用户名: 密码: 验证码:
高压氧改善慢性应激大鼠抑郁症状的效用和机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的
     抑郁症是精神科常见病,在军事作业人员(包括航海人员)中也有发生。其治疗问题是精神医学界探索的一个焦点。目前,重症抑郁特别是内因性抑郁的治疗以药物为主,药物几乎都是通过单胺假说筛选出来的,主要有三类:①三环类(tricylic antidepressants, TCAs);②单胺氧化酶抑制剂(monoamine oxidase inhibitors, MAOIs);③选择性5-羟色胺再摄取抑制剂(selective serotonin reuptake inhibitors, SSRIs)。它们主要通过增加脑内神经突触间隙的5-羟色胺(5-hydroxytryptamine, 5-HT)或去甲肾上腺素(norepinephrine, NE)浓度,并使相应受体的敏感性下调,从而发挥抗抑郁作用。也有极个别的药物,如丁胺苯丙酮,在抑制NE再摄取的同时,还抑制多巴胺(dopamine, DA)这一种单胺的再摄取。
     无论使用何种药物,都遇到一个难题,即服药2周左右才起效。另外,部分患者由于其他疾病的原因而不适合采用药物治疗。此外,临床上还可见到部分“难治性抑郁症”,对常规的药物治疗无反应。可见,深入研究抑郁症的病因、机理,探讨安全有效的新疗法,具有重要的理论意义与应用价值。
     高压氧(hyperbaric oxygenation, HBO)可以增加氧在机体的溶解和弥散,改善微循环,并影响到细胞超微结构,对神经系统、内分泌、心血管等产生广泛的效应。合理应用HBO,可以治疗或者辅助治疗多种疾病。但是,将HBO用于抑郁症的治疗,目前报道很少。
     由于HBO对中枢神经系统有较大影响,而且增加正常机体血脑屏障的通透性,从而对精神药物发挥效用也有一定作用,所以我们考虑将HBO试用于治疗发病与中脑边缘系统改变有关的抑郁症。
     高压氧舱在我国已走向普及,若HBO能用于辅助治疗抑郁症,将有良好的应用前景,可以减少药物或其他疗法的副作用。
     本课题旨在通过建立抑郁症动物模型,进行HBO疗效的观察,并与经典抗抑郁药物比较,从而客观、科学地研究HBO治疗抑郁症的效用,并探讨其可能的作用机制。
     方法
     1.雄性SD大鼠120只,在体重筛选及旷场试验后选择行为学评分相近的80只,区组化随机分为正常对照组、抑郁症模型组、HBO治疗组、氟西汀药物治疗组、HBO与氟西汀联合治疗组。正常对照组按常规饲养,不接受刺激和治疗,只接受测试。其余4组大鼠均接受慢性温和不可预见应激(chronic unpredicted mild stress,CUMS)(CUMS在第30d模型建立后停止),并接受相应处置:
     HBO治疗组与联合治疗组均接收HBO治疗:纯氧加压至0.2MPa,停留60min,以5min匀速减压至常压,每天1次,7次为一疗程。模型组、氟西汀治疗组置于相同的容器,放进同型号的另一氧舱内,舱门打开不加压。氟西汀治疗组与联合治疗组用氟西汀按l.8 mg/kg灌胃,每日一次,每10d根据各组测得的平均体重调整一次剂量。正常对照组不灌胃,模型组、HBO治疗组用等量蒸馏水灌胃。
     2.每10d检测一次行为学指标(体重、摄食量、糖水偏爱度、旷场行为),监测抑郁症模型的建立成功与否,并监测大鼠抑郁症状的变化。
     3. 50d后麻醉处死动物,取材,用放射免疫法(radioimmunoassay, RIA)检测血浆中皮质醇(cortisol, CORT)、促肾上腺皮质激素(adrenocorticotrophic hormone, ACTH)的浓度,并用高效液相色谱法(high performance liquid chromatography, HPLC)检测脑组织中5-HT、NE、DA这三种单胺类神经递质的浓度,再用酶联免疫吸附法(enzyme-linked immunosorbent assay, ELISA)检测脑组织中色氨酸羟化酶(tryptophan hydroxylase, TPH)、酪氨酸羟化酶(tyrosine hydroxylase, TH)浓度,还用分光光度计检测了单胺氧化酶(monoamine oxidase, MAO)活力,最后用显微镜观察了海马CA1、CA3和齿状回的病理形态学变化。
     结果
     1.第30d,各实验组大鼠的体重均显著低于对照组( P<0.001);抑郁症模型组的糖水偏爱度显著低于对照组(P<0.05),水平运动显著低于对照组(P<0.05),垂直运动显著低于对照组(P<0.01),理毛次数也显著低于对照组(P<0.001)。模型组的上述行为学指标显著劣于正常对照组,表明抑郁症大鼠模型已经建立。此后停止刺激,只进行治疗和检测。
     2.到第40d , 3个治疗组的糖水偏爱度均显著超过抑郁症模型组(P<0.01);HBO治疗组的理毛次数显著超过其他三个实验组(P<0.01),这种变化保持到D50。到第50d,HBO治疗组、氟西汀治疗组的水平运动均显著优于模型组(P<0.05),HBO治疗组的垂直运动显著优于抑郁症模型组(P<0.05),而此时氟西汀治疗组的垂直运动与模型组之间尚无显著性差异。上述结果提示HBO在改善抑郁症大鼠对“快感”、“奖赏”的反应方面同氟西汀疗效相当,而在改善抑郁症大鼠的“满足感”和探究行为方面先于氟西汀起效。
     至于HBO与氟西汀联合应用的疗效,在第20d,联合治疗组的垂直运动显著少于对照组(P<0.05),而此时,其它实验组与对照组无显著性差异;到第30d,联合治疗组的垂直运动不仅显著低于正常对照组(P<0.01),而且显著低于HBO治疗组(P<0.05)。然而在糖水偏爱度这一指标,联合治疗组没有出现类似变化,相反,到第50d,联合治疗组仍显著高于模型组,而由于模型组糖水偏爱度的提高,此时其它两个治疗组与模型组之间的差异不显著。联合治疗组在垂直运动与糖水偏爱度这两个指标方面的差异,提示HBO与氟西汀联用能提高抑郁症大鼠对“奖赏”和“快感”的反应,但可能降低抑郁症大鼠的兴奋性(即无助于抑郁症大鼠活动减少的症状)。不过,对待这一结论需持谨慎态度,因为联合治疗组垂直运动的初始值就较低(尽管与其它组相比没有显著性差异)。HBO与氟西汀联合应用还产生另一现象:联合治疗组“摄食比”较低,在第20d显著低于模型组(P<0.01)、HBO治疗组(P<0.01)和氟西汀治疗组(P<0.01),在第30d显著低于HBO治疗组(P<0.05),在第40d显著低于模型组(P<0.01),提示联用HBO增强了氟西汀的抑制食欲作用。
     2.各组大鼠在下丘脑、海马、颞叶和顶叶四个脑区的5-HT浓度均无显著性差异(P>0.05)。NE浓度的变化显示:在下丘脑,HBO治疗组显著高于抑郁症模型组(P<0.05);而在颞叶,模型组显著低于正常对照组(P<0.01),且显著低于联合治疗组和氟西汀治疗组(P<0.05);在顶叶,模型组显著低于HBO治疗组(P<0.05)。DA浓度的变化显示:在海马,HBO治疗组显著低于正常对照组(P<0.05);在颞叶,组间差异最显著,HBO治疗组显著低于正常对照组(P<0.05)和氟西汀治疗组(P<0.01),联合治疗组最低,与正常对照组(P<0.05)、抑郁模型组(P<0.05)、氟西汀治疗组(P<0.01)相比均有显著性差异。
     3.各组大鼠脑组织TH浓度均无显著性差异(P>0.05)。正常对照组与抑郁症模型组的TPH浓度均较低,与HBO治疗组、氟西汀药物治疗组或者联合治疗组比较,有显著性差异(P<0.05)。正常对照组、HBO治疗组与氟西汀药物治疗组的MAO活力均未升高,但是,抑郁症模型组同联合治疗组的MAO活力显著升高(P<0.001)。
     结论
     1.本研究通过慢性不可预见温和应激,成功制备了抑郁症大鼠动物模型。
     2. HBO暴露对改善慢性应激抑郁症大鼠的抑郁症状有良好效用:在促进食欲方面显著优于氟西汀,在改善快感丧失、动机不足、兴趣缺乏、活动减少等抑郁症状方面至少与氟西汀相当,此外在增进探究行为和修饰行为方面先于氟西汀起效。
     3.HBO改善大鼠抑郁症状可能是通过增加脑内NE神经递质浓度实现的,而与脑组织整体中5-HT浓度无关。HBO改善抑郁症状的机制与治疗抑郁症的经典药物氟西汀作用机制不同,表现为:氟西汀增加抑郁症大鼠血浆中的ACTH、CORT浓度,而HBO未显示此种作用;HBO组在广泛脑区(下丘脑、颞叶、顶叶)NE浓度均显著升高,但氟西汀治疗组NE仅在颞叶超过模型组;HBO降低海马和颞叶的DA浓度,而氟西汀增加颞叶的DA浓度。病理形态学结果还提示,HBO抗抑郁效用可能与其拮抗慢性应激所致海马神经元受损有关。
     4.HBO增加脑组织NE的浓度,可能系通过抑制其降解酶MAO(monoamine oxidase,单胺氧化酶)活力,而非增加其合成限速酶TH(tyrosine hydroxylase,酪氨酸羟化酶)浓度实现的。
     5.额外,本研究证实了经典抗抑郁药物氟西汀除了通常认为的选择性抑制5-HT再回收的药理作用之外,还能增加部分脑区NE含量以及脑组织中5-HT合成酶TPH(tryptophan hydroxylase,色氨酸羟化酶)的含量。
Objective
     Depression has a high incidence, and it has been burdening too much on the society as well as the patients. So far, drugs play a dominant role to cure Depression Major, especially to cure those with endogenous reasons. The drugs include:①tricylic antidepressants (TCAs);②monoamine oxidase inhibitors (MAOIs);③selective serotonin reuptake inhibitors (SSRIs). They mainly make influences by increasing the concentration of 5-hydroxytryptamine (5-HT) or norepinephrine (NE) in brain’s synaptic clefts, and downward regulating their receptors’sensitivity. A very small number of antidepressants, such as Bupropion, have a pharmacological mechanism related to the monomine dopamine (DA).
