用户名: 密码: 验证码:
毒热平注射液抗流感病毒作用及免疫调控机制的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
实验目的:
     流感是流感病毒引起的急性呼吸道传染病,好发于冬、春季节。尤其是甲型流感病毒,由于其极易产生变异,制备有效的疫苗困难重重,而针对流感病毒感染的西药既有较强的毒副作用,又容易诱导病毒产生耐药性。这种现状下,在我国的中医药宝库中寻找有效药物、创造新型药剂来防治流感就成为一项很有意义的研究工作。
     毒热平注射液是由黄芩、栀子、灯盏花、猪胆粉等四味药物组成的中药复方制剂,根据中医理论“毒损肺络”病机理论配伍研制而成,具有清热燥湿、凉血解毒、活血通络的功效。本实验采用流感病毒亚甲型鼠肺适应株(FM_1)感染小鼠作为模型,观察毒热平注射液对FM1不同时相感染小鼠的抗病毒作用及其对免疫功能的影响,以天然免疫中重要的模式识别受体Toll样受体为切入点,探讨其抗病毒作用及免疫调节作用的分子机制,为毒热平注射液的临床应用提供理论依据。
     实验方法:
     1.毒热平注射液对FM_1感染小鼠死亡保护率的影响
     将ICR小鼠随机分为七组:正常组、模型组、利巴韦林组、双黄连组、毒热平注射液大、中、小剂量组,以4LD50的流感病毒液滴鼻感染小鼠造模,0.05mL/只,正常组以生理盐水滴鼻对照。造模后当日腹腔注射给药,每天1次,连续7天;正常组和模型组小鼠注射生理盐水对照。自造模当日起连续观察14天,计算各组死亡率及平均生活日。
     2.毒热平注射液对FM1不同时相感染小鼠肺损伤及病毒增殖的影响
     将ICR小鼠随机分为七组:正常组、模型组、利巴韦林组、痰热清组、毒热平注射液大、中、小剂量组,以4LD50的流感病毒液滴鼻感染小鼠造模,0.05mL/只,正常组以生理盐水滴鼻对照。造模后当日腹腔注射给药,每天1次;正常组和模型组小鼠注射生理盐水对照。按照要求在不同时间点处死小鼠,摘取肺脏,计算肺指数,同时各组取肺组织分别进行固定和匀浆,作病理形态学检测和肺组织中病毒滴度的检测。
     3.毒热平注射液对FM1不同时相感染小鼠免疫功能的影响
     动物分组、造模、给药方法同上。按照要求在不同时间点处死小鼠,无菌取脾脏做脾脏T、B淋巴细胞增殖活性的检测,采用MTT法;摘取小鼠肺脏进行匀浆,和小鼠血清一起用ELISA试剂盒检测炎症因子TNF-α、IFN-β、IFN-γ、IL-4、IL-12以及趋化因子IL-8、MIP-2、RANTES、IP-10等的含量。
     4.毒热平注射液对FM1病毒感染小鼠免疫调控分子机制的研究
     动物分组、造模、给药方法同上。按照要求在不同时间点处死小鼠,冰浴条件下无菌迅速摘取小鼠肺脏,置于无RNase EP管中,立即投入液氮中冷冻。每组取5个肺组织。用PCR法检测肺组织中TLR3及PKR mRNA的表达,用Western-blot法检测TLR3及PKR蛋白的表达。
     实验结果:
     1.毒热平注射液对FM_1感染小鼠死亡保护率的影响
     模型组的死亡率为75%,平均生存时间为8.69d。毒热平注射液中剂量组死亡率为36.3%,与模型组比较,经x~2检验差异显著,P<0.05;毒热平注射液大剂量组平均生存时间为10.8d,与模型组比较P<0.05;毒热平中剂量组平均生存时间为11.81d,与模型组比较P<0.01。
     2.毒热平注射液对FM1不同时相感染小鼠肺损伤及病毒增殖的影响
     2.1在不同时间点观察受试动物,可见正常组小鼠体重稳步上升,模型组小鼠的体重在三个时间点表现出先增加再下降的趋势,且均显著低于正常组。用药组中,利巴韦林组体重逐渐增加,痰热清组及毒热平各剂量组趋势同模型组。在每个时间点上,造模72h后,与模型组比较,发现毒热平中剂量组有明显差异,P<0.05;造模120h后,毒热平小、中剂量组与模型组比较有明显差异,P<0.05或P<0.01。
     2.2在不同时间点观察受试动物,可见模型组及各用药组的肺指数均呈现逐步升高的趋势。在每个时间点上,造模72h后,与模型组比较,利巴韦林组肺指数有显著性差异,P<0.01;毒热平中、大剂量组有明显差异,P<0.05;造模120h后,与模型组比较,发现利巴韦林组肺指数有极为显著性差异,P<0.001;毒热平中剂量组有明显差异,P<0.05。
     2.3在不同时间点观察受试动物,可见模型组及各用药组肺组织中病毒滴度呈现逐步上升的趋势。感染120h后,与模型组相比,利巴韦林对肺脏中的病毒杀伤效果最明显,P<0.001;毒热平注射液中剂量组对肺脏中的病毒亦有明显杀伤作用,P<0.01,其余用药组与模型组比较无差异。
     2.4 HE染色光镜观察正常组小鼠肺泡结构完整清晰,腔内未见渗出。模型组造模24h可见弥漫性肺泡壁增厚,肺泡壁血管扩张充血,有少量单个核细胞浸润,部分肺泡有少量出血。造模72h后可见弥漫性肺泡壁增厚,部分区域较前次显著增厚,有明显单个核细胞浸润。造模120h后可见支气管管腔内有出血及炎性渗出,支气管周围有多量淋巴细胞浸润;弥漫性肺泡壁增厚,局灶性肺泡实变。各用药组病变明显减轻,但随时间变化而病变均逐渐加重。利巴韦林120h组仍只见轻度病变;痰热清组、毒热平大、中、小剂量组病变均呈进行性加重,但均轻于同时期模型组。
     3.毒热平注射液对FM1不同时相感染小鼠免疫功能的影响
     3.1不同时间点观察受试动物,可见模型组脾脏T、B淋巴细胞增殖活性随时间变化呈现逐渐下降的趋势,造模后小鼠的T细胞增殖活性比B细胞增殖活性抑制更为明显。在三个时间点,模型组T细胞的增殖活性均明显受抑,P<0.001,各用药组对其均有不同程度的恢复;造模24h后可见除利巴韦林组外的各中药组还表现出免疫促进的作用,与正常组相比显著增高,P<0.001。造模72h后和120h,各用药组对小鼠的免疫抑制也有了不同程度的恢复,与模型组相比P<0.001~P<0.05,但均未恢复到正常组水平。各组B细胞增殖活性变化与T细胞近似,但变化程度较为缓和。
     3.2不同时间点检测各组动物血清及肺匀浆中的细胞因子,可见模型组除IL-4水平随时间变化逐渐降低外,TNF-α、IFN-β、IFN-γ、IL-12以及趋化因子IL-8、MIP-2、RANTES、IP-10均呈现逐渐升高的趋势。各用药组对其有不同程度的干预作用。总体来说,相比而言,对各细胞因子的干预效果,痰热清组>利巴韦林组>毒热平大剂量组>毒热平中剂量组,毒热平小剂量组一般来说效果较差。
     4.毒热平注射液对FM1病毒感染小鼠免疫调控分子机制的研究
