用户名: 密码: 验证码:
黔北地区下寒武统黑色岩系形成环境与地球化学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中国南方早寒武世广泛分布富有机质的黑色岩系,是PGE、Au、Ag、Ni、Mo、V等的重要载体,常产出Ni-Mo-PGE矿床、V-Cu-U矿床、磷矿床和重晶石矿床等大型-超大型金属和非金属矿床。黑色岩系也是沉积岩中的一种烃源岩,与化石能源有直接关系。黑色岩系的研究已成为当今地学界的热点研究领域之一,具有重要的理论意义和经济价值。黔北是下寒武统黑色岩系发育的典型地区,前人已在古生物学、地层学、地球化学和矿床学方面进行了大量研究工作,但全面系统的有机地球化学和元素地球化学的结合研究尚不多见。本文通过研究黔北地区黑色岩系的矿物岩石学特征、有机地球化学特征和元素地球化学特征,在查明黑色岩系物质组成的基础上,探讨了黑色岩系形成环境、元素来源、赋存状态和富集规律。
     本文通过野外露头观察、室内岩矿分析,结合前人研究资料,确定了研究区下寒武统黑色岩系的岩性序列自下而上划分为5个岩性段,即黑色硅岩(下硅质层)、磷块岩(磷矿层)、多元素富集层(镍矿层和钼矿层)、黑色条纹状碳泥质硅质岩(上硅质层)、黑色碳质伊利石页岩。
     为了查明黑色岩系的矿物组合特征,对各类岩石样品进行了X射线粉末衍射分析和扫描电镜分析。下寒武统牛蹄塘组黑色岩系主要由粉砂岩、页岩、石煤、硅岩、碳酸盐岩、磷块岩、重晶石岩等组成,主要矿物组合为石英、伊利石、绿泥石、磷灰石、黄铁矿、重晶石和方解石等,其中镍-钼多元素富集层中硫化物矿物主要有黄铁矿、闪锌矿、毒砂、辉钼矿、针镍矿、砷镍矿、辉砷镍矿、辉铜矿、黄铜矿和方铅矿等。
     基于研究区的大地构造、岩石地层和古生物特征,确认黔北遵义地区黑色岩系形成的岩相古地理环境为近滨-远滨相,即浅水陆架区,向东逐渐转变为斜坡-盆地区,即深水陆棚区。
     深大断裂构造成为含矿物质来源的构造通道,海底火山喷溢和侵入活动提供大量的成矿物质和“热源”。在综合分析前人研究成果的基础上,认定早寒武世及其以前,研究区发育一系列深大断裂并长期活动,沿深大断裂发生较强的海底火山喷溢和侵入活动,控制了区域地质构造的发展和矿产的分布,对黑色岩系中多元素的富集起着重要作用。
     测定岩样有机碳和有机硫含量,目的是为了查明黑色岩系的有机质丰度。黑色岩系有机碳含量平均为5.481%,最高达9.29%,有机硫含量平均为4.532%,最高达23.30%,富含有机碳和有机硫。黑色岩系中有机质主要来源于藻类和菌类生物。有机硫,连同黄铁矿,指示一种封闭-半封闭的缺氧还原环境。
     有机质成熟度是有机质热演化程度的反映。黑色岩系氯仿沥青“A”族组分中,具有高饱和烃、低芳烃和高非烃的族组分分布特征,表现出以富含类脂化合物和蛋白质为特点的低等水生生物来源的腐泥型有机质的特点。黑色岩系干酪根显微组分绝大部分为腐泥组,干酪根类型为Ⅰ型(腐泥型),此类型干酪根与细菌和藻类有关。有机碳含量和镜质体反射率证实,黑色岩系是较好的烃源岩,有机质成熟度高,达到生油门限或高成熟(交替作用)阶段。
     通过饱和烃气相色谱分析,检测出生物标志化合物,从分子级水平探讨地质体中有机分子化合物的演化规律。黑色岩系高主峰碳、较小的∑nC_(21)~-/∑nC_(22)~+值和(nC_(21)+nC_(22))/(nC_(28)+nC_(29))值,可能与成岩后期作用有关。黑色岩系OEP为1.04~1.12,奇偶优势比接近于1,无奇偶优势或具有微弱的奇偶优势,表明低等海洋浮游生物是有机质的主要来源。黑色岩系Pr/Ph值为0.80~1.18,小于1或近于1,显示出还原或弱还原沉积环境。
     黑色岩系各岩样碳同位素组成的差别意味着沉积时古海洋环境的变化。黑色岩系δ~(13)C_(PDB)值为-23.74‰~-31.63‰之间,总体属于L型无定形干酪根,且更富轻碳同位素(~(12)C)。剖面上从磷块岩→镍矿层→钼矿层,δ~(13)C值逐渐减小,海平面处于上升阶段,缺氧还原环境逐渐增强,在钼矿层δ~(13)C值减小到最低值,代表了最大海进期,之后在黑色页岩δ~(13)C值增大,海平面有所下降,缺氧还原强度减弱。
     热演化温度是成岩成矿的重要因素。黑色岩系样品的固体沥青反射率测定结果为5.25%~6.27%,折算出来的镜质体反射率为3.645%~4.455%,得到黑色岩系的受热温度为92℃~250℃。按照干酪根和微体藻类化石颜色指标,大致确定该地层的古地温为60℃~110℃。结合前人黄铁矿热电系数法测温(100℃~240℃)和包裹体均一法测温(226℃~230℃和113℃~153℃),判定牛蹄塘组黑色岩系的受热温度介于60℃~250℃之间,经历的最高古地温估计为200℃~250℃,属中、低温沉积成岩成矿作用,并以低温(200℃以下)沉积成岩成矿作用为主。
     为了探明黑色岩系中贵金属元素的来源,系统测定了样品Au、Ag、PGE含量。结果表明,铂族元素(包括Au和Ag)在黑色岩系多金属元素富集层,特别是钼矿层中得到富集。从贵金属元素的含量、特征参数、配分模式来判定,黑色岩系不具有地外物质的性质,铂族元素(包括Au和Ag)不是来源于地外,而是来自沿着深大断裂上涌的海底岩浆喷溢,元素的异常富集是海底含矿热卤水与正常海水共同作用的结果。
     稀土元素总量(∑REE)在多金属元素富集层之钼矿层中出现峰值,达315.12×10~(-6)。La/Sm均大于1,代表地幔热柱或异常型,暗示黑色岩系形成时有地下深部物质介入。REE球粒陨石标准化分布模式为曲线右倾斜,LREE富集型。δEu=0.52~0.87<1,δCe=0.68~0.88<1,Eu、Ce均呈负异常,表明黑色岩系形成于缺氧的还原沉积环境。REE北美页岩标准化模式显示出Ce负异常,LREE<HREE,北美页岩组合样标准化曲线近于水平,反映了海相热水沉积特征。
     黑色岩系多金属元素富集层也是其他微量元素(如Mo、Se、As、Sb、Tl、Ni、U、Pb、Bi、Cu、Cs、Zn、V等)的富集体。微量元素总量在钼矿层达到最高(110759.11×10~(-6))。δU>1,表现为缺氧沉积环境。微量元素富集系数高,U/Th>1,表明受到较强的热液活动的影响。
     岩石中微量元素赋存特征是沉积物形成环境和成岩变化的综合反映。黑色岩系富含有机质,粘土矿物成分高,Ni-Mo矿层以硫化物矿物为主,表明元素赋存状态主要为硫化物态、有机质结合态和粘土矿物吸附态等。根据上述研究,结合前人成果,简要阐述了PGE、REE、Ni、Mo、Au、Ag、V、U、Cu、Pb、Zn、As、Sb、Tl、Se等元素在黑色岩系中的赋存状态。
     在全面分析有机地球化学特征和元素地球化学特征的基础上,结合地质构造背景,探讨了黑色岩系的形成环境和多金属元素富集规律:在542Ma左右的寒武纪早期,黔北地区发育古热液喷口,沿深大断裂发生多期次海底火山喷溢和侵入活动,深部热源物质上涌,与地表水、地下水和海水一道形成具一定温度的热卤水,进行热水循环或热水活动。热卤水在流动过程中,大量溶解元古代武陵期基性-超基性岩物质中的有用元素,进一步形成含矿热卤水,这种含矿热卤水是黑色岩系多金属元素的直接来源。在滞留、还原的台缘斜坡带(水深200m左右),表层水中繁衍着大量的藻类和浮游生物,生物生产力高,大量生物死亡下沉,向海底提供充分的有机物质,遗体腐烂分解吸收大量溶解氧,造成大洋中层水体缺氧还原环境,致使形成的黑色岩系富含有机质,有机质在多金属元素的迁移聚集过程中发挥着重要作用。研究区早寒武世缺氧事件(环境)可与全球大洋缺氧事件对比。多金属元素矿化经历了沉积期、成岩期、后生期和表生期各个阶段。矿化温度以低温(200℃以下)为主。黑色岩系沉积以来,铂族元素(包括Au和Ag)在低温条件下进行了重新分配(成岩期)、迁移与富集(后生期)。表生期只在地表不深处有一定作用。
     黑色岩系形成环境和地球化学的研究,为查明黑色岩系的成因、构建多金属元素的富集模式、探索黑色岩系型矿床的成矿机理奠定了基础,以促进黑色岩系型矿床,特别是铂族元素矿床的找矿工作。
As is known to us, there are many series of black rock scattered in the south of China, which are theimportant carriers of PGE, Ag, Au, Ni, Mo, V etc., and often generate large-scale or super-large-scale metaland non-metal deposits, such as Ni-Mo-PGE deposit, V-Cu-U deposit, phosphorus deposit, barite depositetc. Black shale series is also one of hydrocarbon source rocks of sedimentary rocks and closely related tofossil energy. Research on the black shale series has become a hot area in geology, which is of significancein theory and economy. Northern Guizhou is the typical region where the Lower Cambrian black shaleseries developed, wherealot of research has been done by many geologists through the methods ofpaleontology, stratigraphy, geochemistry and metallogeny while the research through combining organicgeochemistry with elemental geochemistry is not frequently used. In light of petromineralogy, organicgeochemistry and elemental geochemistry features of the black shale series in this area, on the basis of thecomposition of the black shale series, this paper mainly discusses on the formation environment, source ofelements, mode of occurrence and enrichment rules.
     Through field observation, rock-mineral analysis interior the lab and referring to the former studies,it proposes that the lithological sequences of the Lower Cambrian black shale series can be divided intosuch 5 layers from the bottom to the top as black quartzite (lower silicalite), phosphate (phosphorite),metal-rich shale (Ni ore bed and Mo ore bed), black striation ampelitic-argillaceous silicalite (uppersilicalite), and black ampelitic ledikite shale.
     In order to get the features of the composition of the black shale series, we used X-ray powderdiffraction and SEM-EDAX analysis. Black shale series of Niutitang formation of lower Cambrian ismainly composed of siltite, shale, stone-like coal, quartzite, carbonatite, phosphorite, baritic rock etc, andthe main mineral assemblage contains quartz, ledikite, chlorite, phosphorite, pyrite, barite, calcite etc, andsulfide minerals in Ni-Mu multielement enrichment layer mainly include pyrite, sphalerite, arsenopyrite,molybdenite, millerite, placodine, dobschauite, chalcocite, chalcopyrite and galenite etc.
     According to tectonic background, lithostratigraphic and paleontological characteristics, it is affirmedthat lithofacies paleogeography of the black shale series occured in Zunyi area of Guizhou province is anearshore-offshore facies, which means a shallow-water continental shelf, from where towards east itevolved gradually into a slope-basin area, which means a deep-water continental shelf:
     Deep fault become the channel of mineral matter and hot bittern seawater sediments as well as magmatic intrusion can provide the mineral matter and“Hot Resource”. On the basis of the research data,we believe that at lower Cambrian and before, a series of deep fault grows in the investigated region withsome long-term activities, along which strong volcano eruption and magmatic intrusion occurred,controlling the development of regional geological tectonic and the distribution of minerals, which playedthe key role in the multi-element enrichment of the black shale series.
     Tests of the contents of organic carbon and organic sulfur of rock samples are made to find out theorganic abundance of the black shale series. The average content of organic carbon and organic sulfur is5.481% and 4.532%, the highest content up to 9.29% and 23.30%, respectively. The organic of the blackshale series takes their origin from algae and fungi biology. The organic sulfur and pyrite indicate aclosed-semi closed anoxic and reducing environment.
     The degree of organic maturation of black shale series can reflect its degree of thermal evolution.The component of chloroform bitumen“A”has the distribution of high saturated hydrocarbon, lowaromatic hydrocarbon and high nonhydrocarbon, that characterized in sapropelic organic matters evolvedfrom lower hydrobiont which are rich in lipids and proteins. The kerogen macerals of the black shale seriesare mostly formed by sapropel, and the kerogen belongs to the type“Ⅰ”(sapropel type), closely related tofungi and algae. Confirmed by what the organic carbon content and vitrinite reflectance indicated, the blackshale belonged to comparatively good hydrocarbon source rocks, with a high maturity of organic matters,reaching to the stage of oil-generative threshold and high maturity (or alternating action).
     Biomarker compounds are detected on the analysis of the gas-facies chromatogram of saturatedhydrocarbon, according to which we can discuss the evolvement of organic molecule compounds ingeologic bodies at the molecule level. The black shale series has an evidently high value of main peakcarbon and lower∑nC_(21)~-/∑nC_(22)~+ and (nC_(21)+nC_(22))/(nC_(28)+nC_(29)) ratios, which is possibly related to theeffect of late diagenesis.In the black shale series, OEP is 1.04~1.12, approximate tol at the odd evenpredominance, having no (or little) odd even predominance. It indicates that the organic matters weremainly from lower oceanic planktons. Additionally, the Pr/Ph ratio (0.80~1.18) of the black shale seriesless than or approximate to 1, reflects a weak reducing sedimentary environment.
     The differences of the C-isotopic composition in all kinds rock samples were regarded as the changeof the environment when paleo-ocean sediment started.δ~(13)C_(PDB) ratio of the black shale [0]series isbetween -23.74‰and -31.63‰. It generally belongs to the type“L”amorphous kerogen and is richer inlight C-isotope. In section, from phosphate, Ni ore bed to Mo ore bed, theδ~(13)C value decreases gradually, which indicates that the sea level lies in rising period and anoxic and reducing environment graduallyincreased, theδ~(13)C value of Mo ore bed decreases to the minimum, representing a maximum transgressionperiod; and later, the increasingδ~(13)C value of the black shale denotes a degressive sea level, companyingwith a decreasing anoxic and reducing environment.[0]
     The temperature of thermal evolution of black shale series is of a great significance in expoundingrock-forming and ore-forming condition. The solid bitumen reflectance data of the black shale seriessamples is between 5.25% and 6.27%, vitrinite reflectance data between 3.645% and 4.455%, converted bythe experience formulas, and the heated temperature of black shale series between 92℃and 250℃.According to the color index of kerogen and micro-algae fossil, it is demonstrated that thepaleotemperature of the black shale series ranges from 60℃to 110℃. By combining with pyritethermoelectricity coefficient thermometry result (100℃~240℃) and inclusion equal thermometry result(226℃~230℃and 113℃~153℃) it shows that the heated temperature of the black shale series ofNiutitang formation is between 60℃and 250℃, and the max paleotemperature between 200℃and 250℃,which belongs to the middle-lower temperature sedimentary and rock-forming and ore-forming actions inLower Cambrian black shale series in northern Guizhou.
     The content of Au, Ag, PGE were tested for making clear of the source of these elements in the blackshale series. Platinum-group elements (including Au and Ag) is enriched in the metal-rich shale, especiallyin Mo ore bed of the black shale series. The PGE abundance, elements' interrelation, relative parametersand PGE patterns indicated that PGE sourced from hot bittern seawater sediments from magma, and highenrichments of PGE resulted from mixing of hot bittern seawater sediments and normal seawatersediments.
     The total REE content of the black shale series reaches its peak value (up to 315.12×10~(-6)) in Mo orebed of metal-rich shales, La/Sm>1, representing mantle plume or abnormally style, which suggests thatmantle matters have been joined while forming the black shale series. The chondrite-normalized REEpattern is a right curve tilting of LREE enrichment.δEu andδCe range from 0.52 to 0.87 and from 0.68 to0.88, respectively, all of which is less than 1, and the negative anomaly of Eu and Ce showed that the blackshale series were deposited in an anoxic sea environment. The North America shale-normalized REEpattern shows negative anomaly of Ce, LREE<HREE, which is nearly smooth, reflecting the characteristicof marine hydrothermal sediments.
     The enrichment layer of the multi-metal elements is the enrichment body of other trace-elements,such as Mo、Se、As、Sb、Tl、Ni、U、Pb、Bi、Cu、Cs、Zn、V etc. That the total content of the trace-elementsreaches the highest value (110759.11×10~(-6)) in Mo ore bed. The data that has been got,δU>1, suggests areducing sedimentary environment. The high enrichment coefficient of trace-elements and the data that hasbeen got, U/Th>1, indicate that they might be affected by comparatively strong hydrothermal activities.
     The enrichment characteristic of the trace-elements in rocks can integratively reflect the formationenvironment of sediments and rock-forming process. The black shale seires is rich in organic matters andclay minerals, mainly with the sulfide in Ni-Mo ore bed, which indicates that the occurrences of theelements are represented as the results of sulfide, organic matter bound and clay mineral adsorption. Basedon the research above and combining with the former research, this paper is to simply discuss theoccurrence of elements in black shale series, including PGE、REE、Ni、Mo、Au、Ag、V、U、Cu、Pb、Zn、As、Sb、Tl、Se etc.
     On the basis of organic geochemistry, elementary geochemistry and geologic structure background,this paper discusses the formation environment of black shale series and the enrichment rule of multi-metalelements. At earlier Cambrian of about 542Ma, when the north of Kuizhou province generated thepaleohydrothermal vents and -multiple submarine volcano eruption and magmatic intrusion occurred alongdeep fault, it caused deep“hot resource”upwelling, together with surface water, ground water and seawater, because of which the hot bittern seawater at certain temperature came into being, resulting in hotwater recycling or hot water activity. And in the process of flowing, the hot bittern seawater dissolved lotsof useful elements of the basic-ultrabasic rocks at Proterozoic Wuling period, that furthered the formationof the ore-bearing hot bittern seawater, which is the direct source of the multi-metal of the black shaleseries. On the belt of the resident and reducing platform margin slope (about 200m deep of water), a lot ofalgaes and planktonthes had been bred in surface layer water, and the biologies had a high reproducingability and provided with adequate organic matters for the seabed as they died and began to sink, whosedecaying and dispersed reliquiaes absorbed a great number of dissolved oxygen, resulting in an anoxic andreducing environment of water body of middle ocean and then the formation of black shale series, in whichthe organic matters is enriched, acting greatly on the movement and gathering of multi-metal elements.Therefore, comparison can be made between the anoxic event (or environment) of Earlier Cambrian of thisarea and that of global oceans. The mineralization of multi-metal elements had experienced several periods
     of sedimentary stage, diagenesis stage, epigenetic stage and hypergene stage. The mineralization characterized in low temperature (below 200℃). Ever since the black shale series had begun in sediment, aperiod of reassembly (which represents diagenesis stage) and movement and enrichment (which indicatesepigenetic stage) had been put on platinum-group element (including Au and Ag) at the low temperature.The effect of the epigenetic stage had been posed only on places of certain depth next to the earth surface.
     Study on the formation environment and geochemistry of the black shale series can establish thefoundation for the genesis of the black shale series, enrichment model of multi-metal element anddiscussing mineral-generative mechanism of black shale series deposit and promote exploration of theblack shale series deposits, especially the platinum-group element deposit.
引文
[1] Allegre C J and Minster J F. Quantitative models of trace element behavior in magmatic processes.Earth Planet[J]. Sci Lett, 1978, 38 (1) : 1-25
    
