用户名: 密码: 验证码:
PKIP在大鼠肝纤维化发生机制中的作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肝纤维化(hepatic fibrosis)是肝硬化乃至肝功能衰竭的共同病理基础和必经阶段,是影响慢性肝病的重要环节,因此肝纤维化的预防、治疗乃至逆转是阻断肝硬化的关键环节。肝纤维化也成为国内外学者研究慢性肝病的焦点。我国是肝病高发国家,以慢性乙型、丙型病毒性肝炎最为常见,在目前尚无良好的抗病毒药物的情况下,阻止或逆转肝纤维化进程成为治疗慢性肝病的重要对策。
     生理状态下,HSCs在维生素A代谢和维持肝脏构架(产生细胞外间质和通过收缩作用调节窦状隙血流)中起重要作用。在慢性肝损伤过程中HSCs经历了表型转化(激活),变成了高增殖活性的类维生素A缺乏细胞(表达α-SMA),激活的HSCs在肝纤维化,肝硬化,门脉高压和肝癌形成过程中具有重要的作用。激活的HSCs获得不断增殖,合成大量的ECM分子,分泌细胞因子和生长因子,迁移和收缩的能力。肝星状细胞在塑料培养皿中进行体外培养时使HSCs的活化过程得到很好地重现。
     在肝纤维化和肝硬化过程中,Raf-1/MEK/ERK1,2信号通路处于激活状态。Raf-1/MEK/ERK1,2信号通路的激活可以促进细胞生长,分化和迁移。许多不同的生长因子受体,包括PDGF和EGF受体通过小G蛋白Ras结合和聚集Raf-1激酶进而激活ERK/MAPK信号通路。Raf-1磷酸化MEK接着磷酸化和激活ERK。磷酸化的ERK进入细胞核通过结合多种转录因子来调节基因表达,进而促进了致纤维化蛋白分子的表达。
     Yeung和他的同事们首次证明RKIP通过直接与Raf-1上的激酶位点相互作用抑制ERK/MAPK信号通路。RKIP是广泛表达的高度保守的胞浆蛋白,与其它的激酶抑制剂没有同源性,是人们目前发现的唯一的Raf-1蛋白天然抑制剂。在非磷酸状态下,RKIP通过与Raf-1结合阻止Raf-1磷酸化,干扰Raf/MEK结合,抑制MEK和下游分子的活化来达到负向调节Raf-1/MEK/ERK1,2信号通路的作用。磷酸化的RKIP从Raf-1上解离出来与GRK-2结合并阻断其活性,GRK-2是G蛋白偶联受体(GPCRs)的负反馈抑制蛋白。GRK-2使GPCRs磷酸化,从而将G蛋白与GPCRs解离导致G蛋白信号通路的活化。有数据表明RKIP被PKC磷酸化后能同时激活Raf-1/MEK/ERK1,2和GPCR信号通路。近些年来,RKIP被证明是一个抑制肿瘤细胞侵袭扩散的蛋白分子,包括前列腺癌,恶性黑色素瘤,乳腺癌,胰岛细胞癌,直肠癌和肝癌。RKIP在MDCK表皮细胞中的作用则相反,RKIP过表达能使MDCK由表皮细胞转化为成纤维样细胞并且促进细胞迁移。Locostatin(是一种不具有抗菌作用的黄恶唑酮衍生物)能够特异地消除RKIP对Raf-1的抑制作用,同时也是MDCK表皮细胞迁移抑制剂。进一步的研究证明RKIP在正向调节细胞与基层黏附和负向调节细胞与细胞的黏附过程中具有重要作用。
     HSCs细胞形态改变和运动迁移构成了一系列肝纤维化生物过程的重要部分。尽管RKIP在MDCK表皮细胞和高侵袭力肿瘤细胞中的作用已经得到揭示,但是RKIP在肝纤维化形成时HSCs中的作用却知之甚少。在本实验中,我们将揭示RKIP在肝纤维化组织的表达及其在HSCs细胞增殖和迁移中的作用。实验内容主要包括以下3部分:
     第一部分:肝纤维化大鼠肝组织中RKIP、p-RKIP、ERK和p-ERK的动态表达情况
     目的:研究RKIP在胆总管结扎肝纤维化大鼠肝脏组织的表达情况。
     方法:运用胆总管结扎方法制作大鼠肝纤维化模型,模型组分别于结扎后1周、2周、3周、4周麻醉动物,假手术组与4周模型组同批麻醉,留取肝脏标本。组织切片经HE和Masson三色染色检测病理变化,Western blot和免疫组织化学方法检测RKIP在肝组织的表达,用Western blot方法检测RKIP和ERK的磷酸化水平。
     结果:①HE和Masson三色染色结果证明胆总管结扎大鼠肝纤维化模型制作成功。②RKIP在大鼠肝组织的免疫组织化学定位:RKIP在正常大鼠肝组织的肝细胞、胆管周围细胞、血管内皮细胞和肝窦周围细胞中均有表达,分布在细胞胞浆和胞膜;随着肝纤维化的发展,大鼠肝脏中RKIP阳性细胞明显减少,与肝细胞相比RKIP在汇管区和纤维间隔的成维细胞中表达较少,但在肝细胞胞膜中的表达增强。造模1~4周大鼠肝组织RKIP的阳性面积占总面积的百分比分别为(87.1±1.4) %,(77.2±2.2) %,(60.9±2.3) %和(48.2±2.2) %;2~4周大鼠肝组织RKIP的表达显著性低于正常对照组(89.2±1.3) %,P<0.05。③Western blot分析结果显示,RKIP在模型组3~4周肝纤维化组织的表达较假手术组下降,假手术组(105.7±4.9) %,模型组1~4周其表达分别(104.0±4.2) %,(103.1±3.5) %,(54.5±2.8) %和(41.0±1.8) %。ERK的相对表达量没有明显变化,假手术组表达为(66.8±2.3) %,模型组1~4周其表达分别(70.4±2.3) %,(69.3±2.0) %,(68.1±1.4) %和(67.4±2.4 ) %。随着肝纤维化的发展,RKIP和ERK的磷酸化水平逐渐增多。假手术组p-RKIP表达为(12.4±1.9) %,模型组1~4周其表达分别(43.6±2.2) %,(45.0±2.6) %,(83.9±2.9) %和(89.7±3.5) %。p-ERK假手术组表达为(25.8±3.2) %,模型组1~4周其表达分别(95.5±3.8) %,(132.1±2.7) %,(277.7±4.8) %和(332.9±2.4) %。
     结论:胆总管结扎大鼠肝纤维化形成过程中,肝脏组织磷酸化ERK表达明显增加,存在Raf-1/MEK/ERK1,2信号转导通路的活化。RKIP表达水平下降,同时磷酸化RKIP水平升高,肝纤维化过程中肝脏组织Raf-1/MEK/ERK1,2信号转导途径的激活与RKIP的蛋白表达下降和磷酸化增加有关。
     第二部分:RKIP在大鼠原代肝星状细胞活化中的作用
     目的:体外分离大鼠原代HSCs,研究RKIP在大鼠原代肝星状细胞激活前后的表达情况。
     方法:应用台盼兰染色,观察细胞存活率。应用荧光显微镜观察刚分离大鼠原代HSCs的自发荧光,以做特异性细胞鉴定。应用单克隆抗体α-SMA做免疫细胞和Western blot以鉴定原代HSCs体外培养后的活化状态。RT-real time PCR和Western blot方法检测RKIP在原代HSCs的表达情况,用Western blot方法检测RKIP、Raf-1和ERK1/2磷酸化水平。
     结果:①采用原位灌注和密度梯度离心方法成功分离出大鼠原代HSCs。②台盼兰染色观察,细胞存活率大于92%,经过自发荧光特性鉴定纯度大于95%,每只大鼠肝星状细胞的得率大约为1.5×107至2.0×107。③在荧光显微镜(328nm)下观察,刚分离的原代HSCs呈自发蓝色荧光。在倒置显微镜下观察刚分离的HSCs呈圆形,胞浆中含有较多脂滴,细胞核位于细胞的一侧。培养至8天,大鼠HSCs呈活化状态,脂滴消失,变成梭形样细胞。④免疫细胞化学染色显示,刚分离的肝星状细胞α-SMA染色阴性;原代培养8天的肝星状细胞α-SMA阳性染色达100%。Western blot分析在42 KD的位置上出现一条杂交带,从杂交信号强度可知,大鼠肝星状细胞活化之后α-SMA表达明显增加。⑤RT-real time PCR分析结果显示,原代培养8天的肝星状细胞和刚分离的肝星状细胞之间RKIP基因表达无明显差异。Western blot分析在23 KD的位置上出现一条杂交带,从杂交信号强度可知,与刚分离的细胞(0.926±0.008)相比,大鼠肝星状细胞活化之后RKIP表达明显下降(0.377±0.009)。⑥Western blot分析结果显示,大鼠肝星状细胞活化之后RKIP、Raf-1和ERK的磷酸化水平却明显增多。刚分离的肝星状细胞p-RKIP、p-Raf-1和p-ERK表达分别为(1.087±0.021),(0.053±0.009)和(0.011±0.002)。而活化后的肝星状细胞p-RKIP、p-Raf-1和p-ERK表达分别表达为(1.721±0.081),(0.216±0.019)和(0.922±0.014)。
     结论:采用原位灌注和密度梯度离心方法成功分离大鼠原代HSCs。原代HSCs体外培养活化之后信号通路Raf-1/MEK/ERK1,2处于激活状态,而RKIP表达则明显下降,p-RKIP表达则明显增加。
     第三部分:RKIP对大鼠肝星状细胞增殖和迁移的影响
     目的:观察RKIP对大鼠肝星状细胞增殖、凋亡和迁移能力的影响。
     方法:大鼠肝星状细胞株HSC-T6的培养采用含10%FCS的DMEM培养液,重组质粒pCMV5-HA-RKIP或者空载体用Lipofectamine 2000包裹,按照说明书操作进行转染48 h后,弃去培养基;质粒pCMV5-HA-RKIP转染36 h后用50μM locostatin或者0.1% DMSO处理12 h,弃去培养基最后收集细胞提取细胞总蛋白以用于Western blot分析。一抗封闭时采用抗RKIP、pRKIP、Raf-1、pRaf-1、ERK1/2、pERK1/2和β-actin蛋白抗体测定。RKIP过表达质粒转染后的HSC-T6采用MTT法测定HSCs增殖;采用TUNEL试剂盒测定HSCs凋亡率。G418筛选RKIP稳定转染株,稳定转染的细胞用Transwell小室对细胞进行迁移评估;细胞爬片在含10% FCS的DMEM培养液中生长融合,然后用无菌的枪头刮开一个小伤口。在刮伤后0, 12和24小时的时间点,用伤口愈合实验测定HSCs迁移率。
