用户名: 密码: 验证码:
若干微电子机械系统研制及相关LIGA工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着MEMS传感器芯片在物理、化学、生物和医学等方面的广泛应用,相应的微加工工艺成为当前微系统技术的一个研究热点。MEMS微加工技术涉及微电子、材料、物理(力学及流体力学等)、化学、生物、机械学诸多学科领域,是多学科相互交叉的产物。MEMS器件是采用微电子和微机械加工技术将所有的零件、电路和系统在整体设计下几乎同时制造出来,零件和系统是紧密结合在一起的,因此,开发MEMS器件需要采用新观念,在系统级上进行设计和制造。
     由于微系统器件在性能上对大深宽比微结构的需求,采用LIGA技术制作MEMS器件成为目前非常有潜力的一种加工方法。然而,MEMS与微电子制造工艺不同,它必须进行微机械所特有的三维加工,必须克服大深宽比对加工工艺带来的影响,有时还要求与集成电路工艺兼容。要解决好这一系列问题有一定的难度,研究人员需要不断努力,发展和完善MEMS制造技术。
     对于每个特定功能的MEMS器件,都需要单独设计一套与之对应的加工工艺流程,每一步工艺参数都需要重新摸索确定,以适应不同的微结构性能要求。为了对MEMS制造过程中微细加工工艺进行深入研究,总结分析MEMS微细加工技术的设计规则和具体的工艺规范,设计并制作出具有大深宽比结构的MEMS器件,同时进行相应的性能分析和评价,本论文主要开展了以下几个方面的工作:
     1.LIGA/UV-LIGA光刻工艺
     发展了X射线光刻中的掩模制作工艺,完善了硅基底开窗法制作高精度同步辐射掩模的方法;利用同步辐射X射线光刻技术和深紫外光刻技术制作大深宽比微结构;对紫外光刻工艺和SU-8厚胶工艺制作大高宽比结构进行工艺研究:采用了低温后烘的方法有效降低胶结构内应力,并运用兆声辅助的方法有效提高的大深宽比微结构的显影效率。
     2.Zn牺牲层技术
     发展完善了沉积厚层Zn牺牲层技术在LIGA/UV-LIGA工艺中的应用。对Zn牺牲层的电镀工艺,种子层对粘附性的影响,牺牲层的释放等工艺细节进行深入研究,将沉积厚层Zn牺牲层工艺发展为一种完善成熟的牺牲层技术;同时将LIGA技术和厚Zn牺牲层工艺引入武器安全系统中的引信设计和制造中,制作出基于平面结构形式的安全保险装置微结构。
     3.极限大深宽比微结构电铸
     对具有极限深宽比的微结构的深镀能力和均镀能力进行探索,分析了大深宽比微结构电铸工艺中的离子传质过程对金属离子沉积的影响;运用了兆声辅助的方法提高离子的传质扩散能力,以获得具有较大深宽比的微结构。
     4.纳米颗粒复合电镀
     利用纳米颗粒复合电镀工艺制作镍基复合微结构。为使纳米Al_2O_3颗粒较均匀地分散在微结构中,实验中搭建了低成本有效的小孔喷流场进行辅助电镀,并获得了分散效果较好纳米颗粒复合镀件;同时对纳米颗粒复合镀件进行了微机械性能的测试,相比于纯镍微结构,其硬度由HV_(0.2)300增至HV_(0.2) 500,抗磨损率增强1倍,试验中还测试了微结构的抗压强度,其平均抗压强度约为960Mpa。这些结果表明,复合镀件在某些方面的微机械性能有着显著提高:论文中运用流体动力学有限元分析方法模拟复合电镀中的小孔喷射流场的分布,分析喷射流场对纳米颗粒分散的影响,表明喷流辅助电铸有助于纳米颗粒的分散和吸附沉积。
     5.微型加速度触发开关研制
     运用LIGA/UV-LIGA技术、微电铸以及Zn牺牲层技术,完成悬臂梁式和螺旋形加速度开关的研制。
     悬臂梁式微型加速度开关:采用了X射线深度光刻工艺,结合本论文开发的厚Zn牺牲层工艺,进行悬臂梁式微型加速度开关的制作。实验中分析了大深宽比微结构电铸所出现的缺陷,并对电铸成品率进行统计分析,在此基础上优化结构设计和工艺流程,获得具有大深宽比悬臂梁结构的微型加速度开关样品;并对微结构进行运动测试,结果表明,微结构的运动符合设计上的要求。
     螺旋形微型加速度开关:采用了深紫外光刻技术,结合SU-8厚胶工艺,进行微型螺旋形加速度开关的制作。对牺牲层材料的特性进行分析与实验,解决了微结构脱落的问题,通过工艺优化,得到了平整的微弹簧结构;并对微结构的开关工作阈值和弹性系数进行测试,开关阈值从1g~10g,在设计的低阈值工作范围,所测微结构弹性系数在140~200μN/nm范围,为所需的低刚度弹簧,满足设计者对系统低频响应的要求。
     6.毫米波矩形封闭加速通道研制
     运用UV-LIGA技术,结合SU-8多层对准紫外光刻和微电铸工艺,进行封闭复杂的内部空腔结构的微型毫米波加速通道的制作。对SU-8的多层光刻电铸工艺、SU-8热裂解去除,以及微结构内部空腔超声清洗等微细加工工艺进行了深入研究,并获得具有复杂的内部空腔结构的微型毫米波加速通道。
With the MEMS sensors widely applied in fields of physics,chemistry,biology and medicine,etc.,the related microfabricaton technology has become a hot point in the current micro-system research.The micro-processing technology of MEMS relates to micro-electronics,materials,physics(mechanics and fluid mechanics,etc.),chemistry, biology,mechanics and many other subjects,it is the product of multidisciplinary subjects.All of the parts in MEMS devices are produced almost at the same time using micro-electronics and micro-machining technology under overall consideration, the parts and the systems are closely linked,it is a top-down approach.Therefore,the developments of MEMS devices require new concepts and have to be designed and manufactured in the system-level.