     与正常组相比,模型组小鼠不同时相感染FM1后对肺组织中TLR3及PKR mRNA及蛋白的表达水平造成了不同程度的增高,药物亦发挥了不同程度的干预作用。总体而言,TLR3及PKR mRNA及蛋白的表达水平随时间变化呈现先升高(72h)、后下降(120h)的趋势,除毒热平小剂量组外,其他各用药组均可抑制其升高的水平,与模型组相比,P<0.01或P<0.05,但均不能恢复到正常组水平。
     结论
     1.毒热平注射液具有抗病毒作用
     通过观察药物对肺脏中病毒滴度的影响发现,毒热平注射液中剂量组可明显抑制肺脏中病毒的增殖,具有一定的抗病毒作用。
     2.毒热平注射液对FM_1感染小鼠的死亡和肺组织损伤具有保护和改善作用:
     毒热平注射液中剂量组可明显降低FM1感染小鼠的死亡率,降低肺指数,改善肺脏病理变化,对FM_1感染小鼠的死亡和病毒引起的肺组织损伤具有保护作用。
     3.毒热平注射液对FM_1感染小鼠免疫功能具有调节作用:
     3.1流感病毒FM_1感染小鼠后,对脾脏T、B淋巴细胞的增殖活性具有明显的抑制作用,而毒热平注射液可对其有明显的恢复作用。
     3.2毒热平注射液对FM_1感染小鼠血清及肺组织匀浆中细胞因子水平具有调节作用,可显著升高因病毒感染引起的IL-4下调以及抑制其他细胞因子和趋化因子的上调,减轻炎性病理损伤,进而恢复机体免疫功能的稳定和平衡,并帮助机体抵御病毒的侵害作用。
     4.毒热平注射液可通过调节肺组织中TLR3和PKR的表达水平来发挥免疫调节作用。
OBJECTIVE
     Influenza is a kind of acute respiratory infectious diseases caused by influenza virus, which usually occurs in the winter and spring.Preparing an effective vaccine for the influenza A virus is difficult because of its mutable feature.And the anti-influenza western medicines have strong side effects and easy induction of drug resistance.Under the status quo, to find effective anti-influenza drugs and new preparations has become a very meaningful research in Chinese medicine.
     Dureping Injection is a Chinese medicine compound preparation,The sub-type of influenza virus strain,FM1,was used in this experiment as a pathogenic factor in mice.And the mice were used as a model to observe the antiviral activity and its effect on immune function of Dureping Injection.
     METHODS
     1.ICR mice were inoculated intranasally with FM_1,then treated with Dureping Injection for 7 days.The effect of Dureping Injection on the life protection and mean life day of FM1-infected mice after 14 days inoculation was observed.Normal group,Ribavirin Injection group and Shuanghuanglian Injection group were as control groups.
     2.ICR mice were inoculated intranasally with FM_1,then treated with Dureping Injection for 1,3 and 5 days.At each timepoints,tested mice were sacrificed and the body weight and lung indexes were analysed;then lungs were fixed in formalin,routinely processed,and embedded in paraffin.Routine HE stained sections were examined.The lung homogenate was tested for virus titer in it.
     3.Animal grouping model,drug delivery methods Ibid.In accordance with the requirements,the mice were killed at different timepoints,the spleen T,B lymphocyte proliferation activity was detected with MTT method;ELISA kits were used with detection of cytokines,TNF-α,IFN-β,IFN-γ,IL-4,IL-12 and the chemokines IL-8,MIP-2,RANTES, IP-10 and so on,in the lung homogenate and serum of mice.
     4.Animal grouping model,drug delivery methods Ibid.In accordance with the requirements,the mice were killed at different timepoints.TLR3 and PKR mRNA expression in lung tissues was Detected by PCR,and TLR3 and PKR protein expression in lung tissues was Detected by the Western-blot assay.
