro. Effect of cooking temperatures on chemical changes in species of organic arsenic in seafood. Journal of Agriculture and Food Chemistry. 2005, 49: 2272-2276.
    [133] V. M. Devesa, A. Sú?er, S. Algora, D. Vélez, R. Montoro, M. Jalón, I. Urieta, M. L. Macho. Organoarsenical species contents in cooked seafood. Journal of Agriculture and Food Chemistry. 2005, 53: 8813-8819.
    [134] V. M. Dembitsky, D. O. Levitsky. Arsenolipids. Progress in Lipid Research. 2004, 43: 403-448
    [135]方宇,江桂斌,何滨.砷形态分析中的样品前处理方法.环境污染治理技术与设备. 2002, 2(3): 46-52.
    [136] C. Dietz, J. Sanz, E. Sanz, R. Munoz-Olivas, C. C′amara. Current perspectives in analyte extraction strategies for tin and arsenic speciation. Journal of Chromatography A, 2007, 1153(1-2): 114-129.
    [137] J. Alberti, R. Rubio, G. Rauret. Arsenic speciation in marine biological materials by LC-UV -HG-ICPOES . Journal of Analytical Chemistry. 1995, 351: 415-419.
    [138] S. Branch, L. Ebdon, O. Neill. Determination of arsenic species in fish by directly coupled high performance Liquid chromatography-inductively coupled plasma mass spectrometry . Journal of Analytical and Atom Spectrometry. 1994, 9: 33-37.
    [139] J. L. G. Ariza, D. S. Rodas. Comparison of biota sample pretreatments for arsenic speciation with coupled HPLC-HG-ICP-MS. Analyst, 2000,125:401- 407.
    [140] J. Alberti, R. Rubio, G. Rauret. Extraction method for arsenic speciation in marine organisms. Fresenius Journal of Analytical Chemistry. 1995, 351: 420-425.
    [141] K. L. Ackley, C. B. Hymer. Speciation of arsenic in fish tissue using microwave assisted extraction followed by HPLC-ICP—MS. Journal of Analytical and Atom Spectrometry. 1999, 14: 845- 850.
    [142] T. Dagnac, A. Padro, R. Rubio, G. Rauret. Optimization of the extraction of arsenic species from mussels with Low power focused microwaves by applying a Doehlert design.Analytica Chimca Acta. 1998, 364: 19-30.
    [143] E. H. Larsen., G. Pritzl, S. H. Hansen. Arsenic speciation in seafood samples with emphasis on minor con-stituents:an investigation using high-performance liquid chromatographywith detection by inductively coupled plasma mass spectrometry. Journal of Analytical Atom Spectrometry. 1993, 8: 1075-1084.
    [144] P. Thomas, K. Sniatecki. Inductively coupled plasma mass spectrometry: application of the determination of arsenic species. Fresenius Journal of Analytical Chemistry. 1995, 351: 410- 414.
    [145] A. Chatterjee. Determination of total cationic and total anionic arsenic species in oyster tissue using microwave-assisted extraction followed by HPLC–ICP-MS. Talanta, 2000, 51: 303-314.
    [146] V. W. M. Lai, W. R. Cullen, S. Ray. Arsenic speciation in scallops. Marine chemistry, 1999, 66: 81-89.
    [147] K. Wrobel, K. Wrobel, B. Parker. Determination of As(III), As(V), monomethylarsonic acid, dimethylarsinic acid and arsenobetaine by HPLC-/ICP-/MS: analysis of reference materials, fish tissues and urine. Talanta, 2002, 58: 899-907.
    [148] I. Pizarro, M. Gómez, C. Cámara. Arsenic speciation in environmental and biological samples Extraction and stability studies. Analytica Chimica Acta. 2003, 495: 85-98.
    [149] S. Garcia Salgado, M. A. Quijano Nieto, M.M. Bonilla Simon. Determination of soluble toxic arsenic species in alga samples by microwave-assisted extraction and high performance liquid chromatography–hydride generation–inductively coupled plasma-atomic emission spectrometry. Journal of Chromatography A. 2006, 1129: 54-60.
    [150] Z. S. lejkovec, E. Kapolna, I. Ipolyi. Arsenosugars and other arsenic compounds in littoral zone algae from the Adriatic Sea. Chemosphere. 2006, 63: 1098-1105.
    [151] S. Foster, W. Maher, F. Krikowa. A microwave-assisted sequential extraction of water and dilute acid soluble arsenic species from marine plant and animal tissues. Talanta ,2007, 71: 537-549.
    [152] M. V. hulle, C. zhang, R. cornelis. Arsenic speciation in Chinese seaweeds using HPLC-ICP-MS and HPLC-ES-MS. Analyst, 2002, 127: 634-640.
    [153] S. Rattanachongkia., G.. E. Millward., M. E. Foulkes. Determination of arsenic species in fish, crustacean and sediment samples from Thailand using high performance liquid chromatography coupled plasma mass spectrometry. Journal of Environmental Monitoring. 2004, 6: 254-261.
    [154] T. Maitani., S. Uchiyama., Y. Saito. Hydride generation-flame atomic absorption spectrometry as an arsenic detector for high-performance Liquid chromatography.Journal of Chromatography. 1987, 391: 161-168.
    [155]李海敏,张勇.砷形态分析方法的研究进展.理化检验-化学分册. 2006, 42: 315-320.
    [156] T. Hirschfeld. The hyphenated methods. Analytical Chemistry, 1980, 52: 297-312.
    [157]刘娜,张兰英,杜连柱,张玉玲,刘瑞,陈登云.高效液相色谱-电感耦合等离子体质谱法测定汞的3种形态分析化学. 2005, 33(8):1116-1118.
    [158]袁倬斌,朱敏,韩树波.汞的形态分析研究进展.岩矿测试, 1999,18(2):150-156.
    [159]何滨,江桂斌.汞形态分析的前处理技术.岩矿测试, 1999,18(2):259-262.
