用户名: 密码: 验证码:
黄河三角洲毗邻海域悬浮泥沙扩散和季节性变化及冲淤效应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以973项目2002CB4124第四课题为依托,根据2003年夏季黄河低流量期间、2007年夏季调水调沙期间以及2006年冬初风暴后的多船同步多断面及夏、冬有关大面站水文泥沙观测资料,本文研究了不同条件下黄河三角洲毗邻海域悬浮泥沙的扩散特征,定量比较了黄河三角洲海域悬浮泥沙扩散的季节性特征,分析了泥沙扩散的过程、控制因素和沉积动力机制,并与1976-2003黄河三角洲沿岸36个观测断面的水深资料对比,探讨了现行黄河水下三角洲蚀积变化对悬浮泥沙扩散的响应。同时分析了渤海海峡南部海域水沙输送的季节性变化,重新估算了渤海通过渤海海峡南部海域向黄海输送的年均泥沙通量,获得以下主要结果。
     1.除黄河河口地区存在潮流切变锋外,在三角洲南北部近岸分别发现了潮流切变锋,它们对泥沙的阻隔效应与河口切变锋相反,其形成机制与河口切变锋有所不同。
     2.黄河低流量期间,由于黄河口切变锋的阻隔、河口垂向环流的捕获作用以及黄河入海径流较弱,导致黄河入海泥沙在河口附近5 m等深线以内的浅水区大量沉积,向外海的传输较少。部分黄河入海泥沙在被涨、落潮流携带向南、北传输的过程中,由于近岸切变锋的阻隔作用,三角洲南北部靠近海岸的浅水区反而得不到泥沙供应,形成侵蚀区,悬浮泥沙主要通过较深水区向南北传输。
     3.夏季黄河调水调沙期间黄河入海泥沙扩散主要局限在离岸约20km以内,向南达到至莱州湾西南部海域,向北最远至北纬38°附近,扩散范围远小于冲淡水扩散范围。由于河口切变锋的阻隔和辐聚作用以及河口垂向环流的捕获,使得黄河入海泥沙绝大部分都沉积在河口13m水深以内区域,不能直接扩散至深水区。夏季存在明显的水体密度跃层,悬浮泥沙主要在跃层以下的下层水体中传输。在现行河口和废弃钓口流路废弃河口存在两个高浓度泥沙中心,分别由黄河入海泥沙扩散和废弃钓口流路地区海底泥沙的再悬浮形成,两个高浓度泥沙中心很少有泥沙交换。
     4.冬季调查区含沙量整体较高,底层泥沙远高于表层,表明波浪导致海底泥沙再悬浮是悬浮泥沙的主要来源。受北风和南向波浪的作用,黄河三角洲海域产生较强的南向沿岸流,携带再悬浮泥沙向南传输。在莱州湾海域,悬浮泥沙主要通过其中部输向渤海海峡,沿莱州湾顶部沿岸向渤海海峡的传输不明显。
     5.泥沙通量分析表明,黄河三角洲海域悬浮泥沙输送具有鲜明的季节性。夏季泥沙通量主要指向东偏北,冬季主要指向偏南。冬季悬浮泥沙含量约为夏季低流量期间的约10-25倍,而悬浮泥沙通量可达约4-128倍。即使在黄河调水调沙期间,除河口区悬浮泥沙含量及悬浮泥沙通量较冬季高外,其他区域冬季悬浮泥沙含量及即悬浮泥沙通量可分别达夏季调水调沙期间的约2-27倍和2-123倍。冬季是黄河口海域泥沙输送的主要季节,泥沙向南部输送也主要发生在冬季,这与中国东部陆架海沉积物“夏储冬输”的格局一致,主要原因是冬季海洋动力远高于夏季。
     6.黄河三角洲海域悬浮泥沙输送的季节性变化导致了渤海海峡南部西侧海域水悬浮泥沙输送具有明显的季节性差异,冬季平均泥沙含量约是夏季的4.2倍,净泥沙单宽通量方向向东指向黄海,冬季通量约是夏季的5倍,说明冬季是渤海泥沙向黄海输送的主要季节。同时,冬、夏季该区净单宽水通量方向与悬浮泥沙通量方向相同,冬季净单宽水通量约是夏季的1.2倍。根据前人方法,初步估算了渤海通过渤海海峡南部海域向黄海输送泥沙的通量约为30.8 Mt/yr,是前人仅根据夏季8月通量计算结果的3倍左右。可以初步认为,夏季渤海基本上是黄河入海泥沙的汇,冬季是黄河泥沙向黄海输送的源。海洋动力的季节性差异是渤海黄河泥沙源-汇关系转换的主要因素。
     7. 1976-2003黄河三角洲沿岸36个水深观测断面的冲淤变化结果表明,黄河水下三角洲冲淤形态呈现为水滴状的淤积体,在南北近岸形成两个蚀积转换带,淤积中心主要在南部,与本文有关泥沙扩散的时空过程和机制的结论比较一致。前人对黄河三角洲泥沙扩散的定量和机制研究主要集中在洪季和河口区,本文较全面地展示了黄河三角洲沿岸及毗邻海域悬浮泥沙的扩散特征、过程和不同的季节性变化,得出了定量性的结果,揭示了有关机制,其结果与黄河水下三角洲多年的冲淤形态比较一致。同时初步计算了不同季节通过渤海海峡由渤海向黄海输送的水沙通量。
Hydrographic and suspended sediment data were collected in 3 synchronic multi-station hydrographic time-series surveys along 4 sections and 24 grid stations off the recent Huanghe (Yellow River) delta and its adjacent Bohai Sea conducted during 3 cruises in low river discharge period in 2003, water-sediment regulation scheme period in 2007 and after storm period in winter of 2006. Based on these data suspended sediment dispersal characteristics, process and its seasonal variation, off the recent Huanghe delta and its adjacent Bohai Sea were studied quantitatively. Its controlling factors and mechanism were analyzed. Based on the bathymetric data of 36 survey transects along the delta in 1976-2003, the effect of the sediment dispersal on the subaqueous Huanghe delta erosion-accumulation were estimated. Additionally, the seasonal variation of the water and sediment fluxes from the Bohai Sea to the Yellow Sea through the southern Bohai Strait were reestimated based on the in-situ time-serious hydrographic data collected in summer of 2007 and in winter of 2006. The major results and conclusions are presented as follows.