    [2] Alvarez L W, Alvarez W, Asaro F, et al. Extraterrestrial cause for the Cretaceous-Tertinction[J]. Science,1980,208:1095-1108
    [3] Anders E and Grevesse N. Abundances of elements: Meteoritic and solar. Geochim. Cosmochim[J].Acta,1989,55 (1) : 197-214
    [4] Arthur M A and Sageman B B. Marine black shales: depositional mechanism and environments of ancient deposits[J]. Annual Review of Earth and Planetary Science, 1994, 22: 499-551
    [5] Arthur M A, Dean W E and Stow DAY Models for the deposition of Mesozoic-Cenozoic fine-gained organic-carbon-rich sediment in the deep sea[C]. In: Stow D A V and Piper D J W, Fine grained sediments: deep-water processes and facies, Geological Society (London) Special Publication 14.Oxford: Black-well Scientific, 1984
    [6] Ashley R P, et al. Geology and geochemistry of three sedimentary-rack-hosted disseminatied gold deposits in Guizhou Province, P R C[J]. Ore geology Riviews, 1991, 6 (2-3) : 133-151
    [7] Barghoorn E S, Knoll A H, Dembicki H Jr, et al. Variation in stable carbon isotopes in organic matter from the Gunflint Iron Formation[J]. Geochimica et Cosmochimica Acta, 1977, 41(3) : 425-430
    [8] Barnes S J, Boyd R, Korneliusson A, et al. The use of mantle ratios in discriminating between the effects of partial melting, crystal fractionation and sulfide segregation on platinum-group elements,gold, nickel and copper: examples from Norway[C]. In: Prichard H M, et al., ed. Geo-Platinum 87.London: Elsevier, 1988
    [9] Bernhard P E and Robyn E H. Effects of black shale weathering on the mobility of rhenium and platinum group elements[J]. Geology, 2000, 28 (5) : 475-478
    
    [10] Berry W B N and Wilde P. Progressive ventilation of the oceans——An explanation for the distribution of the Lower Palaeozoic black shales[J]. Amer J Sci, 1978, 278: 257-275
    
    [11] Bostrom K. Genesis of Ferromanganess deposits-diagnostic criteria for recent and old deposits[C]. In:Rona P A, Bostrom K, Laubier L, et al. Hydrothermal processes at seafloor spreading centers, Plenum Press, 1983
    [12] Bostrom K, Rydell H and Joensuu O. Langback an exhalative sedimentary deposit[J]. Econ Geol, 1979,74:10002-10011
    [13] Bowring S A, Grotzinger J P, Isachsen C E, et al. Calibrating rates of Early Cambrian evolution[J].Science, 1993,262, 1293-1298
    [14] Boynton W V. Cosmochemistry of the rare earth elements[C]. In: Henderson P, ed. Rare Earth Element Geochemistry. Developments in Geochemistry, 2. Amsterdam: Elsevier, 1984
    [15] Brookins A H. Eh-pH diagram for REE[J]. Geochem, 1984,45: 70-80
    [16] Bralower T J and Thierstein H R. Low productivity and slow deep-water circulation in mid-Cretaceous oceans[J]. Geology, 1987, 12: 614-618
    [17] Brasier M D. Global ocean-atmosphere change across the Precambrian-Cambrian transition[J]. Geol Mag, 1992, 129: 161-168
    