    [160] J. E. S. Uria,Sanz, A. Medel. Inorganic and methylmercury. speciation in environmental samples. Talanta, 1998, 47:509-524.
    [161]刘崴,杨红霞,李冰,陈登云,张惠娟.高效液相色谱-电感耦合等离子体质谱测定地下水中碘形态稳定性.分析化学,2007,35(4):371-374.
    [162]黄志勇,吴熙鸿,胡广林,庄峙厦.高效液相色谱/电感耦合等离子体质谱联用技术用于元素形态分析的研究进展.分析化学, 2002,30(11):1387-1293.
    [163]黄志勇,沈金灿,庄峙厦,王小如,黎先春.大鼠肾脏汞结合金属硫蛋白的联用技术表征研究.无机化学学报, 2005,21(1):65-69.
    [164] T. Hasegawa, M. Asano, K. Takatani, H. Matsuura, T. Umemura, H. Haraguchi. Speciation of mercury in salmon egg cell cytoplasm in relation with metallomics research. Talanta, 2005, 68(2): 465-469.
    [165] X. Cao, C. Hao, G. Wang, H. Yang, D. Chen, X. Wang. Sequential extraction combined with HPLC–ICP-MS for As speciation in dry seafood products. Food Chemistry, 2009, 113(2): 720-726.
    [166] G. Zhai, J. Liu, L. Li, L. Cui, B. He, Q. Zhou, G. Jiang. Rapid and direct speciation of methyltins in seawater by an on-line coupled high performance liquid chromatography–hydride generation–ICP/MS system. Talanta, 2009, 77(4): 1273-1278.
    [167] N. Campillo, R. Pe?alver, P. Vi?as, I. López-García, M. Hernández-Córdoba. Speciation of arsenic using capillary gas chromatography with atomic emission detection. Talanta, 2008. 77(2): 793-799.
    [168] A. Gonzálvez, A. Llorens, M.L. Cervera, S. Armenta, M. de la Guardia. Non chromatographic speciation of inorganic arsenic in mushrooms by hydride generation atomic fluorescence spectrometry. Food Chemistry, 2008, (In Press)
    [169] I. Pizarro, M. Gomez., C. Camara. Arsenic speciation in environmental and biological samples: Extraction and stability studies. Analytica Chimica Acta, 2003,495(1-2):85-98.
    [170]何小青,刘湘生,姚建明等. HPLC-ICP- MS联用技术应用于砷的形态分析.现代科学仪器,2004, 4: 33-36.
    [171] S. McSheehy, J. Szpunar, R. Morabito. The speciation of arsenic in biological tissues and the certification of reference materials for quality control, Trends in Analytical Chemistry, 2003, 22(4): 191-209.
    [172] C. B’Hymer, J. A. Caruso. Arsenic and its speciation analysis using high-performance liquid Chromatography and inductively coupled plasma mass spectrometry. Journal of Chromatography A, 2004, 1045: 1-13
    [173] D. Beauchemin, K.W.M. Siu, J.W. Mclaren, S.S. Berman, Determination of arsenic species by HPLC inductively coupled plasma mass spectrometry. Journal Analytical Atom Spectrometry. 1989, 4: 285-289.
    [174] S. N. Ronkart, V. Laurent , P. Carbonnelle, et al.Speciation of five arsenic species (arsenite, arsenate, MMAAV,DMAAV and AsBet) in different kind of water by HPLC-ICP-MS, Chemosphere, 2007,66,738-745.
    [175]卢邦俊,范必威.联用技术在砷形态分析中应用的研究进展.广东微量元素科学. 2004, 11(9): 6-12.
    [176] R.Wahlen, S. McSheehy. Arsenic speciation in marine certified reference materials Part 2. The quantification of water-soluble arsenic species by highperformance liquid chromatography-inductively coupled plasma mass spectrometry. Journal of Analytical Atomic Spectrometry, 2004, 19(7), 876-882.
    [177] J. W. McKiernan, J. T. Creed, A comparison of automated and traditional methods for the extraction of arsenicals from fish. Journal of Analytical Atomic Spectrometry. 1999, 14(4), 607-613.
    [178]何小青,刘湘生,姚建明. HPLC-ICP-MS联用技术应用于砷的形态分析,现代科学器, 2004, 4: 33-36.
    [179]陈浩,梁沛,王小如.电感耦合等离子体原子发射光谱/质谱法在中药微量元素及形态分析中的应用.光谱学与光谱分析. 2002, 22(6): l019-1024.
    [180]周天泽.中草药微量元素形态分析的几个问题.中草药, 1990, 21(10): 37-42.
    [181] X. Wang, Z. Zhuang, D. Sun, et a1. Trace metals in traditional Chinese medicine: a preliminary study using ICP-MS for metal determination and As speciation . Atomic Spectroscopy, 1999, 20(3): 86-91.
    [182]方军,舒永红,滕久委. HPLC-ICP-MS测定中药中砷的形态,分析实验室, 2006, 25(12): 95-98.
    [183] A. M. Bode, Z. G. Dong. The paradox of arsenic: molecular mechanisms of cell transformation and chemotherapeutic effects. Critical Reviews in Oncology and Hematology. 2002, 42: 5-24.
    [184] K. T. Suzuki. Metabolomics of arsenic based on speciation studies. Analytica Chimica Acta. 2005, 540: 71-76.
    [185] F. Challenger, Biological methylation. Chemical Reviewers. 1945, 36, 315-361.
    [186] K. T. Suzuki, A. Katagiri, Y. Sakuma, Y. Ogra, M. Ohmichi. Distributions and chemicalforms of arsenic after intravenous administration of dimethylarsinic and monomethylarsonic acids to rats. Toxicology and Applied Pharmacology, 2004, 198(3):336~345
    [187] H. V. Aposhian, M. M. Aposhian. Arsenic Toxicology: Five Questions. Chemical Research in Toxicology. 2006, 19(1): 1-15.