     1. The tidal shear fronts with different mechanisms were found not only in the river mouth area but also in southern and northern area off the Huanghe delta. The tidal shear fronts combined with the tidal currents in the northern and southern delta bared the suspended sediment dispersing to the nearshore area, which was opposite with the function of the tidal shear fronts off the river mouth, resulting in formation of two erosion area off the northern and southern delta .
     2. Most of the sediment from the river mouth as hypopycnal flow deposited within 5 m isobath due to the jointed effects of tidal shear front and vertical circulation off the river mouth during river low discharge period. Part of suspended sediment was transported northward or southward by the ebb and flood currents through deeper water area but not via shallower area.
     3. Suspended sediment discharged from the Huanghe to the Bohai Sea was mainly delivered along the coast within the area of about 20 km from the coast during water-sediment regulation scheme period in summer. It was transported southward by the flood current and reach the southwestern sea area of the Laizhou Bay, and was delivered northward by the ebb current but can not extend over 38°N. Most of the river-delivered suspended sediment deposited within 13 m isobath due to the barrier and convergence effects of the tidal shear fronts as well as the trapping effect of the vertical circulation. Moreover, the well-developed pycnocline in the upper water layer in the study area in summer season limited the suspended sediment transport mainly below the pycnocline. Two centers with high suspended sediment concentration were formed in abandoned Diaokou river mouth area and current river mouth area, resulting from resuspension of seabed sediment and river discharged sediment respectively,. There was little sediment exchange between the two centers.
     4. The suspended sediment concentration, primarily resulted from the resuspension of seabed sediment induced by the waves, was increased substantially in winter in the study area. It was mainly transported southward by strong longshore current induced by wind and waves. The high turbid water mass, originated from the northern delta and river mouth area, was delivered towards to the Bohai Strait through the middle of the Laizhou Bay and the sediment transport along its coast was not significant.