     RESULTS
     1.As Model group,the mortality rate was 75%,the average survival time was 8.69d. The mortality rate of the medium-dose Injection group of Dureping was 36.3%,compared with the model group,the significant difference x~2 test,P<0.05;Dureping Injection of high-dose group the average survival time was 10.8d,compared with the model group P< 0.05;Dureping Injection of medium-dose group the average survival time was 11.81d, compared with the model group P<0.01.
     2.Observed in animal subjects at different timepoints,the normal mice can be seen a steady increase in body weight,body weight of mice in model group at three timepoints showed the first increase in a downward trend again,and were significantly lower than the normal group.As the drug groups,a gradual increase in body weight was observed in ribavirin group,while the same trend in every Dureping group and Tanreqing was seen compared with the model group.At each timepoint,72h after modeling,compared with the model group and found the body weight is significant differences in medium-dose group,P<0.05;model 120h,the Dureping injection small,medium-dose group compared with the model group significant difference,P<0.05 or P<0.01.
     Observed in animal subjects at different timepoints,we can see the model group and treatment group showed the lung index gradually increased trend.At each timepoint,72h after modeling,compared with the model group,the lung index ribavirin group were significantly different,P<0.01;Dureping injection high,dose group,significant difference,P<0.05;72h after modeling,compared with the model group,found that lung index ribavirin group extremely significant difference,P<0.001;Dureping injection medium-dose group compared with the model group significant difference,P<0.05.
     Observed in animal subjects at different timepoints,we can see the model group and treatment group in the virus titer of lung tissue showed a gradual upward trend.120h after infection,compared with the model group,the virus titer in the lungs of ribavirin has extremely significant difference,P<0.001;Dureping injection medium-dose group has also shown clear signs of antiviral effect,P<0.01,and the remaining treatment group compared with the model group is no difference.
     HE staining under light microscope to observe the normal mice clear alveolar structural integrity,no exudation cavity.After 24h,Model group can be seen diffuse alveolar wall thickening,dilatation of alveolar wall congestion,a small amount of infiltration of mononuclear cells,some alveolar bleeding.Model can be seen after 72h diffuse alveolar wall thickening,and some regions significant thickening than previous states,marked infiltration of mononuclear cells also can be seen.120h after modeling we can see that there is bleeding bronchial lumen and inflammatory exudate,the volume of lymphocytic infiltration around the bronchia;diffuse alveolar wall thickening,focal alveolar consolidation.The treatment group lesions decreased,but changes gradually increase over time.120h after infection,ribavirin group is still only mild disease;Tanreqing group,Dureping large,medium and small dose group showed a progressive increase lesion,but are lighter than the same period of the model group.
     3.Observation of subjects at different timepoints,animals,shows that the model group of spleen T,B lymphocyte proliferation activity gradually showed a downward trend over time,after modeling,T cell proliferation activity than the B cell proliferation inhibition activity becomes more apparent.In the three timepoints,Tcell proliferation activity of model group was significantly inhibited,P<0.001,the treatment groups recover in varying degrees; after 24h,the various traditional Chinese medicine preparations were shown as immunization accelerate,compared with the normal group,significantly higher,P<0.001.72h and 120h after modeling,the treatment group of mice with immune suppression are also different levels of the restoration,120h each group is stronger than 72h.Compared with model group,P<0.001~P<0.05,but not the resumption of the level of the normal group.B cell proliferation of each group is similar to T cell,but to some extent,rather unconspicuous.
     At different timepoints the serum and lung homogenate cytokines in each group of animals were detected.It can be seen in addition to IL-4 level decreased over time,TNF-α, IFN-β,IFN-γ,IL-12 and more factor IL-8,MIP-2,RANTES,IP-10 showed a gradual rise in model group.The treatment group may have different levels of intervention effect.Generally speaking,the comparison of the effect of cytokine intervention,Tanreqing Group>ribavirin group>Dureping high-dose drug group>medium-dose group,in general to small-dose group, less effective.
     4.Compared with normal group,TLR3 and PKR mRNA and protein expression in the lung tissue of model group mice displayed varying degrees of increase at different time after infection.Drugs played a role in different levels of intervention.Overall,TLR3 and PKR mRNA and protein expression levels change over time increased at first(72h),and then decreased(120h) of the trend.With the exception of Dureping small-dose group,the other groups display a higher level compared with the model group,P<0.01 or P<0.05,but can not be recovered to normal level.
     CONCLUSION
     1.Through the observation of the effects on the virus titer of the lungs,we find that of Dureping Injection medium-dose group could inhibit the proliferation of virus in the lungs, which displayed a certain degree of antiviral activity.
     2.Dureping Injection medium-dose group can significantly reduce mortality in mice infected with FM1,reduce lung index,improve the pathological changes in the lungs of infected mice.It is proved that Dureping Injection can protect the death and injury of the lung tissue caused by FM1 virus infection.
     3.Dureping Injection group can significantly recovered the inhibited proliferation of spleen T/B lymphocyte caused by FM1 virus infection.It can also recover the changes of cytokines level in the serum and lung tissue homogenate caused by FM1 virus infection.It can increase the reduction of IL-4 and down-regulate other cytokines and chemokines due to virus infection.It can alleviate pathology of inflammatory injury,recover immune function and thus the stability and balance,and to help the body to resist against the virus.
     4.Dureping Injection play a role in immune regulation by regulating the expression levels of TLR3 and PKR mRNA and their protein in lung tissues.
引文
[1]Osterhans A D,Rimmelzwaan G F,Martina B E,et al.Influenza B virus in seals[J].Science.2000,288(5468):1051-1053.
    [2]Guo Y J,Jin F G,Wan G P,et al.Isolation of influenza C vires from pigs and experimental infection of pigs with influenza C vires[J].J Gen Virol,1983.64(Pt1):177-182.