     Since the demands of micro structures with high aspect ratio in micro systems, the LIGA process has the potential to become a popular technique in microfabrication fields.Unlike the micro-electronics technique,the micro-machining technology has to be specific during three-dimensional micro-processing,to overcome the effect of high aspect ratio,and sometimes it also has to be compatible with integrated circuit technology.It is necessary for researchers to make great efforts to solve this series of problems,and develop and improve MEMS manufacturing technology.
     For every specific MEMS device,there is a separate micro-machining process required to be designed,and the parameters in every process step are needed to be re-explored and determined to meet the demands of special performance of the microstructures.In order to investigate the micro-machining processes in detail and summarize some MEMS design rules,and furthermore to develop the MEMS products with high aspect ratio structures,and do the corresponding performance evaluation and analysis,the main thesis works are carried out in the following areas:
     1.Improve the X-ray lithography and ultraviolet lithography process
     A high-precision synchrotron radiation mask fabricating methods is developed by using the silicon substrate fenestration.The microstructures with high aspect ratio are successfully obtained by using X-ray lithography technology and ultraviolet lithography technology.The processing details in UV lithography technique and SU-8 thick resist technique are studied in detail,the inner stress in SU-8 resist structures is reduced effectively by the low-temperature post baking,and the developing efficiency of micro structures with high aspect ratio is obviously improved by using megasonic agitation assistance.
     2.The application of thick sacrificial layer of zinc in LIGA process
     The zinc electrochemical depositing process,the effects of the seed layers to the adhesion of sacrificial layer on silicon substrate,and the release process of the sacrificial layer,are investigated in detail.And the thick zinc sacrificial layer process is developed to be a mature sacrificial layer technology.The zinc sacrificial layer technology is also introduced into the fabrication of the weapon's fuze device,and some microstructures used in the plane frame insurance device are successfully obtained.
     3.Micro electroforming with utmost high aspect ratio structures
     The micro electroforming technique with utmost high aspect ratio structures is explored in the experiment;the effect of metallic ion transmission condition in the electrolyte to deposition status is studied.A very high aspect ratio metallic structure is obtained successfully by using megasonic agitation assistance which effectively improves the transmission ability of metallic ion in the electrolyte.
     4.Fabrication of nickel base composite microstructures with Al_2O_3 nanoparticles
     In order to deposit the alumina nanopartMes uniformly in the composite micro structures and obtain the composite microstructures with good distribution of the alumina nanoparticles,an effective and low cost spraying assistance circulation system is set up in the experiment to improve the dispersing and depositing condition of the nanoparticles in the electrolyte.The analysis on the micromechanical hardness and wearing property shows that the composite components' hardness are improved form HV_(0.2) 300to HV_(0.2) 500 compared with pure nickel components,their wearing resistance are also increased nearly 100 percent,and the average compressive stress reaches 960Mpa.The micromechanical properties of composite components are significantly improved in comparison with the pure nickel components.
     The hydrokinetic flow field during the spraying assistance deposition process is also simulated presumably by using hydrokinetics finite element analysis.The simulated results also show that the spraying riptides in electrolyte would be helpful to promote the nanoparticles to disperse in the electrolyte and deposit onto the cathode uniformly.
     5.Fabrication of micro acceleration trigger switch combined with LIGA /UV-LIGA technology and thick zinc sacrificial layer technology
     A cantilever-type micro acceleration switch is fabricated successfully by using the X-ray deep lithography process,combined with thick Zn sacrificial layer technology developed in this thesis.The electroforming defects in plating very high aspect ratio microstructures are studied,and the yield of the microstructures is counted and analyzed.On the basis of these experimental data,the design of the microstructures and the fabrication process flow are optimized,and the micro acceleration switch samples with high aspect ratio structures are fabricated.The movement testing results of the microstructures shows that the micro system accords with the design requirements.
     A spiral type micro-acceleration switch is fabricated successfully by using the ultraviolet lithography technology,combined with SU-8 thick photoresist technique. The properties of sacrificial layer materials are analyzed and experimented to solve the desquamating problem of microstructures,and through process optimization,the planar micro spiral spring structures are obtained.The test results of the switching threshold(1g~10g) and the elasticity coefficient(140~200μN/nm) show that the microstructures accords with the designer's demands of the low frequency response.
     6.Development of millimeter-wave rectangular accelerating channel.
     A millimeter-wave rectangular accelerating channel with complex internal cavity is fabricated successfully by using the UV-LIGA technology,combined with multi-layer SU-8 lithography and microelectroforming process.The micro-machining process of SU-8 lithography,SU-8 pyrolysis removal,and internal cavity ultrasonic cleaning are studied in detail.
引文
[1]R.Feynman.IEEE J.MEMS,1992,1(1):60-66.