     结果:①为了检查RKIP在活化的HSCs中的作用,HSC-T6细胞株用RKIP质粒转染后RKIP表达比对照组明显增加(RKIP/β-actin, 0.673±0.016 vs 0.227±0.025, P<0.01)。而相对应,Raf-1和ERK磷酸化水平明显降低(pRaf/Raf, 0.027±0.006 vs 0.853±0.022, P<0.01; pERK/ERK, 0.293±0.012 vs 1.027±0.060, P<0.01)。Locostatin处理后,Western blot结果显示RKIP过表达降低(RKIP/β-actin, 0.338±0.016, vs 0.673±0.016, P<0.01)。而相对应RKIP、Raf-1和ERK磷酸化水平增加(pRKIP/RKIP, 1.090±0.128 vs 0.332±0.024, P<0.01; pRaf/Raf, 0.216±0.015 vs 0.027±0.006, P<0.01; pERK/ERK, 0.790±0.028 vs 0.293±0.012, P<0.01)。②相对于空白对照组RKIP过表达抑制HSCs增殖(0.981±0.020 vs 0.860±0.022, P<0.01)。但是相对于空白对照组,RKIP过表达对HSCs凋亡没有明显的影响。③Transwell assay结果显示,相对于空白对照组(124.00±6.00),RKIP过表达组、RKIP +Locostatin组和Locostatin组细胞迁移数分别为(161.00±9.17)、(43.00±7.94)和(10.00±3.61)。RKIP过表达可以显著促进HSC-T6细胞迁移,而locostatin具有相反作用。为了进一步确认RKIP在细胞迁移中的作用,我们又采用伤口愈合实验(wound closure assay)进行测定。生长融合后的HSC-T6细胞刮开一个小口,24小时之后过表达RKIP的HSC-T6已经重新融合,而空白对照组融合率只有73.2%。Locostatin明显抑制HSC-T6细胞的伤口愈合率,只有3.3%。Wound closure assay显示相对于对照组,RKIP易位过表达可以促进细胞迁移,locostatin则抑制伤口愈合。
     结论:在HSCs中RKIP可以调节Raf-1/MEK/ERK1,2信号通路的活化。体外细胞培养研究表明,RKIP过表达可以抑制HSCs的细胞增殖,但是促进HSCs的细胞迁移。
Chronic damage results in a progressive accumulation of scarring proteins (hepatic fibrosis) that, with increasing severity, alters tissue structure and function, leading to cirrhosis and liver failure. Hepatic fibrosis is the important link that affects the chronic liver disease. Therefore, prevention and treatment of hepatic fibrosis is the focus of chronic liver disease. HBV and HCV type hepatitis are the most mainly chronic liver diseases in our country. Understanding the complex intercellular interactions regulating liver fibrogenesis is of increasing importance in view of predicted increases in chronic liver disease and the current paucity of effective therapies.
     Physiologically, hepatic stellate cells (HSCs) play a pivotal role in vitamin A metabolism and in maintaining the liver’s architecture by producing components of extracellular matrix and regulating sinusoidal blood flow by contractility. During chronic liver injury, HSCs undergo phenotypical transformation (i.e. activation) to actively proliferate retinoid-deficient cells that express theα-smooth muscle actin (α-SMA) known as activated HSCs. Activated HSCs play an essential role in the pathogenesis of liver fibrosis and cirrhosis, the development of portal hypertension, and in the progression of liver cancer. Activated HSCs have the ability to proliferate, to synthesize a large variety of ECM molecules, to secrete cytokines and growth factors, and to migrate and contract. This activation process of HSCs is reproducible in vitro.
     The extracellular signal-regulated kinases (ERK)/mitogen-activated protein kinase (MAPK) signaling pathway has been shown to be activated in liver fibrosis and cirrhosis and is involved in cell growth, differentiation, and migration. Many different growth factor receptors, including PDGF receptor and EGF receptor, activate the ERK/MAPK signaling pathway through small G-protein Ras, which consequently binds Raf-1 kinase and thereby recruits Raf-1 to the inner surface of the cell membrane. After this event, Raf-1 phosphorylates MEK, which in turn phosphorylates and activates ERK. Phosphorylated ERK translocates into the nucleus and regulates gene expression via interactions with various transcription factors and subsequently, results in fibrosis related protein expression.
     Yeung et al, who identified the Raf kinase inhibitor protein (RKIP) as a protein that directly interacts with the kinase domain of Raf-1, first demonstrated that RKIP acts as an inhibitor of the ERK/MAPK signaling pathway. RKIP is a widely expressed and highly conserved cytosolic protein that does not share any significant homology with other kinase inhibitors. In its non-phosphorylated form, RKIP negatively regulates the Raf-1/MEK/ERK1,2 pathway by interfering with the activity of Raf-1, disrupting the Raf/MEK interaction, and preventing the activation of MEK and downstream components. In its phosphorylated state, RKIP dissociates from Raf-1 and combines with GRK-2, a negative regulator of G-protein coupled receptors (GPCRs). Available data indicate that the phosphorylation of RKIP by PKC stimulates both the Raf-1/MEK/ERK1,2 and GPCR pathways. In recent years, RKIP has been identified as a member of a novel class of molecules that suppress metastasis, with evidences from prostate cancer, malignant melanomas, breast cancer, insulinomas, colorectal cancer and hepatocellular carcinoma. Such activity appears to be opposite to that in MDCK epithelial cells, in which RKIP overexpression converts the cells to fibroblast-like morphology and promotes migration. Locostatin, a non-antibacterial oxazolidinone derivative, was discovered to abrogate RKIP’s ability to bind and inhibit Raf-1 kinase by disrupting a protein-protein interaction. Locostatin also inhibits epithelial cell sheet migration. Another study suggests that RKIP plays important roles in the regulation of cell adhesion, positively controlling cell-substratum adhesion and negatively controlling cell-cell adhesion.