     5. The suspended sediment dispersal in the study area showed strong seasonal variation. The suspended sediment concentrations and fluxes, mainly directing southward, in winter were 10-25 times and 4-128 times higher than those during river low discharge period in summer, and 2-27 times and 2-123 times those during water-sediment regulation scheme period in summer, except for river mouth area. Therefore, major sediment-transport season off the Huanghe delta was winter, when the marine dynamics was much stronger than that in summer, which was in good agreement with the sediment-transport pattern in East China
     6. The suspended sediment transport from the Bohai Sea to the Yellow Sea had a significant seasonal variation resulted from the seasonal variation of the sediment dispersal off the Huanghe delta. The suspended sediment concentrations and fluxes in winter were 4.2 times and 5.0 times higher than those in summer, respectively, which indicated that most of the sediment was transported from the Bohai Sea to the Yellow Sea through the southern Bohai Strait in winter season. Moreover, the water discharge from the Bohai Sea to the Yellow Sea in winter was about 1.2 times that in summer. Based on the method of previous study and in-situ data of this paper, the annual sediment flux was reestimated, which was 30.8 Mt/yr and about 3 times higher than that based on the data collected in August in previous studies. Therefore, it can be concluded that the Bohai Sea basically is the sink of the Huanghe delivered sediment in summer season, and it was transformed to the source of the Huanghe sediment in winter due to the significant difference of the marine dynamics in two seasons.
     7. The accumulation-erosion pattern of the Huanghe subaqueous delta from 1976 to 2003 showed that there was a water-drop-like accumulation area in the southern delta and two nearshore erosion-accumulation zones in southern and northern delta which was approximately in accordance with our results of fluxes, temporal-spatial process and mechanism of suspended sediment dispersal off the Huanghe delta.
引文
[1]. Wright L D. River deltas. Coastal sedimentary environments, 1985, 2 1-76.
    [2]. Stanica A, Dan S and Ungureanu V G. Coastal changes at the Sulina mouth of the Danube River as a result of human activities. Marine Pollution Bulletin, 2007, 55 (10-12): 555-563.
    [3]. Yang Z S, Milliman J D, Galler J, et al. Yellow River’s water and sediment discharge decreasing steadily. Eos. Trans. AGU, 1998, 79 (48): 589–592.
    [4]. Xu J X. The water fluxes of the Yellow River to the sea in the past 50 years, in response to climate change and human activities. Environmental Management, 2005, 35 (5): 620-631.
    [5]. Wang H, Yang Z, Saito Y, et al. Interannual and seasonal variation of the Huanghe (Yellow River) water discharge over the past 50 years: connections to impacts from ENSO events and dams. Global and Planetary Change, 2006, 50 (3-4): 212-225.
    [6]. Wang H, Yang Z, Saito Y, et al. Stepwise decreases of the Huanghe (Yellow River) sediment load (1950–2005): Impacts of climate change and human activities. Global and Planetary Change, 2007, 57 (3-4): 331-354.
    [7].杨作升,李国刚,王厚杰,等. 55年来黄河下游逐日水沙过程变化及其对干流建库的响应.海洋地质与第四纪地质, 2008, 28 (6): 9-18.
    [8].方国洪和王仁树.海湾的潮汐与潮流.海洋与湖沼, 1966, 8 (1): 60-77.
    [9].丁文兰.渤海和黄海潮汐潮流分布的基本特征.海洋科学集刊, 1985, 25: 27-40.
    [10].赵保仁和王其茂.渤海的潮混合特征及潮汐锋现象.海洋学报, 2001, 23 (004): 113-119.
    [11].黄祖珂.渤海的潮汐余流.海洋湖沼通报, 1992, (003): 1-8.
    [12].王辉.渤海三维风驱—热盐—潮致拉格朗日余流数值计算.海洋学报, 1993, 15 (1): 9-21.
    [13].赵保仁和雷方辉.渤海的环流,潮余流及其对沉积物分布的影响.海洋与湖沼, 1995, 26 (005): 466-473.
    [14].万修全,鲍献文,吴德星,等.渤海夏季潮致-风生-热盐环流的数值诊断计算.海洋与湖沼, 2004, 35 (001): 41-47.