    [2]R.Feynman.A talk at annual meeting of the American Physical Society at the California Institute of the Technology on Dec.26,1959,and was published as a chapter in the Reinhold Publishing Corporation Book,Miniaturization,Horrace D.gilber.Ed.
    [3]K.E.Peterson.Proc.of the IEEE.70(5),1982,420-457.
    [4]L.S.Fan,Y.C.Tai,et.al.Proc.of 1988 IEEE int.Electr.Devices Meeting,Sanfrancisco,CA.Dec.1988.
    [5]Ho C M and Tai Y C.Annual Review of Fluid Mechanics,1998,30:579-612.
    [6]http://www.imag.com.cn/MEMS/coventor_mems.html,Coventor Corp.,China
    [7]E.W.Becker,W.Whrfeld,P.hagmann,etc.Microelectronic Engineering.1986,(4):35-56.
    [8]Lehr L,Ehrfeld W.LIGA-Technique an overview.The 6th Chinese international Summer School of Physics on Application of Synchrotron Radiation,July,1992.
    [9]Ehrfeld W,Munchemye D.Three-Dimensional.Microfabrication Using Synchrotron Radiation.Nucl Instrum Methods Phys Res,1991,A303:523.
    [10]Munchmeyer D,Langen J.Manufacture of Three-Dimensional Microdevices Using Synchrotron Radiation.Rev Sci Instrum,1992,73:71.
    [11]R.Ruprecht,T.Hanemann,V.Plotter,etc.Microsystem Technologies.1998,(5):44-48.
    [12]W.Ehrfeld,V.hessel,H.Lowe,etc.Microsystem technologies.1999,(5):105-112.
    [13]W.Ehrfeld,H.Lehr;Radiat.Phys.Chem.1995,45:349-365
    [14]张立国,陈迪,杨帆等.基于DEM技术的塑料毛细管电泳芯片加工工艺.微细加工技术,2002,Vol.4:61-64。
    [15]Heeren Paul-Henri's,Reynaerts Dominiek,Van Brussel Hendrik.Sensors and Actuators,A:Physical,1997,60(5):212-218.
    [16]Raver M.F.,Rousseaux F.Sattus of diamond as membrane material for X-ray lithography masks.Diamond and Relaed Materials.Volume:5,Issue:6-8,May,1996,pp.812-818.
    [17]Lakhsasi A.,Pepin H.,Skorek A.Transient thermal stability of the x-ray mask Sic-W under short pulse irradiation,Simulation Practice and Theory..Volume:5,Issue:4,May 15,1997,pp.315-321.
    [18]苑伟政,马炳和.微机械与微细加工技术[M].西安:西北工业大学出版社,2000.
    [19]王冬生,王春明,胡桂珍.MEMS技术概述[J].机械设计与制造,2006(3):106-108.
    [20]Jack D.Johnson,Seyed R.Zarabadi.John C.Christenson and Tracy A.Noll Single Crystal Silicon Low-g Acceleration Sensor Delphi Automotive Systems
    [21]WILFRIED MOKWA.Advanced Sensors and Microsystems on SOI Institute of Materials for Electrical Engineering Aachen University of Technology,Germany
    [22]A.Selvakumar,A multifunctional silicon micromachining technology for high performance microsensors and microactuators,Ph.D.dissertation,University of Michigan,Ann Arbor,1997.
    [23]D ING Y,L IU Z W,CONG P,et al.Preparation and etching of porous silicon as a sacrificial layer used in RF2MEMS devices[EB/OL].http://intl.ieeexplore.ieee.org/Xplore/Dynwel.jsp,2003(11):27.
    [24]L IU ZW,D ING Y,L IU L T,et al.Fabrication planar coil on oxide membrane hollowed with porous silicon as sacrificial layer.Sensors and Actuators A,2003(108):112-116.
    [25]周俊,谢克文,王晓红,等.基于微机械的多孔硅牺牲层技术[J].固体电子学研究与进展,2004,24(1):73-76.
    [26]Hedrich F,Billat S,LangW.Structuring of membrane sensors using sacrificial porous silicon.Sensors and Actuators,2000(A84):315-323.
    [27]YAN G Z,CHAN P C H,HSING IM,et al.An improved TMAH Si2etching solution without attacking exposed aluminum[EB/OL].http://intl.ieeexplore.ieee.org/Xplore/DynWel.jsp,2004(6):14.
    [28]张永华,丁桂甫,李永海.MEMS中的牺牲层技术[J].微纳电子技术,2005(2):73-77.
    [29]姜政,丁桂甫,等.叠层光刻胶牺牲层工艺研究[J].微细加工技术,2005(3):62-66.
    [30]WALSH K,NORV ILLE J,TA I Y C.Photoresist as a sacrificial layer by dissolution in acetone[EB/OL].http://intl.ieeexplore.ieee.org/Xplore/DynWel.jsp.2003(11):27.
    [31]ZHANG Yong2hua,D ING Gui2fu,J IANG Zheng,et al.Laminated Photoresist Sacrificial Layer Technology for MEMS[J].CHINESE JOURNAL OF SENSORSAND ACTUATORS,2006,19(5):1422-1425.
    [32]陈大鹏,刘刚,田扬超.电镀法制作活动微结构的牺牲层工艺[J].微细加工技术,2000(2):62-65.