     Although the importance of RKIP in MDCK epithelial cells and metastatic cells of tumors has been well documented, there is no report so far on the role of RKIP in HSC behavior and hepatic fibrosis. The present study investigates the expression of RKIP in liver fibrogenesis and the involvement of RKIP in HSC proliferation and migration. The experiments contained three parts as below:
     Part 1: The dynamic expressions of RKIP, p-RKIP, ERK and p-ERK in liver of the bile duct ligated rats
     Objective:To explore the dynamic expressions of RKIP, p-RKIP, p-ERK and ERK in liver of the bile duct ligated rats.
     Methods:Hepatic fibrosis was induced in Sprague-Dawley rats by bile duct ligation (BDL). Livers in model group were harvested at fixed timepoints: 1wk, 2wk, 3wk and 4wk after operation. Livers in sham operation group were harvested at 4wk after operation. Histopathological changes were evaluated by hematoxylin and eosin staining and by Masson’s trichrome method. RKIP protein expression and phosphorylatin of RKIP and ERK in the livers were determined by Western blot, while the distribution of RKIP in the livers was assessed immunohistochemistically.
     Results:①Hematoxylin and eosin staining of liver established the bile duct ligated rats.②The location of RKIP in rat liver by immunohistochemistry assay: RKIP was located in the cytoplasm and plasma membrane, and expressed in hepatocytes, bile duct epitheliums, vascular endothelial cells and sinusoidal endothelial cells of the normal rat liver. With the development of hepatic fibrosis, the positive cells of RKIP decreased. RKIP expression was decreased in the myofibroblast of portal ducts and fiber septa, but was increased in the plasma membrane of hepatocytes. The positive areas of RKIP in the rat livers in model groups at week 1 to 4 were (87.1±1.4) %, (77.2±2.2) %, (60.9±2.3) % and (48.2±2.2) %. RKIP expression in model groups at week 2 to 4 was all lower than that in control group ((89.2±1.3) %, P<0.05).③Western blot analysis: RKIP expression in model groups at week 3 to 4 was decreased compared with the control group ((105.7±4.9) %, P<0.05). RKIP expression in model groups at week 1 to 4 was (104.0±4.2) %, (103.1±3.5) %, (54.5±2.8) % and (41.0±1.8) %. ERK expression was not changed, with (66.8±2.3) % in control group, and (70.4±2.3) %, (69.3±2.0) %, (68.1±1.4) %, (67.4±2.4) % in model groups at week 1 to 4. With the development of hepatic fibrosis, phosphorylatin of RKIP and ERK in the liver was increased. The expression of p-RKIP in control group was (12.4±1.9) %, with (43.6±2.2) %, (45.0±2.6) %, (83.9±2.9) % and (89.7±3.5) % in model groups at week 1 to 4. The expression of p-RKIP in control group was (25.8±3.2) %, with (95.5±3.8) %, (132.1±2.7) %, (277.7±4.8) % and (332.9±2.4) % in model groups at week 1 to 4.
     Conclusions: With the development of liver fibrosis, phosphorylatin of ERK in the livers was increased and Raf-1/MEK/ERK1,2 signaling pathway was activated in liver of the bile duct ligated rats. The activation of Raf-1/MEK/ERK1,2 signaling pathway was correlated with decreased RKIP expression and increased phosphorylated RKIP in the livers of bile duct ligated rats.
     Part 2: The RKIP expressions during rat HSC activation in vitro Objective: To isolate rat HSCs, and investigate the RKIP expressions during HSC activation.
     Methods: The viability of all cells was verified by phase contrast microscopy as well as the ability to exclude Trypan Blue. To evaluate the purity of the cultures, HSCs were tested by immunofluorescence. With the use ofα-SMA immunoreactivity and Western Blot as an activation parameter, HSCs were tested during culture in vitro. RKIP protein expression and phosphorylatin of RKIP and ERK in the HSCs were determined by Western blot, while the RKIP gene expression was assessed by real time RT-PCR.
     Results:①Primary rat HSCs were isolated successfully by sequential digestion of the liver with Pronase and collagenase, followed by single step density gradient centrifugation with Nycodenz.②Cell viability was greater than 92% as determined by Trypan Blue exclusion. HSC purity, as assessed by phase-contrast microscopy and vitamin A autofluorescence immediately after plating, was greater than 95%, with a yield ranging from 1.5×107 to 2.0×107 HSC/rat.③Primary HSCs show blue under ultraviolet light (328nm). The primary HSC is in rich of retinoid which squeezes the nuclear to one side. After 8 days culture, rat HSC is activated. Activated HSC loses retinoid and becomes myofibroblast-like cell.④Rat HSCs were checked byα-SMA staining with monoclonal antibody at day 1 (quiescent,α-SMA negative cells) and day 8 (activated,α-SMA positive cells). Western blots also showed that the activated HSCs wereα-SMA positive.⑤By real time RT-PCR analysis, RKIP mRNA expression was not changed during rat HSC culture in vitro. RKIP protein expression was significantly decreased in activated HSCs compared with those in quiescent status (RKIP/β-actin, 0.377±0.009, vs 0.926±0.008, P<0.01).⑥RKIP, Raf, and ERK phosphorylations were significantly increased (pRKIP/RKIP, 1.721±0.081 vs 1.087±0.021, P<0.01; pRaf/Raf, 0.216±0.019 vs 0.053±0.009, P<0.01; pERK/ERK, 0.922±0.014 vs 0.011±0.002, P<0.01). These results indicate that RKIP downregulation and RKIP phosphorylation upregulation activated the ERK/MAPK pathway.
     Conclusions: Primary rat HSCs were isolated successfully by sequential digestion of the liver with Pronase and collagenase, followed by single step density gradient centrifugation with Nycodenz. RKIP protein expression is downregulated and high phosphorylation of RKIP is followed by activated Raf/MEK/ERK pathway after activation of rat HSCs, suggesting that this protein is a possible factor in regulation of HSC cell proliferation and migration.
     Part 3: The role of RKIP in HSC proliferation and migration
     Objective: To investigate the role of RKIP in HSC proliferation, apoptosis, and migration.
     Methods: Rat HSC cell line (HSC-T6) was used in this study, and cultured in HEPES-buffered DMEM. For transfection, pCMV5-HA-RKIP or empty vector plasmid (control) was added to HSC-T6 when 60%-70% confluence using Lipofectamine 2000 reagent. 48 hours later, the medium was renewed. After 36 hours of transient transfection, HSC-T6 cells in 6-well dishes were treated with 0.1% DMSO carrier solvent or with 50μM locostatin for 12 hours. The medium was renewed, and cells were rinsed with PBS thrice and extracted for SDS-PAGE in lysis buffer. Western blot analysis was undertaken by using the following primary antibodies: RKIP, pRKIP, Raf-1, pRaf-1, ERK1/2, pERK1/2 andβ-actin. HSC proliferation and apoptosis were evaluated with 3-(4, 5-dimethylthiazol-2-yl) -2, 5-diphenyltetrazolium bromide (MTT) assay and terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling (TUNEL) staining. To cell migration assay, G418 was added for the selection of stable clones. The method for Transwell cell migration assay was used. For wound closure assay, HSC-T6 cells were grown to confluence in DMEM supplemented with 10% FCS and then scratch wounded with a sterile plastic micropipette tip. At 0, 12, and 24 hours, photographs were taken at the same position of the wound.
     Results:①HSC-T6 cells transfected with RKIP plasmids overexpressed RKIP (RKIP/β-actin, 0.673±0.016, vs 0.227±0.025, P<0.01), and the phosphorylation of Raf-1 and ERK were significantly decreased in these cells (pRaf/Raf, 0.027±0.006 vs 0.853±0.022, P<0.01; pERK/ERK, 0.293±0.012 vs 1.027±0.060, P<0.01). Locostatin significantly decreased RKIP expression in transfected cells (RKIP/β-actin, 0.338±0.016, vs 0.673±0.016, P<0.01). Locostatin also increased the phosphorylation of RKIP, Raf-1, and ERK (pRKIP/RKIP, 1.090±0.128 vs 0.332±0.024, P<0.01; pRaf/Raf, 0.216±0.015 vs 0.027±0.006, P<0.01; pERK/ERK, 0.790±0.028 vs 0.293±0.012, P<0.01).②The proliferation of HSCs was significantly inhibited in cells overexpressing RKIP compared with those in the empty vector group (0.981±0.020 vs 0.860±0.022, P<0.01), while RKIP overexpression did not significantly affect HSC apoptosis.③RKIP overexpression significantly increased HSC-T6 cell migration rates compared to the control (161.00±9.17 vs 124.00±6.00, P<0.01), and locostatin abrogated this effect (43.00±7.94 vs 161.00±9.17, P<0.01), and HSC-T6 cell treated with locostatin (10.00±3.61 vs 161.00±9.17, P<0.01). To further confirm the effect of RKIP on cell migration, RKIP-overexpressing HSC-T6 cells were grown to confluence and then scrape wounded. Within 24 hours, RKIP-overexpressing cells grew to confluence again while cells transfected with the empty vector grew only to 73.2%. Locostatin significantly delayed wound closure of HSC-T6 cells as they grew only to 3.3%. Wound closure assay showed that overexpression of RKIP promoted wound closure while locostatin inhibited wound closure.