    [188] M. F. Hughes. Arsenic toxicity and potential mechanisms of action. Toxicology Letters. 2002, 133: 1-16
    [189] A. Raab, A. A. Meharg, M. Jaspars, D. R. Genney, J. Feldmann. Arsenic–glutathione complexes-their stability in solution and during separation by different HPLC modes. Journal of analytical atom spectrometry. 2004, 19. 183-194.
    [190] T. Sakurai, M. Ochiai, C. Kojima, T. Ohta, M. H. Sakurai, N. O. Takada, W. Qu, M. P. Waalkes, K. Fujiwara. Role of glutathione in dimethylarsinic acid-induced apoptosis. Toxicology and Applied Pharmacology. 2004, 198: 354-365
    [191] T. Hayakawa, Y. Kobayashi, X. Cui, S. Hirano, A new metabolic pathway of arsenite: Arsenic-glutathione complexes are substrates for human arsenic methyltransferase Cyt 19. Archives of Toxicology. 2005, 79: 183-191.
    [192] K. T. Suzuki. Metabolomics of arsenic based on speciation studies. Analytica Chimica Acta. 2005, 540: 71-76.
    [193] D. M. Templeton, F. Ariese, R. Cornelis, L. Danielsson, H. Muntau, H.P. Van Leeuwen, R. Lobinski. Guidelines for terms related to chemical speciation and fractionation of trace elements. Pure and Applied Chemitry. 2000, 72: 1453-1470.
    [194] J. Szpunar, R. Lobinski, A. Prange, Hyphenated Techniques for Elemental Speciation in Biological Systems Society for Applied Spectroscopy. 2003, 57(3): 102A-122A.
    [195] K. T. Suzuki, Hyphenated techniques as a tool to speciate biological metals: metallothionein and metal-binding proteins. Analysis 1998, 26: 57-60.
    [196] R. Lobinski, J. Edmonds, K.T. Suzuki, P.C. Uden, Species-selective determination of selenium compounds in biological materials. Pure and Applied Chemistry. 2000, 72: 447-461.
    [197] D. Schaumloffel, J. Ruiz Encinar, R. Lobinski. Analytical Chemistry. Development of a Sheathless Interface between Reversed-Phase Capillary HPLC and ICPMS via a Microflow Total Consumption Nebulizer for Selenopeptide Mapping. 2003, 75(24): 6837-6842
    [198] E.M. Kenyon, M.F. Hughes, B.M. Adair, J.H. Highfill, E.A. Crecelius, H.J. Clewell, J.W. Yager. Tissue distribution and urinary excretion of inorganic arsenic and its methylated metabolites in C57BL6 mice following subchronic exposure to arsenate in drinking water. Toxicology and Applied Pharmacology. 2008, 232: 448-455.
    [199] B. M. Adair, T. Moore, S. D. Conklin, J. T. Creed, D. C. Wolf, D. J. Thomas. Tissue distribution and urinary excretion of dimethylated arsenic and its metabolites in dimethylarsinic acid- or arsenate-treated rats. Toxicology and Applied Pharmacology. 2007, 222: 235-242.
    [200] V. W-M. Lai, Y. M. Sun, E. Ting, W. R. Cullen, K. J. Reimer. Arsenic speciation in human urine: are we all the same? Toxicology and Applied Pharmacology 2004, 198: 297- 306
    [201] L. M. Del Razo, M. Styblo, W. R. Cullen, D. J. Thomas. Accumulation and metabolism of arsenic in mice after repeated oral administration of arsenate. Toxicology and Applied Pharmacology. 2001, 174: 283-293.
    [202] H. V. Aposhian, R. A. Zakharyan, M. D. Avram, A. Sampayo-Reyes, M. L. Wollenberg, A review of the enzymology of arsenic metabolism and a new potential role of hydrogen peroxide in the detoxication of the trivalent arsenic species. Toxicology and Applied Pharmacology. 2004, 198: 327-335.
    [203] K. T. Suzuki, Y. Ogra, B. K. Mandal, Speciation of arsenic in body fluids. Talanta. 2002, 58(1): 111-119.
    [204] C. X. Le, X. Lu, M. Ma, W. R. Cullen, H. V. Aposhian, B. Zheng. Speciation of Key Arsenic Metabolic Intermediates in Human Urine. Analytical Chemistry. 2000, 72: 5172-5177.
    [205] C. X. Le, M. Ma, X. Lu, W. R. Cullen, H.V. Aposhian, B. Zheng, Determination of monomethylarsonous acid, a key arsenic methylation intermediate, in human urine. Environmental Health Perspective. 2000, 108: 1015-1018.
    [206] A. Sampayo-Reyes, R. A. Zakharyan, S. M. Healy, H. V. Aposhian, Monomethylarsonic Acid Reductase and Monomethylarsonous Acid in Hamster Tissue. Chemical Research and Toxicology. 2000, 13: 1181-1186.
    [207] S. K. V. Yathavakilla, M. Fricke. Arsenic Speciation and Identification of Monomethylarsonous Acid and Monomethylthioarsonic Acid in a Complex Matrix Analytical Chemistry. 2008, 80(3): 775-782.
    [208] R. F. Reay, C. J. Asher. Preparation and purification of 74As-labeled arsenate and arsenite for use in biological experiments Analytical Biochemistry. 1977, 78: 557-560
    [209] G. J. Burrows, E. E. Turner, A new type of compound containing arsenic. Journal of the Chemical Society. 1920, 117: 1373-1783.
    [210] K. Yamanaka, M. Mizoi, M. Tachikawa, A. Hasegawa, M. Hoshino, S. Okada, Oxidative DNA damage following exposure to dimethylarsinous iodide: the formation of cis-thymine glycol Toxicology Letter. 2003, 143: 145-153.
    [211] K. T. Suzuki, T. Tomita, Y. Ogra. M. Ohimichi, Glutathione-conjugated Arsenics in the Potential Hepato-enteric Circulation in Rats. Chemical Research and Toxicology. 2001, 14: 1604-1611.