     Whatever drug administrated, a big problem baffles the therapy: it will cost the patient about 2 weeks for the drug to make a difference.
     Besides, we can see some patients have no reaction to normal anti-depressants. So, many efforts have been done to find new paths to cure depression.
     Hyperbaric oxygen (HBO) can magnify the solution and diffusion in organisms, improve the microcirculation, and influence the cell’s ultramicrostructure, making extensive effects on nervous, endocrine and cardiovascular systems. HBO has successfully cured some diseases, or played a supporting but important role to treat many diseases.
     HBO has a significant influence to central nervous system, and it can improve the permeability of blood-brain barrier (so, it can magnify the pharmacodynamic action of psychotropic drugs). So, we are considering using HBO to treat depression, whose etiology has much to do with the pathological changes of mesolimbic system.
     Due to the popularization of HBO chambers in China, HBO will have a bright future to benefit the patients, if it has a curative effect for depression.
     So, we decided to make a depressed rat model, and then treat it with HBO, and compare the effectivity with which of a classic anti-depressant, and look for the mechanism of the effectivity (if there is any).
     Methods
     1. Eighty male SD rats were selected by open-field test, etc., from 120 ones, to be randomized distributed into 5 groups: Control, Model, HBO treatment, Fluoxetine treatment, Combined treatment (both HBO and Fluoxetine). The Control group was normally bred, receiving only tests, not stimuli or therapies. The other 4 groups of rats received chronic unpredicted mild stress (CUMS) with corresponding therapies:
     HBO was taken by both HBO group and Combined group: Sodium lime was put at the bottom of the small animal HBO chamber to absorb CO2; pure oxygen was consumed to“wash”the chamber, and then was used to lift the inside pressure to 0.2MPa. 60min passed (during the span, pure oxygen was used to ventilate the chamber for 10min), 5min was taken to reduce the pressure to normal. One time a day, 7 days a course. When the rats were treated with HBO, the Model group or Fluoxetine group were put into a similar box, which was put into another chamber of the same making, but the chamber gate was open, and no pure oxygen was supplied.
     Fluoxetine, a classic anti-depressant, was given to Fluoxetine group and Combined group, with a dosage of 1.8 mg/kg for every morning (the dose was changed every 10d according to the body weight measured), by gavage. The Model group and the HBO group were given a gavage of distilled water of the same volume with the drug. The Control group didn’t receive gavage.
     2. Behavioral tests were administrated every 10 days, to monitor the emergence, changes or fadeaway of depression symptoms.
     3. Thirty days later, behavioral changes showed that the animal model had been successfully established. Then, the stress was ceased. 50 days later, all of the animals were executed with mercy, and plasma or brain samples were taken, to detect plasma stress hormone such as cortisol (CORT) and adrenocorticotrophic hormone (ACTH) by radioimmunoassay (RIA), and to detect brain monoamine neurotransmitters such as 5-HT, NE and DA by high performance liquid chromatography (HPLC), and to detect the concentration of tryptophan hydroxylase (TPH) and tyrosine hydroxylase (TH) by enzyme linked immunosorbent assay (ELISA), and to detect the activity of monoamine oxidase (MAO) by spectrophotometer. Last but not least, a Nyssl’s staining was conducted to observe the morphological changes of the neurons in hippocampal CA1, CA3 and dentate gyrus area.
     Results
     1. Since D30, the bodyweight of Control group was very significantly heavier than those of another 4 groups ( P<0.001); Compared with Control group, Model group had a lower sucrose preference ( P<0.05) and fewer horizontal locomotion ( P<0.05), fewer vertical activities ( P<0.01), fewer grooming acts ( P<0.001) . These changes manifested the depression rat modeling was successful. Then, the stimuli were ceased, only therapies continued.
     2. Since D40, the 3 groups with therapies had their sucrose preference higher than Model group ( P<0.01) ; HBO group had their grooming acts much more than the other 3 experimental groups ( P<0.01) , and kept this advantage till the end. On D50, the horizontal locomotion of HBO group and Fluoxetine group was significantly frequent than Model group ( P<0.05) ; the vertical activities of HBO group was better than Model group ( P<0.05), while that of Fluoxetine had no this difference.