     Conclusions: RKIP inhibits Raf-1/MEK/ERK1,2 signaling and this inhibition impedes HSCs proliferation. RKIP promotes HSCs migration and wound closure.
引文
1 Hui AY, Friedman SL. Molecular basis of hepatic fibrosis. Expert Rev Mol Med, 2003, 5(5): 1~23
    2姜慧卿,姚希贤.肝星状细胞的活化与肝纤维化.胃肠病学和肝病学杂志, 2007, 16(1): 86~89
    3 Yeung K, Seitz T, Li S, et al. Suppression of Raf-1 kinase activity and MAP kinase signalling by RKIP. Nature, 1999, 401: 173~177
    4 Benitez-Rajal J, Lorite MJ, Burt AD, et al. Phospholipase D and extracellular signal-regulated kinase in hepatic stellate cells: effects of platelet-derived growth factor and extracellular nucleotides. American Journal of Physiology Gastrointestinal and Liver Physiology, 2006, 291(5): G977~986
    5 Jiang MD, Zheng SM, Xu H, et al. An experimental study of extracellular signal-regulated kinase and its interventional treatments in hepatic fibrosis. Hepatobiliary Pancreat Dis Int, 2008, 7: 51~57
    6姜慧卿,王占魁,张晓岚,等.丹参单体IH764-3对胆总管结扎大鼠胶原降解的作用及其机制.胃肠病学和肝病学杂志, 2003, 12(4): 336~339
    7王玉珍,姜慧卿,扈彩霞,等.大鼠肝纤维化组织信号分子RhoA和肌球蛋白轻链的动态表达.基础医学与临床, 2007, 27(3): 275~278
    8 Klysik J, Theroux SJ, Sedivy JM, et al. Signaling crossroads: The function of Raf kinase inhibitory protein in cancer, the central nervous system and reproduction. Cell Signal, 2008, 20(1): 1~9
    9韩海勃,张志谦,赵威. RKIP蛋白在多个人肺癌细胞系中的表达下调.基础医学与临床, 2007, 27(8): 849~852
    10 Zhu S, Mc Henry KT, Lane WS, et al. A chemical inhibitor reveals the role of Raf kinase inhibitor protein in cell migration. Chem Biol, 2005, 12(9): 981~991
    1姜慧卿,姚希贤.肝星状细胞的活化与肝纤维化.胃肠病学和肝病学杂志, 2007, 16(1): 86~89
    2 Sato M, Suzuki S, Senoo H. Hepatic stellate cells: unique characteristics in cell biology and phenotype. Cell Struct Funct, 2003; 28(2): 105~112
    3 Senoo H, Kojima N, Sato M. Vitamin A-storing cells (stellate cells). Vitam Horm, 2007, 75: 131~159
    4 Knook DL, Seffelaar AM, de Leeuw AM. Fat-storing cells of the rat liver. Their isolation and purification. Exp Cell Res, 1982, 139(2): 468~471
    5赵文丽,姜庆久,吴春莲,等.改良法分离大鼠肝星状细胞.局部手术学杂志, 2004, 13(4): 240~242
    6 Uyama N, Zhao L, Van Rossen E, et al. Hepatic stellate cells express synemin, a protein bridging intermediate filaments to focal adhesions. Gut, 2006, 55(9): 1276~1289
    7 Hagens WI, Mattos A, Greupink R, et al. Targeting 15d-prostaglandin J2 to hepatic stellate cells: two options evaluated. Pharm Res, 2007, 24(3): 566~574
    8石巧娟,戴方伟,贾丹梅,等.鼠肝星状细胞的分离培养和鉴定方法.细胞与分子免疫学杂志, 2006, 22(6): 825~827
    9王文兵,戴立里,郑元义.改良大鼠肝星状细胞分离及性质鉴定.胃肠病学和肝病学杂志, 2005, 14(3): 239~242
    10 Friedman SL, Roll FJ. Isolation and culture of hepatic lipocytes, Kupffer cells, and sinusoidal endothelial cells by density gradient centrifugation with Stractan. Anal Biochem, 1987, 161(1): 207~218
    11 Friedman SL, Rockey C, Mcgmre F, et al. Isolated hepatic lipocytes and kupffer cells from normal human liver: morphological and functional characteristics in primary culture. Hepatology, 1992, 15: 234~243
    12 Vrochides D, Papanikolaou V, Pertoft H, et al. Biosynthesis and degradation of hyaluronan by nonparenchymal liver cells during liver regeneration. Hepatology, 1996, 23(6): 1650~1655
    13高春芳,孔宪涛,范列英.大鼠肝贮脂细胞、Kupffer细胞的分离、培养和鉴定.中华消化杂志, 1995, 15(3): 142~145
    14 de Leeuw AM, McCarthy SP, Geerts A, et al. Purified rat liver fat-storing cells in culture divide and contain collagen. Hepatology, 1984, 4(3): 392~403
    15 Aprigliano I, Dudas J, Ramadori G, et al. Atorvastatin induces apoptosis by a caspase-9-dependent pathway: an in vitro study on activated rat hepatic stellate cells. Liver Int, 2008, 28(4): 546~557
    16 Etinne MS, Hall A. Rho GTPases in cell biology. Nature, 2002, 420(6916): 629~635
    17 Hwang YH, Choi JY, Kim S, et al. Over-expression of c-raf-1 proto-oncogene in liver cirrhosis and hepatocellular carcinoma. Hepatol Res, 2004, 29(2): 113~121
    18 Jiang MD, Zheng SM, Xu H, et al. An experimental study of extracellular signal-regulated kinase and its interventional treatments in hepatic fibrosis. Hepatobiliary Pancreat Dis Int, 2008, 7(1): 51~57
    19 Reimann T, Hempel U, Krautwald S, et al. Transforming growth factor-beta1 induces activation of Ras, Raf-1, MEK and MAPK in rat hepatic stellate cells. FEBS Lett, 1997, 403(1): 57~60
    20 Benitez-Rajal J, Lorite MJ, Burt AD, et al. Phospholipase D and extracellular signal-regulated kinase in hepatic stellate cells: effects of platelet-derived growth factor and extracellular nucleotides. Am J Physiol Gastrointest Liver Physiol, 2006, 291(5): G977~986
    21 Svegliati-Baroni G, Ridolfi F, Hannivoort R, et al. Bile acids induce hepatic stellate cell proliferation via activation of the epidermal growth factor receptor. Gastroenterology, 2005, 128(4): 1042~1055
    22 Antoine M, Wirz W, Taq CG, et al. Expression and function of fibroblast growth factor (FGF) 9 in hepatic stellate cells and its role in toxic liver injury. Biochem Biophys Res Commun, 2007, 361(2): 335~341
    1 Thirunavukkarasu C, Watkins SC, Gandhi CR. Mechanisms of endotoxin-induced NO, IL-6, and TNF-alpha production in activated rat hepatic stellate cells: role of p38 MAPK. Hepatology, 2006, 44(2): 389~398
    2 Uyama N, Zhao L, Van Rossen E, et al. Hepatic stellate cells express synemin, a protein bridging intermediate filaments to focal adhesions. Gut, 2006, 55(9): 1276~1289
    3 Milliano MT, Luxon BA. Rat hepatic stellate cells become retinoid unresponsive during activation. Hepatol Res, 2005, 33(3): 225~233
    4 Yang C, Zeisberg M, Mosterman B, et al. Liver fibrosis: insights into migration of hepatic stellate cells in response to extracellular matrix and growth factors. Gastroenterology, 2003, 124(1): 147~159
    5 Reeves HL, Friedman SL. Activation of hepatic stellate cells-a key issue in liver fibrosis. Front Biosci, 2002, 7: d808~826
    6 Hwang YH, Choi JY, Kim S, et al. Over-expression of c-raf-1 proto-oncogene in liver cirrhosis and hepatocellular carcinoma. Hepatol Res, 2004, 29(2): 113~121
    7 Jiang MD, Zheng SM, Xu H, et al. An experimental study of extracellular signal-regulated kinase and its interventional treatments in hepatic fibrosis. Hepatobiliary Pancreat Dis Int, 2008, 7(1): 51~57
    8 Reimann T, Hempel U, Krautwald S, et al. Transforming growth factor-beta1 induces activation of Ras, Raf-1, MEK and MAPK in rat hepatic stellate cells. FEBS Lett, 1997, 403(1): 57~60
    9 Benitez-Rajal J, Lorite MJ, Burt AD, et al. Phospholipase D and extracellular signal-regulated kinase in hepatic stellate cells: effects of platelet-derived growth factor and extracellular nucleotides. Am J Physiol Gastrointest Liver Physiol, 2006, 291(5): G977~986
    10 Svegliati-Baroni G, Ridolfi F, Hannivoort R, et al. Bile acids induce hepatic stellate cell proliferation via activation of the epidermal growth factor receptor. Gastroenterology, 2005, 128(4): 1042~1055
