用户名: 密码: 验证码:
吕宋岛西北海域气旋式涡旋的结构及其形成机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
吕宋岛西北海域受到局地风应力和黑潮的共同作用,使其成为南海海洋涡旋的多发地带,也是南海两大季节性气旋式涡旋之一的吕宋冷涡形成区。了解吕宋岛西北海域的海洋涡旋结构,揭示该海域海洋涡旋的生成机制不仅是对南海海洋环流理论的重要补充,也是对边缘海与大洋相互作用研究的重要贡献。
     本文首先利用气候态的温盐资料及卫星高度计资料等,分析了吕宋岛西北海域海洋要素场的气候态特征及其季节变化情况;然后利用TOPEX/Poseidon卫星高度计资料并结合IPRC提供的平均海平面高度资料,对吕宋岛西北海域气旋式涡旋的形态结构进行了研究,并借助Okubo-Weiss函数分析了该海域的流场特性,进一步证实了吕宋岛西北海域气旋式涡旋的组成。本文还利用相关分析、功率谱分析等,研究了局地风应力和黑潮与吕宋西北海域气旋式涡旋的关系。最后利用数值试验成功地模拟了黑潮在吕宋岛西北海域诱生的气旋式涡旋。由于本文使用了高时空分辨率的资料和较高水平分辨率的数值模式,对前人有关吕宋冷涡研究中存在的争议给出了合理的解释,取得以下主要创新性成果:
     1)研究指出冬季传统意义下的吕宋冷涡实际上是由两个气旋式涡旋所组成的。一个气旋式涡旋位于吕宋岛的西侧(LCE1),另一个气旋式涡旋位于吕宋岛的西北侧(LCE2)。LCE1的水平尺度约为LCE2水平尺度的两倍,但LCE2的强度要稍强于LCE1。
     2)研究发现位于吕宋岛西侧的气旋式涡旋(LCE1)只存在于冬季,而位于吕宋岛西北侧的气旋式涡旋(LCE2)则是全年存在。在冬季,两个气旋式涡旋有时会交融在一起,但是大部分时间(约占总样本的3/4),两个涡旋都有各自的中心。
     3)利用Okubo-Weiss函数对吕宋岛西北海域的流场特性进行了分析。分析结果表明,LCE1区和LCE2区的流场均主要以气旋式旋涡形式存在,从而用Okubo-Weiss函数证明了两个气旋式涡旋的存在性。但是相比较而言,LCE2的旋涡特性要强于LCE1。
     4)对观测资料的分析指出LCE2的主变化周期约为60天,而吕宋海峡处的黑潮流量除了有60-70天的季节内振荡外,还有周期为100天的振荡;LCE2主要水体构成为南海水,因此可以推断它是由黑潮所诱生的南海局地的气旋式涡旋。
     5.研究发现吕宋岛西北海域的两个气旋式涡旋的生成机制不同:位于吕宋西部的冬季气旋式涡旋(LCE1)的形成与吕宋岛西北角的正的风应力旋度有关,而位于吕宋岛西北侧的气旋式涡旋(LCE2)则由黑潮所诱生。HYCOM模式的数值试验也证明,当数值试验中没有南海局地风强迫作用时,黑潮会在吕宋岛的西北侧诱生出一个气旋式的涡旋,该气旋式涡旋的强度会随着黑潮强度的增强(减弱)而增强(减弱)。数值试验表明,当黑潮的强度增强(减弱)原来的1/4时,相应的气旋涡的强度会变为原来的2倍(1/2倍)。
     总之,本论文首次指出前人所描述的冬季吕宋冷涡实际上是由两个形成机制不同的气旋式涡旋组成,一个是由冬季风绕过吕宋岛后的正的风应力旋度驱动,另一个是黑潮进入吕宋海峡后所诱生,前者对冬季吕宋冷涡的贡献是2/3,后者的贡献是1/3。
Both the local wind and the Kuroshio have great impacts on the circulation in the region to the northwest of Luzon Islands, as a result, the eddies in the region is active. Luzon Cold Eddy which is one of the two seasonal cyclonic eddies in the South China Sea also originates there. Understanding the structures and the mechanisms of the eddies to the northwest of Luzon Islands is meaningful. It is not only make a supplement to theories of the circulation in the South China Sea, but also contribute a lots to the study of the interaction between oceans and marginal seas.