     The interaction between HBO and Fluoxetine were a little complicated. On D20, the vertical activities of Combined group were fewer than that of Control group ( P<0.05), while the other 2 experimental groups had no such a difference; On D30, the vertical activities of Combined group were not only fewer than Control group ( P<0.01) , but also than HBO group (P<0.05). As for sucrose preference, Combined group didn’t show such a change, on the contrary, it kept this indicator significantly higher than Model group, while the other 2 groups with therapies showed no significant difference with Model group (since Model group also lifted its sucrose sucrose preference after the stimuli ceased). These two opposite changes indicates that Fluoxetine with HBO can improve rats’responsiveness to pleasant sensation or“rewards”, but in the meantime, the combination maybe reduce depressed rats’activeness. We have to deal with this conclusion cautiously, because Combined group showed fewer intitial rearings (although the difference was not statistically significant). Another phenomenon also interested us, that the Combined group continuously had a lower grazing rate: on D20, lower than Model group ( P<0.01), HBO group (P<0.01) or Fluoxetine group (P<0.01); On D30, lower than HBO group (P<0.05); On D40, lower than Model group (P<0.01), indicating the combination with HBO perhaps synergized the anorectic effect of Fluoxetine.
     3. The 5-HT concentration of different brain areas of different groups (P>0.05), but the NE concentration showed some difference: in hypothalamus, HBO group was higher than Model group (P<0.05); in temporal lobe, Model group was lower than Control and Combined (P<0.05); in parietal lobe, Model group was lower than Combined and Fluoxetine (P<0.05). As for the concentration of DA, in hippocampus, HBO group was lower than Control group (P<0.05); in temporal lobe, HBO group was lower than Control group (P<0.05) and Fluoxetine group (P<0.01), Combined group was lower than Control group (P<0.05), Model group (P<0.05) and Fluoxetine group (P<0.01).
     4. The TH concentration had no significant difference among those groups in any brain areas (P>0.05). The TPH concentration of Control group and which of Model group were lower than HBO group, Fluoxetine group or Combined group (P<0.05). MAO activity was not activated in Control, HBO or Fluoxetine group, while it was highly lifted up in Model and Combined groups (P<0.001).
     Conclusions
     1. The CUMS-induced depression rats modeling was successful.
     2. HBO showed some therapeutic effect for chronic stress depression rats: compared with Fluoxetine, it was better to improve appetite, it had similar effects to cure anhedonia, motivelessness, inactiveness, and it had a faster respondence of depressed rats to improve self-satisfaction and exploratory activities.
     3. HBO maybe cure those depression symptoms by increasing the concentration of NE, the neurotransmitter, in brain. It suggests that HBO’s anti-depressant mechanisms are different from which of Fluoxetine, the prototypical anti-depressant classified as SSRIs. The evidence includes: HBO didn’t lifted up ACTH, CORT level in plasm, while Fluoxetine did; HBO increased NE concentration in hypothalamus, temporal lobe and parietal lobe, while Fluoxetine only did that in temporal lobe; HBO reduced DA concentration in hippocampus and temporal, while Fluoxetine increased the concentration in temporal lobe. Besides, HBO showed some protecting effects to the pathologically morphological changes caused by CUMS.
     4. HBO increased NE concentration in brain, perhaps by inhibiting MAO (which decomposes NE), other than by increasing TH (which synthesize NE).
     5. As a serendipity, we also confirmed Fluoxetine can increase TPH in rat brain, beside of its SSRI pharmacology.
引文
1郝伟,主编.精神病学,4版.北京:人民卫生出版社,2001, 2
    2李俊,主编.临床药理学,4版.北京:人民卫生出版社,2008, 234
    3 Hammarlund C. The physiologic effects of hyperbaric oxygenation. See: Kindwall E, Whelan H, Ed. Hyperbaric Medicine Practice. Flagstaff, AZ, US: Best Publishing Company, 2002, 56-58
    4刘景昌,主编.高压氧医学的理论与新技术.北京:军事医学科学出版社, 1998, 3-10
    5刘景昌,主编.高压氧医学的理论与新技术.北京:军事医学科学出版社, 1998, 170
    6修丽娟,杨玉兴,俞珊,等.抑郁症中医研究回顾与展望.中西医结合学报,2008, 6(1): 416-421
    7郑守增,主编.中医学,5版.北京:人民卫生出版社,2001, 169
    8胡随瑜,张宏根,郑林,等.1977例抑郁症患者中医不同证候构成比分析.中国医师杂志,2003,5(10): 1312-1314
    9方药中.实用中医内科学.上海:上海科学技术出版社,1985,432-439
    10肖怡,赵志付.中医对抑郁症的认识和治疗概述.北京中医药,2008, 27(9): 740-742
    11刘景昌.高压氧治疗的基本原理及其对机体的影响//杨益,主编.高压氧治疗基础与临床.上海:上海科学技术出版社,2005, 155-164
    12 Sumen-Secgin G, Cimsit M, Ozek M, et al. Antidepressant-like effect of hyperbaric oxygen treatment in forced-swimming test in rats. Methods Find Exp Clin Pharmacol. 2005, 27(7): 471-474
    13赵玉芝,范新刚,李丽.高压氧治疗抑郁症的临床疗效观察.四川精神卫生, 1996, 9(增刊): 131
    14赵玉芝,范新刚.高压氧合并多虑平治疗抑郁症的对照研究.山东精神医学, 1997, (2): 45
    15朱国奎,缪金生,李祥仁.高压氧治疗抑郁症临床研究.神经疾病与精神卫生, 2005, 5(4): 302-304
    16金丕焕.临床试验——设计与统计分析.上海:上海科技文献出版社, 1997, 43
    17卢峻.电针影响慢性应激抑郁模型大鼠神经可塑性的分子机制研究[博士学位论文].北京:北京中医药大学,2004, 50
    18许晶,李晓秋.应激抑郁模型的建立及其评价.中国行为医学科学杂志,2003,12(1): 14-17.