    [18] Brasier M D, Magaritz M, Corfield R, et al. The carbon-and oxygen-isotope record of the Precambrian-Cambrian boundary interval in China and Iran and their correlation[J]. Geol Mag, 1990,127:319-332
    [19] Brasier M D and Shields G. Neoproterozoic chemostratigraphy and correlation of the Port Askaig glaciation, Dalradian Supergroup of Scotland[J]. Journal of the Geological Society, London, 2000,157:909-914
    [20] Calvert S.E. Sedimentary geochemistry of manganese implications for the environment of formation of black shales[J]. Economic Geology, 1996,91 (1) : 36-47
    [21] Calvert S E and Pedersen T R. Geochemistry of recent oxic and anoxic marine sediments: implication for the geological record[J]. Chemical Geology, 1993,113: 67-88.
    [22] Campbell A C, Palmer M R and Klinkhammer G P. Chemitry of hot spring on the Mid-Atlantic Ridge[J]. Nature, 1988, 335: 514-519
    
    [23] Carman J. Time-temperature relation in oil genesis[J]. Brll. AAPG, 1974, 58: 2516-2521
    [24] Chen Nansheng, Yang Xiuzhen, Liu Dehan, et al. Lower Cambrian black rock series and associated stratiform deposits in southern China[J]. Chinese Journal of Geochemistry ,1990,9(3): 244-255
    [25] Chen Y Q, Jiang S Y, Ling H F, et al. Pb-Pb isotope dating of black shales from the Lower Cambrian Niutitang Formation, Guizhou province, South China[J]. Progress in Natural Science, 2003, 13 (10) :771-776
    [26] Chu X L, Sun M and Zhou M F. The platinum-group element geochemistry in chemical geodynamics[J]. Acta Petrologica Sinica,2001,17 (1) : 1212-1229
    [27] Chyi L L. The distribution of gold and platinum in Bituminous Coal[J]. Economic Geology, 1982, 77:1592-1597
    [28] Clark R C and Blumer M. Distribution of n-poraffines in marine organisms and sediment[J]. Limnol Oceanogr, 1967, 12: 79-87
    [29] Cluff RM. Paleoenvironment of the new Albany Shale Group (Devonian-Mississippian) of Illinois[J].J. Sed. Petrology, 1980, 50 (30) : 767-780
    [30] Colodner D C, Boyle E A, Edmond J M, et al. Post-depositional mobility of platinum, iridium and rhenium in marine sediments[J]. Nature, 1992, 358 (6385) : 402-404
    [31] Convey R M Jr, Murowchick J B, Grauch R I, et al. Gold and Platinum in shales with evidence against extraterrestrial sources of metals[J]. Chem Geol, 1992,99: 101-114
    [32] Cooper J R, et al. Isotope and elemental geochemistry of Black Sea seditnents[C]. In: The Black Sea. American Association of Petroleum Geologists, Memoir, 1974
    [33] Corsetti F A, Awramik S M, Pierce D, et al. Using chemostratigraphy to correlate and calibrate unconformities in Neoproterozoic strata from the Southern Great Basin of the United States[J].International Geology Review, 2000, 42, 516-533
    [34] Corsetti F A and Hagadorn J W. Precambriart-Cambrian transition: Death Valley, United States[J].Geology, 2000, 28 (4) : 299-302
    [35] Costin V A. Iridium anomaly from the Acraman impact ejecta: Impacts can produce sedimentary iridium peaks[J]. Nature, 1989, 340: 542-544
    [36] Coveney R M and Glascock D G. A review of the origins of metal-rich Pennsylvanian black shales,Central U. S. A., with an inferred role for basinal brines[J]. Applied Geochimistry, 1989,4: 347-367
    [37] Coveney R M and Nansheng C. Ni-Mo-PGE-Au-rich ores in Chinese black shales and speculations on possible analogues in the United States[J]. Mineralium Deposita, 1991, 26 (2) : 83-88
    [38] Coveney R M, Murowchick J B, Grauch R I, Nansheng C and Glascock M D. Field relations, origins,and resource implications for platiniferous Molybdenum-Nickel ores in black shales of south China[J].Explor Mining Geol, 1992,1 (1) : 21-28
    [39] Coveney R M, Leventhal J S, Glascock M D, et al. Origins of metals and Organic matter in the Mecca Quarry Shale Member and stratigraphically equivalent beds across the Midwest[J]. Economic Geology, 1987,82:915-933
    
    [40] Coveney R M Jr, Watney W L and Maples C G. Contrasting depositional models for Permsylvanian black shale discerned from molybdenum abundances[J]. Geology, 1991,19: 147-150
    [41] Cracket J H. Neutron activation analysis for noble metals in geochemistry[C]. In: Brunfelt A O,Steinnes E, ed. Proceedings N. A. T. O. Advanced Study Institute——Activation Analysis in Geochemistry and Cosmochemistry. Oslo: Universitets Forlaget, 1973
    [42] Cronan D S. Underwater Minerals[M]. London: Academic press, 1980
    [43] Crocket J H, Macdougall J D and Harriss R C. Gold, palladium and iridium in marine sediments[J].Geochimica et CosmochimicaActa, 1973,37:2547-2556
    [44] Degens E T. Biogeochemistry of stable carbon isotopes[C]. In: Organic Geochemistry, Methods and Results. Edited by G Eglinton & M T J Murphy. New York, 1969
    [45] Fan Delian. Polyelements in the Lower Cambrian black shale series in southern China[C]. In: The significance of trace elements in solving petrogenetic problems and controversies. The Phrastus Publications S A, Athens, Greece, 1983: 447-474
    [46] Fan Delian, Yang Ruiying and Huang zhongxiang. The lower Cambrian black shale Series and the iridium anomaly in south China[C]. In: Developments in geoscience—Contribution to 27th International Geological Congress, Moscow. Science Press, Beijing, China, 1984
    [47] Farrimond P, Eglinton G, Brassell S C, et al. The Cenomanian-Turonian anoxic event in Europe: an organic geothemical study[J]. Mar Petrol Geol, 1990, 7: 75-89
    [48] Fisher A G and Arthur M A. Secular variations in the pelagic realm[J]. Spec Publ Soc Econ Paleont Mineral, 1977, 25: 19-50
    [49] Fochs W A and Rose A W. The geochemical behavior of platinum and palladium in the weathering cycle in the Stillwater Complex Montana[J]. Economic Geology, 1974,69 (3) : 332-346
    [50] Fouquet Y, Stackelberg U and Charlou J. Mefallogenesis in back-arc environments: The Lau Basin example[J]. Econ Geol, 1993, 88: 2154-2181
    [51] Gammons C H, Bloom M S and Yu Y. Experimental investigation of the hydrothermal geochemistry of platinum and palladium: I. Solubility of platinum and palladium suifide minerals in NaCl/H_2SO_4 solutions at 300℃[J]. Geochimica et Cosmochimica Acta, 1992, 56: 3881-3894
    [52] Ganapathy R. A major meteorite impact on the earth 65 million years ago: Evidence from the Cretaceous-Tertiary boundary clay[J]. Science, 1980, 209: 921-923
    [53] Goldberg E D, Koike M. Understanding the marine chemistries of the platinum group metals[J].Marine chemistry, 1990,30 (1-3) : 149-257
    [54] Goodfellow W D, et al. Environment of formation of the Howards Pass (XY) Zn-Pb deposit, Selwyn Basin, Yukon[C]. In: Mineral Deposits of the Northern Cordillera. Canadian Institute of Mining and Metallurgy, Special Volume, 1986
    [55] Graf J. Rare earth elements, iron formations and sea water[J]. Geochim Cosmochim Acta, 1978, 42:1845-1850
    [56] Haskin M A and Haskin L A. Rare earth in European shales: a redetermination[J]. Science, 1966, 154:507-509
    
    [57] Henderson P. Rare earth elements geochemistry[M]. Amsterdam: Elservier Sci Publ Co, 1984
    [58] Herbert T D, Stallard R F and Fischer A G. Anoxic events, productivity rhythms and the orbital signature in a mid-Cretaceous deep-sea sequence from central Italy[J]. Palaeoceanpgraphy, 1986, 1:495-506
    [59] Hertogen J, Janssens MJ and Palme H. Trace elements in ocean ridge basalt glasses: implications for fractionations during mantle evolution and petrogenesis[J]. Geochim. Cosmochim. Acta, 1980, 44:2125-2143
    [60] Hodge V F, Stallard M, Koide M, et al. Platinum and the platinum anomaly in the marine environment[J]. Earth and Planetary Science Letters, 1985, 72: 158-162
    [61] Hodge V F, et al. Determination of platinum and iridium in marine waters, sediments, and organisms[J]. Analytical Chemistry, 1986, 58: 616-620
    [62] Holser W T, Schidlowski M, Mackenzie F T, et al. Biogeochemical cycles of carbon and sulfur[C]. In:Cregor C B, et al. eds. Chemical Cycles in the Evolution of the Earth. New York: John Wiley & Sons,1988
    [63] Hood D, Gutjahr C C M and Heacock R L. Organic metamophism and generation of petroleum[J].Bull AAPG, 1975, 59: 986-996
    [64] Horan M F, Morgan J W, Grauch R I, et al. Rhenium and osmium isotopes in black shales and Ni-Mo-PGE-rich sulfide layers, Yukon Territory, Canada, and Hunan and Guizhou provinces,China[J]. Geochim Cosmochim Acta, 1994, 58:257-265
    
    [65] Hs(?) K J. Strangelove ocean before the Cambrian explosion[J]. Nature, 1985, 316: 809-811
    [66] Hs(?) K J and Sun S. Ocean before Cambrian explosion[J]. Scientia Geologica Sinica (in Chinese) ,1986,1:1-10
    [67] Huc A Y. Paleogeography, paleoclimatology and source rocks AAPG studies in geology no.40[C].Tulsa:AAPQ,1995
    [68] Huerta-Diaz M A and Morse J W. Pyritisation of trace metals in anoxic marine sediments[J].Geochimica et Cosmochimica Acta, 1992, 56:2681-2702
    [69] Hulbert L J, Gregoire D C, Paktune D, et al. Sedimentary nickel, zinc, and platinum-group - element mineralization in Devonian black shales at the Nick Property, Yukon, Canada: A new deposit type[J].Explor.Mining Geol., 1992, (1) : 39-62
    [70] Jenkyns H C. The early Toarcian and Cenomania-Turonian anoxic event in Europe: Comparisons and contrasts[J]. Geologische Rundschau, 1985, 74: 505-518
    [71] Jenkyns H C. The early Toarcian (Jurassic) anoxic event: stratigraphic, sedimentary, and geochemical evidenee[J]. Am J Sci, 1988,288: 101-151
    [72] Jiang S Y, Yang J H, Ling H F, et al. Extreme enrichment of polymetallic Ni-Mo-PGE-Au in lower Cambrian black shales of South China: An Os isotope and PGE geochemical investigation[J].Paleogeography, Paleoclimatology, Paleoecology, 2007, 254, 217-228
    [73] Jiang Yuehua, Yue Wenzhe and Ye Zhizheng. Characteristics, sedimentary environment and origin of the Lower Cambrian stone-like coal in Southern China[J]. Chinese Coal Geology (in Chinese), 1994,6 (4) :26-31
    [74] Jiang Yuehua, Yue Wenzhe and Ye Zhizheng. Anoxic event, black shale, and related mineral resource:Taking the Lower Paleozoic in South China as an example[J]. Geological Exploration for Non-ferrous Metals (in Chinese) ,1994, 3:272-278 |
    