    [3]Suzuki Y.Receptor sialylsugar chains as determinant s of host range of influenza viruses[J].Nippon Rinsho,2000,58(11):2206-2210.
    [4]Matrosovich MN,Matrosovich TY,Gray T,et al.Human and avian influenza viruses target different cell types in cultures of human airway epithelium[J].Proc Natl Acad Sci U S A.2004,101(13):4620-4624.
    [5]Kim JA,Ryu SY,Seo SH.Cells in the respiratory and intestinal tracts of chickens have different proportions of both human and avian influenza vires receptors[J].J Microbiol.2005,43(4):366-369.
    [6]Kida H,Ito T,Yasuda J,Shimizu Y,et al.Potential for transmission of avian influenza viruses to pigs[J].J Gen Virol.1994,75(Pt 9):2183-2188.
    [7]Ito T,Couceiro JN,Kelm S,et al.Molecular basis for the generation in pigs of influenza A viruses with pandemic potential[J].J Virol.1998,72(9):7367-7373.
    [8]Peiris JS,Guan Y,Markwell D,et al.Cocirculation of avian H9N2 and contemporary “human” H3N2 influenza A viruses in pigs in southeastern China:potential for genetic reassortment[J]? J Virol.2001,75(20):9679-9686.
    [9]Wan H,Perez DR.Quail carry sialic acid receptors compatible with binding of avian and human influenza viruses[J].Virology.2006,346(2):278-286.
    [10]Haque ME,Koppaka V,Axelsen PH,et al.Properties and structures of the influenza and HIV fusion peptides on lipid membranes:implications for a role in fusion[J].Biophys J.2005,89(5):3183-3194.
    [11]Wagner R,Herwig A,Azzouz N,et al.Acylation-mediated membrane anchoring of avian influenza virus hemagglutinin is essential for fusion pore formation and virus infectivity[J]J Virol.2005,79(10):6449-6458.
    [12]PortelaA,ZurcherT,NietoA,etal.Adv Virus Res,1999;54(1)319-348.
    [13]HuangX,IAuT,MullerJ,etal.Virology,2001;287(2)405-416.
    [14]Matrosovich MN,Matrosovich TY,Gray T,et al.Neuraminidase is important for the initiation of influenza virus infection in human airway epithelium[J].J Virol.2004,78(22):12665-12667.
    [15]Garman E,Laver G.Controlling influenza by inhibiting the virus's neuraminidase[J].Curr Drug Targets.2004,5(2):119-136.
    [16]Stark GR,Kerr IM,Williams BR,et al.How cells respond to interferons.Annu RevBiochem,1998;67:227-264
    [17]Eamshaw WC,Martins LM,Kaufinann SH.Mammalian caspases:structure,activation,substrates,and functions during apoptosis.Annu Rev Biochem,1999;68:383-424
    [18]Lin C,Holland RE Jr,Donofrio JC,et al.Caspase activation in equine influenza virus induced apoptotic cell death[J].Vet Microbial,2002;84(4):357-365
    [19]Balachandran S,Roberts PC,Kipperman T,etal.Alpha/beta interferons potentiate virus-induced apoptosis through activation of the FADD/Caspase-8 death signaling pathway[J].J Virol,2000;74(3):1513-1523
    [20]Takizawa T,Fukuda R,Miyawaki T,et al.Activation of the apoptotic Fas antigen-encoding gene upon influenza virus infection involving spontaneously produced beta-interferon[J].Virology.1995,209(2):288-296.
    [21]Transcription stimulation of the Fas-encoding gene by nuclear factor for interleukin-6 expression upon influenza virus infection[J].Wada N,Matsumura M,Ohba Y,et al.J Biol Chem.1995,270(30):18007-18012.
    [22]Possible involvement of double-stranded RNA-activated protein kinase in cell death by influenza virus infection[J].Takizawa T,Ohashi K,Nakanishi Y.J Virol.1996,70(11):8128-8132.
    [23]Michelson S,Alcami J,Kim SJ,et al.Human cytomegalovirus infection induces transcription and secretion of transforming growth factor beta 1[J].J Virol.1994, 68(9):5730-5737.
    [24]Role for carbohydrate structures in TGF-beta 1 latency[J].Miyazono K,Heldin CH.Nature.1989,338(6211):158-160.
    [25]Schultz-Cherry S,Hinshaw VS.Influenza virus neuraminidase activates latent transforming growth factor beta[J].J Virol.1996 Dec;70(12):8624-8629.
    [26]Lamb,R.A.,and Krug,R.M.(1996)Orthomyxoviridae:The Viruses and Their Replication.In Fields Virology Ed.(B.N.Fields,D.M.Knipe,and P.M.Howley,Eds.),pp.1353-1397.Lippincott-Raven,Philadelphia.
    [27]Stacey Schultz-Cherry,Robert M.Krug,Virginia S.Hinshaw.Induction of Apoptosis by Influenza Virus[J].Seminars in VIROLOGY 8,491-495 (1998)
    [28]J aneway J C A,Medzhitov R.Innate immune recognition [J].Annu Rev Immunol,2002,20:197-216.
    [29]Beutler B,Jiang Z,Georgel P,et al.Genetic analysis of host resistance:Toll-likereceptor signaling and immunity at large [J].Annu Rev Immunol,2006,24:353-389.
    [30]Miyake K.Innate recognition of lipopolysaccharide by Toll-like receptor 42MD22 [J].Trends Microbiol,2004,12 (4):186-192.