    [212] S. V. Kala, M. W. Neely, G. Kala, C. I. Prater, D. W. Atwood, J. S. Rice, M. W. Lieberman. The MRP2/cMOAT Transporter and Arsenic-Glutathione Complex Formation Are Required for Biliary Excretion of Arsenic. Journal of Biological Chemistry. 2000, 275: 33404-233408.
    [213] K. Yoshida, K. Kuroda, Y. Inoue, H. Chen, Y. Date, H. Wanibuchi, S. Fukushima, G. Endo.Metabolism of dimethylarsinic acid in rats: production of unidentified metabolites in vivo. Applied Organometallic Chemistry. 2001, 15: 539-547.
    [214] K. Kuroda, K. Yoshida, A. Yasukawa, H. Wanibuchi, S. Fukushima, G. Endo. Enteric bacteria may play a role in mammalian arsenic metabolism. Applied Organometallic Chemistry. 2001, 15: 548-552.
    [215] K. Yoshida, K. Kuroda, X. Zhou, Y. Inoue, Y. Date, H. Wanibuchi, S. Fukushima, G. Endo, Urinary Sulfur-Containing Metabolite Produced by Intestinal Bacteria Following Oral Administration of Dimethylarsinic Acid to Rats. Chemical Research Toxicology. 2003, 16: 1124-1129.
    [216] K. Yoshida, Y. Inoue, K. Kuroda, H. Chen, H. Wanibuchi, S. Fukushima, G. Endo, Urinary excretion of arsenic metabolites after long-term oral administration of various arsenic compounds to rats. Journal of Toxicology and Environmental Health, Part A. 1988, 54: 179.
    [217] H. R. Hansen, A. Raab, M. Jaspars, B. F. Milne, J. Feldmann. Sulfur-Containing Arsenical Mistaken for Dimethylarsinous Acid [DMA(III)] and Identified as a Natural Metabolite in Urine: Major Implications for Studies on Arsenic Metabolism and Toxicity. Chemcial Research and Toxicology. 2004, 17: 1086-1091.
    [218] H. Naranmandura, N. Suzuki, K. Iwata, S. Hirano, K. T. Suzuki. Arsenic Metabolism and Thioarsenicals in Hamsters and Rats. Chemcial Research and Toxicology. 2007, 20: 616-624.
    [219] K. T. Suzuki, K. Iwata, H. Naranmandura, N. Suzuki. Metabolic differences between two dimethylthioarsenicals in rats. Toxicology and Applied Pharmacology. 2007, 218: 166-173.
    [220] H. Naranmandura, N. Suzuki, K. T. Suzuki, Trivalent arsenicals are bound to proteins during reductive methylation. Chemical Research and Toxicology. 2006. 19: 1010-1018.
    [221] K.T. Suzuki, B. K. Mandal, A. Katagiri, Y. Sakuma, A. Kawakami, Y. Ogra, et, al.. Dimethylthioarsenicals as arsenic metabolites and their chemical preparation. Chem. Res. Toxicol. 2004, 17: 914-921.
    [1]黄志勇,庄峙厦,王小如, Frank S C Lee等. GAP质控下栽培丹参重金属内控标准物的制备和表征.中国中医杂志, 2003, 28(9): 808-811.
    [2] Vivian W.M. Lai, William R. Cullen, Sankar Ray. Arsenic speciation in scallops. Marine chemistry, 1999, 66: 81-89.
    [3]武荣兰,封顺,徐世美等. FAAS法分析当归、黄芪及当归补血汤中金属元素的形态.分析测试学报,2004,23(5): 51-55.
    [4]韦超.砷元素形态分析的方法研究及其在食品安全领域的应用[硕士学位论文].北京:清华大学化学系,2004.
    [5] Sanz. E, Muňoz-Olivas. R, C′amara. C. Evaluation of a focused sonication probe for arsenic speciation in environmental and biological samples. Journal of Chromatography A, 2005, 1097(1-2): 1-8.
    [6]何小青,刘湘生,姚建明等. HPLC-ICP-MS联用技术应用于砷的形态分析.现代科学仪器,2004, 4: 33-36.
    [7] Judith A. Brisbin, Clayton B'Hymer, Joseph A. Caruso. A gradient anion exchange chromatographic method for the speciation of arsenic in lobster tissue extracts. Talanta, 2002, 58(1): 133-145.
    [8] K.T. Suxuki, Badal K. Mandal, Yasumitsu Ogra. Speciation of arsenic in body fluids. Talanta, 2002, 58: 111-119.
    [9] Raimund Wahlen. HPLC-ICP-MS快速、准确测定鱼肉组织中的砷甜菜碱(AsB).中国环境监测, 2004, 20(6): 67-72.
    [10] Jean-Michel Mermet, Thierry Delaporte. Signal enhancement of elements due to the presence of carbon-containing compounds in inductively coupled plasma mass spectrometry Analytical Chemistry, 1991, 63: 1497-1498.
    [11] Se′bastien N. Ronkart, Vincent Laurent , Philippe Carbonnelle. Speciation of five arsenic species (arsenite, arsenate, MMAAV, DMAAV and AsBet) in different kind of water by HPLC-ICP-MS. Chemosphere, 2007, 66, 738-745.
    [12] Jonathan Borak, H. Dean Hosgood. Regulatory. Seafood Arsenic: Implications for Human Risk AssessmentToxicology and Pharmacology, 2007, 47: 204-212.
    [1] Penrose, W.R. Arsenic in the marine and aquatic environment. Analysis, occurrence, and significance. 1974, CRC Critical Reviews in Environmental Control. 4: 465-482.
    [2] Andreae, M.O., Organoarsenic compounds in environment. In: Craig, P.J. (Ed.), Organoarsenic Compound in Environment, Principles and Reactions. New York: Wiley, 1986. 198-228.