    19宋炜熙.白松片对抑郁模型大鼠TH、DAT及Synapsin表达的调节作用[博士学位论文].长沙:中南大学,2004, 11-12
    20颜虹,毕育学.多个样本均数比较的方差分析//孙振球,主编.医学统计学.北京:人民卫生出版社, 2002, 56
    21李竹,郑俊池.新编实用医学统计方法与技能.北京:中国医药科技出版社,1997,184
    22夏军,叶慧,周义成,等.慢性应激大鼠抑郁模型的建立及其有效性的探讨.华中科技大学学报(医学版), 2005, 34(4): 493-495
    23卢峻.电针影响慢性应激抑郁模型大鼠神经可塑性的分子机制研究[博士学位论文].北京:北京中医药大学,2004, 43
    24彭贵军.白松片对抑郁模型大鼠海马BDNF及其受体TrkB表达的影响[博士学位论文].长沙:中南大学,2004, 4
    25罗兰.氟西汀抗抑郁作用的药理学研究和中药抗抑郁活性的分析[博士学位论文].南京:南京大学,2001, 20
    26郁缪宇.抗抑郁治疗影响BDNF、NT_3_及其trk受体基因表达的实验研究[博士学位论文].成都:华西医科大学,2000, 8
    27彭贵军.白松片对抑郁模型大鼠海马BDNF及其受体TrkB表达的影响[博士学位论文].长沙:中南大学,2004, 3-4
    28王哲.白松片对抑郁模型大鼠行为学和海马神经元PKA、CREB表达及其神经发生的影响[博士学位论文].长沙:中南大学,2004, 5
    29宋炜熙.白松片对抑郁模型大鼠TH、DAT及Synapsin表达的调节作用[博士学位论文].长沙:中南大学,2004, 5-6
    30陈铁楼,蔺世龙,刘景昌,等.高压氧对快速减压应激损伤动物脑组织PGs的作用研究.海军医学杂志,2003,24(2):97-99
    31李长春.高压氧预防脑制血再灌注损伤机制的研究[博士学位论文].上海:第二军医大学,2000, 9
    32彭贵军.白松片对抑郁模型大鼠海马BDNF及其受体TrkB表达的影响[博士学位论文].长沙:中南大学,2004, 4
    33 Forbes NF, Caroline A, Keith Matthews, et al. Chronic mild stress and sucrose consumption: validity as a model of depression. Physiology & Behavior, 1996, 60: 1481-1484
    34 Benelli A, filaferro M, Bertolini A et al1. Influence of S-adeno-syl-1-methionine on chronic mild stress-induced anhedonia in castrated rats. Br J Pharmacol, 1999, 127: 645
    35郑兴东.CRH、ACTH、NPY和GAL在抑郁症发病中作用及其机制的研究[博士学位论文].上海:第二军医大学,2001, 20
    36王哲.白松片对抑郁模型大鼠行为学和海马神经元PKA、CREB表达及其神经发生的影响[博士学位论文].长沙:中南大学,2004, 6
    37夏军,叶慧,周义成,等.慢性应激大鼠抑郁模型的建立及其有效性的探讨.华中科技大学学报(医学版), 2005, 34(4): 493-495
    38匡培梓.生理心理学.北京:科学出版社,1987,104-105
    39刘师莲,张兆莲,刘贤锡,等.大鼠脑组织单胺类递质及其代谢产物的检测方法研究.山东大学学报(医学版),2002, 472-475
    40鲁燕侠,崔佳,蔺兴遥,等.RP-HPLC-荧光检测法测定小鼠脑组织中5种神经递质的含量.解放军药学学报,2003,262-268
    41 Snyder,王杰.实用高效液相色谱法的建立.北京:科学出版社,1998, 85
    42刘厚奇,向正华,主编.原位检测技术.北京:人民军医出版社,2002, 33-35
    43第二军医大学生理学教研室.常用实验动物脑立体定向图谱.北京:科学出版社,1990, 76-89
    44密方元,杨洪才.改良甲苯胺蓝染色法.中华病理学杂志,1999, 28(3): 168
    45 Paxinos G, Watson C.大鼠脑立体定位图谱(诸葛启钏译), 3版.北京:人民卫生出版社, 2005,图31-36
    46彭贵军.白松片对抑郁模型大鼠海马BDNF及其受体TrkB表达的影响[博士学位论文].长沙:中南大学,2004, 12
    47颜文伟,主编.临床精神药理学.长沙:湖南科学技术出版社, 1998, 156
    48瞿发林,主编.精神疾病现代药物治疗手册.上海:第二军医大学出版社, 2005, 182
    49 Willner P. Validity, reliability and utility of the chronic mild stress model of depression: a
    10-year review and evaluation. Psychopharmacology, 1997, 134: 319-329
    50 Willner P. The validity of animal models of depression. Psychopharmaco1ogy, 1984, 83(1): 1-16
    51 Wrynn AS, MacSweeney CP, Franconi F, et al. Regional differences in brain monoamine oxidase subtypes in an animal model of geriatric depression: effects of olfactory bulbectomy in young versus aged rats. Brain Research, 2000, 882: 149-154
    52 Willner P, Towell A, Sampson D, et al. Reduction of sucrose preference by chronic unpredictable mild stress, and its restoration by a tricyclic antidepressant. Psychopharmacol, 1987, 93: 358-364
    53郭德玉,陈铁玉,李斌,等.不同年龄大鼠学习记忆能力及旷场行为比较.中国实验动物学报,1998, 6(1): 19-23
    54 Bubna LH, Jahn J. Psychometric testing in rats during normal ageing. Procedures and results. J Neural Transm Suppl, 1994, 44(1): 97- 109.
    55徐叔云.药理实验方法学, 2版.北京:人民卫生出版社,1994, 641
    56郭德玉,陈铁玉,李斌,等.不同年龄大鼠学习记忆能力及旷场行为比较.中国实验动物学报,1998, 6(1): 19-23
    57颜虹,毕育学.拉丁方设计资料的方差分析//孙振球,主编.医学统计学(供研究生用).北京:人民卫生出版社, 2002. 59-62
    58梁友信,陈自强.环境的行为效应.上海:科技教育出版社,1993, 79
    59 Ader DN, Johnson SB, Huang SW, et al. Group size, cage shelf level, and emotionality in non-obese diabetic mice: impact on onset and incidence of IDDM. Psychosom Med, 1991, 53: 313-321
    60郝伟,主编.精神病学,6版.北京:人民卫生出版社, 2008, 136-137
    61姚泰,主编.生理学,5版.北京:人民卫生出版社, 2003, 397
    62 De Boer SF, Slangen JL, Van der Gugten J. Plasma catecholamine and corticosterone levels during active and passive shock-probe avoidance behavior in rats: effects of chlordiazepoxide. Physiol. Behav., 1990, 47: 1089–1098
    63 Sgoifo A, De Boer SF, Haller J, et al. Individual differences in plasma catecholamine and corticosterone stress responses of wild-type rats: relationship with aggression. Physiol. Behav., 1996, 60: 1403–1407
    64 Koolhaas JM, Korte SM, De Boer SF, et al. Coping styles in animals: current status in behavior and stress-physiology. Neurosci. Biobehav. Rev., 1999, 23: 925–935
    65蒋春雷,路长林,主编.应激医学.上海:上海科学技术出版社, 2006, 39
    66姚泰,主编.生理学,5版.北京:人民卫生出版社, 2003, 375
    67姚泰,主编.生理学,5版.北京:人民卫生出版社, 2003, 398-399
    68刘卫,钱令嘉,杨志华,等.慢性温和应激抑郁模型大鼠5-羟色胺、色氨酸和应激激素的变化.中国应用生理学杂志, 2006, 22(2): 169-172
    69胡淑芳,王惠利,杨来启,等.急性高原应激大鼠脑组织NO、SOD及血浆皮质醇的含量变化.中国心理卫生杂志, 2002, 16(8): 518-519
    70周爱军,罗海吉,卢晓翠,等. L -精氨酸对热应激大鼠血清皮质醇变化的影响.中国公共卫生, 2005, 21(5): 594-595
    71杨惠芳,张银娥,刘秀芳,等.慢性心理应激对大鼠行为及血清皮质醇影响及运动的调节作用.工业卫生与职业病, 2008, 34(3): 133-136
    72 Zahorodna A, Tokarski K, Bijak M. Electrophysiologic tests for testing the effects of antidepressant drugs and corticosterone on reactivity of serotonin recepters in the hippocampus. Postepy Hig Med Dosw, 2000, 54: 391~401
    73彭贵军.白松片对抑郁模型大鼠海马BDNF及其受体TrkB表达的影响[博士学位论文].长沙:中南大学,2004, 36