    [31]Sareneva T,Matikainen S,Kurimoto M,et al.Influenza A virus-induced IFN-alpha/beta and IL-18 synergistically enhance IFN-gamma gene expression in human T cells[J].J Immunol,1998;160(20):6032-6038
    [32]Biron C.Initial and innate responses to viral infections—pattern setting in immunity or disease[J].CurrOpin Microbiol,1999;2(4):374-381
    [33]Santini SM.LapentaC,Logozzi M,etal.Type I interferon as a powerful adjuvant for monocyte-derived dendritic cell development and activity in vitro and in Hu-PBL-SCID mice[J].J Exp Med 2000;191(5):1777-1788
    [34]Matikainen S,Pirhonen J,Govenius—Vintola C,et al.Influenza A and sendai viruses induce differential chemokine gene expression and transcription factor activation in human macrophages[J].Virology,2002;276(1):138-147
    [35]Hilleman MR.Overview of the needs and realities for developing new and improved vaccines in the 21st century[J].Intervirology.2002;45(4-6):199-211.Review.
    [36]Wutzler P,Volge PG.Neuraminidase inhibitors in the treatment of influenza A and B—Overview and case report [J],infection,2000,28(5):261-266
    [37]Matrosovich M,Klenk HD.Natural and synthetic sialic acid-containing inhibitors of influenza virus receptor binding [J].Rev Med Virol,2003,13(2):85-97
    [38]Diggory P,Fernandez C,Humphrey A,et al.Comparison of elderly people's technique inusing two dry powder inhalers to deliver zanamivir:randomized controlled trial [J].BMJ,2001,322(7286):577-579.
    [39]Matrosovich M,Klenk HD.Natural and synthetic sialic acid-containing inhibitors ofinfluenza virus receptor binding [J].Rev Med Virol,2003,13(2):85-97.
    [40]Yoshimoto J,Kakui M,Iwasaki H,et al.Identification of a novel HA conformational change inhibitor of human influenza virus [J].Arch Virol,1999,144(5):865-878.[41]Ge Q,Eisen HN,Chen J,Use of siRNAs to prevent and treat influenza virus infection[J].Virus Res,2004,102(1):37~42
    [42]Bertrand JR,Pottier M,Vekris A,et al.Comparison of antisense oligonucleotides and siRNAs in cell culture and in vivo[J].Biochem Biophys Res Commun,2002,296(4):1000~1004
    [1]段钦权,张秀君.用风温的辨证方法治疗流感的临床体会[J].黑龙江中医药,1996,(1):21-23
    [2]李际强,张春学,胡溪柳等.升降散抗小鼠流感病毒性肺炎的实验研究[J].实用中医内科杂志,2004,18(1):28-29
    [3]苑秀华,刘波.荆防银翘汤治疗冬季流感120例[J].实用中医内科杂志,2003,17(1):191
    [4]冯崇廉.自拟清解汤治疗夏季流行性感冒[J].实用中医内科杂志,1999,13(3):12
    [5]侯一军.中药“双解汤”治疗冬季流感的临床观察[J].北京中医杂志,2002,21(4):231
    [6]俞虹.柴葛清透汤治疗小儿流感疗效观察[J].天津中医,1997,14(6):266
    [7]赵文明,郑群,刘振龙等.儿茶提取物抗甲型流感病毒作用的实验研究[J].首都医科大学学报,2005,26(2):167-169
    [8]梁荣感,罗伟生,李利亚等.大黄蒽醌类化合物体外抗流感病毒作用的研究[J].华夏医学,2006,19(3):396-398
    [9]奚小土,罗翌,李际强等.柴莪退热栓抗病毒实验研究[J].中医药学刊,2005,23(3):523,528
    [10]宫晓燕,曲晓波,王泽玉等.扶正除疫颗粒对感染流感病毒小鼠的保护作用[J].中药新药与临床药理,2006,17(3):184-185
    [11]Song JM,Lee KH,Seong BL.Antiviral Effect of Catechins in Green Tea Influenza Virus[J].AntivirRes,2005,68(2):66-74
    [12]彭慧琴,蔡卫民,项哨。茶多酚体外抗流感病毒A3的作用[J].茶叶科学,2003,23(1):79-81
    [13]方晶.溶栓治疗的急性脑血栓动物模型新进展[J],国外医学老年医学分册,2003,24(6):267-270
    [14]徐丽华,黄芳,陈婷等.板蓝根中的抗病毒活性成分[J].中国天然药物,2005,3(6):359-360.