     Based on the climatological temperature and salt data combined with the Satellite Altimeter data, The climatological characteristics of the main oceanic elements and the seasonal variance to the northwest of the Luzon Islands are discussed firstly. Taking advantage of the TOPEX/Poseidon data along with the mean sea level data supplied by the IPRC, the configuration and the structures of the cyclonic eddies are studied. Then we analyzed the characteristics of the flow field using the Okubo-Weiss function to confirm the structure of the cyclonic eddies. In addition, we discussed the relationship between the cyclonic eddies and the local wind stress as well as the Kuroshio based on correlation and power spectrum analysis. At last, we successfully simulated the cyclonic eddy to the northwest of Luzon Islands using HYCOM numerical experiments. Both the data and the model are all in high resolution, so we succeed in giving out a reasonable explanation to the existing controversy on the mechanism of Luzon cold eddy. The main conclusions are as follows:
     1) The Luzon Cold Eddy actually consists of two cyclonic eddies in winter. One (LCE1) is located to the west of the Luzon Islands and the other (LCE2) is to the northwest. The horizontal scale of LCE1 is about two times as large as LCE2, while the intensity of the LCE2 is a little greater.
     2) The cyclonic eddy to the west of Luzon Islands exists only during winter time, while the eddy northwest of Luzon Islands exists all year round. The two cyclonic eddies act as a big cyclonic eddy occasionally, However, they have their own centers most of the time (account for about 3/4 of the total samples).
     3) The characteristic of the flow field to the northwest of Luzon Islands are analyzed using Okubo-Weiss function. The results suggest that the flows in both the LCE1 region and LCE2 region are vorticity-dominated. However, the characteristic of vorticity-dominating is more obvious in region LCE1 than in region LCE2.
     4) The main period of variance for LCE2 is about 60 days, while the transport of the Kuroshio in the Luzon Strait not only has a intraseasonal oscillation of 60-70 days, but only has a oscillation of 100 days. The LCE2 are mainly composed of water from South China Sea, so we conclude that the LCE2 is a local cyclonic eddy in South China Sea induced by the Kuroshio.
     5) The studies also show that the mechanisms of the two cyclonic eddies to the northwest of Luzon Islands are different. The cyclonic eddy to the west of Luzon Islands (LCE1) is related to the positive wind stress curl to the northwest of the Luzon land in winter, while LCE2 is induced by the Kuroshio which is checked in HYCOM experiment. The cyclonic eddy occurs even though the wind on the South China Sea is set to zero in the numerical experiments. The intensity of the eddy become strong(weak) when we strenThe intensity of eddy will become doubled (half) as we strengthen (weaken) the Kuroshio by one fourth.
     To sum up, we propose that the Luzon Cold Eddy in winter is composed of two cyclonic eddies with different mechanisms for the first time. One of the cyclonic eddies are forced by the local winter wind stress curl to the west of the Luzon Islands, while the other is induced by the Kuroshio. The contribution of the former is 2/3, while the latter accounts for 1/3 to the Luzon Cold Eddy.
引文
[1]陈显尧,宋振亚,王永刚,并行计算在海洋环流数值模式中的应用.高性能计算发展与应用,2005.
    [2]丁一汇,李崇银,南海夏季风爆发和演变及其与海洋的相互作用. 1999,气象出版社,北京.
    [3]方文东,郭忠信,黄羽庭,南海南部海区的环流观测研究.科学通报,1997,42: 264-271.
    [4]管秉贤,袁耀初,中国近海及其附近海域若干涡旋研究综述.海洋学报,2006,28.