    [33]姜政,丁桂甫,吴惠菁,等.微加工电化学沉积锌牺牲层工艺[J].压电与声光,2006,28(6):701-703.
    [34]佚名.德国博世开发MEMS元件牺牲层蚀刻新技术[EB/OL].http://www.semi100.cn /Article/class/200701/9307.html.2007-1-27.
    [35]张帅,贾育秦.MEMS技术的研究现状和新进展[J].现代制造工程,2005(9):109-112.
    [36]赵波,程雪利,刘传绍,等.微细加工与装备技术进展[J].现代制造工程,2006(6):143-146.
    [37]McGeough J A,Leu M C,Rajurkar K P.Keynote paper in annals of CIRP,2001,50(2):499-513.
    [38]李永海,丁桂甫,毛海平等.电子工艺技术,2005,26(1):1-5.
    [39]杨启荣,微机电制程之精密电铸技术.
    [40]Guo Hetong,Zhang Sanyuan.Composites[M].Tianjin:Tianjin University Press,1991
    [41]Bai Xiaojun.Electroplating and Pollution Control[J],1993,13(2):8
    [42]Celis J P,Roos J R,Buelens C et al.Trans Inst Metal Finish[J],1991,69(4):133
    [43]Fransaer J,Cells J P,Roos J R.Metal Finishing[J],1993,91(6):97
    [44]Hovestad A,Janssen L J J.J Appl Electrochem[J],1995,25(6):519
    [45]Du Keqin,Qin Qixian,Guo Hetong.Plating and Finishing[J],1995,17(6):21
    [46]Peng Qunjia,Ma Jusheng.Electroplating and Pollution Control[J],1998,18(6):3
    [47]Li Weidong,Hu Jin,Zuo Zhengzhong et al.J Wuhan Univ(Nat Sci Ed)[J],2000,46(6):695
    [48]Tu Weiyi,Xu Binshi,Dong Shiyun.Surface Engineering of China[J],2003,(4):1
    [49]Sun Jianchun,Wang Jian,Peng Xiaodong.Materials Review[J],2003,17(4):61
    [50]Guglielmi N.J Electrochem Soc[J],1972,119(8):1009
    [51]Celis J P,Roos J R.J Electrochem Soc[J],1977,124(10):1508
    [52]Celis J P,Roos J R,Buelens C.J Electrochem Soc[J],1987,134(6):1402
    [53]Valdes J L.J Electrochem Soc[J],1987,134(4):223C
    [54]Fransaer J,Celis J P,Roos J R.J Electrochem Soc[J],1992,139(2):413.
    [55]Hwang B J,Hwang C S.J Electrochem Soc[J],1993,140(4):979
    [56]Yeh S H,Wan C C.J Appl Electrochem[J],1994,24(10):993
    [57]Wang D L,Li J,Dai Ch Set al.JAppl Electrochem[J],1999,29(4):437
    [58]Ber(?)ot P,Pe(?)a-Mu(?)oz E,Pagetti J.Surf Coat Tech[J],2002,157(2-3):282
    [59]Wu Gang,Li Ning,Wang Dianlong et al.Acta Phys Chim Sin[J],2003,19(11):996
    [60]Low C T J,Wills R G A,Walsh F C.Surf Coat Tech[J],2006,201(1-2):371
    [61]Vereecken P M,Shao l,Searson P C.J Electrochem Soc[J],2000,147(7):2572
    [62]Shao I,Vereecken P M,Cammarata R C et al.J Electrochem Soc[J],2002,149(11):C610
    [63]Y.S.Dong,P.H.Lin,H.X.Wang,et al Electroplating preparation of Ni-Al2O3 graded composite coatings using a rotating cathode.Surface & Coatings Technology 200(2006)3633-3636
    [64]Nelson HD.Rotor dynamic modeling and analysis procedures:a review[J].JSME Inter.J.Serise C,1998,41(1):1-12.
    [65]Alford J S.Protecting turbomachinery from selfexcited rotor whirl[J].ASME.Journal of Engineering for Power,1965,(5):333-334.
    [66]X.Y.Wei *,Z.G.Zhu,P.D.Prewett,et al Fabrication of Ni-Al2O3 composite microcomponent by electroforming:Microelectronic Engineering 84(2007) 1256-1259
    [67]R.Warren,Ceramic-Matrix Composites,Chapman and Hail,NewYork,1990.
    [68]D.Hull,An Introduction to Composite Materials,Cambridge University Press,Cambridge,1981.
    [69]D.Landolt,et al J.Electrochem.Soc 149(3)(2002) S9-S20.
    [70]Y.Guo et al(2007) Study of Hot Embossing Using Nickel and Ni-PTFE LIGA Mold Inserts.J.MEMS.16(3),(2007) 589-597
    [71]Kwok-Siong Teh,Yu-Ting Cheng,and Liwei Lin,et al Nickel nanocomposite film for MEMS applications,in:Procceedings of the 12th International Conference on Solid State Sensors,Actuators and Microsystems,Boston,June 8-12,(2003) pp.1534-1537.
    [72]L.Chen,L.P.Wang,Z.X.Zeng,J.Y.Zhang,Mater.Sci.Eng.,A Struct.Mater.:Prop.Microstruct.Process.434(2006) 319.