    [15]杨志强.板蓝根提取物抗病毒机制的研究[J].中外健康文摘(医药月刊),2007,4(9):94-95
    [16]胡兴昌,郑伟强.板蓝根粗提液抑制流感病毒的实验研究[J].上海师范大学学报,2003,32(1):62-65
    [17]陈百泉,李百成.板蓝根含片的抗病毒作用研究[J].河南大学学报,2006,25(4):67-69
    [18]金明哲,任东鲜,孟繁平等.板蓝根对机体免疫功能及流感病毒FM1的作用[J].时珍国医国药,2007,18(2):394-396
    [19]刘剑,李晓眠,江勇.板蓝根提取物抗甲1型流感病毒鼠肺适应株作用的研究[J].现代中西医结合杂志2008,17(9):1303-1304,1307
    [20]杨海霞,李晓眠.板蓝根提取液体内抗流感病毒作用的研究[J].天津医科大学学报,2007,13(1):19-22
    [21]罗凡,侯炜,杨占秋等.草血竭抗流感病毒的研究[J].武汉大学学报(医学版),2006,27(1): 72-74
    [22]夏泉,黄赵刚,李绍平等.莪术油抗流感病毒和呼吸道合胞病毒作用的实验研究[J].中国药理学通报,2004,20(3):357-358
    [23]叶寿山,盛晓蓉,王萍等.莪术油软胶囊抗病毒作用研究[J].中药药理与临床2005,21(3):20-23
    [24]闫琪,孙非,刘建伟等.莪术油抑制呼吸道病毒感染有效浓度的研究[J].中国老年学杂志,2004,24(3):267-268
    [25]黄亚东,项琪,姚崇舜等.莪术油喷雾剂的研制及抗病毒作用的实验研究[J].中药材,2007,30(3):342-345
    [26]U tsunomiya T,Kobayashi M,Pollard R B,et al.Glycyrrhizin,an active component of licorice roots,reduces morbidity and mortality of mice infected with lethal does of influenza virus[J].Antimicrob A gents chem other,1997,41(3):551-556
    [27]谢志平,李洪源,岳晓宏等.甘草抗病毒有效部位体外抗副流感病毒(Ⅲ型)作用的研究中医药信息 2007,24(3):37-39
    [28]陈建新,邱灵才,方炳虎等.甘草酸单铵盐对H9N2禽流感病毒的作用机制研究[J].中草药,2008,39(6):896-899
    [29]潘曌曌,王雪峰,闫丽娟等.金银花提取物体外抗甲型流感病毒FM1株的研究[J].中国中医药信息杂志,2007,14(6):37-38,51
    [30]Nagai T,Morisuchi R,Suzuki Y,et al.Mode of action of the anti-influenza virusactivity of plant flavon(5,7,4-trihydroxy-8-methoxyflavone),from the roots of Scutellaria baicalensls[J].Antiviral Res,1995,26(1):11
    [31]赵铁华,陈四平,杨鹤松等.黄芩茎叶活性部位抗病毒作用的研究[J].中国药科大学学报,2006,37(6):544-547
    [32]高阳,董雪,康廷国等.牛蒡苷元体外抗流感病毒活性[J].中草药,2002,33(8):724.
    [33]王雪峰,潘曌曌,闫丽娟等.牛蒡子提取物体外抗甲型流感病毒FM1株的实验研究[J].中医研究,2007,20(6):18-21
    [34]符林春,徐培平,刘妮等.牛蒡子苷元复方抗流感病毒的实验研究[J].中药新药与临床药理,2008,19(4):266-269
    [35]任爱农,王志刚,卢振初,等.野菊花抑菌和抗病毒作用的实验研究[J].药物生物技术,1999,6(4):241-244.
    [36]马振亚.连翘种子挥发油抗流感病毒等病原微生物作用的实验研究[J].陕西新医药,1980,9(11):51
    [37]马振亚.连翘种子挥发油对流感病毒小鼠的保护作用和葡萄球菌在家兔血液中消长的影响[J].陕西新医药,1986,1(4):16
    [38]潘曌曌,王雪峰,岳志军等.金银花、连翘配伍提取物体外抗甲型流感病毒FM1株的实验研究[J].甘肃中医学院学报 2007,24(2):5-8
    [39]胡克杰,徐凯建,王跃红等.连翘酯甙体外抗病毒作用的实验研究[J].中国中医药科技,2001,8(2):89
    [40]王胜春,赵慧平.柴胡的清热与抗病毒作用[J].时珍国医国药,1998,9(5):418-419
    [41]郭惠,姚灿,何士勤.鱼腥草抗流感病毒诱导细胞凋亡的研究[J].赣南医学院学报,2003,23(6):615-616.
    [42]李文,王少军,严敏等.鱼腥草提取液抗流感、腮腺炎病毒效果观察[J].预防医学文献信息,1999,5(4):347-348
    [43]严银芳,陈晓,杨小清等.金刚烷胺、病毒唑和鱼腥草三者联用时的协同抗流感病毒作用[J].中国病毒学,2002,17(2):192-194.
    [44]张薇,卢芳国,潘双银等.鱼腥草中挥发油的提取分析及其抗菌抗病毒作用的研究[J].实用预防医学,2008,15(2):312-316
    [45]王意忠,崔晓兰,高英杰等.栀子提取物抗病毒试验研究[J].中国中药杂志,2006,7,31(14):1176-1178
    [46]左丽,杨夏,佘晓玲,等.黄芪A6组分对流感病毒抑制的实验研究[J].贵州医药,1997,21(5):272-273.
    [47]赵文,任永凤,樊建航.新疆黄芪抗病毒作用研究[J].中国药学杂志2001,36(1):23-25
    [48]李丽娅,凌秋,崔洪波,等.黄芪多糖抗流感病毒的试验研究[J].中国中医药科技,2002,9(6):354-355
    [49]时宇静,赵晔,姜晶等.银翘散对流感病毒感染小鼠模型肺组织病毒载量和IFN-γmRNA表达的影响[J].中国药学杂志2008,43(19):1475-1478
    [50]李庆国,毕明刚,季宇彬.银翘散对流感病毒感染快速老化小鼠血清中TNF-α及IFN-γ动态表达的影响[J].中国医院用药评价与分析,2009,9(1):51-53
    [51]石钺,石任兵,刘斌等.银翘散抗病毒有效部位群总黄酮的测定[J].北京中医药大学学报,2001,24(2):44-45
    [52]邹莉玲,伍学洲,邹水生等.玉屏风口服液在鸡胚内对流感病毒的抑制作用[J].江西中医药1989,20(6):40-41
    [53]邹莉玲,邹水生,熊文淑,等.玉屏风口服液对流感病毒抑制及对机体免疫功能的影响[J].中药材,1990,13(1):37-40
    [54]马振亚,居民建.麻杏石甘汤对甲型流感病毒等病原微生物的影响[J].陕西中医学院学报,1988,11(4):40-42
    [55]卢芳国,何迎春,肖子曾等.麻杏石甘汤体外抗A型流感病毒作用靶点的研究[J].湖南中医药大学学报,2008,28(2):5-9
    [56]张薇,卢芳国,何迎春,等.麻杏石甘汤体外抗A型流感病毒的实验研究[J].实验预防医学,2007,11(5):1351-1357.