    [5]郭忠信,冬季南海暖流及其右侧的西南向海流.热带海洋,1985, 4: 1-29.
    [6]黄传江,混合率的年际到年代际变化对赤道太平洋的影响.中国海洋大学博士论文, 2006.
    [7]黄企洲,巴士海峡的海洋学状况.南海海洋科学集刊,第6集,北京,科学出版社,1984,53-67.
    [8]黄企洲,郑有任,1992年3月南海东北部和巴士海峡的海流.中国海洋学文集(6),北京,海洋出版社,1996,42-52.
    [9]胡建宇,梁红星,张学斌,台湾海峡南部及其临近海区1994年夏末温度盐度的平面分布特征.中国海洋学文集,北京,海洋出版社,1997, 72-79.
    [10]胡建宇,梁红星,张学斌,盐度的断面分布对1994年夏末黑潮水入侵台湾南部及南部东北部的指示.中国海洋学文集,北京,海洋出版社,1997, 62-71.
    [11]贾英来,吕宋海域黑潮形变的研究.中国海洋大学博士论文,2002.
    [12]兰健,洪洁莉,李丕学,南海西部夏季冷涡的季节变化特征.地球科学进展, 2006,21(11).
    [13]李立,伍伯瑜,黑潮的南海流套.台湾海峡.1989,8: 89-95.
    [14]李立,苏纪兰,许建平,南海的黑潮分离流环.热带海洋,1997,16: 42-57.
    [15]刘秦玉,李丽娟,北太平洋副热带向东逆流区Rossby波斜压稳定性.地球物理学报, 2007,50: 83-91.
    [16]刘秦玉,刘倬腾,郑世培,黑潮在吕宋海峡的形变及动力机制.青岛海洋大学学报,1996,26: 413-426.
    [17]刘秦玉,杨海军,李薇,刘倬腾,吕宋海峡纬向海流及质量输送.海洋学报, 2000.
    [18]刘秦玉,杨海军,贾英来,甘子均,南海海面高度季节变化的数值模拟.海洋学报,2001,23: 9-17.
    [19]薛惠洁,柴扉,侍茂崇,南海东北部黑潮的入侵流套及其环流.中国海洋学文集,北京,海洋出版社,2001,13: 23-38.
    [20]魏泽勋,乔方利,方国洪,崔秉昊,方越,王新怡,2004:全球大洋环流诊断模式研究.海洋科学进展,22: 1-14.
    [21]杨海军,刘秦玉,南海上层水温分布的季节特征.海洋与湖沼, 1998, 29.
    [22]杨海军,刘秦玉,南海海洋环流研究综述.地球科学进展,1998,13: 364-368.
    [23]袁东亮,李锐祥,中尺度旋涡影响吕宋海峡黑潮变异的动力机制.热带海洋学报,2008, 27.
    [24]袁耀初,刘勇刚,苏纪兰,1997年夏季台湾岛以东与东海黑潮.中国海洋学文集(12),北京:海洋出版社,2000,11-20.
    [25]王骥鹏,闻斌,耿再兴,万雷,混合坐标大洋环流模式Hycom的坐标选取与参数化设置敏感性试验.海洋预报,2008,25.
    [26]王铮,侯一筠,乐肯堂,胡珀,源区黑潮研究进展.海洋科学集刊,2007,5: 35-41.
    [27]张蕴斐,张占海,海洋环流的数据模拟.海洋学报,2003,25.
    [28] Bleck, R.,“Ocean Modeling in Isopycnic Coordinates”Chapter 18 in Ocean Modeling and Parameterization, Chassignet E.P and J.Verson, Eds., NATO Science Series C:Mathematical and Physical Science, Kluwer Academic Publishers, 1998,516:4223-4488.
    [29] Blumberg, A. F., and G. L. Mellor, A description of a three-dimensional coastal ocean model. Three dimensional coastal ocean models, N. S. Heaps, Editor, American Geophysical Union, Washington D. C., 1987, 1-16.