    [15].朱耀华和方国洪.陆架和浅海环流的一个三维正压模式及其在渤,黄,东海的应用.海洋学报, 1994, 16 (006): 11-26.
    [16].王辉和王为民.渤海冬季三维环流数值模拟.青岛海洋大学学报:自然科学版, 1994, 24 (004): 463-470.
    [17]. Huang D, Su J and Backhaus J O. Modelling the seasonal thermal stratification and baroclinic circulation in the Bohai Sea. Continental Shelf Research, 1999, 19 (11): 1485-1505.
    [18].王凯和施心慧.渤,黄,东海夏季环流的三维斜压模型.海洋与湖沼, 2001, 32 (005): 551-560.
    [19]. Wei H, Hainbucher D, Pohlmann T, et al. Tidal-induced Lagrangian and Eulerian mean circulation in the Bohai Sea. Journal of Marine Systems, 2004, 44 (3-4): 141-151.
    [20].吴德星,林霄沛和鲍献文.渤海动力环境研究应关注的新问题.中国海洋大学学报, 2004, 34 (005): 685-688.
    [21].吴德星,万修全,鲍献文,等.渤海1958年和2000年夏季温盐场及环流结构的比较.科学通报, 2004, 49 (003): 287-292.
    [22].庞家珍和司书亨.河流泥沙国际学术讨论会论文集,北京,1980.
    [23].黄世光和王志豪.近代黄河三角洲海域泥沙的冲淤特征.泥沙研究, 1990, (002): 13-22.
    [24].黄世光.黄河刁口流路泥沙冲淤及其演变特征.海岸工程, 1991, 10 (003): 10-24.
    [25].孙效功和杨作升.现行黄河口海域泥沙冲淤的定计算及其规律探讨.海洋学报, 1993, 15 (001): 129-136.
    [26].胡春宏和王涛.黄河口海洋动力特征与泥沙的输移扩散.泥沙研究, 1996, (004): 1-10.
    [27].董年虎.黄河口清水沟流路泥沙淤积分布及扩散.黄渤海海洋, 1997, 15 (002): 33-37.
    [28]. Li G, Wei H, Yue S, et al. Sedimentation in the Yellow River delta, part II: suspended sediment dispersal and deposition on the subaqueous delta. Marine Geology, 1998, 149 (1): 103-121.
    [29].薛允传.近代黄河三角洲景观格局及演化研究.中国科学院研究生院博士学位论文, 2003.
    [30]. Wright L D, Yang Z S, Bornhold B D, et al. Hyperpycnal plumes and plume fronts over the Huanghe (Yellow River) delta front. Geo-Marine Letters, 1986, 6 (2): 97-105.
    [31]. Wright L D, Wiseman W J, Bornhold B D, et al. Marine dispersal and deposition of Yellow River silts by gravity-driven underflows. Nature, 1988, 332 (6165): 629-632. [30]
    [32]. Wright L D, Wiseman W J, Yang Z S, et al. Processes of Marine Dispersal and Deposition of Suspended Silts off the Modern Mouth of the Huanghe(Yellow River). Continental ShelfResearch CSHRDZ, 1990, 10 (1): 1-40.
    [33]. Wiseman W J, Fan Y B and Bornhold B D. Suspended sediment advection by tidal currents off the Huanghe (Yellow River) delta. Geo-Marine Letters, 1986, 6: 115–120.
    [34].成国栋和薛春汀.黄河三角洲沉积地质学.北京, 1997.
    [35]. Li G, Tang Z, Yue S, et al. Sedimentation in the shear front off the Yellow River mouth. Continental Shelf Research, 2001, 21 (6-7): 607-625.
    [36]. Martin J M, Zhang J, Shi M C, et al. Actual flux of the Huanghe (Yellow River) sediment to the Western Pacific Ocean. Netherlands Journal of Sea Research, 1993, 31: 243-254.
    [37].杨作升和Keller G H.现行黄河口水下三角洲海底地貌及不稳定性.青岛海洋大学学报, 1990, 20 (1): 7-21.