    [57]赵武能,卢芳国,张薇等.麻杏石甘汤及其加味对A型流感病毒感染小鼠T细胞亚群的影响[J].实用预防医学,2007,14(2):278-280
    [58]赵岩松,杨进,龚婕宁.麻杏石甘汤、清燥救肺汤对小鼠病毒性肺炎作用机理的研究[J].江苏中医药2007,39(11):81-83
    [59]李际强,张奉学,符林春等.升降散在体外抗甲型流感病毒的作用与对病毒血凝滴度的影响[J].中医药学刊,2003,21(2):217-218
    [60]富杭育,卢长安,贺玉琢等.正柴胡饮对流感病毒和致病菌作用的实验研究[J].中药通报1986,11(4):46-49
    [61]贺玉琢,高英杰,富杭育等.正柴胡饮抗病毒作用的实验研究[J].中国实验方剂学杂志1996,2(1):12-15
    [62]赵萍,刘安平,刘妮等.正柴胡饮体外抗甲型流感病毒和乙型流感病毒作用的研究[J].实用医技杂志,2007,14(16):2155-2156
    [63]富杭育,严梅桢,卢长安,等.正柴胡饮的药理研究[J].中药通报,1986,11(5):47-51.
    [64]沈斯瑶,刘军辉,田艳茹等.双黄连片对小鼠流感病毒和腺病毒感染的保护作用[J].中国实用医药2008,3(15):50-52
    [65]邬洪波,李洪梅,卢长安等双黄连分散片抗病毒作用实验研究[J].中国实验方剂学杂志,2004,10(3):48-50
    [66]李凡,易世红,赵春艳等.双黄连粉针剂抗病毒作用[J].中草药,2002,33(1):52-55
    [67]易世红,王放,王丽萍等.双黄连粉针剂体外抗病毒药效学研究[J].白求恩医科大学学报,2001,27(5):490-492
    [68]卢华,陈晓宇.抗病毒颗粒的药理作用研究[J].广西医学,2007,29(12):1919-1920
    [69]张诚光,许家骝,罗霄山.抗病毒颗粒治疗流感的实验研究[J].吉林中医药,2004,24(5):55-56
    [70]陈美娟,葛李,肖顺汉等.银黄注射液体内外抗流感病毒的实验研究[J].时珍国医国药2007,18(3):591-592
    [71]陈美娟,葛李,刘明华等.银黄注射液体外抗病毒作用研究[J].中成药2007,29(4):583-584
    [72]陈美娟,葛李,肖顺汉等.银黄注射液在小鼠体内的抗病毒作用[J].华西药学杂志,2006,21(6):554-555
    [73]宋光熠,董瑶,张广新等.利咽康颗粒剂抗病毒作用的实验研究[J].中国冶金工业医学杂志2008,25(2):133
    [74]史利卿,邱全瑛,吕燕宁等.宣肺解毒颗粒剂对流感病毒肺炎小鼠血浆中细胞因子水平的影响[J].北京中医药大学学报,1998,21(4):23-25
    [75]史利卿,邱全瑛,吕燕宁,等.宣肺解毒颗粒剂对FM1株感染小鼠肺指数及病毒血凝滴度的影响[J].中国中医急症,1998,7(6):272-274
    [76]史利卿,邱全瑛,黄启福等.宣肺解毒颗粒剂对FM1株病毒感染小鼠呼吸器官病理学改变的影响[J].北京中医药大学学报2000,23(5):33-35
    [77]郑金粟,顾立刚,李澎涛等.痰热清注射液对流感病毒FM1感染小鼠的保护作用[J].中国中医药信息杂志2006,13(12):39-41
    [78]郑金粟,顾立刚,李澎涛等.痰热清注射液对流感病毒FM1感染小鼠免疫功能影响的研究[J].北京中医药大学学报,2006,29(11):756-759
    [79]张艳丽,顾立刚,范新生等.毒热平注射液抗流感病毒作用的体内实验研究[J].吉林中医药,2007,27(10):57-58
    [80]张艳丽,顾立刚,范新生等.毒热平注射液抗甲型流感病毒的作用研究[J].北京中医药 大学学报,2007,30(10):684-687
    [81]张艳丽,范新生,顾立刚等毒热平注射液对流感病毒感染小鼠的保护作用[J].宁夏医学院学报,2008,30(2):150-151,154
    [82]张艳丽,顾立刚,曾郁敏等.毒热平注射液体外抗甲型流感病毒的作用研究[J].辽宁中医药大学学报,2008,10(3):6-8
    [1]陈奇.中药药理研究方法学.北京人民卫生出版社,1993:255-256
    [2]徐淑云.药理实验方法学.人卫出版社,1991:1411.
    [3]傅继华.病毒学实用实验技术.山东科学技术出版社,2001:53-59
    [4]刘克洲,陈智.人类病毒性疾病.北京:人民卫生出版社,2002:933.
    [5]朱元珏,陈文彬.呼吸病学.北京:人民卫生出版社,2003:777-778.
    [6]黄启福.病理学.科学出版社,2004,8:250-251.