    [75] Jin Y G, Wang Y and Wang W. Pattern of marine mass extinction near the Permian-Triassic boundary in South China[J]. Science, 2000, 289: 432-436
    [76] Kaufman A J and Knoll A H. Neoproterozoic variations in the carbon isotopic composition of seawater:stratigraphic and biogeochemical implications[J]. Precambrian Research, 1995,73:27-49
    [77] Kaufman A J, Knoll A H, Semikhatov M A, et al. Integrated chronostratigraphy of Proterozoic-Cambrian boundary beds in the western Anabar region, northern Siberia[J]. Geol Mag, 1996, 133, 505-553
    [78] Keays R R, Nickel E H, Groves D J, et al. Iridium and palladium as discriminants of voicanic -exhalative,hydrothermal, arid magrnatic nickel sulfide mineralization[J]. Eco. Geo., 1982, 77 (6) :1535-1547
    [79] Kemp A E S. Mid Silurian pelagic and hemipelagic sedimentation and palaeoceanography[J]. Bassett M G, et al. The Murchison Symposium, Special Papers in Palaeontology, 1991,44: 261-299
    [80] Kirschvink J L, Ripperdan R L and Evans D A. Evidence for a large-scale reorganization of Early Cambrian continental masses by inertial interchange true polar wander[J]. Science, 1997, 277:541-545
    [8.1] Kirschvink J L and Raub T D A. Methane fuse for the Cambrian explosion: carbon cycles and true polar wander[J]. Comptes Rendus Geoscience, 2003, 335: 65-78
    
    [82] Knoll A H. Learning to tell Neoproterozoic time[J]. Precambrian Research, 2000,100: 3-20
    [83] Knoll A H and Walter M R. Late Proterozoic stratigraphy and Earth history[J]. Nature, 1992, 356:673-678
    [84] Koide M, Goldberg E D, Niemeyer S, et al. Osmium in marine sediments[J]. Geochimica et CosmochimicaActa, 1991, 55: 1641-1648
    [85] Kucha H, et al. EPMA, micro-PIXE, synchrotron microprobe and TEM study of visible and invisible accumulations of Au and PGE in black shale and organic matrix, Kupferschiefer, Poland[J].Mineralogical Magazine, 1993, 57: 103-112
    [86] Kucha H. Platinum-group metals in the Zechstein copper deposits, Poland[J]. Economic Geology,1982,77: 1578-1591
    [87] Kuspert W. Environmental changes during oil shale deposition as deduced from stable isotope ratios[C]. In: Einsele G, Seilalcher A, eds. Cyclic and Event Stratification. Berlin: Springer-Verlag.1982
    [88] Landing E, Bowring S A, Davidek K L, et al. Duration of the Early Cambrian: U-Pb ages of volcanic ashes from Avalon and Gondwana[J]. Can. J. Earth Sci, 1998, 35: 329-338
    [89] Leckie D A, Singh C, Goodarzi F, et al. Organic-rich, radioactive marine shale: a case study of a shallow-water condensed section, Cretaceous Shaftesbury formation, Alberta, Canada[J]. Journal of Sedimentary Petrology, 1990, 60: 101-117
    [90] Leventhal J S. Comparision of organic geochemistry and metal enrichment in two black shale:Cambrian Alum Shale of Sweden and Devonian Chattanooga Shale of United States[J]. Mineralium Deposita, 1991,26:104-112
    [91] Lehmann B, Nagler T F, Holland H D, et al. Highly metalliferous carbonaceous shale and Early Cambrian seawater[J]. Geology, 2007, 35 (5) : 403-406
    [92] Lewan M D. Stable carbon isotopes of amorphous kerogen from Phanerozoic sedimentary rocks[J].Geochim Cosmochim Acta, 1986, 50: 1583-1591
    [93] Li Renwei, Lu Jialan, Zhang Shukun, et al. Organic carbon isotope composition of black shales from Sinian and Early Cambrian[J]. Science in China (Series D) (in Chinese) , 1999,29 (4) : 351-357
    [94] Li Shengrong and Gao Zhenmin. Source tracing of noble metal elements in Lower Cambrian black rock series of Guizhou-Hunan Provinces, China [J]. Science in China (Series D) ,2000,43 (6) :625-632
    [95] Li Shengrong and Gao Zhenmin. Silicalites of hydrothermal origin in the lower Cambrian black rock series of south China[J]. Chinese Journal of Geochemistry, 1996, 15 (2) : 113—120
    [96] Li Shengrong and Gao Zhenmin. Some typical partition and distribution patterns of platinum group element[J]. Mineralogical Magazine, 1994, 58 (A) : 825-826
    
    [97] Li Shengrong, Gao Zhenmin and Shen Junfeng. Diagenetic and catagenetic transference of noble metal elements in Lower Cambrian black rock series, south China[J]. Journal of China University of Geosciences,2004, 15. (1) : 84-90
    
    [98] Li Shengrong, Xiao Qiyun, Shen Junfeng, et al. Rhenium-osmium isotope constraints on the age and source of the platinum mineralization in the Lower Cambrian black rock series of Hunan-Guizhou provinces, China[J]. Science in China (Series D) , 2003, 46 (9) : 919-927
    
    [99] Li S R and Gao Z M. REE characteristics of black rock series of the Lower Cambrian Niutitang Formation in Hunan-Guizhou Provinces, China, with a discussion on the REE patterns in marine hydrothermal sediments.Acta Mineralogica Sinica[J], 1995,15 (2) : 225-229
    [100] Liu Tiebing, et al. Origin of the black shale-hosted Chadian phosphorus-manganese deposit[J].Economic geology, 1996, 91: 48-54
    [101] Liu Y G, Miah M R U and Schmitt R A. Cerium, a chemical tracer for paleo-oceanic redox condition[J]: Geochim Cosmochim Acta, 1988, 52: 1361-1371
    [102] Lott D A, Coveney R M Jr, Murowchick J B, et al. Sedimentary exhalative nickel-molybdenum ores in south China[J]. Econ Geol, 1999, 94: 1051-1066
    [103] Magaritz M, Holser W T and Kirschvink J L. Carbon-isotope events across the Precambrian-Cambrian boundary on the Siberian platform[J]. Nature, 1986, 320: 258-259
    [104] Magaritz M, Kirschvink J L, Latham A J, et al. Precambrian-Cambrian boundary problem: Carbon isotope correlations for Vendian and Tommotian time between Siberia and Morocco[J]. Geology,1991,19: 847-850
    
    [105] Mao Jingwen, Lehmann B, Du Andao, et al. Re-Os dating of polymetallic Ni-MO-PGE-Au mineralization in Lower Cambrian black shales of south China and its geologic significance[J].Economic Geology,2002, 97 (5) : 1051-1061!
    
    [106] Mao J W, Zhang G D and Du A D. Geology, geochemistry and Re-Os isotopic dating of the Huangjiawan Ni-Mo-PGE deposit, zunyi, Guizhou province[J]. Acta Geologica Sinica, 2001, 75 (2):234-243 . ; . ,
    
    [107] Marchig V, Gundlach H, Moller P, et al. Some geochemical indicators for discrimination between diagenetic and hydrothermal metalliferous sediments[J]. Marine Geology, 1982, 50 (3) : 241-256
    [108] Mardock C L and Barker J C. Theories on the transport and deposition of gold and PGE minerals in offshore placers near Goodnews Bay, Alaska[J]. Ore Geology Reviews, 1991, 6 (2-3) : 211-227
    [109] Masuda A, Nakamura N and Tanaka T. Fine structures of mutually normalized rare earth patterns of chondrites[J]. Geochim. Cosmochim. Acta, 1973, 37: 239-248
    [110] McLennan S M and Taylor S R. Th and U in sedimentary rocks: crustal evolution and sedimentary recycling[J]. Nature, 1980, 285: 621-624
    [111] McLennan S M and Taylor S R. Sedimentary rocks and crustal evolution: Tectonic setting and secular trends[J]. J Geology, 1991, 99 (1) : 1-21
    
    [112] McLennan S M, Taylor S R, McCulloch M T, et al. Geochemical and Nd-Sr isotopic composition of deep-sea turbidites: Crustal evolution and plate tectonic associations[J]. Geochim Cosmochim Acta,1990,54 (7) :2015-2052
    
    [113] Meaalik P, Jacobsen J B E and Hiemstra S A. Platinum-group minerals from a hydrothermal environment[J]. Economic Geology, 1974, 69: 257-262
    
    [114] Melezhik V A, Gorokhov I M, Fallick A E, et al. Isotopic stratigraphy suggests Neoproterozoic ages and Laurentian ancestry for high-grade marbles from the North-Central Norwegian Caledonides[J]. Geol Mag,2002,139(4):375-793.
    [115]Menson B and Parnell J.Metal-organic relationships from the Irish Carboniferous[J].Chemical Geology,1992,99:125-137
    [116]Meyers P A,Pratt L M and Nagy B.Introduction to geochemistry of metalliferous black shales[J]. Chemical Geology,1992,99:vii-xi
    [117]Michard A,et al.Rare earth elements and uranium in high-temperature solutions from East Pacific Rise hydrothermal vent field(BN)[J].Nature,1983,303:795-797
    [118]Michard A and Albarede F.The REE content of some hydrothermal Fluids[J].Chemical Geology, 1986,55:51-60
    [119]Morad S and Felitsyn S.Identification of primary Ce-anomaly signatures in fossil biogenic apatite: implication for the Cambrian oceanic anoxia and phosphogenesis[J].Sedimentary Geology,2001, 143:259-264
    [120]Mountain B W and Wood S A.Chemical controls on the solubility,transport,and deposition of platinum and palladium in hyodrothermal solutions:A thermodynamic approach[J].Economic Geology,1998,83:492-510
    [121]Murowchick J B,Coveney R M,Grauch R I,et al.Cyclic variations of sulfur isotopes in Cambrian stratabound Ni-Mo-(PGE-Au)ores of southern China[J].Geochimica et Cosmochimica Acta,1994, 58(7):1813-1823
    [122]Naldrett A J,Asif M,Krstic S and Chusi Li.The composition of mineralization at the Voisey's Bay Ni-Cu sulfide deposit,with special reference to platinum-group elements[J].Economic Geology, 2000,95:845-865
    [123]Naldrett A J,Innes D G,Sowa J and Gorton M P.Compositional variations with and between five Sudbury ore deposits[J].Economic Geology,1982,77:1519-1534
    [124]Chen Nansheng.Lower Cambrian black rock series and associated stratiform deposits in southern China[J].Chinese Journal of Geochemistry,1990,9(3):144-155
    [125]Nicholson K,Nayak V K and Nanda J K.Mangaens ores of the Ghoriajhor-Monmunda area, Sundergarth District,Orissa,India:geochemical evidence for a mixed Mn source[J].Geological Society of Landon,Special Publication,1997,119:117-121.
    [126]O'Brien N R.Significance of lamination in Toarcion(Lower Jurassic)shales from Yorkshire,Great Britain[J].Sedimentary Geology,1990,67:25-34
    [127]Orberger B,Vymazalova A,Wagner C,et al.Biogenic origin of intergrown Mo-sulphide-and carbonaceous matter in Lower Cambrian black shales(Zunyi Formation,southern China)[J]. Chemical Geology,238:213-231
    [128]Orth C J,et al.Pt-group metal anomalies in the Lower Messissippian of southern Oklahorma[J]. Geology,1988,16:627-630
    [129]Orth C J,Quintana L R,Gilmore JS,Barrick J E,Haywa J N and Spesshardt S A.Pt-group metal anomalies in the Lower Mississippian of southern Oklahoma[J].Geology,1988,16:627-630
    [130]Menson B.and Parnell J.Metal-organic relationships from the Irish Carboniferous[J].Chemical Geology,1992,99:125-137
    [131]Parnell J.Metal enrichment in bitumens from Carboniferous-hosted ore deposits of the British Isles[J].Chemical Geology,1992,99:115-124
    [132]Pederson T T and Calvert S E.Anoxic vs productivity:What controls the formation of organic-carbon-rich sediments and sedimentary rocks[J].AAPG Bull,1990,74:454-466
    [133]Pegram W J,Krishnaswami S,Ravizza G E,et al.Record of seawater ~(187)Os/~(186)Os variation through the Cenozoic[J]. Earth Planet Sci Lett, 1992,113: 569-576
    [134] Peucker-Ehrenbrink B, Hannigan R E. Effecfs of black shale weathering on the mobility of rhenium and platinum group elements[J]. Geology, 2000, 28 (5) : 475-478
    [135] Perignon N V, Amosse J, Radelli L, et al. Platinum group element behaviour and thermochemical constraints in the ultrabasic-basic complex of the Vizcaino Peninsula, Baja California Sur, Mexico[J].Lithos, 2000, 53 (1): 59-80
    [136] Pernicka E and Wasson J T. Ru, Re, Os, Pt and Au in iron meteorites[J]. Geochimica et CosmochimicaActa, 1987,51:1717-1726
    [137] Peters K E and Moldowan J M. Effects of source, thermal maturity, and biodegradation on the distribution and isomerization of homohopanes in petroleum[J]. Organic Geochemistry, 1991, 17:47-61
    [138] Polekhovskiy Y S and Tarasova I P. Non-traditional comples ores of new deposits in the Precambrian black shales of the Baltic shield[C]. 30th International Geological Congress, Abstracts, Beijing, 1996
    [139] Quinby-Hunt M.S. Chemical depositional environments of calcic marine black shales[J]. Economic Geology, 1996, 91 (1) : 4-13
    [140] Renne P R, Zhang Z and Richards M A. Synchrony and causal relations between Permian-Triassic boundary crises and Siberian flood volcanism[J]. Science, 1995, 269: 1413-1416
    [141] Riediger C L. Solid bitumen reflectance and rock-eval T_(max) as maturation idices: an example from the "Nordegg Memba", Western Canada sedimentary basin[J]. Int. J. of Coal Geol., 1993,22: 295-315
    [142] Roberts H H and Carney R S. Evidence of episodic fluid, gas, and sediment venting on the northern Gulf of Mexico continental slope[J]. Economic Geology and the Bulletin of the Society of Economic Geologists, 1997,92: 863-879
    [143] Rona P A. Hydrothermal minerallization at seafloor spreading centers[J]. Earth-Science Reviews,1984,20 (1) :1-104
    [144] Rona PA. Hydrothermal minerallization of oceanic ridges[J]. Canadian Mineralogy, 1988,26 (3) :447-465
    [145] Rona P A, Bostrom K, Laubier L, et al. Hydrothermal processes at seafoor spreading centers[M].New York: Plenum Press, 1983
    