    11 Antoine M, Wirz W, Taq CG, et al. Expression and function of fibroblast growth factor (FGF) 9 in hepatic stellate cells and its role in toxic liver injury. Biochem Biophys Res Commun, 2007, 361(2): 335~341
    12 Yeung K, Seitz T, Li S, et al. Suppression of Raf-1 kinase activity and MAP kinase signalling by RKIP. Nature, 1999, 401(6749): 173~177
    13 Park S, Rath O, Beach S, et al. Regulation of RKIP binding to the N-region of the Raf-1 kinase. FEBS Lett, 2006, 580(27): 6405~6412
    14 Kroslak T, Koch T, Kahl E, et al. Human phosphatidylethanolamine-binding protein facilitates heterotrimeric G protein-dependent signaling. J Biol Chem, 2001, 276(43): 39772~39778
    15 Lorenz K, Lohse MJ, Quitterer U. Protein kinase C switches the Raf kinase inhibitor from Raf-1 to GRK-2. Nature, 2003, 426(6966): 574~579
    16 Corbit KC, Trakul N, Eves EM, et al. Activation of Raf-1 signaling by protein kinase C through a mechanism involving Raf kinase inhibitory protein. J Biol Chem, 2003, 278(15): 13061~13068
    17 Klysik J, Theroux SJ, Sedivy JM, et al. Signaling crossroads: The function of Raf kinase inhibitory protein in cancer, the central nervous system and reproduction. Cell Signal, 2008, 20(1): 1~9
    18 Fu Z, Smith PC, Zhang L, et al. Effects of raf kinase inhibitor protein expression on suppression of prostate cancer metastasis. J Natl Cancer Inst, 2003, 95(12): 878~889
    19 Park S, Yeung ML, Beach S, et al. RKIP downregulates B-Raf kinase activity in melanoma cancer cells. Oncogene, 2005, 24(21): 3535~3540
    20 Hagan S, Al-Mulla F, Mallon E, et al. Reduction of Raf-1 kinase inhibitor protein expression correlates with breast cancer metastasis. Clin Cancer Res, 2005, 11(20): 7392~7397
    21 Zhang L, Fu Z, Binkley C, et al. Raf kinase inhibitory protein inhibits beta-cell proliferation. Surgery, 2004, 136(3): 708~715
    22 Al-Mulla F, Hagan S, Behbehani AI, et al. Raf kinase inhibitor protein expression in a survival analysis of colorectal cancer patients. J Clin Oncol, 2006, 24(36): 5672~5679
    23 Minoo P, Zlobec I, Baker K, et al. Loss of raf-1 kinase inhibitor protein expression is associated with tumor progression and metastasis in colorectal cancer. Am J Clin Pathol, 2007, 127(5): 820~827
    24 Lee HC, Tian B, Sedivy JM, et al. Loss of raf kinase inhibitor protein promotes cell proliferation and migration of human hepatoma cells. Gastroenterology, 2006, 131(4): 1208~1217
    25 Schuierer MM, Btaille F, Weiss TS, et al. Raf kinase inhibitor protein is downregulated in hepatocellular carcinoma. Oncol Rep, 2006, 16(3): 451~456
    26 Mc Henry KT, Ankala SV, Ghosh AK, et al. A non-antibacterial oxazolidinone derivative that inhibits epithelial cell sheet migration. Chembiochem, 2002, 3(11): 1105~1111
    27 Zhu S, Mc Henry KT, Lane WS, et al. A chemical inhibitor reveals the role of Raf kinase inhibitor protein in cell migration. Chem Biol, 2005, 12(9): 981~991
    28 Mc Henry KT, Montesano R, Zhu S, et al. Raf kinase inhibitor protein positively regulates cell-substratum adhesion while negatively regulating cell-cell adhesion. J Cell Biochem, 2008, 103(3): 972~985
    29 Leung TH, Ching YP, Yam JW, et al. Deleted in liver cancer 2 (DLC2) suppresses cell transformation by means of inhibition of RhoA activity. Proc Natl Acad Sci U S A, 2005, 102(42): 15207~15212
    30 Friedman SL. Hepatic stellate cells: protean, multifunctional, and enigmatic cells of the liver. Physiol Rev, 2008, 88(1): 125~172
    31 Wang XM, Yu DM, McCaughan GW, et al. Fibroblast activation protein increases apoptosis, cell adhesion, and migration by the LX-2 human stellate cell line. Hepatology, 2005, 42(4): 935~945
    32 Meurer SK, Tihaa L, Lahme B, et al. Identification of endoglin in rat hepatic stellate cells: new insights into transforming growth factor betareceptor signaling. J Biol Chem, 2005, 280(4): 3078~3087
    33 Shafiei MS, Rockey DC. The role of integrin-linked kinase in liver wound healing. J Biol Chem, 2006, 281(34): 24863~24872
    34 Kobayashi Y, Bridle KR, Ramm GA, et al. Effect of phorbol ester and platelet-derived growth factor on protein kinase C in rat hepatic stellate cells. Liver Int, 2007, 27(8): 1066~1075
    35 Zhang Y, Ikegami T, Honda A, et al. Involvement of integrin-linked kinase in carbon tetrachloride-induced hepatic fibrosis in rats. Hepatology, 2006, 44(3): 612~622
    36 De Minicis S, Candelaresi C, Marzioni M, et al. Role of endogenous opioids in modulating HSC activity in vitro and liver fibrosis in vivo. Gut, 2008, 57(3): 352~364
    37 Kolch W. Meaningful relationships: the regulation of the Ras/Raf/MEK/ERK pathway by protein interactions. Biochem J, 2000, 351 Pt 2: 289~305
    38 Borkham-Kamphorst E, Herrmann J, Stoll D, et al. Dominant-negative soluble PDGF-beta receptor inhibits hepatic stellate cell activation and attenuates liver fibrosis. Lab Invest, 2004, 84(6): 766~777
    1 Wallace K, Burt AD, Wright MC. Liver fibrosis. Biochem J, 2008, 411(1): 1~18
    2 Antoine DG, Williams DP, Park BK. Understanding the role of reactive metabolites in drug-induced hepatotoxicity: state of the science. Expert Opin Drug Metab Toxicol, 2008, 4(11): 1415~1427
    3 Larson AM, Polson J, Fontana RJ, et al. Acetaminophen-induced acute liver failure: results of a United States multicenter, prospective study. Hepatology, 2005, 42(6): 1364~1372
    4 Williams R. Global challenges in liver disease. Hepatology, 2006, 44(3): 521~526
    5 Friedman SL. Mechanisms of hepatic fibrogenesis. Gastroenterology, 2008, 134(6): 1655~1669
    6 O'Leary JG, Lepe R, Davis GL. Indications for liver transplantation. Gastroenterology, 2008, 134(6): 1764~1776
    7 Braet F, Wisse E. Structural and functional aspects of liver sinusoidal endothelial cell fenestrae: a review. Comp Hepatol, 2002, 1(1): 1~17
    8 Wake K. "Sternzellen" in the liver: perisinusoidal cells with special reference to storage of vitamin A. Am J Anat, 1971, 132(4): 429~462
    9 Ito T. Cytological studies on stellate cells of Kupffer and fat storing cells in the capillary wall of human liver. Acta Anat Nippon, 1951, 26: 2
    10 Bronfenmajer S, Schaffner F, Popper H. Fat-storing cells (lipocytes) in human liver. Arch Path, 1966, 82(5): 447~453
    11 Nakane PK. Ito’s fat storing cell of the mouse liver. Anat Rec, 1963, 145: 265~266
    12 Wake K. Liver perivascular cells revealed by gold and silver impregnation methods and electron microscopy. In: Biopathology of the Liver, an Ulrastructural Approach, edited by Motta PM. Dordrecht: Kluwer, 1988, p. 23~36
    13 Wake K. Perisinusoidal stellate cells (Fat-storing cells, interstitial cells, lipocytes) their related structure in and around liver sinusoids, vitamin A storing cells in extrahepatic organs. Int Rev Cytol. 1980; 66: 303~353
    14 No authors listed. Hepatic stellate cell nomenclature. Hepatology, 1996, 23(1): 193