    74 Sapolsky RM. Why stress is bad for your brain? Science, 1996, 273(5276): 749-750
    75李云峰,罗质璞.应激诱发抑郁症机制的研究进展.生理科学进展,2002,33(2): 142-144
    76 Yusim A, Ajilore O, Bliss T, et al. Glucocorticoids exacerbate insult-induced declines in metabolism in selectively vulnerable hippocampal cell fields. Brain Research, 2000, 870: 109–117
    77 Sapolsky MR. The possibility of neurotoxicity in the hippocampus in major depression: A primer on neuron death. Biol Psychiatry, 2000, 48: 755-765
    78蒋文华,主编.神经解剖学.上海:复旦大学出版社,2002, 374-375
    79 Sheline YI, Wang P, Gado MH, et al. Hippocampal atrophy in recurrent major depression. Proc Natl Acad Sci USA, 1996, 93: 3908-3918
    80郝伟,主编.精神病学,6版.北京:人民卫生出版社, 2008,104-105
    81 Moffoot AP, O’ccarroy RE, Bennie J. et a1. Diurnal variation of mood and neuropsychological function in major depression with melancholia. J Affect Disord, 1994, 32(4): 257
    82徐俊冕.应激.见:徐俊冕,主编.医学心理学, 2版.上海:上海医科大学出版社, 1996, 32-43
    83中华医学会精神科分会,编.中国精神障碍分类与诊断标准, 2版.济南:山东科学技术出版社, 2001
    84 Weber G-C, Eckert P. G, Müller E. W. Effects of Antidepressants on the Brain/Plasma Distribution of Corticosterone. Neuropsychopharmacology, 2006, 31: 2443– 2448
    85 Chouinard G, Bélanger M-C, Beauclair L, et al. Potentiation of fluoxetine by aminoglutethimide, an adrenal steroid suppressant, in obsessive-compulsive disorder resistant to SSRIs: A case report. Prog. Neuro-Psychopharmacol. & Biol. Psychiat., 1996, 20: 1067-1079
    86 Gorman JM, Liebowitz MR, Fyer AJ, et al. An open trial of fluoxetine in the treatment of panic attacks. J Clin Psychopharmacol, 1987, 7: 329–332
    87 Gregor KJ, Riley JA, Downing DK. Concomitant use of anxiolytics and hypnotics with selective serotonin reuptake inhibitors. Clin Ther, 1996, 18: 521–7
    88 Bingefors K, IsacsonDG. Concomitant prescribing of tranquilizers and hypnotics among patients receiving antidepressant prescriptions. Ann Pharmacother, 1998, 32: 531–535
    89杨思军,谷德祥,曹中柱,等.高压氧对急性脑梗塞患者血ACTH及SOD的影响.中华航海医学杂志, 1997, 4(4): 240-241
    90刘敏,朱双罗,陈新瑞,等.高压氧对脑损伤患者血清皮质醇和T细胞亚群的影响.湖南医科大学学报, 1999, 24(6): 591-592
    91雷勇,马丽莉,曾云.高压氧治疗早发甲低患者血清皮质醇水平的变化及临床意义.临床医药实践杂志, 2007, 16(7): 587-589
    92 Altar CA. Neurotrophins and depression.Trends Pharmacol Sci, l999, 20: 59-61
    93 Duman RS, Malberg J, Nakagawa S. Neuronal plasticity and survival in mood disorders. Biol Psychiatry, 2000, 48: 732-739
    94 Videbech P, Ravnkilde B. Hippocampal volume and depression: a meta-analysis of MRI studies. Am J Psychiatry, 2004, 161(11): 1957-1966
    95 BallMaier M, Kumar A, Thompson PM, et a1. Localizing gray matter deficits in late-onset depression using computational cortical pattern matching methods. Am J Psychiatry, 2004, 161(11): 2091-2099
    96 Waxman SG. Corelative Neuroanatomy, 24th ed [英文版].北京:人民卫生出版社, 2001, 240
    97卢峻.电针影响慢性应激抑郁模型大鼠神经可塑性的分子机制研究[博士学位论文].北京:北京中医药大学, 2004, 38
    98刘静,孙剑,马爱芹.抑郁症的研究进展.中华现代内科学杂志,2005,2(4): 323-325
    99杨宝峰,主编.药理学,7版.北京:人民卫生出版社,2008, 159
    100胡刚.抗抑郁症药//周宏灏,主编.药理学,2版.北京:科学出版社,2008, 97
    101李俊,主编.临床药理学,4版.北京:人民卫生出版社,2008, 234
    102郝伟,主编.精神病学,4版.北京:人民卫生出版社,2001, 218
    103 Meyer JH, Houle S, Sagrati S, et a1. Brain serotonin transporter binding potential measure’d with carbon 11-labeled DASB positron emission tomography: efects of major depressive episodes and severity of dysfunctional attitudes. Arch Gen Psychiatry, 2004, 61(12): 1271-1279
    104 Reivich M, Amsterdam JD, Brunswick DJ, et a1. PET brain imaging with [11C] (+) McN5652 shows increased serotonin transporter availability in major depression. J Affect Disord, 2004, 82(2): 321-327
    105 Bhagwagar Z, Rabiner EA, Sargent PA, et al. Persistent reduction in brain serotonin1A receptor binding in recovered depressed men measured by positron emission tomography with [11C]WAY-100635. Mol Psychiatry, 2004, 9(4): 386-392
    106 Whale R, Clifford EM, Bhagwagar Z, et al. Decreased sensitivity of 5-HT(1D) receptors in melancholic depression. Br J Psychiatry, 2001, 178: 454-457
    107 Yatham LN, Liddle PF, Shiah IS, et a1. Brain serotonin2 receptors in major depression: A positron emission tomography study. Arch Gen Psychiatry, 2000, 57: 850-8
    108 Gilman S, Newman SW.曼特尔与盖茨临床神经解剖学与神经生理学纲要, 9版[孙玉衡译].北京:北京医科大学, 1999, 164
    109黄显奋,吴根诚. 5-羟色胺//关新民,主编.医学神经生物学.北京:人民卫生出版社, 2002, 111
    110黄显奋,吴根诚. 5-羟色胺//关新民,主编.医学神经生物学.北京:人民卫生出版社, 2002, 113-115
    111黄显奋,吴根诚.儿茶酚胺//关新民,主编.医学神经生物学.北京:人民卫生出版社, 2002, 102
    112黄显奋,吴根诚.儿茶酚胺//关新民,主编.医学神经生物学.北京:人民卫生出版社, 2002, 106-109
    113秦震,主编.神经病学, 2版.上海:上海医科大学出版社, 2000, 115
    114刘卫,钱令嘉,杨志华,等.慢性温和应激抑郁模型大鼠5-羟色胺、色氨酸和应激激素的变化.中国应用生理学杂志, 2006, 22(2): 169-172
    115严灿,徐志伟,李艳,等.调肝、补肾、健脾方药对慢性心理应激大鼠单胺类神经递质影响的比较研究.中国中西医结合杂志, 2002, 22(12): 925-928
    116宋炜熙,胡随瑜,黄川原,等.白松片对应激大鼠行为及大脑皮质NE、DA的影响.中脑大学学报(医学版), 2005, 30(5): 574-578
    117张有志,聂惠民,张德昌.柴地合方对慢性应激大鼠大脑前额皮质和海马单胺类神经递质的影响.安徽中医学院学报, 2005, 24(1): 34-36
    118张峰,李发曾.合欢花对慢性应激大鼠生长和脑单胺类神经递质含量的影响.动物学研究, 2006, 27(6): 621-625