    [3] J. L. Brown, K. T. Kitchin, M. George. Dimethylarsinic acid treatment alters six different rat biochemical parameters: relevance to arsenic carcinogenesis. Teratog Carcinog Mutagen. 1997, 17(2):71–84.
    [4] V. Devesa, D. Velez, R. Montoro. Effect of thermal treatments on arsenic species contents in food. Food and Chemical Toxicology. 2008, 46: 1-8
    [5] Se′bastien N. Ronkart, Vincent Laurent, Philippe Carbonnelle,. Speciation of five arsenic species (arsenite, arsenate, MMAAV,DMAAV and AsBet) in different kind of water by HPLC-ICP-MS. Chemosphere, 2007, 66(4):738-745.
    [6] Raimund Wahlen, Shona McSheehy.Arsenic speciation in marine certified reference materials Part 2. The quantification of water-soluble arsenic species by high-performance liquid chromatography-inductively coupled plasma mass spectrometry. Journal of Analytical Atom Spectrometry. 2004, 19:876-882.
    [7] Valery M. Dembitsky, Dmitrii O. Levitsky. Arsenolipids. Progress in Lipid Research. 2004, 43: 403–448
    [8] C. Dietz, J. Sanz, E. Sanz, R. Munoz-Olivas, C. C′amara. Current perspectives in analyte extraction strategies for tin and arsenic speciation. Journal of Chromatography A, 2007, 1153(1-2): 114-129.
    [9] Xuan Cao, Chunli Hao, Geng Wang, Huanghao Yang, Dengyun Chen, Xiaoru Wang. Sequential extraction combined with HPLC–ICP-MS for As speciation in dry seafood products. Food Chemistry, 2009, 113(2): 720-726.
    [10] McKiernan, J. W., Creed, J. T. A comparison of automated and traditional methods for the extraction of arsenicals from fish. Journal of Analytical Atomic Spectrometry. 1999, 14(4): 607-613.
    [11] Schmeisser, E., Goessler, W. Direct measurement of lipid-soluble arsenic species in biological sampleswith HPLC-ICPMS. The Analyst, 2005, 130(7): 948-955.
    [12] Kalam A. Mir Allison Rutter, Iris Koch, Paula Smith, Ken J. Reimer, John S. Poland. Extraction and speciation of arsenic in plants grown on arsenic contaminated soils. Talanta. 2007, 72: 1507-1518.
    [13] Borak. J., Hosgood, H. D. Seafood arsenic: Implications for human risk assessment. Regulatory Toxicology and Pharmacology, 2007, 47(2): 204-212.
    [14] Cannon, J.R., Edmonds, J.S.Isolation, crystal structure and synthesis of arsenobetaine, a constituent of the western rock lobster, the dusky shark, and some samples of human urine. Australian Journal of Chemistry , 1981,34:787–798.
    [15] Cullen, W. R., Reimer, K. J. Arsenic speciation in the environment. Chemical Reviews. 1989, 89(4):713–764.
    [16] Edmonds, J. S., Francesconi, K. A. The origin of arsenobetaine in marine animals. Applied Organometallic Chemistry, 1988. 2: 297-302.
    [17] Francesconi, K. A., Edmonds, J. S. Arsenic and marine organisms. Advances in Inorganic Chemistry, 1997, 44: 147-189.
    [18] Sikorski, Z. E., Kolakowska, A. Composición nutritiva de los organismos alimenticios marinos. In Tecnología de los Productos del Mar: Recursos, Composicio′n Nutritivay Conservación; Sikorski, Z. E., Ed.; Acriba: Zaragoza, Spain, 1994. 41-72.
    [19] M. O. Andreae. Arsenic speciation in seawater and interstitial waters: the infuence of biological–chemical interactions on the chemistry of a trace element. Limnology. Oceanography. 1979, 24: 440-452.
    [20] M. O. Andreae. Distribution and speciation of arsenic in natural waters and some marine algae. Deep Sea Research. 2005, 25: 391-402.
    [21] K. A. Francesconi, J. S. Edmonds. Biotransformation of arsenic in the marine environment. In: Nriagu, J.O. (Ed.), Arsenic In The Environment. Part I: Cycling and Characterization John Wiley, New York, 1994, 221–261.
    [22]R.W. Whitacre, C.S. Pearse, Arsenic and the Environment, Mineral Industries Bulletin, Colorado, School of Mines, 1972, 1-2.
    [23] J.T. Hindmarsh, R.F. McCurdy, Clinical and environmental aspects of arsenic toxicity. CRC critical reviews in clinical laboratory sciences. 1986, 23(4): 315-347.
    [24] L. Vega, M. Styblo, R. Patterson, W. Cullen, C. Wang, D. Germolec. Differential Effects of Trivalent and Pentavalent Arsenicals on Cell Proliferation and Cytokine Secretion in Normal Human Epidermal Keratinocytes. Toxicology and Applied Pharmacology. 2002, 172(3): 225-232.
    [25] C. Dietz, J. Sanz, E. Sanz, R. Munoz-Olivas, C. C′amara. Current perspectives in analyte extraction strategies for tin and arsenic speciation. Journal of Chromatography A, 2007, 1153(1-2): 114-129.
    [26] Francesconi K. A., Kuehnelt. D. Determination of arsenic species: A critical review of methods and applications, 2000-2003. Analyst. 2004, 129: 373-395.
    [27] Almela, C., Laparra, J.M., Velez, D., Barbera, R., Farre, R., Monotoro, R. Arsenosugars in raw and cooked edible seaweed: characterization and bioaccessibility, Journal of Agriculture and Food Chemistry. 2005, 53 (18):7344-7351.
    [28] Erickson.B.E. New concerns about arsenosugars in seaweed, Environmental Science and Technology, 2003, 84A.
    [29] Nriagu, J.O. Arsenic in the Environment: Human Health and Ecosystem Effects (Advances in Environmental Science and Technology, Vol. 27 Chapter 12). John Wiley & Sons, New York. 1994.