    [30] Boyer, T.P., M.E. Conkright, J.I. Antonov, O.K. Baranova, H. Garcia, R. Gelfeld, D. Johnson, R. Locarnini, P. Murphy, T.O. Brien, I. Smolyar and C. Stephens, Temporal Distribution of Bathythermograph Profiles. World Ocean Database, 2, NOAA Atlas NESDIS 19, U.S.Government Printing Office, 286.
    [31] Caruso, M. J., G. G. Gawarkiewicz, and Robert Beardsley, Interannual variability of the Kuroshio intrusion in the South China Sea, J. Oceanogr., 2006, 62: 559– 575.
    [32] Cessi, P. and S. Louazel, Decadal oceanic response to stochastic wind forcing. J. Phys. Oceanogr., 2001, 31: 3020–3029.
    [33] Chambers, D., B. Tapley and R. Stewart, Long-period ocean heeat storage rates and basin-scale heat fluxes form TOPEX. Journal of Geophysical Research, 1997, 102: 10525-10533.
    [34] Chao, S.-Y., P.-T. Shaw and S.Y. Wu, Deep sea ventilation in the South China Sea. Deep-Sea Res., 1996, 43: 445–466.
    [35] Chassignet, E.P., L.T. Smith, R. Bleck and F. O. Bryan, A model comparison: Numerical simulations of the north and equatorial Atlantic oceanic circulation in depth and isopycnic coordinates. J. Phys. Oceanogr., 1996,26: 1849 -1867.
    [36] Chu, P. C., Y. Chen, and S. Lu, Wind-driven South China Sea deep basin warm-core/cool core eddies. J. Oceanogr., 1999, 54: 347–360.
    [37] Chu, P.C., N.L. Edmons and C. Fan, Dynamical mechanisms for the South China Sea seasonal circulation and thermohaline variabilities. Journal of Physical Oceeanography , 1999, 29: 2971-2989.
    [38] Chu, P.C., C.W. Fan and W.T. Liu, Determination of sub-surface thermal structure from sea surface temperature. Journal of Atmospheric and Oceanic Technology, 2000,17: 971-979.
    [39] Chu, P.C. and R. Li, South China Sea isopycnal-surface circulation.J.Phys.Oceanogr., 1999, 30: 2,419-2,438.
    [40] Chu, T.Y., A study on the water exchange between Pacific Ocean and the South China Sea. Acta Oceanographic Taiwanica, 1972, 2: 11–24.
    [41] Dale, W.L., Wind and drift currents in the South China Sea. The Malayan Journal of Tropical Geography, 1956, 8: 1-31.
    [42] Ding, Y.H., Summer monsoon rainfall in China. J. Meteorol. Soc. Jpn., 1992, 70: 373-396.
    [43] Ducet, N., P.Y. Le Traon and G. Reverdin, Global high-resolution mapping of ocean circulation from TOPEX/Posedion and ERS-1 and -2, J.Geophys. Res., 2000, 105: 19, 477-19,498.
    [44] Fang, G.H., W.D. Fand and Y. Fang, A survey of studies on t he South China Sea upper ocean circulation . Acta Oceanographic Taiwanica , 1998, 37: 1-16.
    [45] Fang, G. J., J. Bole and J.P. Mathisen, Circulation, internal tides and solitions at the shelf break of the northern South China Sea-An analysis of measured currents. Program andAbstracts of the Marine Science Conference in Taiwan Adjacent Seas, 1995, Institute of Oceanography, National Taiwan University, Taipei, 51-52.
    [46] Fang,Y.G. and K. Yu, ADI barotropic ocean model for simulation of Kuroshio intrusion into China southeastern waters. Chinese Journal of Oceanology and Limnology, 1996, 14: 357-366.
    [47] Farris, A. and M. Wimbush, Wind-induced Kuroshio intrusion into South China Sea. J. of Oceanogr., 1996, 52: 771-784.