    119徐伟刚,李润平.氧中毒//陶恒沂,主编.潜水医学,7版.北京:高等教育出版社, 2005, 122
    120黄显奋,吴根诚. 5-羟色胺//关新民,主编.医学神经生物学.北京:人民卫生出版社, 2002, 115
    121黄显奋,吴根诚.儿茶酚胺//关新民,主编.医学神经生物学.北京:人民卫生出版社, 2002, 102-106; 111-112
    122 Kim SW, Park SY, Hwang O. Up-regulation of tryptophan hydroxylase expression and serotonin synthesis by sertraline. Mol Pharmacol, 2002, 61(4): 778-785
    123 Jeansok JK, Kenneth SY. Stress: metaplastic effects on the hippocampus. Trends in Neuroscience, 1998, 21(12): 505-509
    124姚泰,主编.生理学,5版.北京:人民卫生出版社, 2003, 368
    125彭贵军.白松片对抑郁模型大鼠海马BDNF及其受体TrkB表达的影响[博士学位论文].长沙:中南大学,2004, 36
    126 Sapolsky RM. Why stress is bad for your brain? Science, 1996, 273(5276): 749-750
    127 Zahorodua A, Tokarsk K, Bijak M. Electrophysiologic tests for testing the effects of antidepressant drugs and corticosterone on reactivity of serotonin receptors in the hippocampus. Postepy Hig Med Dosw, 2000, 54: 391-401
    128 Sousa N, Lukoyanov NV, Maderia MD, et al. Reorganization of the morphology of hippocampal neurites and synapses after stress-induced damage correlates with behavioral improvement. Neurosci, 2000, 97(2): 253-266
    129 Gilman S, Newman SW.曼特尔与盖茨临床神经解剖学与神经生理学纲要, 9版[孙玉衡译].北京:北京医科大学,1999, 144
    130 Sheline YI, Wang P, Gado MH, et al. Hippocampal atrophy in recurrent major depression. Proc Natl Acad Sci USA, 1996, 93: 3908-3918
    131 Watanabe Y, Gould E, Daniels DC, et al. Tianeptine attenuates stress-induced morphological changes in the hippocampus. Eur J Pharmacol, 1992, 222: 157-162
    132 Malberg JE, Eisch AJ, Nestler EJ, et al. Chronic antidepressant treatment increases neurogensis in adult hippocampus. J Neurosci, 2000, 20: 9104-9110
    133彭贵军.白松片对抑郁模型大鼠海马BDNF及其受体TrkB表达的影响[博士学位论文].长沙:中南大学,2004, 16-17
    134蒋文华,主编.神经解剖学.上海:复旦大学出版社,2002, 376
    135卢玲,李润平,崔瑞耀,等.高压氧暴露对体外培养神经元的存活率和形态的影响及血小板源性生长因子-BB和阿魏酸钠的保护作用.神经解剖学杂志,2004, 20(4): 355-359
    136徐晓虹,郭丹,章子贵.高压氧对小鼠学习记忆及脑细胞形态结构的影响.心理学报,2000, 32(1): 91-94
    137刘燕,鲍锦华,赖晃文,等.高压氧对正常大鼠海马神经元结构的影响.第三军医大学学报, 2000, 22(7): 664-666
    138刘燕,鲍锦华,赖晃文,等.高压氧对幼鼠与成年鼠海马神经元超微结构影响的观察.中华航海医学与高气压医学杂志, 2001, 8(2): 99-102
    139王伯良,曹义战,晋兴,等.高压氧对弥漫性脑损伤大鼠组织病理学的影响.第四军医大学学报, 2003, 24(8): 684-688
    140周红梅,孔祥英,何念海,等.高压氧对缺血缺氧性脑损伤幼鼠海马超微结构及主动回避反应的影响.第三军医大学学报, 2006, 28(19): 1973-1975
    141周建光,刘景昌,方以群.高压氧对脑缺血再灌注海马神经元Bcl-2和Bax蛋白表达的影响.中国应用生理学杂志, 2000, 16(4): 298-301
    142周建光,黄亚莉,刘长云.高压氧治疗对沙土鼠脑缺血再灌注海马CA1区神经元凋亡的影响.第二军医大学学报, 2002, 23(3): 284-286
    143彭慧平,卢晓欣,汤永建,等.高压氧对小鼠脑缺血再灌注损伤的保护作用.生物医学工程与临床, 2008, 12(4): 279-281
    144练庆林,成涛,胡长虹,等.Changes of oxygen free radicals in brain of rats during hyperbaric oxygen-induced convulsions.中华航海医学杂志, 1996, 3(4): 195-200
    145王文波,刘景昌,陈士明,等.高压氧暴露后大鼠肺表面活性物质与肺组织自由基的变化.中华航海医学杂志, 1998, 5(4): 203-207
    146毕长柏,徐丽瑾,陈玉敏,等.高压氧对大鼠脑缺血再灌注损伤脑组织结构及氧自由基的影响.实用儿科临床杂志, 2005, 20(2): 151-153
    147楼敏,王季华,钱琼秋,等.高压氧对大鼠脑缺血区线粒体氧自由基影响的实验研究.浙江大学学报(医学版), 2008, 37(5): 437-443
    148 Gottesmann C, Gottesman I. The neurobiological characteristics of rapid eye movement (REM) sleep are candidate endophenotypes of depression, schizophrenia, mental retardation and dementia. Progress in Neurobiology, 2007, 81: 237-250
    149 Loomer HP, Saunders JC, Kline NS. A clinical and pharmacodynamic evaluation of iproniazid as a psychic energizer // Affects DA (Ed.). Proceedings of the Psychiatric Research reports, 8. New York: Am. Psychiat. Assoc., 1957, 129–141
    1叶亦乾,何存道,梁宁建,主编.普通心理学,修订2版.上海:华东师范大学出版社,2004, 253
    2彭聃龄,主编.普通心理学,3版.北京:北京师范大学出版社,2004, 370
    3程正方,高玉祥,郑日昌,主编.心理学,3版.北京:北京师范大学出版社,2003, 150
    4叶亦乾,祝蓓里,主编.心理学,修订版.上海:华东师范大学出版社,1996, 206
    5 American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition. Washington, DC: American Psychiatric Association, 1994, 321-322
    6王焕林,主编.临床精神医学.北京:人民军医出版社,2003, 148
    7徐韬园,主编.现代精神医学.上海:上海医科大学出版社,2000, 306
    8 Kessler RC, Berglund P, Demler 0. The epidemiology of major depressive disorder: results from the national comorbidity survey replication(NCS-R). JAMA, 2003, 289(23): 3095-3105
    9 Hirschfeld R, Weisssman M. Risk factors for major depression and bipolar disorder // Davis K, Charney D, Coyle J, Nemeroff C (eds). Neuropsychopharmacology: The Fifth Generation of Progress. Philadelphia: Lippincott Williams & Wilkins, 2002, 1018–1025
    10 Moreno B, Montón C, Gil DeGómez MJ, et al. Prevalence, incidence and risk of depression in the Spanish cohort within the predict study. European Psychiatry, 2007, 22: S239
    11郝伟,主编.精神病学,4版.北京:人民卫生出版社,2001, 2
    12周旋,王雪玲.谷氨酸能和γ-氨基酸能系统与情感障碍.中国神经科学杂志, 2003, 19(2): 130-133
    13路长林,许家驹.神经肽与抑郁症//路长林.神经肽基础与临床.上海:第二军医大学出版社, 2000, 297-301
    14刘静,孙剑,马爱芹.抑郁症的研究进展.中华现代内科学杂志,2005,2(4): 323-325
    15 Meyer JH, Houle S, Sagrati S, et a1. Brain serotonin transporter binding potential measure’d with carbon 11-labeled DASB positron emission tomography: efects of major depressive episodes and severity of dysfunctional attitudes. Arch Gen Psychiatry, 2004, 61(12): 1271-1279