    15 Friedman SL. Hepatic stellate cells: protean, multifunctional, and enigmatic cells of the liver. Physiol Rev, 2008, 88(1): 125~172
    16 Cassiman D, Libbrecht L, Desmet V, et al. Hepatic stellate cell/myofibroblast subpopulations in fibrotic human and rat livers. J Hepatol, 2002, 36(2): 200~209
    17 Giampieri MP, Jezequel AM, Orlandi F. The lipocytes in normal human liver. A quantitative study. Digestion, 1981, 22(4): 165~169
    18 Jezequel AM, Novelli G, Venturini C, et al. Quantitative analysis of the perisinusoidal cells in human liver; the lipocytes. Front Gastrointestinal Res, 1984, 8: 85~90
    19 Friedman SL, Roll FJ, Boyles J, et al. Hepatic lipocytes: the principal collagen-producing cells of normal rat liver. Proc Natl Acad Sci USA, 1985, 82(24): 8681~8685
    20 Wake K, Sato T. Intralobular heterogeneity of perisinusoidal stellate cells in porcine liver. Cell Tissue Res, 1993, 273(2): 227~237
    21 Zou Z, Ekataksin W, Wake K. Zonal and regional differences identified from precision mapping of vitamin A-storing lipid droplets of the hepatic stellate cells in pig liver: a novel concept of addressing the intralobular area of heterogeneity. Hepatology, 1998, 27(4): 1098~1108
    22 Kalinichenko VV, Bhattacharyya D, Zhou Y, et al. Foxf1 +/– mice exhibit defective stellate cell activation and abnormal liver regeneration following CCl4 injury. Hepatology, 2003, 37(1): 107~117
    23 Kiassov AP, Van Eyken P, van Pelt JF, et al. Desmin expressing nonhematopoietic liver cells during rat liver development: an immunohistochemical and morphometric study. Differentiation, 1995, 59(4): 253~258
    24 Vassy J, Rigaut JP, Briane D, et al. Confocal microscopy immunofluorescence localization of desmin and other intermediate filament proteins in fetal rat livers. Hepatology, 1993, 17(2): 293~300
    25姜慧卿,姚希贤.肝星状细胞的活化与肝纤维化.胃肠病学和肝病学杂志, 2007, 16(1): 86~89
    26 Jarnagin WR, Rockey DC, Koteliansky VE, et al. Expression of variant fibronectins in wound healing: cellular source and biological activity of the EIIIA segment in rat hepatic fibrogenesis. J Cell Biol, 1994, 127(6 Pt 2): 2037~2048
    27 Bachem MG, Melchior R, Gressner AM. The role of thrombocytes in liver fibrogenesis: effects of platelet lysate and thrombocyte-derived growth factors on the mitogenic activity and glycosaminoglycan synthesis of cultured rat liver fat storing cells. J Clin Chem Clin Biochem, 1989, 27(9): 555~565
    28 Bilzer M, Roggel F, Gerbes AL. Role of Kupffer cells in host defense and liver disease. Liver Int, 2006, 26(10): 1175~1186
    29 Novo E, Marra F, Zamara E, et al. Dose dependent and divergent effects of superoxide anion on cell death, proliferation, migration of activated human hepatic stellate cells. Gut, 2006, 55(1):90~97
    30 Canbay A, Friedman S, Gores GJ. Apoptosis: the nexus of liver injury and fibrosis. Hepatology, 2004, 39(2): 273~278
    31 Canbay A, Higuchi H, Bronk SF, et al. Fas enhances fibrogenesis in the bile duct ligated mouse: a link between apoptosis and fibrosis. Gastroenterology, 2002, 123(4): 1323~1330
    32 Canbay A, Taimr P, Torok N, et al. Apoptotic body engulfment by a human stellate cell line is profibrogenic. Lab Invest, 2003, 83(5): 655~663
    33 Canbay A, Feldstein AE, Higuchi H, et al. Kupffer cell engulfment of apoptotic bodies stimulates death ligand and cytokine expression. Hepatology, 2003, 38(5): 1188~1198
    34 Nieto N, Friedman SL, Cederbaum AI. Cytochrome P450 2E1-derived reactive oxygen species mediate paracrine stimulation of collagen I proteinsynthesis by hepatic stellate cells. J Biol Chem, 2002, 277(12): 9853~9864
    35 Borkham-Kamphorst E, van Roeyen CR, Ostendorf T, et al. Pro-fibrogenic potential of PDGF-D in liver fibrosis. J Hepotal, 2007, 46(6): 1064~1074
    36 Wong L, Yamasaki G, Johnson RJ, et al. Induction of beta-platelet-derived growth factor receptor in rat hepatic lipocytes during cellular activation in vivo and in culture. J Clin Invest, 1994, 94(4): 1563~1569
    37 Pinzani M. PDGF and signal transduction in hepatic stellate cells. Front Biosci, 2002, 7: d1720~1726
    38 Lechuga CG, Hernández-Nazara ZH, Hernández E, et al. PI3K is involved in PDGF-beta receptor upregulation post-PDGF-BB treatment in mouse HSC. Am J Physiol Gastrointest Liver Physiol, 2006, 291(6): G1051~1061
    39 Pinzani M, Marra F. Cytokine receptors and signaling in hepatic stellate cells. Semin Liver Dis, 2001, 21(3): 397~416
    40 Di Sario A, Bendia E, Taffetani S, et al. Selective Na+/H+ exchange inhibition by cariporide reduces liver fibrosis in the rat. Hepatology, 2003, 37(2): 256~266
    41 Yoshiji H, Kuriyama S, Yoshii J, et al. Vascular endothelial growth factor and receptor interaction is a prerequisite for murine hepatic fibrogenesis. Gut, 2003, 52(9): 1347~1354
    42 Yu C, Wang F, Jin C, et al. Role of fibroblast growth factor type 1 and 2 in carbon tetrachloride-induced hepatic injury and fibrogenesis. Am J Pathol, 2003, 163(4): 1653~1662
    43 Steiling H, Mühlbauer M, Bataille F, et al. Activated hepatic stellate cells express keratinocyte growth factor in chronic liver disease. Am J Pathol, 2004, 165(4): 1233~1241
    44 Maher JJ. Interactions between hepatic stellate cells and the immune system. Semin Liver Dis, 2001, 21(3): 417~426
    45 Marra F. Chemokines in liver inflammation and fibrosis. Front Biosci, 2002, 7: d1899~1914
    46 Ikeda K, Wakahara T, Wang YQ, et al. In vitro migratory potential of rat quiescent hepatic stellate cells and its augmentation by cell activation.Hepatology, 1999, 29(6): 1760~1767
    47 Kinnman N, Hultcrantz R, Barbu V, et al. PDGF-mediated chemoattraction of hepatic stellate cells by bile duct segments in cholestatic liver injury. Lab Invest, 2000, 80(5): 697~707
    48 Marra F, Romanelli RG, Giannini C, et al. Monocyte chemotactic protein-1 as a chemoattractant for human hepatic stellate cells. Hepatology, 1999, 29(1): 140~148
    49 Zeremski M, Petrovic LM, Chiriboga L, et al. Intrahepatic levels of CXCR3-associated chemokines correlate with liver inflammation and fibrosis in chronic hepatitis C. Hepatology, 2008, 48(5): 1440~1450
    50 Hashmi AZ, Hakim W, Kruglov EA, et al. Adenosine inhibits cytosolic calcium signals and chemotaxis in hepatic stellate cells. Am J Physiol Gastrointest Liver Physiol, 2007, 292(1): G395~401
    51 Melton AC, Yee HF. Hepatic stellate cell protrusions couple platelet-derived growth factor-BB to chemotaxis. Hepatology, 2007, 45(6): 1446~1453
    52 Friedman SL. Mechanisms of hepatic fibrogenesis. Gastroenterology, 2008, 134(6): 1655~1669
    53 Anania FA, Womack L, Jiang M, et al. Aldehydes potentiate alpha (2) (I) collagen gene activity by JNK in hepatic stellate cells. Free Radical Biol Med, 2001, 30(8): 846~857