    [48] Gaspar P., Modeling the seasonal cycle of the upper ocean. J Phys Oceanogr, 1998, 18: 161~180.
    [49] Haidvogel, D.B., H.G. Arango, K. Hedstrom, A. Beckmann, P. Malanotte-Rizzoli and A.F. Shchepetkin, Model Evaluation Experiments in the North Atlantic Basin: Simulations in Nonlinear Terrain-Following Coordinates, Dynamics of Atmospheres and Oceans, 2000, 32: 239-281.
    [50] Halliwell, G., R.. Bleck and E. Chassignet, Atlantic Ocean simulation performed using a new hybrid-coordinate ocean model. 1998, EOS, Trans.Aug, AGU meeting.
    [51] Hellerman, S. and M. Rosenstein, Normal monthly wind stress over the world ocean with error estimates. J. Phys. Oceanogr., 1983, 13: 1093–1104.
    [52] Henson S.A. and A.C. Thomas, A census of oceanic anti-cyclonic eddies in the Gulf of Alaska. Deep-Sea ReasearchⅠ, 2008, 55: 163-176.
    [53] Ho, C.R., Q.A. Zheng, Y.S. Soong, N.J. Kuo and J.H. Hu, Seasonal Variability of sea surface height in the South China Sea observed with TOPEX/Poseidon altimeter data. Journal of Geophysical Research, 2000, 105: 13981–13990.
    [54] Hwang, C. and S.A. Chen, Circulations and eddies over the South China Sea derived from TOPEX/POSEIDON altimetry. J.Geophys.Res., 2000, 105: 23943-23965.
    [55] Isern-Fontanet, J., E.Garcia-Ladona and J. Font,, Identification of marine eddies from altimetric maps. Journal of Atmospheric and Oceanic Technology, 2003, 20: 772–778.
    [56] Isern-Fontanet, J., J. Font, E. Garcia-Ladona, M. Emelianov, C. Millot and I. Taupier-Letage, Spatial structure ofanticyclonic eddies in the Algerian Basin (Mediterranean Sea)analyzed using the Okubo–Weiss parameter. Deep Sea Research Part II , 2004, 51: 3009–3028.
    [57] Isern-Fontanet, J., E. Garcia-Ladona, J. Font, Vortices of the Mediterranean Sea: an altimetric perspective. Journal of Physical Oceanography, 2006, 36: 87–103.
    [58] Ishii, M., A. Shouji, S. Sugimoto and T. Matsumoto, Objective analyses of SST and marine meteorological variables for the 20th century using COADS and the Kobe Collection. Int. J. Climatol., 2005, 25: 865-879.
    [59] Ishii, M., M. Kimoto, K. Sakamoto and S.I. Iwasaki, Steric sea level changes estimated from historical ocean subsurface temperature and salinity analyses. J. Oceanography, 2006, 62: 155-170.
    [60] Jia Y. and Q. Liu, Eddy shedding from the Kuroshio bend at Luzon Strait, J. Oceanogr., 2004, 60: 1063-1069.
    [61] Jia, Y., Q. Liu and W. Liu, Primary study of the mechanism of eddy shedding from the Kuroshio bend in Luzon strait. J. Oceanogr. , 2005, 61: 1017-1027.
    [62] Jeong J. and F. Hussain, On the identification of a vortex. J. Fluid Mech., 1995, 285: 69-94.
    [63] Kuo, N.J., Q.A. Zheng and C.R. Ho, Satellite observation of upwelling along the western coast of the South China Sea. Remote Sensing of Environment , 2000, 74: 463–470.
    [64] Large,W.G., J.C. McWillianms and S.C., Doney, Oceanic vertical mixing: Areview and a model with a nonlocal boundary layer parameterization. Rev. Geophys., 1994, 32: 363-403.
    [65] Large, W.G., G. Danabasoglu, S.C. Doney and J.C. McWilliams, Senitivity to surface forcing and boundary layer mixing in a global ocean model: Annual-mean climatology. J. Phys. Oceanogr., 1997, 27: 2418-2447.