    16 Reivich M, Amsterdam JD, Brunswick DJ, et a1. PET brain imaging with [11C] (+) McN5652 shows increased serotonin transporter availability in major depression. J Affect Disord, 2004, 82(2): 321-327
    17 Bhagwagar Z, Rabiner EA, Sargent PA, et al. Persistent reduction in brain serotonin1A receptor binding in recovered depressed men measured by positron emission tomography with [11C]WAY-100635[J]. Mol Psychiatry, 2004, 9(4): 386-392
    18 Whale R, Clifford EM, Bhagwagar Z, et al. Decreased sensitivity of 5-HT(1D) receptors in melancholic depression. Br J Psychiatry, 2001, 178: 454-457
    19 Yatham LN, Liddle PF, Shiah IS, et a1. Brain serotonin2 receptors in major depression: a positron emission tomography study. Arch Gen Psychiatry, 2000, 57: 850-858
    20张建平,刘平,主编.精神科药物手册.北京:科学技术文献出版社, 2000, 47-48
    21 Moffoot AP, O’ccarroy RE, Bennie J. et a1. Diurnal variation of mood and neuropsychological function in major depression with melancholia. J Affect Disord, 1994, 32(4): 257
    22刘卫,钱令嘉,杨志华,等.慢性温和应激抑郁模型大鼠5-羟色胺、色氨酸和应激激素的变化.中国应用生理学杂志, 2006, 22(2): 169-172
    23 McEwen BS, Conrad CD, Kuroda Y, et a1. Prevention of stress-induced morphological and cognitive consequences. European Neuropsychopharmacology, 1997, 7 suppl3: 323-328
    24迟松,林文娟.抑郁症神经内分泌免疫学的研究进展及心理治疗的作用.中国临床心理学杂志, 2003, 11(1): 77-80
    25杨宝峰,主编.药理学,7版.北京:人民卫生出版社,2008, 159
    26胡刚.抗抑郁症药//周宏灏,主编.药理学,2版.北京:科学出版社,2008, 97
    27李俊,主编.临床药理学,4版.北京:人民卫生出版社,2008, 234
    28郝伟,主编.精神病学,4版.北京:人民卫生出版社,2001, 218
    29柳春图.应力//姜椿芳,总编.中国大百科全书·力学.北京:中国大百科全书出版社,北京东方鼎电子有限公司, 2000.《中国大百科全书》光盘(1.1版)
    30 Selye H. A syndrome produced by diverse nocuous agents. Nature, 1936, 138: 32
    31蒋春雷,路长林,主编.应激医学.上海:上海科学技术出版社, 2006, 6
    32 Chrousos GP. Stressors, stress, and neuroendocrine integration of the adaptive response. The 1997 Hans Selye Memorial Lecture. Ann N Y Acad Sci, 1998, 30: 311-335
    33郝伟,主编.精神病学,6版.北京:人民卫生出版社, 2008, 136-137
    34 Zahorodna A, Tokarski K, Bijak M. Electrophysiologic tests for testing the effects of antidepressant drugs and corticosterone on reactivity of serotonin recepters in the hippocampus. Postepy Hig Med Dosw, 2000, 54: 391~401
    35彭贵军.白松片对抑郁模型大鼠海马BDNF及其受体TrkB表达的影响[博士学位论文].长沙:中南大学,2004, 36
    36 Sapolsky RM. Why stress is bad for your brain? Science, 1996, 273(5276): 749-750
    37李云峰,罗质璞.应激诱发抑郁症机制的研究进展.生理科学进展,2002,33(2): 142-144
    38 Yusim A, Ajilore O, Bliss T, et al. Glucocorticoids exacerbate insult-induced declines in metabolism in selectively vulnerable hippocampal cell fields. Brain Research, 2000, 870: 109–117
    39 Sapolsky MR. The possibility of neurotoxicity in the hippocampus in major depression: A primer on neuron death. Biol Psychiatry, 2000, 48: 755-765
    40蒋文华,主编.神经解剖学.上海:复旦大学出版社,2002, 374-375
    41 Sheline YI, Wang P, Gado MH, et al. Hippocampal atrophy in recurrent major depression. Proc Natl Acad Sci USA, 1996, 93: 3908-3918
    42 Moffoot AP, O’ccarroy RE, Bennie J. et a1. Diurnal variation of mood and neuropsychological function in major depression with melancholia. J Affect Disord, 1994, 32(4): 257
    43徐俊冕.应激.见:徐俊冕,主编.医学心理学, 2版.上海:上海医科大学出版社, 1996, 32-43
    44中华医学会精神科分会,编.中国精神障碍分类与诊断标准, 2版.济南:山东科学技术出版社, 2001
    45 Gottesmann C, Gottesman I. The neurobiological characteristics of rapid eye movement (REM) sleep are candidate endophenotypes of depression, schizophrenia, mental retardation and dementia. Progress in Neurobiology, 2007, 81: 237-250
    46 Loomer HP, Saunders JC, Kline NS. A clinical and pharmacodynamic evaluation of iproniazid as a psychic energizer // Affects DA (Ed.). Proceedings of the Psychiatric Research reports, 8. New York: Am. Psychiat. Assoc., 1957, 129–141
    47颜文伟,主编.临床精神药理学.长沙:湖南科学技术出版社,1998, 131
    48 Kuhn R. The treatment of depressive states with an iminodibenzyl derivative (G22355). Swiss Med J, 1957, 87: 1135–1140
    49 Kuhn R. The treatment of depressive states with G22355 (imipramine hydrochloride). Am. J. Psychiat., 1958–59, 115: 459–464
    50颜文伟.抗抑郁药//徐韬园,主编.现代精神医学.上海:上海医科大学出版社,2000, 145
    51 Gorman JM, Liebowitz MR, Fyer AJ, Goetz D, Campeas RB, Fyer MR, et al. An open trial of fluoxetine in the treatment of panic attacks. J Clin Psychopharmacol, 1987, 7: 329–332
    52 Burghardt NS, Bush DEA, McEwen BS, et al. Acute selective serotonin reuptake inhibitors increase conditioned fear expression: Blockade with a 5-HT2C receptor antagonist. Biol Psychiatry, 2007, 62: 1111-1118
    53 Martin P, Puech AJ. Antagonism by benzodiazepines of the effects of serotonin-, but not norepinephrine-, uptake blockers in the learned helplessness paradigm in rats. Biol Psychiatry, 1996, 39, 882– 890
    54 Gregor KJ, Riley JA, Downing DK. Concomitant use of anxiolytics and hypnotics with selective serotonin reuptake inhibitors. Clin Ther, 1996, 18: 521–527
    55 Bingefors K, IsacsonDG. Concomitant prescribing of tranquilizers and hypnotics among patients receiving antidepressant prescriptions. Ann Pharmacother, 1998, 32: 531– 535