    [38]. Wang H, Yang Z, Li Y, et al. Dispersal pattern of suspended sediment in the shear frontal zone off the Huanghe (Yellow River) mouth. Continental Shelf Research, 2007, 27 (6): 854-871.
    [39].王厚杰,杨作升和毕乃双.黄河口泥沙输运三维数值模拟Ⅰ——黄河口切变锋.泥沙研究, 2006, (002): 1-9.
    [40]. Qiao L L, Bao X W, Wu D X, et al. Numerical study of generation of the tidal shear front off the Yellow River mouth. Continental Shelf Research, 2008, 28 (14): 1782-1790.
    [41]. Jiang W, Pohlmann T, Sündermann J, et al. A modelling study of SPM transport in the Bohai Sea. Journal of Marine Systems, 2000, 24 (3-4): 175-200.
    [42]. Jiang W, Pohlmann T, Sun J, et al. SPM transport in the Bohai Sea: field experiments and numerical modelling. Journal of Marine Systems, 2004, 44 (3-4): 175-188.
    [43].李国胜,董超和王海龙. Numerical Simulation of Transportation of SPM from the Yellow River to the Bohai Sea.中国海洋工程:英文版, 2006, 20 (001): 133-146.
    [44]. Milliman J D and Meade R H. World-wide delivery of river sediment to the oceans. Journal of Geology, 1983, 91 (1): 1-21.
    [45].钱意颖和叶青超.黄河干流水沙变化及河床演变.北京:中国建材出版社, 1993, 174-177.
    [46].王颖和张永战.人类活动与黄河断流及海岸环境影响.南京大学学报:数学半年刊, 1998, (003): 257-271.
    [47]. Fan H, Huang H, Zeng T Q, et al. River mouth bar formation, riverbed aggradation andchannel migration in the modern Huanghe (Yellow) River delta, China. Geomorphology, 2006, 74 (1-4): 124-136.
    [48]. Yang Z S, Saito Y, Wang H J, et al. Decline of the Huanghe (Yellow River) delta to destruction phase due to dams. 2009, Submitted to Marine Geology.
    [49]. Shi M C and Zhao J P. Calculation of the suspended load quantity in Pole No. 5 sea area. Journal of Shandong College of Oceanography, 1985, 15 (1): 122-123.
    [50]. Hu C H, Ji Z W and Wang T. Dynamic Characteristics of Sea Currents and Sediment Dispersion in the Yellow River Estuary. International Journal of Sediment Researeh, 1998, 13 (2): 16-26.
    [51].曾庆华,张世奇和胡春宏.黄河口演变规律及整治研究. 1995.
    [52]. Chen X, Chen S, Dong P, et al. Temporal and spatial evolution of the coastal profiles along the Yellow River Delta over last three decades. GeoJournal, 2008, 71 (2): 185-199.
    [53].臧启运.黄河三角洲近岸泥沙.海洋出版社, 1996.
    [54]. Wang H, Yang Z, Li G, et al. Wave climate modeling on the abandoned Huanghe (Yellow River) delta lobe and related deltaic erosion. Journal of Coastal Research, 2006, 22 (4): 906-918.
    [55].秦蕴珊,赵一阳和赵松龄.渤海地质.北京:科学出版社, 1985, 2.
    [56].武桂秋.现行黄河口烂泥形成的动力机制.海岸工程, 1992, 11 (002): 44-52.
    [57].江文胜和王厚杰.莱州湾悬浮泥沙分布形态及其与底质分布的关系.海洋与湖沼, 2005, 36 (002): 97-103.
    [58]. Nunes R A and Simpson J H. Axial convergence in a well-mixed estuary. Estuarine, Coastal and Shelf Science, 1985, 20 (5): 637-649.
    [59].朱慧芳.河口切变锋引起的滩槽泥沙交换效应.长江流域资源与环境, 1995, 4 (001): 54-57.
    [60]. Huzzey L M and Brubaker J M. The formation of longitudinal fronts in a coastal plain estuary. Journal of Geophysical Research, 1988, 93 (C2): 1329-1334.
    [61].李广雪和成国栋.现代黄河口区流场切变带.科学通报, 1994, 39 (010): 928-932.