    [146] Rowell W F and Edgar A D. Platinum-group element mineralization in a hydrothermal Cu - Ni suifide occurrence, Rathbun Lake, northeastern Ontario[J]. Economic Geology , 1986, 81 (5) :1272-1277
    [147] Sample J C. Isotopic evidence from authigenic carbonates for rapid upward fluid flow in accretionary wedges[J]. Geology, 1996, 24: 897-900
    [148] Schlanger S O and Jenkyns H C. Cretaceous oceanic anoxic events: Cause and consequence[J]. Geol Mijnbown, 1976, 55: 179-184
    [149] Schultz R B and Coveney R M. Time-dependent changes for Midcontinent Pennsylvanian black shale,U S A[J]. Chemical Geology, 1992, 99: 83-100
    
    [150] Shen Y, Zhao R, Chu X and Lei J. The carbon and sulfur isotope signatures in the Precambrian-Cambrian transition series of the Yangtze Platform[J]. Precambrian Research, 1998,89:77-86 |
    
    [151] Shen Y and Schidlowski M. New C isotope stratigraphy from southwest China: Implications for the placement of the Precambrian-Cambrian boundary on the Yangtze Platform and global correlations[J]. Geology, 2000, 28 (7) : 623-626
    [152] Shen Y, Schidlowski M and Chu Xuelei. Biogeochemical approach to understanding phosphogenic events of the terminal Proterozoic to Cambrian[J]. Palaeogeography, Palaeoclimatology,Palaeoecology,2000, 158:99-108
    
    [153] Shields G and Stille P. Diagenetic constraints on the use of cerium anomalies as palaeoseawater redox proxies: an isotopic and REE study of Cambrian phosphorites[J]. Chemical Geology, 2001, 175:29-48
    [154] Shirey S B and Walker R J. The Re-Os isotope system in cosmochemistry and high-temperature geochemistry[J]. Annu Rev Earth Planet Sci, 1998, 26: 423-500
    [155] Singh S K, Trivedi J R and Krishnaswami S. Re-Os isotope systematics in black shales from the Lesser Himalaya: Their chronology and role in the ~(187)Os/~(188)Os evolution of seawater[J]. Geochimica et CosmochimicaActa, 1999,63 (16) : 2381-2392
    [156] Smith J and Klaver G. Sanidine spherules at the Cretaceous-Tertiary boundary indicate a large impact event[J]. Nature, 1981, 292: 47-49
    [157] Stahl W J. Carbon and nitrogen isotopes in hydrocarbon research and exploration[J]. Chen Geol,1977,20: 121-149
    [158] Steiner M, Wallis E, Erdtmann B D, et al. Submarine-hydrothermal exhalative ore layers in black shales from South China and associated fossils-insights into a Lower Cambrian facies and bio-evolution[J]. Paleogeography, Paleoclimatology, Paleoecology, 2001, 169: 165-191
    [159] Strauss H. The sulfur isotopic record of Precambrian sulfates: new data and a critical evaluation of the existing record[J]. Precambrian Research, 1993,63 (3-4) : 225-246
    [160] Sverjensky D M. Europium redox equilibrium in aqueous solutions[J]. Earth Planet Sci Lett, 1984,67:70-78
    [161] Taylor S R. Geochemistry of loess,continental crustal composition and crustal modal ages[J].Geochim Cosmochim Acta, 1983, 47: 1897-1904
    [162] Taylor S R. and Mclennan S M. The continental crust: Its composition and evolution[M]. Oxford,Blackwell, 1985
    
    [163] Terashima S, Katayama H and Itoh S. Geochemical behavior of Pt and Pd in coastal marine sediments, southeastern margin of the Japan Sea[J]. Applied Geochemistry, 1993, 18 (3) :265-271
    
    [164] Tissot B P and Welte D H. Petroleum formation and occurrence——A new approach to oil and gas exploration[M]. Springer-Verlag Berlin, Heidelberg, New York, 1978
    [165] Toth J R. Deposition of submarine crusts rich in manganese and iron[J]. Geological Society of America Bulletin, 1980, 91: 44-54
    [166] Vatin-Perignon N, Amosse J, Radelli L, et al. Platinum group element behaviour and thermochemical constraints in the ultrabasic-basic complex of the Vizcaino Peninsula, Baja California Sur, Mexico[J].Lithos, 2000, 53 (1) : 59-80
    [167] Volkman J K and Maxwell J R. Acyclic isoprenoids as biological makers[C]. In: Jones R B. Biological Makers in the Sedimentray Record. New York: Elsevier Publishers, 1986
    [168] Wallion B. Origin of the Lower Cambrian phosphatic bed at Vassbo, Sweden[J]. Terra Nova, 1989, 1(3):274-279
    