    54 Stefanovic B, Stefanovic L, Schnabl B, et al. TRAM2 protein interacts with endoplasmic reticulum Ca2+ pump Serca2b and is necessary for collagen type I synthesis. Mol Cell Biol, 2004, 24(4): 1758~1768
    55 Inagaki Y, Nemoto T, Kushida M, et al. Interferon alfa down-regulates collagen gene transcription and suppresses experimental hepatic fibrosis in mice. Hepatology, 2003, 38(4): 890~899
    56 Garcia-Ruiz I, de la Torre P, Diaz T, et al. Sp1 and Sp3 transcription factors mediate malondialdehyde-induced collagen alpha 1(I) gene expression in cultured hepatic stellate cells. J Biol Chem, 2002, 277(34): 30551~30558
    57 Breitkopf K, Godoy P, Ciuclan L, et al. TGF-beta/Smad signaling in the injured liver. Z Gastroenterol, 2006, 44(1): 57~66
    58 Inagaki Y, Okazaki I. Emerging insights into transforming growth factor beta smad signal in hepatic fibrogenesis. Gut, 2007, 56(2): 284~292
    59 Hellerbrand C, Stefanovic B, Giordano F, et al. The role of TGFbeta1 in initiating hepatic stellate cell activation in vivo. J Hepatol, 1999, 30(1): 77~87
    60 George J, Wang SS, Sevcsik AM, et al. Transforming growth factor-beta initiates wound repair in rat liver through induction of the EIIIA-fibronectin splice isoform. Am J Pathol, 2000, 156(1): 115~124
    61 Garcia-Trevijano ER, Iraburu MJ, Fontana L, et al. Transforming growth factor beta1 induces the expression of alpha1(I) procollagen mRNA by a hydrogen peroxide-C/EBPbeta dependent mechanism in rat hepatic stellate cells. Hepatology, 1999, 29(3): 960~970
    62 Whalen R, Rockey DC, Friedman SL, et al. Activation of rat hepatic stellate cells leads to loss of glutathione S-transferases and their enzymatic activity against products of oxidative stress. Hepatology, 1999, 30(4): 927~933
    63 Gao R, Brigstock DR. Connective tissue growth factor (CCN2) induces adhesion of rat activated hepatic stellate cells by binding of its C-terminal domain to integrin alpha(v)beta(3) and heparan sulfate proteoglycan. J Biol Chem, 2004, 279(10): 8848~8855
    64 Rachfal AW, Brigstock DR. Connective tissue growth factor (CTGF/CCN2) in hepatic fibrosis. Hepatol Res, 2003, 26(1): 1~9
    65 Paradis V, Perlemuter G, Bonvoust F, et al. High glucose and hyperinsulinemia stimulate connective tissue growth factor expression: a potential mechanism involved in progression to fibrosis in nonalcoholic steatohepatitis. Hepatology, 2001, 34(4 Pt 1): 738~744
    66 Rockey DC. Hepatic blood flow regulation by stellate cells in normal and injured liver. Semin Liver Dis, 2001, 21(3): 337~349
    67 Rockey DC. Vascular mediators in the injured liver. Hepatology, 2003,37(1): 4~12
    68 Melton AC, Datta A, Yee HF Jr. [Ca2+]i-independent contractile force generation by rat hepatic stellate cells in response to endothelin-1. Am J Physiol Gastrointest Liver Physiol, 2006, 290(1): G7~13
    69 Reynaert H, Thompson MG, Thomas T, et al. Hepatic stellate cells: role in microcirculation and pathophysiology of portal hypertension. Gut, 2002, 50(4): 571~581
    70 Soon RK Jr, Yee HF Jr. Stellate cell contraction: role, regulation, and potential therapeutic target. Clin Liver Dis, 2008, 12(4): 791~803, viii
    71 Rockey DC, Boyles JK, Gabbiani G, et al. Rat hepatic lipocytes express smooth muscle actin upon activation in vivo and in culture. J Submicrosc Cytol Pathol, 1992, 24(2): 193~203
    72 Ma J, Li F, Liu L, et al. Raf kinase inhibitor protein inhibits cell proliferation, but promotes cell migration in rat hepatic stellate cells. Liver Int, 2009, 29(4): 567~574
    73 Takeji M, Moriyama T, Oseto S, et al. Smooth muscle alpha-actin deficiency in myofibroblasts leads to enhanced renal tissue fibrosis. J Biol Chem, 2006, 281(52): 40193~40200
    74 Tangkijvanich P, Tam SP, Yee HF Jr. Wound-induced migration of rat hepatic stellate cells is modulated by endothelin-1 through rho-kinase-mediated alterations in the acto-myosin cytoskeleton. Hepatology, 2001, 33(1): 74~80
    75王玉珍,姜慧卿,扈彩霞,陈新.法舒地尔通过Rho/ROCK信号通路抑制肝星状细胞黏附、迁移和增殖.中华肝脏病杂志, 2006, 14(11): 821~823
    76 Benyon RC, Arthur MJ. Extracellular matrix degradation and the role of hepatic stellate cells. Semin Liver Dis, 2001, 21(3): 373~384
    77 Han YP. Matrix metalloproteinases, the pros and cons, in liver fibrosis. J Gastroenterol Hepatol, 2006, 21 Suppl 3: S88~91
    78 Arthur MJ, Stanley A, Iredale JP, et al. Secretion of 72 kDa type IV collagenase/gelatinase by cultured human lipocytes. Analysis of geneexpression, protein synthesis and proteinase activity. Biochem J, 1992, 287 ( Pt 3): 701~707
    79 Milani S, Herbst H, Schuppan D, et al. Differential expression of matrix-metalloproteinase-1 and -2 genes in normal and fibrotic human liver. Am J Pathol, 1994, 144(3): 528~537
    80 Han YP, Yan C, Zhou L, Qin L, et al. A matrix metalloproteinase-9 activation cascade by hepatic stellate cells in trans-differentiation in the three-dimensional extracellular matrix. J Biol Chem, 2007, 282(17): 12928~12939
    81 Schaefer B, Rivas-Estilla AM, Meraz-Cruz N, et al. Reciprocal modulation of matrix metalloproteinase-13 and type I collagen genes in rat hepatic stellate cells. Am J Pathol, 2003, 162(6): 1771~1780
    82 Vyas SK, Leyland H, Gentry J, et al. Rat hepatic lipocytes synthesize and secrete transin (stromelysin) in early primary culture. Gastroenterology, 1995, 109(3): 889~898
    83 Théret N, Lehti K, Musso O, et al. MMP2 activation by collagen I and concanavalin A in cultured human hepatic stellate cells. Hepatology, 1999, 30(2): 462~468
    84 Théret N, Musso O, L’Helgoualc’h A, et al. Activation of matrix metalloproteinase-2 from hepatic stellate cells requires interactions with hepatocytes. Am J Pathol, 1997, 150(1): 51~58
    85 Benyon RC, Iredale JP, Goddard S, et al. Expression of tissue inhibitor of metalloproteinases 1 and 2 is increased in fibrotic human liver. Gastroenterology, 1996, 110(3): 821~831
    86 Iredale JP. Hepatic stellate cell behavior during resolution of liver injury. Semin Liver Dis, 2001, 21(3): 427~436
    87 Arthur MJ. Fibrogenesis II. Metalloproteinases and their inhibitors in liver fibrosis. Am J Physiol Gastrointest Liver Physiol, 2000, 279(2): G245~249
    88 Murphy FR, Issa R, Zhou X, et al. Inhibition of apoptosis of activated hepatic stellate cells by tissue inhibitor of metalloproteinase-1 is mediatedvia effects on matrix metalloproteinase inhibition: implications for reversibility of liver fibrosis. J Biol Chem, 2002, 277(13): 11069~11076
    89 Georges PC, Hui JJ, Gombos Z, et al. Increased stiffness of the rat liver precedes matrix deposition: implications for fibrosis. Am J Physiol Gastrointest Liver Physiol, 2007, 293(6): G1147~1154
    90 Friedman SL, Wei S, Blaner WS. Retinol release by activated rat hepatic lipocytes: regulation by Kupffer cell-conditioned medium and PDGF. Am J Physiol Gastrointest Liver Physiol, 1993, 264(5 Pt 1): G947~952