    [62].王厚杰.黄河口悬浮泥沙输运三维数值模拟.中国海洋大学博士论文, 2002.
    [63]. Shi W J and Sun X G. Suspended sediment transport during low discharge period off Yellow River estuary. China Ocean Engineering, 2008, In press.
    [64].庞重光和杨作升.黄河口泥沙异重流的数值模拟.青岛海洋大学学报:自然科学版, 2001, 31 (005): 762-768.
    [65].庞家珍和姜明星.黄河河口演变(Ⅰ)—河口水文特征.海洋湖沼通报, 2003, (003): 1-13.
    [66].窦国仁.再论泥沙起动流速.泥沙研究, 1999, (006): 1-9.
    [67].程义吉和程建刚.黄河口新口门海域流场分析.海岸工程, 2000, 19 (004): 5-11.
    [68].鲍献文,万修全,吴德星,等. 2000年夏末和翌年初冬渤海水文特征.海洋学报, 2004, 26 (001): 14-24.
    [69]. Uncles R J, Elliott R C A and Weston S A. Dispersion of salt and suspended sediment in a partly mixed estuary. Estuaries and Coasts, 1985, 8 (3): 256-269.
    [70]. Liang S X, Sun Z C, Yamanaka R, et al. Typical circulation in the Bohai Sea. In Proc. Of the Thirteenth International Offshore and Polar Engineering Conference, International Offshore and Polar Engineering, 2003: 282-289.
    [71]. Chu Z X, Sun X G, Zhai S K, et al. Changing pattern of accretion/erosion of the modern Yellow River (Huanghe) subaerial delta, China: Based on remote sensing images. Marine Geology, 2006, 227 (1-2): 13-30.
    [72]. Butman B, Noble M and Folger D W. Long-term observations of bottom current and bottom sediment movement on the Mid-Atlantic continental shelf. Journal of Geophysical Research, 1979, 84 (C3): 1187-1205.
    [73]. Drake D E and Cacchione D A. Seasonal variation in sediment transport on the Russian River shelf, California. Cont. Shelf Res, 1985, 4 (5): 495–514.
    [74]. Sternberg R W. Transport and accumulation of river-derived sediment on the Washington continental shelf, USA. Journal of the Geological Society, 1986, 143 (6): 945-956.
    [75]. Schoellhamer D H. Factors affecting suspended-solids concentrations in south San Francisco Bay, California. JOURNAL OF GEOPHYSICAL RESEARCH, 1996, 101 12087-12095.
    [76]. Dyer K R and Moffat T J. Fluxes of suspended matter in the East Anglian plume Southern North Sea. Continental Shelf Research, 1998, 18 (11): 1311-1331.
    [77]. Fettweis M, Sas M and Monbaliu J. Seasonal, neap-spring and tidal variation of cohesive sediment concentration in the Scheldt Estuary, Belgium. Estuarine, Coastal and Shelf Science, 1998, 47 (1): 21-36.
    [78]. Castaing P, Froidefond J M, Lazure P, et al. Relationship between hydrology and seasonal distribution of suspended sediments on the continental shelf of the Bay of Biscay. Deep-Sea Research Part II, 1999, 46 (10): 1979-2001.
    [79]. Muslim I and Jones G. The seasonal variation of dissolved nutrients, chlorophyll a and suspended sediments at Nelly Bay, Magnetic Island. Estuarine, Coastal and Shelf Science, 2003, 57 (3): 445-455.
    [80].李家彪.东海区域地质.海洋出版社, 2008, 1.
    [81]. Qin Y and Li F. Study of influence of sediment loads discharged from the Huanghe River on sedimentation in the Bohai Sea and Huanghai Sea. In: Proc. Int. Symp. on Sedimentation on the continental shelf with special reference to the East China Sea. China Ocean Press, 1983: 83-92.
    [82].刘锡清.中国海洋环境地质.海洋出版社, 2006, 28-30.
    [83].杨作升和高文兵.黄东海陆架悬浮体向其东部深海区输送的宏观格局.海洋学报, 1992, 14 (002): 81-90.