    [169] Walter M R, Veevers J J, Calver C R, et al. Dating the 840-544 Ma Neoproterozoic interval by isotopes of strontium, carbon, and sulfur in seawater, and some interpretative models[J]. Precambrian Research, 2000, 100: 371-433
    [170] Wang Tieguan, Wang Chunjiang, Zhang Weibiao, et al. Initial organic geochemical investigation on Late Neoproterozoic-Early Cambrian sediments in the Yangtze region, China[J]. Progress in Natural Science, 2003, 13 (12) : 936-941
    [171]Wasson J T.Meteorites:Their Record of Early Solar System History[M].New York:W H Freeman and Company,1985
    [172]Watkinson D H and Ohnenstetter D.Hydrothermal origin of platinumgroup mineralizationin the two duck lake intrusion,Collwell complex,northwestern Ontario[J].Canadiam Mineralogist,1991,30 (3):121-136
    [173]Wigmall P B.Black shales[M].Oxford:Clarendon Press,1994
    [174]Wignil P B and Hallam A.Anoxic as a cause of the Permian/Trissic extinction:facies evidence from northern Italy and the western United States[J].Palaeogeography,Palaeoclimatology,Palaeoecology, 1992,93:21-46
    [175]Wilde P,Quinby-Hunt M S and Erdtmann B.The whole-rock cerium anomaly:a potential indicator ofeustatic sea-level changes in shales of the anoxic facies[J].Sedimentary Geology,1996,101: 43-53
    [176]Wilkin R T,Barnes H L and Barantley S L.The size distribution of framboidal pyrite in modern sediments:An indicator of redox conditions[J].Geochimica et Cosmochimica Acta,1996,60: 3897-3912
    [177]Wood S A,Tait CD,Vlassopoulos D,et al.Sulubility and spectroscopic studies of the interaction of platinum with simple carboxylic acids and fulvic acid at low temperature[J].Geochimical Acta,1994, 58(2):625-637
    [178]Wright J,Schrader H and Holser W T.Paleoredox variations in ancient oceans recorded by rare earth elements in fossil apatite[J].Geochim Cosmochim Acta,1987,51:637-644
    [179]Yarincik K M,et al.Oxygenation histroy of bottom waters in the Cariaca Basin,Venezuela,over the past 57800 years:Results from rebox-sensitive metels(Mo,V,Mn,and Fe)[J].Paleoceanography, 2000,15(6):593
    [180]鲍正襄,万榕江,包觉敏.湘西北镍钼矿床成矿特征与成因[J].湖北地质,2001,15(1):14-21
    [181]鲍正襄,万榕江,包觉敏.上扬子台区下寒武统黑色岩系中的钒矿床[J].云南地质,2002,21(2):175-182
    [182]陈德潜,陈刚.实用稀土元素地球化学[M].北京:冶金工业出版社,1990
    [183]陈华勇,张增杰.湘西北黑色岩系中矿产资源的综合利用[J].地质与勘探,2001,37(3):32-35
    [184]陈兰,夏敏全,万云,等.黑色页岩与大洋缺氧事件研究进展[J].重庆科技学院学报(自然科学版),2007,9(4):1-8
    [185]陈兰,钟宏,胡瑞忠,等.湘黔地区早寒武世黑色页岩有机碳同位素组成变化及其意义[J].矿物岩石,2006,26(1):81-85
    [186]陈兰,钟宏,胡瑞忠,等.黔北早寒武世缺氧事件:生物标志化合物及有机碳同位素特征[J].岩石学报,2006,22(9):2413-2423
    [187]陈兰.湘黔地区早寒武世黑色岩系沉积学及地球化学研究[D].中国科学院地球化学研究所.博士学位论文,2006
    [188]陈兰.藏北侏罗纪沉积相及黑色岩系有机地球化学研究[D].成都理工大学.硕士学位论文,2003
    [189]陈丽辉,孙际茂,鲍振襄,等.湘西北黑色岩系中镍钼钒多金属矿床[J].西部探矿工程,2008,(7):145-148
    [190]陈南生.我国南方下寒武统黑色硅页岩建造及其中的层状矿床[C].见:南方石煤资源综合考察总结评审和学术报告与论文.1981
    [191]陈南生,杨秀珍,刘德汉,等.我国南方下寒武纪黑色页岩系及其中的层控矿床[J].矿床地质,1982,1(2):39-51
    [192]陈江.辽宁青城子地区黑色岩系与矿床[J].地质与勘探,2002,(3):188-192
    [193]陈孝红,汪啸风.湘西地区晚震旦世-早寒武世黑色岩系的生物和有机质及其成矿作用[J].华南地质与矿产,2000,(1):16-23
    [194]陈益平,潘家永,胡凯,等.贵州遵义镍-钼富集层中独居石的发现及成因意义[J].岩石矿物学杂志,2007,26(4):340-344
    [195]陈益平,潘家永,夏菲,等.华南下寒武统镍钼层中铜铅锌矿物的发现及意义[J].东华理工学院学报,2006,29(1):32-37
    [196]陈永清,夏庆霖,刘红光.黑色页岩建造中的贵金属矿产评价研究[J].地球物理学进展,2003,18(2):261-268
    [197]陈永清,夏庆霖,刘红光.滇东Pt-Pd-Cu含矿建造地球化学特征及其含矿性分析[J].中国地质,2003,30(3):225-234
    [198]陈中红,查明,吴孔友,等.柴达木盆地东部侏罗系煤系烃源岩生烃潜力评价及地球化学特征[J].吉林大学学报(地球科学版),2006,36(增刊):24-28
    [199]储雪蕾,孙敏,周美夫.地球动力学中的铂族元素地球化学[J].岩石学报,2001,17(1):112-122
    [200]邓宏文,钱凯.沉积地球化学与环境分析[M].兰州:甘肃科学技术出版社,1993
    [201]范德廉.缺氧环境与成矿作用[C].见:中国科学院地球化学研究所矿床地球化学开放研究实验室.矿床地球化学.北京:地质出版社,1997
    [202]范德廉,杨秀珍,王连芳,等.某地下寒武统含镍钼多元素黑色岩系的岩石学及地球化学特点[J].地球化学,1973,3:143-163
    [203]范德廉,叶杰,伊丽莹.贵州新土沟下寒武统黑色岩系中稀土元素的初步研究[C].见:中国科学院地球化学研究所年报.贵阳:贵州人民出版社,1986
    [204]范德廉,叶杰,杨瑞英,等.扬子地台前寒武-寒武纪界线附近的铱异常、缺氧事件及成矿作用[C].见:中国科学院地球化学研究所年报.贵阳:贵州人民出版社,1986
    [205]范德廉,叶杰,杨瑞英.扬子地台前寒武-寒武纪界线附近的地质事件及成矿作用[J].沉积学报,1987,5(3):81-96
    [206]范德廉,张焘,叶杰.缺氧环境与超大矿床的形成[J].中国科学(D辑),1998,28(增刊):57-62
    [207]范德廉,张焘,叶杰.中国的黑色岩系及其有关矿床[M].北京:科学出版社,2004
    [208]樊正烈.贵州钼矿地质特征及找矿前景[J].贵州地质,2006,23(2):107-108
    [209]冯增昭,彭勇民,金振奎,等.中国早寒武世岩相古地理[J].古地理学报,2002,4(1):1-12
    [210]傅家漠,盛国英.分子有机地球化学与古气候、古环境研究[J].第四纪研究,1992,4:306-317
    [211]傅家漠,盛国英,许家友,等.应用生物标志化合物参数判别古沉积环境[J].地球化学,1991,1:1-12
    [212]高慧,杨瑞东.早寒武世早期贵州织金含磷岩系地球化学特征与成磷作用[J].地球与环境,2005,33(1):33-42
    [213]高振敏,罗泰义,李胜荣.黑色岩系中贵金属富集层的成因:来自固定铵的佐证[J].地质地球化学,1997,1:18-23
    [214]耿林,翟裕生,彭润民.中国铂族元素矿床特征及资源潜力分析[J].地质与勘探,2007,43(1):1-7
    [215]贵州省地质局.贵州地质概述——贵州省地质图说明书[M].北京:地质出版社,1981
    [216]贵州省地质矿产局.贵州省区域地质志[M].北京:地质出版社,1997
    [217]贵州省地质矿产局区域地质调查大队.贵州岩相古地理图集[M].北京:科学出版社,1992
    [218]郭令智.华南板块构造[C].北京:地质出版社,2001
    [219]郭庆军,刘丛强,Harald Strauss,等.晚震旦世至早寒武世扬子地台北缘碳同位素研究[J].地 球学报,2004,25(2):151-156
    [220]郭庆军,杨卫东,刘丛强,等.贵州翁安生物群和磷矿形成的沉积地球化学研究[J].矿物岩石地球化学通报,2003,22(3):202-208
    [221]韩吟文,马振东,张宏飞,等.地球化学[M].北京:地质出版社,2003
    [222]何立贤,曾若兰,林立青.贵州金矿地质[M].北京:地质出版社,1993
    [223]胡凯,刘英俊,王鹤年,等.华南碳质岩系层控金矿的有机地球化学特征和成因[J].中国科学(B辑),1995,25(10):1099-1107
    [224]胡凯,张祖还,章邦桐,等.有机质在铲子坪铀矿形成中的作用[C].见:中国科学院地球化学研究所.中国科学院有机地球化学开放实验室研究年报.北京:科学出版社,1992
    [225]胡凯,翟建平,刘英俊,等.一种含金建造中金的有机载体——干酪根[J].科学通报,1999,44(1):84-88
    [226]胡望水,吕炳全,王红罡,等.扬子地块东南陆缘寒武系上升流沉积特征[J].江汉石油学院学报,2004,26(4):9-11
    [227]湖南省地质矿产局.湖南省区域地质志[M].北京:地质出版社,1988
    [228]黄汝昌.根据干酪根类型及碳同位素的分布规律探讨中国陆相潮湿坳陷中油气的形成[C].见:中国科学院地球化学研究所.有机地球化学文集.北京:科学出版社,1986
    [229]黄占起,沈存利,王守光.内蒙古狼山-渣尔泰山地区与黑色岩系有关的铂族元素矿床找矿前景[J].地质通报,2002,21(10):663-667
    [230]蒋少涌,凌洪飞,赵葵东,等.华南寒武纪早期牛蹄塘组黑色岩系中Ni-Mo多金属硫化物矿层的Mo同位素组成讨论[J].岩石矿物学杂志,2008,27(4):341-345
    [231]江永宏,李胜荣.贵州遵义下寒武统黑色岩系型Ni,Mo矿床Rb-Sr同位素测年与示踪研究[J].矿物岩石,2005,25(1):62-66
    [232]江永宏,李胜荣.湘、黔地区前寒武-寒武纪过渡时期硅质岩生成环境研究[J].地学前缘,2005,12(4):622-629
    [233]姜月华,岳文浙,业治铮.华南下古生界缺氧事件与黑色岩系及有关矿产[J].有色金属矿产与勘查,1994,3(5):272-278
    [234]雷加锦,李任伟,H.J.Tobschall,等.扬子地台南缘早寒武世黑色岩系中形态硫特征及成因意义[J].中国科学(D辑),2000,30(6):592-601
    [235]雷加锦,李任伟,曹杰.上扬子区早寒武世黑色页岩磷结核特征及生化淀磷机制[J].地质科学,2000,35(3):277-287
    [236]李江海,牛向龙,冯军.海底黑烟囱的识别研究及其科学意义[J].地球科学进展,2004,19:17-25
    [237]李任伟.扬子地台早古生代沉积有机质的聚集、热演化及成矿作用研究[M].北京:海洋出版社,1993
    [238]李任伟,李哲,王志珍,等.分子化石指标在中国东部盆地古环境分析中的应用[J].沉积学报,1988,6(4):108-118
    [239]李任伟,卢家烂,张淑坤,等.震旦纪和早寒武纪黑色页岩有机碳同位素组成[J].中国科学(D辑),1999,29(4):351-357