    [73]Qiuyuan Feng,Tingju Li,Zhongtao Zhang,et al Preparation of nanostructured Ni/Al2O3composite coatings in high magnetic field:Surface & Coatings Technology 201(2007)6247-6252
    [74]Tang F Q,Huang Y X,Zhang Y F,et al.Effect ofdispersants on surface chemical properties of nano-zirconia suspensions[J].Ceramics International,2000,26(1):93-97.
    [75]S.K.Griffiths,R.H.Nilson,R.W.Bradshaw,et al.Transport Limitations in Electrodeposition for LIGA Microdevice Fabrication,Micromachining and Microfabrication Process Technology Ⅳ,SPIE vol.3511,364-375,Santa Clara,CA,USA,1998.
    [76]田扬超,刘刚,洪义麟,等.一种活动微机械的制作方法.专利号:ZL98 1 23247.7
    [1]马礼敦,杨福家,《同步辐射应用概论》,上海,复旦大学出版社
    [2]金玉明,《电子储存环物理》,合肥,中国科学技术大学出版社
    [3]徐克尊,《近代物理学》,北京,高等教育出版社:636
    [4]Herman Winick.Synchrotron Radiation Research,New York,Plenum press,1980:11-25
    [5]http://www.nsrl.ustc.edu.cn/zh_CN/Equipments.asp
    [6]http://www.nsrl.ustc.edu.cn/zh_CN/Equipmentsinfo.asp?id=3&tp=syb&mesi=0.2356113
    [7]http://www.ihep.ac.cn/bsrf/chinese/bsrf/bsrf_survey.htm
    [8]田扬超,胡一贯,刘泽文等,同步辐射X射线光刻应用新领域—LIGA技术,原子能科学与技术,1994,28(4):304-307
    [9]石庚辰.微机电系统技术[M].北京:国防工业出版社,2002/01.1-9
    [10]王彦,史国芳.聚酰亚胺的发展和应用[J].航空材料学报,1994,(03):1-2
    [11]厦门大学物理系半导体物理教研室.半导体器件工艺原理[M].北京:人民教育出版社,1977,232-240
    [12]Laurence Singleton,Peter Detemple and Holger L(o|¨)we.Proc.of SPIE,2003,Vol.4945:112-121.
    [13]洪义麟,田扬超,刘刚等.微细加工技术,1999,1:62.
    [14]曾华梁,吴仲达,陈钧武等.电镀工艺手册(第2版),机械工业出版社,ISBN:7-111-05549-7.
    [15]J.Mohr,W.Ehrfeld and D.Munchmeyer.J.Vac.Sci.Technol.B,1988,6(6):2264-2267.
    [16]Becker E W,Ehrfeld W,Hagmann P,et al.Microelectroc.Eng.,1986,4:35-36.
    [17]陈永明,伊福廷,陈传福等.微细加工技术,2001,4:36-38.
    [18]Guckel H,Christensen TR,Skrobis KJ.Formation of Microstructures using a Preformed Photoresist Sheet,1995,US Patent:d5378583.
    [19]Lehr L and Ehrfeld W.The 6~(th) Chinese International Summer School of Physics on Application of Synchrotron Radiation,Beijing,July,1992.
    [20]Ehrfeld W and Munchmeyer D.Nucl.Instrum.Methods.Phys.Res,1991,A303:503.
    [21]Munchmeyer D and Langen.J.Rev.Sci.Instrum.,1992,63:713.
    [22]陈迪,李昌敏,章吉良.微细加工技术,2000,2:66-69.
    [23]A C Ouano.Appl.Polym.Sci.,1983,48:42.
    [24]游余新,王东红,陈伟平.遥测遥控,1999,20(1):56-60.
    [25]Linke Jian,Yohannes M.Destaa,Jost Goetterta et al.Proc.of SPIE,2003,Vol.4979:394-401.
    [26]N.LaBianca,J.Delorme.SPIE,1995,2438:846.
    [27]M.Shaw,D.Nawrocki,R.Hurditch et al.,MicroChem Corp.
    [28]K.Lee,N.LaBianca,S.Rishton et al.,J.Vac.Sci.Technol.,1995,B13:3012.
    [29]MicroChem Corp.
    [30]A.Bertsch,H.Lorenz,P.Renaud,Sensors and Actuators,1999,A73:14.
    [1]LOPEZ-VILLEGAS J M,SAMITIER J,BAUSELLS J,et al.Study of integrated RF passive components performed using CMOS and Si micromachining technologies[J].J Micromech Microeng,1997,7:162-164.
    [2]苑伟政,马炳和.微机械与微细加工技术[M].西安:西北工业大学出版社,2000.
    [3]王冬生,王春明,胡桂珍.MEMS技术概述[J].机械设计与制造,2006(3):106-108.
    [4]FRENCH P J,GENNISSEN P T J,SARRO P M.New silicon micromachining techniques for Microsystems[J].Sensors and Actuators A,1997,62:652-662.
    [5]MESCHEDER U M,KOVACS A,KRONAST W,et al.Porous silicon as multifunctional material in MEMS[EB/OL].http://intl.ieeexplore.ieee.org/Xplore/DynWel.jsp,2003-11-27
    [6]YAN G Z,CHAN P CH,HSING I M,et al.An improved TMAH Si-etching solution without attacking exposed aluminum[EB/OL].http://intl.ieeexplore.ieee.org/Xplore/DynWel.jsp,2004,June 14.