    56颜文伟,主编.临床精神药理学.长沙:湖南科学技术出版社,1998,128
    57郝伟,主编.精神病学,6版.北京:人民卫生出版社, 2008, 110
    58周宏灏,主编.药理学,2版.北京:科学出版社,2008, 96
    59杨宝峰,主编.药理学,7版.北京:人民卫生出版社,2008, 159
    60王焕林,主编.临床精神医学.北京:人民军医出版社,2003, 154
    61徐韬园,主编.现代精神医学.上海:上海医科大学出版社,2000, 153
    62徐韬园,主编.现代精神医学.上海:上海医科大学出版社,2000, 324
    63季建林,主编.医学心理学,3版.上海:复旦大学出版社,2001, 229-230
    64孙华,张有志.针灸百会和足三里穴对抑郁模型小鼠和大鼠行为的影响.针灸临床杂志,2003, 19(2): 47
    65邱艳明,时宇静,图娅.电针印堂、百会对获得性无助大鼠不同脑区内单胺类神经递质的影响.北京中医药大学学报,2002,25(6):54
    66卢峻,时宇静,金智秀,等.不同频率电针对模型大鼠抗抑郁效应的比较研究.北京中医药大学学报,2003,26(6):83
    67罗和春,沈渔邨,贾云圭,等.电针治疗133例抑郁患者临床疗效观察.中西医结合杂志,1998,(2):77
    68唐胜修,徐祖豪,唐萍,等.针刺治疗抑郁性神经症的临床研究.中国针灸, 2003, 23(10): 585
    69陈光,周东丰,沈渔邮,等.抑郁症神经内分泌功能及其对电针治疗反应的研究.北京医科大学学报,1992,24(5):401
    70孙华,张有志,韩毳,等.电针对慢性应激抑郁模型大鼠大脑皮层5-HT1和5-HT2受体数量和结合活性的影响.中国针灸,2003, 23(9):553
    71徐虹,孙忠人,李丽萍,等.针刺治疗抑郁症及其对患者下丘脑-垂体-肾上腺轴的影响.中国针灸,2004, 24(2):78
    72韩毳,李晓泓,李学武,等.电针“百会-三阴交”穴对慢性应激抑郁模型大鼠HPA轴的影响.北京中医药大学学报,2001,24(3):74
    73韩毳,王磊,李晓泓,等.电针对抑郁患者血清细胞因子的影响.中国行为医学, 2002, 11(3): 27
    74李晓泓,韩毳,张露芳,等.艾灸大椎对慢性应激大鼠神经营养因子的影响.中医药学报, 2002, 30(6): 51
    75韩毳,李学武,李晓泓,等.电针对慢性应激抑郁模型大鼠海马BDNF的影响.中国中医基础医学杂志, 2001, 7(7): 55
    76杜元灏,李桂平,颜红,等.针刺治疗郁证的临床和基础研究.天津中医药,2004, 21(2):171
    77宋炜熙,胡随瑜,黄川原,等.白松片对应激大鼠行为及大脑皮质NE,DA的影响.中南大学学报(医学版),2005,30(5):574-578
    78陈昌华,胡随瑜,张春虎,等.白松片对慢性应激大鼠海马5-羟色胺和多巴胺含量的影响.实用预防医学,2006,13(3):491-492
    79 Hammarlund C. The physiologic effects of hyperbaric oxygenation. See: Kindwall E, Whelan H, Ed. Hyperbaric Medicine Practice. Flagstaff, AZ, US: Best Publishing Company, 2002, 56-58
    80刘景昌,主编.高压氧医学的理论与新技术.北京:军事医学科学出版社, 1998, 3-10
    81 Sumen-Secgin G, Cimsit M, Ozek M, et al. Antidepressant-like effect of hyperbaric oxygen treatment in forced-swimming test in rats. Methods Find Exp Clin Pharmacol. 2005, 27(7): 471-4
    82刘景昌,主编.高压氧医学的理论与新技术.北京:军事医学科学出版社, 1998, 170
    83修丽娟,杨玉兴,俞珊,等.抑郁症中医研究回顾与展望.中西医结合学报,2008, 6(1): 416-421
    84郑守增,主编.中医学,5版.北京:人民卫生出版社,2001, 169
    85胡随瑜,张宏根,郑林,等.1977例抑郁症患者中医不同证候构成比分析.中国医师杂志,2003,5(10): 1312-1314
    86方药中.实用中医内科学.上海:上海科学技术出版社,1985,432-439
    87肖怡,赵志付.中医对抑郁症的认识和治疗概述.北京中医药,2008, 27(9): 740-742
    88刘景昌.高压氧治疗的基本原理及其对机体的影响//杨益,主编.高压氧治疗基础与临床.上海:上海科学技术出版社,2005, 155-164
    89赵玉芝,范新刚.高压氧合并多虑平治疗抑郁症的对照研究.山东精神医学, 1997, (2): 45
    90朱国奎,缪金生,李祥仁.高压氧治疗抑郁症临床研究.神经疾病与精神卫生, 2005, 5(4): 302-304
    91 Kindwall E. The use of drugs under pressure (2nd ed revised)// Kindwall E, Whelan H, Ed. Hyperbaric Medicine Practice. Flagstaff, AZ, US: Best Publishing Company, 2002, 336
    92龚锦涵.高压氧治疗的展望//杨益,主编.高压氧治疗基础与临床.上海:上海科学技术出版社, 2005, 34
    93 Willner P. Validity, reliability and utility of the chronic mild stress model of depression a
    10-year review and evaluation. Psychopharmacology, 1997, 134: 319-329
    94宋炜熙.白松片对抑郁模型大鼠TH、DAT及Synapsin表达的调节作用[博士学位论文].长沙:中南大学,2004, 42
    95夏少晴.大鼠//郝光荣,主编.实验动物学,2版.上海:第二军医大学出版社,2002, 113
    96 Willner P. The validity of animal models of depression. Psychopharmaco1ogy, 1984; 83(1): 1-16
    97 Wrynn AS, MacSweeney CP, Franconi F, et al. Regional differences in brain monoamine oxidase subtypes in an animal model of geriatric depression: effects of olfactory bulbectomy in young versus aged rats. Brain Research, 2000, 882: 149-154
    98中华医学会精神科分会,编.中国精神障碍分类与诊断标准, 3版.济南:山东科学技术出版社, 2001, 87
    99匡培梓.生理心理学.北京:科学出版社,1987, 104-105
    100 Steru L, Chermat R, Thierry B, Simon P. The tail suspension test: a new method for screening antidepressants in mice. Psychopharmacology, 1985, 85(3): 367-370
    101 Porsolt RD, Berin A, Jalfre M. Behavioral despair in mice: a primary screening test for antidepressants. Arch Int Pharmacodyn Ther, 1977, 229: 327-336
    102李仪奎,主编.中药药理实验方法学.上海:上海科学技术出版社, 1991, 329
    103郭德玉,陈铁玉,李斌,等.不同年龄大鼠学习记忆能力及旷场行为比较.中国实验动物学报,1998, 6(1): 19-23
    104郭德玉,陈铁玉,李斌,等.不同年龄大鼠学习记忆能力及旷场行为比较.中国实验动物学报,1998, 6(1): 19-23
    105 Bubna LH, Jahn J. Psychometric testing in rats during normal ageing. Procedures and results. J Neural Transm Suppl, 1994, 44(1): 97- 109.
    106徐叔云.药理实验方法学, 2版.北京:人民卫生出版社,1994, 641
    107 Porsolt RD, Berin A, Jalfre M. Behavioral despair in mice: A primary screening test for antidepressants. Arch Int Pharmacodyn Ther, 1977, 229: 327-336
    108 Porsolt RD, LePichon M, Jalfre M. Depression: A new animal model sensitive to anti-depressant treatment. Nature, 1977, 266: 730-732
    109卢峻.电针影响慢性应激抑郁模型大鼠神经可塑性的分子机制研究[博士学位论文].北京:北京中医药大学, 2004, 37
    110 Borsini F, Meli A. Is the forced swimming test a suitable model for revealing antidepressant activity? Psychophamacology, 1988, 94: 147-160
    111 Steru L, Chermat R, Thierry B, Simon P. The tail suspension test: a new method for screening antidepressants in mice. Psychopharmacology, 1985, 85(3): 367-370
    112 Ashutosh Dalvi, Irwin Lucki. Murine models of depression. Psychophamacology, 1999, 147: 14-16

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700