    [1] NRC: National Research Council Report: Arsenic in the Drinking Water. Washington, DC: National Academy Press, 1999.
    [2] Germolec D.R., Spalding J., Yu H.S., et al. Arsenic Enhancement of Skin Neoplasia by Chronic Stimulation of Growth Factors . American Journal of Pathology. 1998, 153(6): 1775-1785.
    [3] Guifan Sun. Arsenic contamination and arsenicosis in China Toxicology and Applied Pharmacology. 2004, 198(3): 268-271.
    [4] Kazuo T. Suzuki, Akio Katagiri, Yoko Sakuma, Yasumitsu Ogra, Masayoshi Ohmichi.Distributions and chemical forms of arsenic after intravenous administration of dimethylarsinic and monomethylarsonic acids to rats Toxicology and Applied Pharmacology, 2004, 198(3):336-344
    [5]王京宇, Christian Brochu,王晓燕,王耐芬, Marcouellette.电感耦合等离子体-质谱法测定寄生虫细胞内痕量锑.中国医学装备. 2004, 1(4): 39-43.
    [6] D. J. Thomas, M. Styblo, and S. Lin. The cellular metabolism and systemic toxicity of arsenic. Toxicology and Applied Pharmacology. 2001, 176: 127–144.
    [7] M. Styblo, L. M. Del Razo, Vega L, D. R. Germolec, E. L. LeCluyse, G. A. Hamilton, W. Reed. et al, Comparative toxicity of trivalent and pentavalent inorganic and methylated arsenicals in rat and human cells. Archives of Toxicology 2000, 74: 289–299.
    [8] T. Schwerdtle, I. Walter, I. Mackiw, A. Hartwig. Induction of oxidative DNA damage by arsenite and its trivalent and pentavalent methylated metabolites in cultured human cells and isolated DNA, Carcinogenesis 2003, 24: 967–974.
    [9] F. Challenger. Biological methylation. Chemical Reviews 1945, 36: 315-361.
    [10] M. J. Mass, A. Tennant, B. C. Roop, W. R. Cullen, M. Styblo, D. J. Thomas, A. D. Kligerman. Methylated trivalent arsenic species are genotoxic. Chemical Research and Toxicology. 2001. 14: 355-361.
    [11] X. C. Le, X. Lu, M. Ma, W. R. Cullen, H. V. Aposhian, B. Zheng, Speciation of key arsenic metabolic intermediates in human urine. Analytical Chemistry 2000. 72: 5172–5177.
    [12] X. C. Le,; M. Ma,; W. R. Cullen,; H. V. Aposhian,; X. Lu,; B. Zheng,. Determination of monomethylarsonous acid, a key arsenic methylation intermediate, in human urine. Environ mental Health Perspectvive. 2000, 108(11): 1015–1018.
    [13] B. K. Mandal, Y. Ogra, K. T. Suzuki. Identification of dimethylarsinous and momomethylarsonous acids in human urine of the arsenic affected areas in West Bengal, India. Chemical Research and Toxicology. 2001. 14: 371-378.
    [14] W. R. Cullen, and K. J. Reimer, Arsenic speciation in the environment. Chemical Reviewers. 1989, 89: 713-764.
    [15] S. Ahmad, K. T. Kitchin, W. R. Cullen. Plasmid DNA damage caused by methylated arsenicals, ascorbic acid and human liver ferritin. Toxicology Letter. 2002, 133: 47-57.
    [16] L. Vega, M. Styblo, R. Patterson, W. Cullen, C. Wang, D. Germolec. Differential Effects of Trivalent and Pentavalent Arsenicals on Cell Proliferation and Cytokine Secretion in Normal Human Epidermal Keratinocytes. Toxicology and Applied Pharmacology. 2002, 172(3): 225-232.
    [17] A. Raab, A. A. Meharg, M. Jaspars, D. R. Genney, J. Feldmann. Arsenic–glutathione complexes-their stability in solution and during separation by different HPLC modes. Journal of analytical atom spectrometry. 2004, 19. 183-194.
    [18] Teruaki Sakurai, Masayuki Ochiai, Chikara Kojima, Takami Ohta, Masumi H. Sakurai, Naoko O. Takada, Wei Qu, Michael P. Waalkes, Kitao Fujiwara. Role of glutathione in dimethylarsinic acid-induced apoptosis. Toxicology and Applied Pharmacology. 2004, 198: 354-365
    [19] Hayakawa, T., Kobayashi, Y., Cui, X., and Hirano, S. A new metabolic pathway of arsenite: Arsenic-glutathione complexes are substrates for human arsenic methyltransferase Cyt 19. Archives of Toxicology. 2005, 79: 183-191.
    [20] K. Yoshida, K. Kuroda, Y. Inoue, H. Chen, Y. Date, H. Wanibuchi, S. Fukushima, G. Endo. Metabolism of dimethylarsinic acid in rats: production of unidentified metabolites in vivo. Applied Organometallic Chemistry. 2001, 15: 539-547.
    [21] K. Kuroda, K. Yoshida, A. Yasukawa, H. Wanibuchi, S. Fukushima, G. Endo. Enteric bacteria may play a role in mammalian arsenic metabolism. Applied Organometallic Chemistry. 2001, 15: 548-552.
    [22] S. K. V. Yathavakilla, M. Fricke. Arsenic Speciation and Identification of Monomethylarsonous Acid and Monomethylthioarsonic Acid in a Complex Matrix Analytical Chemistry. 2008, 80(3): 775-782.
    [23] W. R. Cullen, B. C. McBride. The metabolism of methylarsine oxide and sulfide. Applied Organometallic Chemistry. 1989, 3: 71-78.
    [24] Pierre Allain, Laurent Jaunault, Yves Mauras, Jean-Michel Mermet, Thierry Delaporte. Signal enhancement of elements due to the presence of carbon-containing compounds in inductively coupled plasma mass spectrometry[J]. Analytical Chemistry, 1991, 63(14): 1497-1498.