    [7]杨岳,周兆英,等.微型机械牺牲层腐蚀技术研究.仪器仪表学报.1996,Vol.17 No.1
    [8]陈大鹏,刘刚,田扬超.电镀法制作活动微结构的牺牲层工艺[J].微细加工技术,2000(2):62-65.
    [9]姜政,丁桂甫,吴惠菁,等.微加工电化学沉积锌牺牲层工艺[J].压电与声光,2006,28(6):701-703.
    [10]XinLong Huang,Gang Liu,et al Applications of Thick Sacrificial-Layer of Zinc in LIGA Process Microsystem Technologies 2008,14:1257-1261
    [11]Zong YF et al(2004) Sacrificial adhesion promotion layers for copper metallization of device structures.LANGMUIR 20(21):9210-9216
    [12]M.D.Thouless et al(1993) J.Gupta and J.M.E.Harper,J.Mater.Res.X 1845.
    [13]L.Castoldi et al(2004) Copper-titanium thin film interaction.Microelectronic Engineering 76:153-159
    [14]S.W.Russell et al(1995) Enhanced adhesion of copper to dielectrics via titanium and chromium additions and sacrificial reactions.Thin Solid Films,Volume 262,Issues 1-2:154-167
    [15]石庚辰.引信用微机电传感器[J].探测与控制学报,2000,22(4):31-35
    [16]刘倩,石庚辰.微机电系统技术及在引信中的应用[J].现代引信,1997(3):20-26
    [17]冯鹏洲,朱继南,吴志亮.美国典型MEMS引信安全保险装置分析[J].探测与控制学报,2007,29(5):26-30
    [18]Robinson.Miniature,Planar,Inertially-Damped,Inertially-Actuated Delay Slider Actuator [P].U.S.Patant No.5705767,1998
    [1]Bai Xiaojun.Electroplating and Pollution Control[J],1993,13(2):8
    [2]Y.S.Dong,P.H.Lin,H.X.Wang,et al Electroplating preparation of Ni-Al2O3 graded composite coatings using a rotating cathode[J].Surface & Coatings Technology.2006,(200):3633-3636
    [3]Nelson HD.Rotor dynamic modeling and analysis procedures:a review[J].JSME Inter.J.Serise C,1998,41(1):1-12.
    [4]Alford J S.Protecting turbomachinery from selfexcited rotor whirl[J].ASME.Journal of Engineering for Power,1965,(5):333-334.
    [5]X.Y.Wei *,Z.G.Zhu,P.D.Prewett,et al..Fabrication of Ni-Al2O3 composite microcomponent by electroforming:Microelectronic Engineering 2007,(84) 1256-1259
    [6]R.Warren,Ceramic-Matrix Composites.Chapman and Hall,NewYork,1990.
    [7]D.Hull,An Introduction to Composite Materials,Cambridge University Press,Cambridge,1981.
    [8]D.Landolt,et al J.Electrochem.Soc.2002,149(3):S9-S20.
    [9]Y.Guo et al..Study of Hot Embossing Using Nickel and Ni-PTFE LIGA Mold Inserts.J.MEMS.2007,16(3):589-597
    [10]李永海,丁桂甫,毛海平等.电子工艺技术,2005,26(1):1-5.
    [11]杨启荣,微机电制程之精密电铸技术.
    [12]Zhang yong-hua,Ding gui-fu.Journal of transducer techology,2003,22(3):60-64.
    [13]Hsihamg Yang,Tsung-Shuin Tsai,Reiyu Chein,et al..A new electroforming technology in aid of pressure for LIGA process.Design,Test,Integration & Packaging of MEMS/NOEMS.2003,5(7):275-280
    [14]Hyde ME,Compton RG How ultrasound influences the electrodeposition of metals.J Electroanalytical Chemistry.2002,531:19-24
    [15]Kuttruff H.Ultrasonics,Fundamentals and Applications.Elsevier,New York(1991)
    [16]Kwok-Siong Teh,Yu-Ting Cheng,and Liwei Lin,et al..Nickel nanocomposite film for MEMS applications,in:Procceedings of the 12th International Conference on Solid State Sensors,Actuators and Microsystems,Boston,2003,8(12):1534-1537.
    [17]L.Chen,L.P.Wang,Z.X.Zeng,J.Y.Zhang,Mater.Sci.Eng.,A Struct.Mater.:Prop.Microstruct.Process.2006,434:319.
    [18]Yangchao Tian,Gang Liu,Yilin Hong,et.al..Proc.of SPIE,1998,3512:236-240.
    [19]P.Zhang,G.Liu,Y.Tian and X.Tian.Sensors and Actuators A,2005,118:338-341.
    [20]Y.Tian,P.Zhang,G.Liu and X.Tian.Microsyst.Technol.,2005,11:261-264.
    [21]林文松,章立赟,等.镍-纳米氧化铝复合电镀液的制备及影响因素研究.材料保护.2005,38(2):24-26
    [22]Qiuyuan Feng,Tingju Li,Zhongtao Zhang,et al Preparation of nanostructured Ni/Al2O3composite coatings in high magnetic field:Surface & Coatings Technology 2007,(201):6247-6252
    [1]Bley P,etc.The liga process for fabrication of 3D microscale structures Interdisc.Sci.Rev.18:267-271(1993)
    [2]Ehrfeld W and Lehr H.Deep X-ray lithography for the production of 3D microstructures Radiat.Phys.Chem.45(3):349-365(1995)
    [3]Michael B.Cohn,etc Microassembly technologies for MEMS SPIE 3512:2-16(1998)
    [4]Mohr J,Bley P and Wallrabe U.Microactuators fabricated by the liga process J.Micromech.Microeng.2:234-241(1992)
    [5]朱海,等 横向加速度传感器设计及特性研究 半导体学报 Vol.18 No.7(1997)
    [6]张新,等 多维加速度传感器的设计及优化 中国测试技术 Vol.33 No.3(2007)
    [7]孟美玉,等复合梁加速度计的设计 传感技术学报 Vol.21 No.3(2008)
    [8]费龙,钟先信,温志渝,等.硅微加速度传感器的现状及研究方向[J].传感器技术,1995(5):1.7.