    [66] Li, L., W.D. Nowlin and J.L. Su, Anticyclonic rings from the Kuroshio in the South China Sea. Deep- Sea Research, Part I, 1998, 45: 469-482.
    [67] Li, R.F., D.J. Guo and Q.C. Zeng, Numerical simulation of interrelation between the Kuroshio and the current of the northern South China Sea,Progress in Natural Sciense, 1996, 6: 325-332.
    [68] Liang, W.D., T. Y. Tang, Y. J. Yang, M. T. Ko, and W.-S. Chuang , Upper ocean current around Taiwan, Deep-Sea Res., PartⅡ, 2003, 50, 1085–1105.
    [69] Liang, W.D., Y.J. Yang, T.Y. Tang and W.S. Chuang, Kuroshio in the Luzon Strait.Journal of Geophysical Reserach, 2008, 113, doi:10.1029/2007JC004609,2008.
    [70] Liu, Q.Y., H.J. Yang and Q. Wang, Dynamic characteristics of seasonal thermocline in the deep sea region of the South China Sea, Chinese J.Oceanol.& Limnol., 2000, 18(2):104.
    [71] Liu Q., H. Yang and Z. Liu, Seasonal Features of the Sverdrup Circulation in the South China Sea. Progress in Natural Science, 2001, 11: 202-206.
    [72] Liu, Q.Y., K. Arata and J.L. Su, Recent progress in studies of the South China Sea Circulation. Journal of Oceanography, 2008, 64: 753-762.
    [73] Liu, Z.Y., H.J. Yang and Q.Y. Liu, Regional dynamics of seasonal variability in the South China Sea. Journal of Physical Oceanography, 2001, 31: 272–284.
    [74] Marsh, R., M.J. Roberts, R.A. Wood and A.L. New, An intercomparison of a Bryan-Cox-type ocean model and an isopycnic ocean model, Part II:The subtropical gyre and meridional heat transport. J Phys Oceanogr, 1996, 26: 1528-1551.
    [75] Mellor, G.L. and T. Yamada, Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys. Space Phys., 1982, 20: 851-875.
    [76] Mellor, G.L., User’s guide for a three dimensional, primitive equation numerical oean model. AOS Program Report, Princeton University, Princeton, 1998, NJ. 34pp.
    [77] New, A. and R. Bleck, An isopycnic model of the North Atlantic, Part II:Interdecadal variability of the subtropical gyre. J Phys Oceanogr., 1995,25: 2700 -2714.
    [78] New, A., R. Bleck, Y. Jia, R. Marsh, M. Huddleston and S. Barnard, An isopycnic model of the North Atlantic, Part I:Model Experiments. J Phys Oceanogr., 1995, 25:2667 -2699.
    [79] Nitani, H., Beginning of the Kuroshio. In: Kuroshio, its physical aspects, ed. by H. Stommel and K. Yoshida, University of Tokyo Press, Tokyo, 1972, 129-163.
    [80] Okubo, A., Horizontal dispersion of floatable particles in the vicinity of velocity singularity such as convergences. Deep Sea Research, 1970, 17: 445–454.
    [81] Pasquero, C., A. Provenzale and A. Babiano, Parameterization of dispersion in two-dimensional turbulence. Journal of Fluid Mechanics, 2001, 439: 279–303.
    [82] Pedlosky, J., Ocean Circulation Theory. Springer, Berlin, 1996. 453pp.
    [83] Qu, T.D., H. Mitsudera and T. Yamagata, A climatology of the circulation and water mass distribution near the Philippine coast. J. Phys.Oceanogr., 1999, 29:1,488–1,505.
    [84] Qu, T.D., Upper-layer circulation in the South China Sea. Journal of Physical Oceanography, 2000, 30: 1450–1460.
    [85] Qu, T.D., H. Humio and T. Yamagata, Intrusion of the North Pcific waters into the South China Sea.J.Geophys. Res., 2000, 105: 6,415-6,424.