    [7]徐珊,王乐,杨巧芳,等.黄芩抗病毒药理作用研究述评[J].中华中医药学刊,2007,25(7):1355-1357
    [8]王意忠,崔晓兰,高英杰,等.栀子提取物抗病毒试验研究[J].中国中药杂志,2006,31(14):1176-1178
    [9]郭建生,胡海蓉,王小娟,等.熊胆牛黄胶囊抗病毒作用的药效学研究[J].中医药学刊 2003,21(6):906-907
    [1]钱玉昆.实用免疫学新技术.北京医科大学中国协和医科大学联合出版社,1994,11-12
    [2]M.Seki,K.Yanagihara,Y higashiyama,et al.Immunokinetics in severe pneumonia due to influenza virus and bacteria coinfection in mice[J].Eur Respir J.2004;24:143-149
    [3]MCW Chanl,CY Cheungl,WH Chui2,et al.Proinflammatory cytokine responses induced by influenza A(H5N1) viruses in primary human alveolar and bronchial epithelial cells[J].Respiratory Research 2005,11(6):135-147
    [4]Doherty PC,Topham DJ,Tripp RA,et al.Effector CD4+ and CD8+ T-cell mechanisms in the control of respiratory virus infections[J].Immunol Rev.1997;159:105-117.
    [5]Vilcek J,Sen GC.Interferons and other cytokines.In:Fields BN,Knipe DM,Howley PM,eds.Fundamental Virology.3~(rd) ed.Philadephia:Lippincott-Raven Publishers,1996:341-365
    [6]Chan SH,Perussia B,Gupta JW,et al.Induction of interferon gamma production by natural killer cell stimulatory factor:characterization of the responder cells and synergy with other inducers[J].J Exp Med.1991 Apr 1;173(4):869-879
    [7]Orange JS,Wang B,Terhorst C,et al.Requirement for natural killer cell-produced interferon gamma in defense against murine cytomegalovirus infection and enhancement of this defense pathway by interleukin 12 administration[J].J Exp Med.1995;182(4):1045-1056.
    [8]Naume B,Johnsen AC,Espevik T,et al.Gene expression and secretion of cytokines and cytokine receptors from highly purified CD56+ natural killer cells stimulated with interleukin-2,interleukin-7 and interleukin-12[J].Eur J Immunol.1993;23(8):1831-1838
    [9]Cook D N,BeckM A,Coffinan TM,et al.Requirement of MIP-1 for an inflammatory response to viral infection [J].Science,1995;269:1583
    [10]MatsukuraS,KokubuF,NodaH etal.Expression of IL-6,IL-8,andRANTESon human bronchial epithelial cells,NCI-H292,induced by influenza virus A [J].Allergy Clin Immunol,1996;98 (6 Pt 1):1080-1087.
    [11]Adachi M,Matsukura S,Tokunaga H,et al.Expression of cytokines on human bronchial epithelial cells induced by influenza virus A [J].Int Arch Allergy Immunol,1997;113 (123):307-311.
    [12]Julkunen I,Melen K,NyqvistM,et al.Inflammatory responses in influenza infection [J].Vaccine,2001;19:532
    [1]Burzyp D,Rassa JC,Kim D,et al.Tol-like receptor 4-dependent activation of dendritic cells by a retrovirus[J].J Virol,2004,78(2):576-584.
    [2]Compton T,Kurt-Jones EA,Boehme KW,et al.Human cytomegalovirus activates inflammatory cytokine responses via CD14 and Toll-like receptor 2[J].J Virol,2003,77(8):4588-4596.
    [3]Matsumoto M,Kikkawa S,Kohase M,et al.Establishment of a monoclonal antibody against human Toll-like receptor 3 that blocks double-stranded RNA-mediated signaling[J].Biochem Biophys Res Commun.2002 24;293(5):1364-1369
    [4]Diebold SS,Kaisho T,Hemmi H,et al.Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA[J].Science,2004,303(5663):1529-1531.
    [5]Rock FL,Hardiman G,Timans JC,et al.A family of human receptors structurally related to Drosophila Toll[J].Proc Natl Acad Sci U S A.1998;95(2):588-93.
    [6]Schulz O,Diebold SS,Chen M,et al.Toll-like receptor 3 promotes cross-priming to virus-infected cells[J].Nature,2005,433(7082):887-892.
    [7]Lo(?)c Guillot,Ronan Le Goffic,Sarah Bloch,et al.Involvement of Toll-like Receptor 3 in the Immune Response of Lung Epithelial Cells to Double-stranded RNA and Influenza A Virus[J].The Journal of Biological Chemistry,2005,280(7):5571-5580.
    [8]Honda K,Sakaguchi S,Nakajima C,et al.Selective contribution of IFN-alpha/beta signaling to the maturation of dendritic cells induced by double-stranded RNA or viral infection[J].Proc Natl Acad Sci U S A.2003;100(19):10872-7.
    [9]Alexopoulou L,Holt AC,Medzhitov R,et al.Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3[J].Nature.2001,413:732-8
    [10]Takizawa T,Fukuda R,Miyawaki T,et al.Activation of the apoptotic Fas antigen-encoding gene upon influenza virus infection involving spontaneously produced beta-interferon[J].Virology.1995,209(2):288-296.
    [11]Transcription stimulation of the Fas-encoding gene by nuclear factor for interleukin-6expression upon influenza virus infection[J].Wada N,Matsumura M,Ohba Y,et al.J Biol Chem.1995,270(30):18007-18012.
    [12]Possible involvement of double-stranded RNA-activated protein kinase in cell death by influenza vires infection[J].Takizawa T,Ohashi K,Nakanishi Y.J Virol.1996,70(11):8128-8132.
    [13]Michelson S,Alcami J,Kim SJ,et al.Human cytomegalovirus infection induces transcription and secretion of transforming growth factor beta 1[J].J Virol.1994,68(9):5730-5737.
    [14]王宏焱.痰热清注射液治疗小儿上呼吸道感染92例疗效观察[J].中国现代药物应用.2008,2(1 4):83-84
    [15]郑金粟,顾立刚,李澎涛等.痰热清注射液对流感病毒FM1感染小鼠的保护作用[J].中国中医药信息杂志2006,13(12):39-41

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700