    [240]李荣西.九十年代煤系烃源岩研究新进展[J].地质科技情报,2000,19(4):55-59
    [241]李善鹏,邱楠生,曾溅辉,等.昌潍坳陷新生代古地温分析[J].吉林大学学报(地球科学版),2004,34(3):383-387
    [242]李胜荣,高振敏.湘黔寒武系底部黑色岩系贵金属元素来源示踪[J].中国科学(D辑),2000,30(2):169-174
    [243]李胜荣,高振敏.湘黔地区下寒武统黑色岩系热演化条件[J].地质地球化学,1996,(4):30-34
    [244]李胜荣,高振敏.贵州遵义下寒武统黑色页岩层钙质结核成核作用中元素的重新分配[C].见:彭汝明.地质地球化学研究.贵阳:贵州科技出版社,1996
    [245]李胜荣,高振敏,陈南生.试论铂族元素地球化学示踪体系[J].矿物岩石地球化学通讯,1994,(1):36-37
    [246]李胜荣,高振敏.湘黔地区牛蹄塘组黑色岩系稀土特征——兼论海相热水沉积岩稀土模式[J].矿物学报,1995,15(2):225-229
    [247]李胜荣.湘黔地区下寒武统黑色岩系金银铂族元素地球化学研究[D].中国科学院地球化学研究所.博士后科研论文,1994
    [248]李胜荣,肖启云,申俊峰,等.湘黔下寒武统铂族元素来源与矿化年龄的Re-Os同位素制约[J].中国科学(D辑),2002,32(7):568-575
    [249]李胜荣,肖启云,申俊峰,等.贵州遵义下寒武统黑色岩系中贵金属的表生活动性初探[J].自然科学进展,2002,12(6):612-616
    [250]李晓彪,罗远良,罗泰义,等.重庆城口地区早前寒武系黑色岩系研究:(2)早寒武世硅质岩的沉积环境研究[J].矿物学报,2007,27(3-4):302-314
    [251]李晓彪,罗远良,罗泰义,等.重庆城口地区早前寒武系黑色岩系研究:(3)巴山组硅质岩中PGE异常的地球化学研究[J].矿物学报,2007,27(3-4):315-324
    [252]李艳红,金奎励.烃源岩成熟度评价指标及选取[J].地质地球化学,2000,28(2):94-96
    [253]李朝阳,季宏兵.陆相热水沉积矿床的特征[C].见:中国科学院地球化学研究所矿床地球化学开放研究实验室.矿床地球化学研究.北京:地震出版社,1994
    [254]黎彤.地壳元素丰度的若干统计特征[J].地质与勘探,1992,28(10):1-7
    [255]廖士范.贵州西部沉积改造菱铁矿床的研究[M].北京:地质出版社,1984
    [256]林长谦,刘兴义,何洪涛,等.湖北武当地区上震旦-下寒武统黑色岩系含矿性分析[J].资源环境与工程,2006,20(1):1-5
    [257]林贵生.贵州遵义松林钼镍矿床地质特征及找矿标志[J].昆明冶金高等专科学校学报,2007,23(3):20-27
    [258]林铭章,朱时清.液相纳米化学[J].现代科学仪器(纳米科技及其检测仪器专辑),1998,(1-2):17-23
    [259]林清,刘德汉.黔西南金矿床有机质地球化学研究[J].地球化学,1995,24(4):402-408
    [260]凌荣祥.遵义松林地区下寒武统黑色岩系黑碳含量测定及其地质指示意义[D].中国科学院地球化学研究所.硕士学位论文,1995
    [261]刘宝珺,许效松,潘杏南,等.中国南方古大陆沉积地壳演化与成矿[M].北京:科学出版社,1993
    [262]刘本培,全秋琦.地史学教程[M].北京:地质出版社,1996
    [263]刘春涌,王永江.初论中亚黑色岩系型金矿床的基本特征——兼论新疆黑色岩系型金矿找矿方向[J].新疆地质,2007,25(1):34-39
    [264]刘凤山,王登红.中国铂族金属矿床找矿方向初探[J].中国区域地质,2000,19(4):434-439
    [265]刘家军,郑明华.热水沉积硅岩的地球化学[J].四川地质学报,1993,13(2):110-118
    [266]刘家军,郑明华,刘建明,等.西秦岭寒武系金矿床中硅岩的地质地球化学特征及其沉积环境意义[J].岩石学报,1999,15(1):145-152
    [267]刘金山.凤凰县东方钒矿床地质特征和矿床成因探讨[J].湖南地质,1989,8(4):25-31
    [268]刘钦甫,杨晓杰,丁述理.华北晚古生代煤系高岭岩微量元素和稀土元素地球化学研究[J].地球化学,1998,27(2):196-203
    [269]刘英俊,曹励明,李兆麟,等.元素地球化学[M].北京:科学出版社,1984
    [270]刘文均,卢家烂.湘西下寒武统有机地化特征——MVT铅锌矿床有机成矿作用研究(Ⅲ)[J].沉 积学报,2000,18(2):290-296
    [271]刘小平,王俊芳,李洪波.苏北盆地高邮凹陷热演化史研究[J].石油天然气学报,2005,27(1):17-18
    [272]刘祖发,肖贤明,傅家谟,等.海相镜质体反射率用作早古生代烃源岩成熟度指标研究[J].地球化学,1999,28(6):580-588
    [273]龙洪波,龙家灿,钟永蓉,等.樟村-郑坊黑色岩系钒矿床中钡冰长石岩的发现——热水沉积成因的证据[J].科学通报,1994,9(7):636-638
    [274]卢衍豪.中国寒武纪沉积矿产与“生物-环境控制论”[M].北京:地质出版社,1979
    [275]罗泰义,张欢,李晓彪,等.遵义牛蹄塘组黑色岩系中多元素富集层的主要矿化特征[J].矿物学报,2003,23(4):296-302
    [276]罗泰义.贵州早寒武超钾火山活动[C].第一届贵州地质矿产发展战略研讨会论文集.贵阳:2003
    [277]罗泰义,李晓彪,姚林波,等.遵义牛蹄塘组发现的多水硫磷铝石[J].矿物学报,2003,23(3):205-210
    [278]罗泰义,宁兴贤,罗远良,等.贵州遵义早寒武黑色岩系底部Se的超常富集[J].矿物学报,2005,25(3):671-678
    [279]罗泰义,宁兴贤,罗远良,等.重庆城口地区早前寒武系黑色岩系研究:(1)铂族元素成矿潜力评估[J].矿物学报,2007,27(3-4):287-301
    [280]罗卫,戴塔根.湘西北下寒武统黑色岩系中贵金属镍-钼-钒矿床的有机成矿作用[J].矿产与地质,2007,21(5):504-508
    [281]吕惠进,王建.浙西寒武系底部黑色岩系含矿性和有用组分的赋存状态[J].矿床地质,2005,24(5):567-574
    [282]吕志成,刘丛强,刘家军,等.紫阳黄柏树湾和竹山文峪河毒重石矿床碳、氧及硼同位素研究[J].中国科学(D辑),2003,33(3):223-234
    [283]毛景文.与黑色岩系有关的矿床研究的动向[J].矿床地质,2001,20(4):402-403
    [284]毛景文,张光弟,杜安道,等.遵义黄家湾镍钼铂族元素矿床地质、地球化学和Re——Os同位素年龄测定—兼论华南寒武系底部黑色页岩多金属成矿作用[J].地质学报,2001,75(2):234-243
    [285]梅冥相,张丛,张海,等.上扬子区下寒武统的层序地层格架及其形成的古地理背景[J].现代地质,2006,20(2):690-703
    [286]牟南,吴朝东.上扬子地区震旦-寒武纪磷块岩岩石学特征及成因分析[J].北京大学学报(自然科学版),2005,41(4):551-562
    [287]南京大学地质系.地球化学[M].北京:科学出版社,1987
    [288]潘家永,马东升,夏菲,等.湘西北下寒武统镍-钼多金属富集层镍与钼的赋存状态[J].矿物学报,2005,25(3):284-288
    [289]彭渤,吴甫成,肖美莲,等.黑色页岩的资源功能和环境效应[J].矿物岩石地球化学通报,2005,24(2):153-158
    [290]彭军,夏文杰,伊海生.湖南新晃贡溪重晶石矿床地质地球化学特征及成因分析[J].成都理工学院学报,1999,26(1):92-96
    [291]皮道会,邓海琳,李朝阳,等.铂族元素的表生地球化学研究进展[J].矿物岩石地球化学通报,2004,23(4):355-361
    [292]蒲心纯,周浩达,王煦林,等.中国南方寒武纪岩相古地理与成矿作用[M].北京:地质出版社,1993
    [293]祁思敬.秦岭泥盆系中铅锌矿床的热水沉积成因[J].西安地质学院学报,1993,15(1):28-33
    [294]祁思敬.喷气沉积矿床国内外研究的若干认识[C].见:北京大学地质系.北京大学国际地质科学学术研讨会论文集.北京:地震出版社,1998
    [295]钱志浩,荣正光,王兴国.岩石氟里昂抽提物(C_6-C_(32))的测定及其意义[C].见:中国科学院地球化学研究所.有机地球化学文集.北京:科学出版社,1986
    [296]任涛,樊忠平,原莲肖,等.南秦岭东段早寒武世黑色岩系金钒成矿特征与找矿方向[J].西北地质,2007,40(2):85-94
    [297]单卫国,钟维敷,宋懿红,等.黑色岩系成矿作用及相关金属矿床找矿[J].云南地质,2004,23(2):125-139
    [298]尚慧芸,李晋超,郭舜玲.有机地球化学和荧光显微镜技术[M].北京:石油工业出版社,1990
    [299]沈渭洲.同位素地质学教程[M].北京:原子能出版社,1997
    [300]施春华,胡瑞忠,王国芝.贵州织金磷矿岩稀土元素地球化学特征研究[J].矿物岩石,2004,24(4):71-75
    [301]帅德权,张兴润,胡世华,等.金银矿石学[M].成都:成都科技大学出版社,1995
    [302]宋照亮.湖南下寒武统黑色页岩风化的环境地球化学初步研究[D].中国科学院广州地球化学研究所.硕士学位论文,2003
    [303]孙省利,陈践发,刘文汇,等.塔里木盆地下寒武统硅质岩地球化学特征及其形成环境[J].石油勘探与开发,2004,31(3):45-48
    [304]孙学通,姚慧.湖南应溪重晶石矿床地球化学特征及矿床成因[J].新疆地质,2005,23(1):50-54
    [305]唐红松,徐文杰,谢世业,等.我国下寒武统黑色岩系的矿产类型[J].矿产与地质,2005,19(4):341-344
    [306]汤中立,蔡体梁,杜笑菊.国外铂族元素的地质矿床及资源分析(译文集)[C].兰州:兰州大学出版社,1989
    [307]汤中立,李文渊.金川铜镍硫化物(含铂)矿床成矿模式及地质对比[M].北京:地质出版社,1995
    [308]佟景贵,李胜荣,肖启云,等.贵州遵义中南村黑色岩系黄铁矿的成分标型与成因探讨[J].现代地质,2004,18(1):41-47
    [309]涂光炽.低温地球化学[M].北京:科学出版社,1998
    [310]涂光炽.关于砂金矿床形成条件及砂金矿床与原生金矿床空间关系的讨论[C].见:中国金矿地质地球化学研究(第一集).北京:科学出版社,1993
    [311]涂光炽.中国超大型矿床[M].北京:科学出版社,2000
    [312]涂建琪,金奎励.表征海相烃源岩有机质成熟度的若干重要指标的对比与研究[J].地球科学进展,1999,14(1):18-23
    [313]万晓樵,刘文灿,李国彪,等.白垩纪黑色页岩与海水含氧量变化——以西藏南部为例[J].中国地质,2003,30(1):36-47
    [314]王成善,胡修棉,李祥挥.古海洋溶解氧与缺氧和富氧问题研究[J].海洋地质与第四纪地质,1999,19(3):39-47
    [315]王登红.与黑色岩系有关矿床研究进展[J].地质地球化学,1997,2:85-88
    [316]王登红,陈振宁,李建康,等.铂族元素矿床研究的某些新进展及其对四川找铂的启示[C].见:骆耀南,罗辅勋,王登红.四川 地质学报·铂族元素矿床研究进展专辑.2003
    [317]王登红,楚萤石,罗辅勋,等.四川杨柳坪Cu-Ni-PGE富矿体的成因意义[J].地球学报,2000,21(3):260-265
    [318]王登红.贵州寻找铂族元素矿床的思考[J].贵州地质,2003,20(3):127-131
    [319]王东安,陈瑞君.扬子地台不同时代层状硅岩的硅同位素结果的讨论[J].沉积学报,1996,14 (2):82-88
    [320]王红梅,张文淮,谢树成,等.广西金牙金矿床的有机地球化学特征[J].岩石学报,2000,16(4):602-608
    [321]王鸿祯.中国古地理图集[M].北京:地图出版社,1985
    [322]王鸿祯,刘本培.地史学教程[M].北京:地质出版社,1980
    [323]王江海.滇西陆相热水沉积矿床的成矿模式、判别标志和非平衡现象的动力学研究[D].中国科学院地球化学研究所.博士后科研论文,1993
    [324]王敏,孙晓明,马名扬.华南黑色岩系铂多金属矿成矿流体地球化学及其矿床成因意义[J].中山大学学报(自然科学版),2004,43(5):98-102
    [325]王敏,孙晓明,马名扬.黔西新华大型磷矿磷块岩稀土元素地球化学及其成因意义[J].矿床地质,2004,23(4):484-493
    [326]王平丽,赵元龙,杨兴莲,等.贵州下寒武统牛蹄塘生物群中的双孔钱包海绵Crumillospongia biporosa[J].微体古生物学报,2005,22(2):196-201
    [327]王璞珺,王东坡,常平,等.油页岩中生物有机质与金属元素的关系及机理探讨[J].长春地质学院学报,1996,26(10):47-53
    [328]王铁冠.中国低熟油的几种成因机制[J].沉积学报,1997,15(2):75-83
    [329]王中刚,于学元,赵振华,等.稀土元素地球化学[M].北京:科学出版社,1989