    [86] Qu, T.D., Role of ocean dynamics on determining the mean seasonal cycle of the South China Sea surface temperature. Journal of Geophysical Research, 2001, 106: 93–6955.
    [87] Qu, T.D., Can Luzon Strait Transport play a role in conveying the impact of ENSO to the South China Sea. 2004.
    [88] Robinson A R., Eddies in Marine Science. New York: Spring Verlag, 1982.
    [89] Roberts, M. J., P. Marsh, A.L. New and R.A. Wood, An intercomparison of a Bryan-Cox-type ocean model and an isopycnic ocean model, Part I: The subpolar gyre and high-latitude process. J Phys Oceanogr., 1996, 26: 1495 - 1527.
    [90] Rong, Z., Y. Liu, H. Zong and Y. Cheng, Interannual sea level variability in the South China Sea and its response to ENSO. Global and Planetary Change, 2007, 55: 257-272.
    [91] SCSIO (South China Sea Institute of Oceanology, Academia Sinica), Report of the 1979–1982 Multidisciplinary Research Program on the Northern South China Sea. Vol. II, China Science Press, Beijing, 1985, 432(in Chinese).
    [92] Shaw. P.T., The seasonal variation of the intrusion of the Philippine Sea water into the South China Sea, J. Geophys. Res., 1991, 96: 821-827.
    [93] Shaw, P.T. and S. Chao, Surface circulation in the South China Sea. Deep-Sea Res., 1994, 41: 1663–1683.
    [94] Shaw, P.T., K.-K. Liu, S.-C. Pai and C. T. Liu, Winter upwelling off Luzon in the northeast South China Sea. J. Geophys. Res., 1996, 101: 16 435–16 448.
    [95] Shaw,P.T. and L.-L. Fu, Sea surface height variations in the South China Sea from satellite altimetry. Altimetry Oceanol. Acta, 1999, 22.
    [96] Soong, Y. S., J.-H. Hu, C.-R. Ho and P. P. Niiler, Cold-core eddy detected in South China Sea, Eos Trans. 1995, AGU, 76.
    [97] Su, J.,B. Guan and J. Jiang, The Kuroshio.Part I,Physical features,Oceanography and Marine Biology Annual Review, 1990, 28: 11-71.
    [98] Su, J.L., Overview of the South China Sea circulation and it s influence on t he coastal physical oceanography out side t he Pearl River Estuary [J ]. Continental Shelf Research , 2004 , 24 : 1 745 -1 760.
    [99] Su, J., J. Xu, S. Cai and O. Wang, Gyres and eddies in the South China Sea. In: Onset and Evolution of the South China Sea Monsoon and Its Interaction with the Ocean. Beijing: China Meteorological Press., 1999, 272-279.
    [100] Tao, S. and L.-X. Chen, A review of recent research on the East Asian summer monsoon in China. In Chang, C.-P. and Krishnamurti, T. N. (eds.) Monsoon Meteorology. Oxford University Press, New York, 1987, 60-92.
    [101] Tian, J. Q., X. Yang, L. Liang, D. Xie, F.W. Hu and T. Q, Observation of Luzon Strait transport. Geophys. Res. Lett., 2006, 33, doi: 10.1029/2006GL026272
    [102] Wang, L., C.J. Koblinsky and S. Howden, Mesoscale variability in the South China Sea from the TOPEX/Poseidon altimetry data. Deep-Sea Res, Part I, 2000, 47: 681-708.
    [103] Wang, B., F. Huang, Z.W. Wu, J. Yang,X.H. Fu and K. Kikuchi, Climate Variability of the South China Sea Monsoon. Dynamics of Atmospheres and Oceans, 2009.
    [104] Wang,G.H., Discussion on the movement of mesoscale eddies in the South China Sea. Ph.D. dissertation, School of physical Oceanography, Ocean university of China, 2004, Qingdao, China(in Chinese).