    [9]李听欣,鲍敏杭,沈绍群.KOH溶液无掩膜腐蚀加工硅对称梁技术研究[J].半导体学报,1996,17(6):470-474.
    [10]费龙,钟先信,温志渝,等.降低硅微机械加速度传感器横向灵敏度的方法[J].光学精密工程,1995,3(1):64-68.
    [11]O kada K.Triaxial piezoelectric accelerometer.International Conference on Solid-State Sensors and Actuators,and Euro sensors Ⅸ,[J]Proceedings,1995;2 IEEE,Piscataway,NJ,USA.P 566-569.
    [12]L.M.Roglance and J.B.Angell.A batch-fabricated silicon accelerometer.IEEE Trans.Electron Devices.ED-26,1979:1911-1917.
    [13]Chr Burrer et al.Fabrication and characterization of a twin-mass accelerometer.Sensors and Actuators,A43(1994):115-119
    [14]H.Muro et al.Stress analysis of SiO2/Si bi-metal effect in silicon accelerometers and its compensation.Sensors and Actuators,A,1992(34):43-49.
    [15]H Crazzolara et al.Piezoresishve ccelerometer with overload protection and low cross-sensitivity.Sensors and Actuators,A 1993(39):201-207
    [16]Wolfgang Kuehnel.A surface micromachined silicon accelerometer with on-chip detection circuit.Sensors and Actuators,A 1995(45):7-16.
    [17]Daniel Lapadatu.A double-sided capacitive miniaturized accelerometer based on photovoltaic etch-stop technique.Sensors and Actuators,A 1996(53):261-266
    [18]J.C.Lotters.Design,fabrication and characterization of a highly symmetrical capacitive triaxial accelerometer.Sensors and Actuators,A 1998(66):205-212
    [19]K H -L Chau.An integrated force-balanced capacitive accelerometer for low-g applications. Sensors and Actuators,A 1996(54):472-476
    [20]Integrated silicon PI-FET accelerometer with proof mass,Sensors and Actuators,A 1984:119-126
    [21]Y Nemirovsky.Design of a novel thin-film piezoelectric accelerometer.Sensors and Actuators,A 1996(56):239-249
    [22]L Rustic,et al.Sensor Technology and Devices.Artech House,Boston,1994:377-455.
    [23]R Doll.A bright future for thick film sensor.SAE Conf 1989,Detroit,MI,USA Feb 27-Mar 1982
    [24]D W Bums.Sealed-cavity resonant microbeam accelerometer.Sensors and Actuators A 1996(53):249-255
    [25]U A Dauderstadat.Temperature dependence and drift of a thermal accelerometer.Sensors and Actuators,A 1998(66):244-249
    [26]Ebrahim Abbaspour-Saru.A wide linear optical accelerometer.Sensors and Actuators,A 1995(49):149-154.
    [27]Jerzy Kalenik,A cantilever optical-fiber accelerometer,Sensors and Actuators,A68(1998) pp.350-355
    [28]Abbaspour-Sam.A linear electromagnetic accelerometer.Sensors and Actuators,A 1994(44):103-109.
    [29]Howard K Rockstak.A miniature,high-sensitivity,electron tunneling accelerometer.Sensors and Actuators,A 1996(53):227-231
    [30]P.P.Fastykovsy.Accelerometer based on metal-silicon dislocation diode structure.Sensors and Actuators,A 1998(67):65-67.
    [31]DAVIES B R,MONTAGUE S.High-g accelerometer for earth-penetrator weapons application[R].Sandia Report,Sand98-0510·UC2810.
    [32]ATWELL A R,OKOJIE R S.Simulation,fabrication and testing of bulk micro-machined 6H-SiC high-g piezo-resistive accelerometers[J].Sensors and Actuators,2003,A 104:11-18.
    [33]刘君华.智能传感器系统[M].陕西:西安电子科技大学出版社,1999.
    [34]NING Y B,LOKE Y,MCKINNON G.Fabrication and characterization of high-g-force,silicon piezo-resistive accelerometers[J].Sensors and Actuators,1995,A48:55-61.
    [35]http://www.analog.com
    [36]Wolf D.Frobenius,Samuel A.Zeitman,Marvin H.White,David D.O' Sullivan and Richard G.Hamel.Microminiature ganged threshold accelerometers compatible with integrated circuit technology.IEEE Trans.Electron Devices,VOL.ED-19,No.1,January 1972.
    [37]Y Loke,G.H.McKinnon and M.J.Brett.Fabrication and characterization of silicon micromachined threshold accelerometers.Sensor andActuators,A 1991(29):235-240.