    [330]汪永清.湘西北地区下寒武统钼镍矿地质特征及找矿远景[J].西部探矿工程,2007,(9):136-137
    [331]魏怀瑞,杨瑞东,鲍淼,等.贵州早寒武世黑色页岩地球化学特征及其意义[J].贵州大学学报(自然科学版),2006,23(4):356-360
    [332]温汉捷,裘愉卓,姚林波,等.中国若干下寒武统高硒地层的有机地球化学特征及生物标志物研究[J].地球化学,2000,29(1):28-34
    [333]文玲,胡书毅,田海芹.扬子地区寒武系烃源岩研究[J].西北地质,2001,34(2):67-74
    [334]吴朝东,杨承运,陈其英.湘西黑色岩系地球化学特征和成因意义[J].岩石矿物学杂志,1999,18(1):26-38
    [335]吴朝东,陈其英,雷家锦.湘西震旦-寒武纪黑色岩系的有机岩石学特征及其形成条件[J].岩石学报,1999,15(3):454-462
    [336]吴朝东,陈其英.湘西磷块岩的岩石地球化学特征及成因[J].地质科学,1999,34(2):213-222
    [337]吴朝东,曾凡刚,雷家锦,等.湘西黑色页岩多种形态硫的分离与同位素指示意义[J].科学通报,1999,44(6):1-5
    [338]吴朝东,杨承运,陈其英.新晃贡溪-天柱大河边重晶石矿床热水沉积成因探讨[J].北京大学学报(自然科学版),1999,35(6):1-12
    [339]吴朝东,陈其英,杨承运.湘西黑色岩系沉积演化与含矿序列[J].沉积学报,1999,17(2):167-175
    [340]吴朝东.湘西震旦-寒武纪交替时期古海洋的恢复[J].地学前缘,2000,7(增刊):45-57
    [341]吴朝东,储著银.黑色页岩微量元素形态分析及地质意义[J].矿物岩石地球化学通报,2001,20(1):14-20
    [342]吴朝东,申延平,侯泉林.湘西黑色岩系铂族元素地球化学特征及富集因素[J].自然科学进展,2001,11(5):507-513
    [343]夏菲,马东升,潘家永,孙占学,曹双林,聂文明,吴凯.贵州天柱大河边和玉屏重晶石矿床热水成因的锶同位素证据[J].科学通报,2004,49(24):2592-2595
    [344]夏文杰,杜森官,徐新煌.中国南方震旦纪岩相古地理与成矿作用[M].北京:地质出版社,1994
    [345]项礼文.中国地层(4)中国的寒武系[M].北京:地质出版社,1981
    [346]肖加飞,胡瑞忠,宋谢炎,等.贵州早寒武世的缺氧事件沉积[J].矿产与地质,2006,20(4-5):366-373
    [347]肖启云,李胜荣.湘黔下寒武统矿化黑色岩系中元素的表生迁移和环境效应[J].海淀走读大学学报,2002,59(3):44-52
    [348]肖启云,李胜荣,蔡克勤.湘黔下寒武统黑色岩系不同矿物组合中的铂族元素特征[J].中国地质,2006,33(5):1083-1091
    [349]解启来,陈多福,漆亮,等.贵州瓮安陡山沱组磷块岩稀土元素地球化学特征与沉积期后变化[J].沉积学报,2003,21(4):627-633
    [350]解启来,陈多福,漆亮,等.贵州瓮安陡山沱组磷块岩的稀土元素地球化学特征与沉积古环境[J].矿物学报,2003,23(4):289-295
    [351]邢树文,孙景贵,刘洪文.高碳黑色页岩型铂族元素矿床的成矿性探讨[J].地质与勘探,2002,38(6):17-21
    [352]熊亚平.安徽石台早寒武世黑色岩系沉积地球化学及含矿性[D].合肥工业大学.硕士学位论文,2008
    [353]徐彬彬.贵州煤田地质[M].徐州:中国矿业大学出版社,2003
    [354]杨富全,王义天,李蒙文,等.新疆天山黑色岩系型矿床的地质特征及找矿方向[J].地质通报,2005,24(5):462-469
    [355]杨红梅.华北北部新元古代下马岭组黑色岩系沉积环境及构造古地理意义[D].中国地质大学(北京).硕士学位论文,2006
    [356]杨兢红,蒋少涌,凌洪飞,等.黑色页岩与大洋缺氧事件的Re-Os同位素示踪与定年研究[J].地学前缘,2005,12(2):143-150
    [357]杨敏之,任英忱,邓禹仁.铂族元素及铂矿地质[M].北京:科学出版社,1973
    [358]杨瑞东,毛家仁,张位华,等.贵州早寒武世早期黑色页岩中生物化石保存及生态学研究[J].沉积学报,2004,22(4):664-671
    [359]杨瑞东,朱立军,高慧,等.贵州遵义松林寒武系底部热液喷口及与喷口相关生物群特征[J].地质论评,2005,51(5):481-492
    [360]杨瑞东,朱立军,王世杰,等.贵州寒武系底部碳同位素负异常的地层学和生物学意义[J].地质学报,2005,79(2):157-164
    [361]杨瑞东,张传林,罗新荣,等.新疆库鲁克塔格地区早寒武世硅质岩地质地球化学特征及其意义[J].地质学报,2006,80(4):598-605
    [362]杨瑞东,赵元龙,郭庆军.贵州早寒武世早期黑色页岩中藻类化石及古环境意义[J].古生物学报,1999,38(增刊):145-156
    [363]杨卫东,肖金凯,于炳松,等.滇黔磷块岩沉积学、地球化学与可持续开发战略[M].北京:地质出版社,1997
    [364]杨文光,林丽,朱利东,等.重庆城口黑色岩系中铂矿的分子古生物学特征研究[J].成都理工大学学报(自然科学版),2004,31(5):457-460
    [365]杨星,李行,杨中堂,等.中国含铂基性超基性岩体与铂(族)矿床[M].西安:西安交通大学出版社,1993
    [366]杨兴莲,赵元龙,朱茂炎.贵州下寒武统牛蹄塘生物群中海绵新材料[J].古生物学报,2005,44(3):454-463
    [367]杨兴莲,朱茂炎,赵元龙,等.黔东前寒武纪-寒武纪转换时期微量元素地球化学特征研究[J].地质学报,2007,81(10):1391-1397
    [368]杨兴莲,朱茂炎,赵元龙,等.黔东震旦系-下寒武统黑色岩系稀土元素地球化学特征[J].地质 论评,2008,54(1):3-15
    [369]姚合法,侯建国,林承焰,等.多旋回沉积盆地地温场与烃源岩演化[J].西北大学学报(自然科学版),2005,35(2):195-199
    [370]姚合法,林承焰,侯建国等.苏北盆地粘土矿物转化模式与古地温[J].沉积学报,2004,22(1):29-35
    [371]叶连俊.生物成矿作用的思考、论据与展望[C].见:叶连俊,等.生物成矿作用研究.北京:海洋出版社,1993
    [372]叶连俊.生物有机质成矿作用[M].北京:海洋出版社,1996
    [373]叶连俊,陈其英,赵东旭.中国磷块岩[M].北京:科学出版社,1989
    [374]叶杰,范德廉.辽宁瓦房子铁锰结核矿床微量元素特征[C].见:中国科学院地球化学研究所矿床地球化学开放研究实验室.矿床地球化学研究.北京:地震出版社,1994
    [375]叶杰,范德廉.黑色岩系型矿床的形成作用及其在我国的产出特征[J].矿物岩石地球化学通报,2000,19(2):95-102
    [376]殷鸿福.生物成矿系统论[M].武汉:中国地质大学出版社,1999
    [377]殷秀兰,武红岭,马寅生,等.辽河盆地东部凹陷古地温演化研究[J].地质力学学报,2003,9(2):106-112
    [378]尹丽文.我国磷矿资源开发利用现状及对有关问题的建议[J].国土资源情报,2004,10:37-39
    [379]于学元,郑作平,牛贺才,郭健.八卦庙大型金矿床稀土元素地球化学研究[J].地球化学,1996,25(2):140-149
    [380]于炳松.扬子地块西南部成矿地球化学背景研究[D].中国科学院地球化学研究所.博士后科研论文,1996
    [381]于炳松,陈建强,李兴武,等.塔里木盆地下寒武统底部黑色页岩地球化学及岩石圈演化意义[J].中国科学(D辑),2002,32(5):374-382
    [382]于炳松,王黎栋,陈建强,等.塔里木盆地北部下寒武统底部黑色页岩形成的次氧化条件[J].地学前缘,2003,10(4):545-550
    [383]于炳松,裘愉卓.贵州地区新元古代-三叠纪沉积岩中稀土元素地球化学特征与地壳演化[J].1998,12(2):173-179
    [384]袁宏,肖加飞,何熙琦,等.黔北牛蹄塘组的地球化学特征及形成环境[J].贵州地质,2007,24(1):55-63
    [385]曾凡刚,程克明,吴朝东.应用海相镜质组反射率研究华北地区下古生界成熟度[J].地质地球化学,1998,26(3):21-24
    [386]曾明果.遵义黄家湾镍钼矿地质特征及开发前景[J].贵州地质,1998,15(4):305-310
    [387]曾明果.遵义黄家湾下寒武统底部Mo-Ni-PGE矿中铂族元素赋存形态分析及成因意义[J].贵州地质,2007,24(2):147-150
    [388]曾庆辉,钱玲,刘德汉,等.富有机质的黑色页岩和油页岩的有机岩石学特征与生、排烃意义[J].沉积学报,2006,24(1):113-122
    [389]赵百胜,刘家军,王建平,等.白云鄂博群黑色岩系微量元素地球化学特征及地质意义[J].现代地质,2007,21(1):87-94
    [390]赵俊峰,刘池洋,王晓梅.镜质体反射率测定结果的影响因素[J].煤田地质与勘探,2004,32(6):15-18
    [391]赵文龙,Steiner M,杨瑞东,等.贵州遵义下寒武统牛蹄塘组早期后生生物群的发现及重要意义[J].古生物学报,1999,38(增刊):132-144
    [392]赵振华.铕地球化学特征的控制因素[J].南京大学学报(地球科学版),1993,5:271-280
    [393]张爱云,伍大茂,郭丽娜.海相黑色页岩建造地球化学与成矿意义[M].北京:科学出版社, 1987
    [394]张成江,李晓林.峨眉山玄武岩的铂族元素地球化学特征[J].岩石学报,1998,14(3):299-304
    [395]张光弟,毛景文,熊群尧.中国铂族金属资源现状与前景[J].地球学报,2001,22(1):107-110
    [396]张光弟,李九玲,熊群尧,等.贵州遵义黑色页岩铂族金属富集特点及富集模式[J].矿床地质,2002,21(4):377-386
    [397]张杰,陈代良.贵州织金新华含稀土磷矿床扫描电镜研究[J].矿物岩石,2000,20(3):59-64
    [398]张杰,孙传敏,杨国峰,等.贵州下寒武统黑色页岩稀土元素地球化学特征[J].稀土,2008,29(2):72-75
    [399]张杰,张覃,陈代良.贵州织金新华含稀土磷矿床稀土元素地球化学及生物成矿基本特征[J].矿物岩石,2003,23(3):35-38
    [400]张杰,张覃,陈代良.贵州织金新华含稀土磷矿床稀土元素地球化学研究[J].地质与勘探,2004,40(1):41-44
    [401]张杰,张覃,陈代良,等.贵州主要磷块岩基本物质组成特征[J].贵州工业大学学报(自然科学版),2005,34(2):54-56
    [402]张伦尉,杭家华,梁琼,等.贵州陡山沱组和牛蹄塘组中黑层的地质特征与找矿前景[J].矿物学报,2007,27(3-4):456-460
    [403]张如铂,王治明,常嗣和.四川黑色岩系中发现独立的铂矿物——自然铂[J].地质论评,2000,46(3):327
    [404]张仕容.遵义新土沟下寒武统镍钼钒矿矿石特征及成矿条件[J].贵州地质,1987,4(4):473-478
    [405]郑永飞,陈江峰.稳定同位素地球化学[M].北京:科学出版社,2000
    [406]中国科学院地球化学研究所.中国含铂地质体铂族元素地球化学及铂族矿物[M].北京:科学出版社,1981
    [407]中国科学院地球化学研究所.简明地球化学手册[M].北京:科学出版社,1977
    [408]中国科学院地球化学研究所.铂族元素矿物鉴定手册[M].北京:科学出版社,1981
    [409]中国科学院地球化学研究所.高等地球化学[M].北京:科学出版社,1998
    [410]中国科学院地球化学研究所有机地球化学与沉积学研究室.有机地球化学[M].北京:科学出版社,1982
    [411]中国科学院矿床地球化学开放研究实验室.矿床地球化学[M].北京:地质出版社,1997
    [412]周洁,胡凯.贵州遵义下寒武统黑色页岩镍、钼多金属矿床的形态硫特征及成矿模式[J].资源调查与环境,2008,29(2):87-91
    [413]周永章.稀土元素作为粤西桂东南地区存在晚前寒武纪热水沉积事件的证据[C].见:中国科学院矿床地球化学开放研究实验室.矿床地球化学研究.北京:地震出版社,1994
    [414]周修高,谢树成,胡国俊,等.沉积及层控金矿床的生物成矿作用[M].武汉:中国地质大学出版社,1995
    [415]周中毅,刘德汉,盛国英.古地温地质模式与油气评价[C].见:中国科学院地球化学研究所.有机地球化学文集.北京:科学出版社,1986
    [416]周中毅,潘长春.沉积盆地古地温测定方法及其应用[M].广州:广东科技出版社,1992
    [417]朱建明,Johnson TM,罗泰义,等.贵州遵义牛蹄塘组黑色岩系的硒同位素变化及其环境指示初探[J].岩石矿物学杂志,2008,27(4):361-366
    [418]朱笑青,王中刚.冲绳槽热水区沉积物的地球化学特征[C].见:中国科学院地球化学研究所矿床地球化学开放研究实验室.矿床地球化学研究.北京:地震出版社,1994
    [419]庄汉平,卢家烂,温汉捷,等.热液成矿流体中的有机物质[J].地质地球化学,1997,(1):85-91

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700