    [105] Wang, G., J. Su and P.C. Chu, Mesoscale eddies in the South China Sea detected from altimeter data. Geophys. Res. Lett., 2003, 30, doi:10.1029/2003GL018532.
    [106] Wang, G., J. Su and R. Li, Mesoscale eddies in the South China Sea and their impact on temperature profiles. Acta Oceanologica Sinica, 2005, 24: 39-45.
    [107]Wang, G., D. Chen and J. Su, Winter eddy genesis in the eastern South China Sea due to orographic wind-jets. J. Phys. Oceanogr., 2008, 38: 726-732.
    [108] Wang, Z. and Q.S. Chen, The warm eddy in northern South China Sea.Journal of Oceanography in Taiwan University,1987,18:92-103.
    [109] Wang, Z. and Q.S. Chen, The warm eddy in northern South China Sea(2).Journal of Oceanography in Taiwan University,1987,18:104-113.
    [110] Wang, D.W., E.R. Abraham and M.M. Bowen, Spatial variations of stirring in the surface ocean: a case study of the Tasman Sea.National Institute of Water and Atmospheric Research, 2006.
    [111] Weiss, J., The dynamics of enstrophy transfer in twodimensional hydrodynamics. Physica D, 1991, 48: 273–294.
    [112] Wu C.R. and C.W.Chang, Interannual variability of the South China Sea in a data assimilation model.GEOPHYSICAL RESEARCH LETTERS, 2005, 32, doi:10.1029/2005GL023798.
    [113] Wyrtki, K., Scientific results of marine investigation of the South China Sea and Gulf of Thailand. NAGA Report 2, 1961, 195.
    [114] Xu, J., J. Su and D. Qiu, Hydrographic analysis on the intruding of Kuroshio water into the South China Sea. Oceanography in China, 1996, 6: 1–12.
    [115] Xu, X.Z., Z. Qiu and H.C. Chen, The general descriptions of the horizontal circulation in the South China Sea. In: Proceedings of the 1980 Symposium on Hydrometeorology, Chinese Society of Oceanology and Limnology, Science Press, Beijing, 1982, 137–145. (in Chinese).
    [116] Xu, J. and J. Su, Hydrographic analysis on the intrusion of Kuroshio into the South China Sea. II. Observational results during the cruise from August to September in 1994.Tropic Oceanology, 1997, 16: 1–23 (in Chinese).
    [117] Yang, H. and Q. Liu, Forced Rossby wave in the northern South China Sea. Deep-Sea Res. I, 2003, 50: 917-926.
    [118] Yang, Y., C-T. Liu, J-H. Hu and M. Koga, Taiwan Current (Kuroshio) and Imping Eddies. Journal of Oceanography, 2000, 55: 609-619.
    [119] Yaremchuk,M. and T. Qu, Seasonal variability of the large-scale currents near the coast of Philippines.J.Phys.Oceanogr., 2004, 34: 844–855.
    [120] Yelland, M. J. and P. K. Taylor, Wind stress measurements from the open ocean. J. Phys. Oceanogr., 1996, 26: 541–558.
    [121] Yuan, D.L., W.Q. Han and D.X. Hu, Anti-cyclonic eddies northwest of Luzon in summer-fall observed by satellite altimeters.Geophysical Research Letters. 2007, 34, doi:10.1029/2007GL029401.
    [122] Yuan, D., A numerical study of the South China Sea deep circulation and its relation to the Luzon Strait transport. Acta Oceanol. Sin., 2002, 21: 187–202.
    [123] Yuan, D., W. Han and D. Hu, Surface Kuroshio path in the Luzon Strait area derived from satellite remote sensing data, J. Geophys. Res., 2006, 111, doi:10.1029/2005JC003412.
    [124] Zhu, Q.G., J. H. He and P.X. Wang, A study of circulation differences between East-Asian and Indian summer monsoons with their interactions. Adv. Atmos., 1986, 3: 466-477.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700