    [84]. Yanagi T, Takahashi S, Hoshika A, et al. Seasonal variation in the transport of suspended matter in the East China Sea. Journal of Oceanography, 1996, 52 (5): 539-552.
    [85].郭志刚和杨作升.东海陆架北部泥质区沉积动力过程的季节性变化.青岛海洋大学学报:自然科学版, 1999, 29 (003): 507-513.
    [86].孙效功和方明.黄,东海陆架区悬浮体输运的时空变化规律.海洋与湖沼, 2000, 31 (006): 581-587.
    [87].庞重光和杨作升.东海泥质和砂质沉积区悬乳物垂向分布的季节文化特征.海洋科学, 2001, 25 (008): 34-37.
    [88]. Hoshika A, Tanimoto T, Mishima Y, et al. Variation of turbidity and particle transport in the bottom layer of the East China Sea. Deep-Sea Research Part II, 2003, 50 (2): 443-455.
    [89].庞重光,王凡,白学志,等.夏,冬两季长江口及邻近海域悬浮物的分布特征及其沉积量.海洋科学, 2003, 27 (012): 31-35.
    [90].李徽翡和赵保仁.渤,黄,东海夏季环流的数值模拟.海洋科学, 2001, 25 (001): 28-32.
    [91]. Hainbucher D, Wei H, Pohlmann T, et al. Variability of the Bohai Sea circulation based on model calculations. Journal of Marine Systems, 2004, 44 (3-4): 153-174.
    [92]. Fan H and Huang H. Response of coastal marine eco-environment to river fluxes into the sea:A case study of the Huanghe (Yellow) River mouth and adjacent waters. Marine Environmental Research, 2008, 65 (5): 378-387.
    [93].秦蕴珊和李凡.渤海海水中悬浮体的研究.海洋学报, 1982, 4 (2): 191-200.
    [94].张经,黄薇文和刘敏光.黄河口及邻近海域中悬浮体的分布特征和季节性变化.山东海洋学院学报, 1986, 15 (2): 97-104.
    [95]. Jiang W and Bernhard M. A study on the transport of suspended particulate matter from the Yellow River by using 3D particle model. Journal of Ocean University of Qingdao, 1997, 27 (4): 439-444.
    [96]. Milliman J D and Syvitski J P M. Geomorphic/tectonic control of sediment discharge to the ocean: the importance of small mountain rivers. Journal of Geology, 1992, 100: 525-544.
    [97]. Ren M E and Shi Y L. Sediment discharge of the Yellow River (China) and its effect on the sedimentation of the Bohai and the Yellow Sea. Continental Shelf Research, 1986, 6 (6): 785–795.
    [98]. Alexander C R, Demaster D J and Nittrouer C A. Sediment accumulation in a modern epicontinental-shelf setting: the Yellow Sea. Marine Geology, 1991, 98 (1): 51–72.
    [99].程鹏和高抒.北黄海西部海底沉积物的粒度特征和净输运趋势.海洋与湖沼, 2000, 31 (006): 604-615.
    [100]. Cheng P, Gao S and Bokuniewicz H. Net sediment transport patterns over the Bohai Strait based on grain size trend analysis. Estuarine, Coastal and Shelf Science, 2004, 60 (2): 203-212.
    [101]. Liu J P, Milliman J D, Gao S, et al. Holocene development of the Yellow River's subaqueous delta, North Yellow Sea. Marine Geology, 2004, 209 (1-4): 45-67.
    [102]. Yang Z S and Liu J P. A unique Yellow River-derived distal subaqueous delta in the Yellow Sea. Marine Geology, 2007, 240 (1-4): 169-176.
    [103].林霄沛和吴德星.渤海海峡断面温度结构及流量的季节变化.青岛海洋大学学报:自然科学版, 2002, 32 (003): 355-360.
    [104]. Wang Q, Guo X and H. T. Seasonal variations of the Yellow River plume in the Bohai sea: A model study. Journal of Geophysical Research, 113: C08046, 2008, doi: 10.1029/2007JC004555.
    [105].中国地理学会海洋地理专业委员会.中国海洋地理.科学出版社, 1996,74-78.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700