    [25] J. S. Petrick, F. Ayala-Fierro, W. R. Cullen, D. E. Carter, H. V. Aposhian. Monomethylarsonous acid (MMA III) is more toxic than arsenite in Chang human hepatocytes. Toxicology and Applied Pharmacology. 2000, 63: 203-207.
    [26] Ernst Schmeisser, Reingard Raml, Kevin A. Francesconi, Doris Kuehnelt, Anna-Lena Lindberg, Csilla S?r?s, Walter Goessler. Thio arsenosugars identified as natural constituents of mussels by liquid chromatography-mass spectrometry. Chemical Communication. 2004, 131: 1824-1825.
    [27] Hua Naranmandura, Noriyuki Suzuki, Katsuya Iwata, Seishiro Hirano, Kazuo T. Suzuki, Arsenic Metabolism and Thioarsenicals in Hamsters and Rats. Chemical Research and Toxicology. 2007, 20: 616-624
    [28] Reingard Raml, Alice Rumpler, Walter Goessler, Marie Vahter, Li Li, Takafumi Ochi, Kevin A. Francesconi. Thio-dimethylarsinate is a common metabolite in urine samples from arsenic-exposed women in Bangladesh Toxicology and Applied Pharmacology. 2007, 222: 374–380
    [29] K. Kuroda, K. Yoshida, A. Yasukawa, H. Wanibuchi, S. Fukushima, G. Endo, Enteric bacteria may play a role in mammalian arsenic metabolism. Applied Organometallic Chemistry. 2001, 15: 548-552.
    [30] K. Yoshida, K. Kuroda, X. Zhou, Y. Inoue, Y. Date, H. Wanibuchi, S. Fukushima, G. Endo. Urinary Sulfur-Containing Metabolite Produced by Intestinal Bacteria Following Oral Administration of Dimethylarsinic Acid to Rats. Chemical Research and Toxicology. 2003, 16: 1124-1129.
    [31] K. Yoshida, Y. Inoue, K. Kuroda, H. Chen, H. Wanibuchi, S. Fukushima, G. Endo. Urinary excretion of arsenic metabolites after long-term oral administration of various arsenic compounds to rats. Journal of Toxicology and Environmental Health, Part A 1998; 54: 179-192.
    [32] Suzuki, K. T., Mandal, B. K., Katagiri, A., Sakuma, Y., Kawakami, A., Ogra, Y., Yamaguchi, K., Sei, Y., Yamanaka, K., Anzai, M., Ohmichi, H., Takayama, H., and Aimi, N. Dimethyl- -thioarsenicals as arsenic metabolites and their chemical preparations. Chemical Research and Toxicology. 2004,17: 914-921.
    [33] Hansen, H. R., Raab, A., Jaspars, M., Milne, B. F., Feldmann, J. Sulfur-containingarsenical mistaken for dimethylarsinous acid [DMA(III)] and identified as a natural metabolite in urine: Major implications for studies on arsenic metabolism and toxicity. Chemical Research and Toxicology 2004, 17: 1086-1091.
    [34] Kahn, M., Raml, R., Schmeisser, E., Vallant, B., Francesconi, K. A., Goessler, W. Two novel thio-arsenosugars in scallops identified with HPLC-ICPMS and HPLC-ESMS. EnViron. Chem. 2005,2: 171–176.
    [35] Kazuo T. Suzuki, Katsuya Iwata, Hua Naranmandura, Noriyuki Suzuki. Metabolic differences between two dimethylthioarsenicals in rats. Toxicology and Applied Pharmacology. 2007, 218: 166-173
    [36] Naranmandura, H., Suzuki, N., Suzuki, K.T., Trivalent arsenicals are bound to proteins during reductive methylation. Chemical Research and Toxicology. 2006. 19, 1010–1018.
    [37] K. T. Suzuki. Metabolomics of arsenic based on speciation studies. Analytica Chimica Acta. 2005, 540: 71-76.
    [38]郝继辉,俞呜,李强.三氧化二砷诱导肝癌细胞株凋亡的实验研究.中华肝胆外科杂志. 2004, l0(6): 414-416.
    [39]张靖宇,刘宝刚.三氧化二砷在抗肝癌中的研究进展.实用肿瘤学杂志. 2008, 22(2): 192-194.
    [40]刘佳,张大方,李超英.三氧化二砷的抗肝癌作用研究.长春中医药大学学报. 2008, 24(3): 252-253.
    [41] M. Oketani, K. Kohara, D. Tuvdendorj. Inhibition by arsenic trioxide of human hepatoma cell growth. Cancer Letter. 2002, 183: 147–153.
    [42] Ravandi F. Arsenic trioxide: expanding roles for an ancient Drug. Leukemia. 2004, 18: 1457-1459
    [43]罗俊卿,闻勤生,焦成松.三氧化二砷对肝癌细胞增殖的影响.临床消化病杂志. 2001, 13(3): 113-115.
    [44]韩继武,刘铁夫,徐洪雨,等.三氧化二砷对肝癌细胞株HLE的细胞毒和诱导凋亡作用.中国误诊学杂志. 2003, 3(5): 645-647
    [45]Thounwon. P. B, Wilson. B. A, Ishaque. A. B. et, a1.Atrazine potentiation of arsenic trioxide- induced cytotoxicity and expression in human liver carcinoma cells (HepG2). Molecular Cell Biochemistry. 2001. 222(1-2): 491.
    [46]唐韦,陈国强,史桂英,等.三氧化二砷对急性早幼粒细胞性白血病细胞株的双重效应研究.中华医学杂志. 1997, 77:509-512.
    [47]刘连新,朱安龙,陈伟,等.三氧化二砷对原发性肝癌的作用及其机理研究.中华外科杂志. 2005, 43(1): 33
    [48] Hu. X. M, Hirano. T, Oka. K. Arsenic trioxide induces apoptosis in cells of MOLT-4 and its daunorubicin-resistant cellline via depletion of intracellular glutathione,disruption of mitochondrial membrane poten-tial and activation of caspase-3. Cancer Chemother Phannacol. 2003. 52(1): 47-58.