    [38]J.Noerzel,T.Nonnesen and W.Bencke.Quasianalog accelerometer using microswitch array.Sensors and Actuators,A 1996(54):574-578
    [39]T.Nonnesen,O Ludtke and J Noetzel.Simulation,design and fabrication of electroplated acceleration switches,J.Micormech.Microeng.1997(7):237-239.
    [40]M.Wycisk,T.Nonnesen and J.Binder.Low-cost post-MEMS integaration of electrosplated microstructures for inertial sensing.Sensors and Actuators,A 2000(83):93-100
    [41]Sven Michalis,Hans-jorg Timme and Michael Wycisk.Adiditive electroplating technology as a post CMOS process for the production of MEMS acceleration-threshold switches for transportation applications.J.Micormech.Microeng.2000(10):120-123
    [42]Jeung Sang Go,Young-Ho Cho and Byung Man Kwak.Sanpping microswitches with adjustable acceleration threshold,Sensors and Actuators,A 1996(83):579-583
    [43]Jeung Sang Go,Young-Ho Cho and Byung Man Kwak.Acceleration Microswitches with adjustable snapping threshold.Transducers'95,Stockholm,Sweden,Jun,1995:25-29
    [44]Arjun Selvakumar,Navid Yazdi and Khalil Najafi.A wide-range micromachined threshold accelerometer array and interface circuit,J.Micormech.Microeng.2001(11):118-125
    [45]A.Selvakumar,N.Yazdi and K.Najafi,Low power,wide range threshold acceleration sensing system,IEEE,1996:186-191
    [46]Tadao Mastsunaga and Masayoshi Esashi.Acceleration switch with extended holding time using squeeze film effect for side airbag systems.Sensors and Actuators,A 2002(100):10-17
    [47]Shamus McNamara and Yogesh B.Gianchandani.LIGA fabricated 19-element threshold accelerometer array.Sensors and Actuators,A 2004(112):175-183
    [48]Wei Ma,Gang Li and Yitshak Zohar.Fabrication and packaging of inertia micro-switch using low-temperature photo-resist molded metal-electroplating technology.Sensors and Actuators,A 2005(111):63-70
    [49]Wei Ma,Yitshak Zohar and Man Wong.Design and characterization of inertia-activated electrical micro-switches fabricated and packaged using low-temperature photo-resist molded metal-electroplating technology.J.Micormech.Microeng.2003(I3):892-899
    [50]Tas N,Sonnenberg T,Jansen H,Legtenberg R and Elwenspoek M.Stiction in surface micromachining,J.Micromech.Microeng.1996(6):385-97
    [51]Mengjun Jia,Xinxin Li,Zhaohui Song,Minhang Bao,Yuelin Wang and Heng Yang,Micro-cantilever shocking-acceleration switches with threshold adjusting and‘on’-state latching functions,J.Micromech.Microeng.2007,(17):567-575
    [52]陈光焱,等硅微加速度传感器的对称梁岛结构设计.信息与电子工程,2003,1(1):64-67
    [53]陈光焱,等准LIGA微加速度开关的研制.微纳电子技术,2003,7:312-316
    [54]陈光焱,等微机械G开关的研制.传感器技术,2005,24(6):82-84
    [1]张俊峰 RF MEMS技术在毫米波探测系统中的应用 现代雷达 Vol.29,No.8(2008)
    [2]付佳辉 微机械传输线的毫米波应用 电子器件 Vol.26,No.2(2003)
    [3]常军 毫米波末制导技术的应用及发展趋势 电讯技术 Vol.48,No.3(2008)
    [4]Y.W.Kang,etc The Design and Fabrication of a Millimeter Wave Linear Accelerator(APS)
    [5]J.J.Song,etc LIGA FABRICATION OF mm-WAVE ACCELERATING CAVITY STRUCTURES AT THE ADVANCED PHOTON SOURCE(APS)
    [6]Y.W.Kang,et.al.,A mm-Wave Planar Microcavity Structure for Electron Linear Accelerator System,Proc.of the 1993 IEEE Particle Accelerator Conference,Vol.1,pp.549-551,1993.
    [7]P.M.Lapostolle,A.L.Septier ed.,Linear Accelerators,Chapter B.1.1,North Holland Publishing Co.,1970.
    [8]R.Merte,H.Henke and R.Apel DESIGN,FABRICATION AND RF MEASUREMENT OF A MM-WAVE ACCELERATING STRUCTURE Internal Note,Inst.f.Theoretische Elektrotechnik,TU-Berlin.
    [9]Bley P.The liga process for fabrication of 3D microscale structures Interdisc.Sci.Rev.18:267-271(1993)
    [10]Ehrfeld W and Lehr H.Deep X-ray lithography for the production of 3D microstructures Radiat.Phys.Chem.45(3):349-365(1995)
    [11]Michael B.Cohn,etc.Microassembly technologies for MEMS SPIE 3512:2-16(1998)
    [12]Mohr J,Bley P and Wallrabe U.Microactuators fabricated by the liga process J.Micromech.Microeng.2:234-241(1992)
    [13]Young-Min Shin,etc Microfabrication of millimeter wave vacuum electron devices by two-step deep-etch x-ray lithography APL88,091916(2006)
    [14]朱学林 微流控芯片透光性基底SU8曝光工艺 功能材料与器件学报 Vol.114,No.12(2008)
    [15]曾华梁 电镀工艺手册 机械工业出版社 ISBN:7-111-05549-7(1997)
    [16]MicroChem Corp.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700