    [49] Chen. H, Qin. S, Pan. Q. Antitumor effect of arsenic trioxide on mice experimental liver cancer. Chung Hua Kan Tsang Ping Tsa Chih. 2000, 8(1): 27-29.
    [50]唐印华,刘铁夫.三氧化二砷抑制肝癌细胞增殖的体内实验研究.哈尔滨医药. 2003, 23(1): 3.
    [51]钱妍,凌昌全,金岩.肝复健冲剂对大鼠肝癌22基因表达的影响.第四军医大学学报. 2002, 23(18): 1702-1705
    [52]张传海,许戈良.亚砷酸对肝癌细胞增殖及PCNA, c-Myc蛋白表达的影响.第四军医大学学报. 2005, 26(14): 1303.
    [53]杨昌山,李弘.亚砷酸诱导肝癌Bel-7403细胞分化的研究.暨南大学学报(医学版). 2003, 24(6): 17.
    [54] Jia, P. M, Zhu, Q. Y. Exprimental study of low dose arsenic trioxide in treatment of patients with acute promyeloeytic leukemia.AiZheng. 2002, 21(4): 337-340.
    [55] Davison, K, Mannk, K, Miller, J. R. Arsenic trioxide mechanisms of action.Seminars in Hematology. 2002, 39: 3-7.
    [56]陈惠英,王为.三氧化二砷对人肝癌细胞株VEGF表达的影响.临床肿瘤学杂志. 2000, 4: 460.
    [57]蒋明东.三氧化二砷抗肝癌作用研究进展.国际消化病杂志. 2006, 26(1): 27.
    [58]程洪军,包国建,叶炬伟,曹远志,陈斌.三氧化二砷对肝癌细胞株SMMC-7721[Ca2+]i的影响.肝胆胰外科杂志. 2008, 20(4): 251-254.
    [59]冯觉平,黄涛,王亚平,方静,李敏,孔庆志.三氧化二砷抑制肝癌HepG2细胞侵袭转移及对RhoC基因表达的影响.肿瘤防治研究. 2008, 35(11): 775-778.
    [60]王兴武,孙菊杰,魏玲,宋现让.三氧化二砷对人肝癌细胞的体外作用及其机制.中国医院药学杂志. 2006, 26(12): 1500-1504.
    [61]刘琳,秦叔逵,陈惠英,王锦鸿,陈洪,马军,刘文虎.三氧化二砷选择性诱导人肝癌细胞凋亡及相关基因的实验研究.中华肝脏病杂志. 2000, 8(6): 367-369.
    [1] F. Challenger, Biological methylation. Chemical Reviewers. 1945, 36, 315-361.
    [2] W. R. Cullen, and K. J. Reimer, Arsenic speciation in the environment. Chemical Reviewers. 1989, 89: 713-764.
    [3] Hayakawa, T., Kobayashi, Y., Cui, X., and Hirano, S. A new metabolic pathway of arsenite: Arsenic-glutathione complexes are substrates for human arsenic methyltransferase Cyt 19. Archives of Toxicology. 2005, 79: 183-191.
    [4] Kazuo T. Suzuki, Akio Katagiri, Yoko Sakuma, Yasumitsu Ogra, Masayoshi Ohmichi. Distributions and chemical forms of arsenic after intravenous administration of dimethylarsinic and monomethylarsonic acids to rats. Toxicology and Applied Pharmacology, 2004, 198(3):336~345
    [5] S. Lin, W.R. Cullen, D.J. Thomas, Methylarsenicals and arsinothiols are potent inhibitors ofmouse liver thioredoxin reductase. Chemical Research and Toxicology. 1999, 12: 924-930
    [6] B. Tan, J. F. Huang, Q. Wei, H. Zhang, R. Z. Ni. Anti-hepatoma effect of arsenic trioxide on experimental liver cancer induced by 2-acetamidofluorene in rats. World Journal Gastroenterology 2005, 11: 5938–5943.
    [7] Naranmandura, H., Suzuki, N., Suzuki, K.T., Trivalent arsenicals are bound to proteins during reductive methylation. Chemical Research and Toxicology. 2006. 19, 1010–1018.
    [8] H. V. Aposhian, M. M. Aposhian. Arsenic Toxicology: Five Questions. Chemical Research in Toxicology. 2006, 19(1): 1-15.
    [9] W. R. Cullen, B. C. McBride. The metabolism of methylarsine oxide and sulfide. Applied Organometallic Chemistry. 1989, 3: 71-78.
    [10] K.T. Suzuki, B. K. Mandal, A. Katagiri, Y. Sakuma, A. Kawakami, Y. Ogra, et, al.. Dimethylthioarsenicals as arsenic metabolites and their chemical preparation. Chemical Research and Toxicology. 2004, 17: 914-921.
    [11] Raimund Wahlen, Shona McSheehy.Arsenic speciation in marine certified reference materials Part 2. The quantification of water-soluble arsenic species by high-performance liquid chromatography-inductively coupled plasma mass spectrometry. Journal of Analytical Atom Spectrometry. 2004, 19:876-882.
    [12] K.T. Suzuki. Metablolonmic of arsenic based on speciation studies. Analytica Chimica Acta. 2005, 540: 71-76.
    [13] K. T. Suzuki, K. Iwata, H. Naranmandura, N. Suzuki. Metabolic differences between two dimethylthioarsenicals in rats. Toxicology and Applied Pharmacology. 2007, 218: 166-173.
    [14] K. T. Suzuki, Y. Ogra, B. K. Mandal, Speciation of arsenic in body fluids. Talanta. 2002, 58(1): 111-119.
    [15] Raab, A., Wright, S. H., Jaspars, M., Meharg, A. A., and Feldmann, J. Pentavalent arsenic can bind to biomolecules. Angew. Chem., Int. Ed. 2007. 46, 2594-2597.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700