    91 Bachem MG, Meyer D, Melchior R, et al. Activation of rat liver perisinusoidal lipocytes by transforming growth factors derived from myofibroblastlike cells. A potential mechanism of self perpetuation in liver fibrogenesis. J Clin Invest, 1992, 89(1): 19~27
    92 Meyer DH, Bachem MG, Gressner AM. Modulation of hepatic lipocyte proteoglycan synthesis and proliferation by Kupffer cellderived transforming growth factors type beta 1 and type alpha. Biochem Biophys Res Commun, 1990, 171(3): 1122~1129
    93 Mullhaupt B, Feren A, Fodor E, et al. Liver expression of epidermal growth factor RNA. Rapid increases in immediate-early phase of liver regeneration. J Biol Chem, 1994, 269(31): 19667~19670
    94 Win KM, Charlotte F, Mallat A, et al. Mitogenic effect of transforming growth factor-beta 1 on human Ito cells in culture: evidence for mediation by endogenous platelet-derived growth factor. Hepatology, 1993, 18(1): 137~145
    95 Maher JJ. Cell-specific expression of hepatocyte growth factor in liver. Upregulation in sinusoidal endothelial cells after carbon tetrachloride. J Clin Invest, 1993, 91(5): 2244~2252
    96 Schirmacher P, Geerts A, Pietrangelo A, et al. Hepatocyte growth factor/hepatopoietin A is expressed in fat-storing cells from rat liver but not myofibroblast-like cells derived from fat-storing cells. Hepatology, 1992, 15(1): 5~11
    97 Pinzani M, Abboud HE, Aron DC. Secretion of insulin-like growthfactor-I and binding proteins by rat liver fat-storing cells: regulatory role of platelet-derived growth factor. Endocrinology, 1990, 127(5): 2343~2349
    98 Zindy F, Lamas E, Schmidt S, et al. Expression of insulin-like growth factor II (IGF-II) and IGF-II, IGF-I and insulin receptors mRNAs in isolated non-parenchymal rat liver cells. J Hepatol, 1992, 14(1): 30~34
    99 Fujio K, Evarts RP, Hu Z, et al. Expression of stem cell factor and its receptor, c-kit, during liver regeneration from putative stem cells in adult rat. Lab Invest 1994, 70(4): 511~516
    100Pinzani M, Gentilini A, Caligiuri A, et al. Transforming growth factor-beta 1 regulates platelet-derived growth factor receptor beta subunit in human liver fat-storing cells. Hepatology, 1995, 21(1): 232~239
    101Pinzani M, Knauss TC, Pierce GF, et al. Mitogenic signals for platelet-derived growth factor isoforms in liver fat-storing cells. Am J Physiol Cell Physiol, 1991, 260(3 Pt 1): C485~491
    102Marra F, Choudhury GG, Pinzani M, et al. Regulation of platelet-derived growth factor secretion and gene expression in human liver fat-storing cells. Gastroenterology, 1994, 107(4): 1110~1117
    103Pinzani M, Milani S, Grappone C, et al. Expression of platelet-derived growth factor in a model of acute liver injury. Hepatology, 1994, 19(3): 701~707
    104Wong L, Yamasaki G, Johnson RJ, et al. Induction of beta-platelet-derived growth factor receptor in rat hepatic lipocytes during cellular activation in vivo and in culture. J Clin Invest, 1994, 94(4): 1563~1569
    105Breitkopf K, Roeyen C, Sawitza I, et al. Expression patterns of PDGF-A, -B, -C and -D and the PDGF-receptors alpha and beta in activated rat hepatic stellate cells (HSC). Cytokine, 2005, 31(5): 349~357
    106Borkham-Kamphorst E, Kovalenko E, van Roeyen CR, et al. Platelet-derived growth factor isoform expression in carbon tetrachloride-induced chronic liver injury. Lab Invest, 2008, 88(10): 1090~1100
    107Czochra P, Klopcic B, Meyer E, et al. Liver fibrosis induced by hepatic overexpression of PDGF-B in transgenic mice. J Hepatol, 2006, 45: 419~428
    108Carloni V, Defranco RM, Caligiuri A, et al. Cell adhesion regulates platelet-derived growth factor-induced MAP kinase and PI-3 kinase activation in stellate cells. Hepatology, 2002, 36(3): 582~591
    109Kawada N, Uoya M, Seki S, et al. Regulation by cAMP of STAT1 activation in hepatic stellate cells. Biochem Biophys Res Commun, 1997, 233(2): 464~469
    110Marra F, Gentilini A, Pinzani M, et al. Phosphatidylinositol 3-kinase is required for platelet-derived growth factor’s actions on hepatic stellate cells. Gastroenterology, 1997, 112(4): 1297~1306
    111Adachi T, Togashi H, Suzuki A, et al. NAD(P)H oxidase plays a crucial role in PDGF-induced proliferation of hepatic stellate cells. Hepatology, 2005, 41(6): 1272~1281
    112Adrian JE, Poelstra K, Scherphof GL, et al. Interaction of targeted liposomes with primary cultured hepatic stellate cells: involvement of multiple receptor systems. J Hepatol, 2006, 44(3): 560~567
    113Beljaars L, Molema G, Schuppan D, et al. Successful targeting to rat hepatic stellate cells using albumin modified with cyclic peptides that recognize the collagen type VI receptor. J Biol Chem, 2000, 275(17): 12743~12751
    114Bissell DM, Wang SS, Jarnagin WR, et al. Cell-specific expression of transforming growth factor-beta in rat liver. Evidence for autocrine regulation of hepatocyte proliferation. J Clin Invest, 1995, 96(1): 447~455
    115Gressner AM, Weiskirchen R, Breitkopf K, et al. Roles of TGF-beta in hepatic fibrosis. Front Biosci, 2002, 7: D793~807
    116Liu X, Hu H, Yin JQ. Therapeutic strategies against TGF-beta signaling pathway in hepatic fibrosis. Liver Int, 2006, 26(1): 8~22
    117Purps O, Lahme B, Gressner AM, et al. Loss of TGF-beta dependent growth control during HSC transdifferentiation. Biochem Biophys ResCommun, 2007, 353(3): 841~847
    118Ji C, Casinghino S, McCarthy TL, et al. Multiple and essential Sp1 binding sites in the promoter for transforming growth factor-beta type I receptor. J Biol Chem, 1997, 272(34): 21260~21267
    119Kim Y, Ratziu V, Choi SG, et al. Transcriptional activation of transforming growth factor beta1 and its receptors by the Kruppel-like factor Zf9/core promoter-binding protein and Sp1. Potential mechanisms for autocrine fibrogenesis in response to injury. J Biol Chem, 1998, 273(50): 33750~33758
    120De Bleser PJ, Jannes P, van Buul-Offers SC, et al. Insulinlike growth factor-II/mannose 6-phosphate receptor is expressed on CCl4-exposed rat fat-storing cells and facilitates activation of latent transforming growth factor-beta in cocultures with sinusoidal endothelial cells. Hepatology, 1995, 21(5): 1429~1437
    121Okuno M, Moriwaki H, Imai S, et al. Retinoids exacerbate rat liver fibrosis by inducing the activation of latent TGF-beta in liver stellate cells. Hepatology, 1997, 26(4): 913~921
    122Reimann T, Hempel U, Krautwald S, et al. Transforming growth factor-beta1 induces activation of Ras, Raf-1, MEK and MAPK in rat hepatic stellate cells. FEBS Lett, 1997, 403(1): 57~60
    123Inagaki Y, Kushida M, Higashi K, et al. Cell type-specific intervention of transforming growth factor beta/Smad signaling suppresses collagen gene expression and hepatic fibrosis in mice. Gastroenterology, 2005, 129(1): 259~268
    124Shi YF, Fong CC, Zhang Q, et al. Hypoxia induces the activation of human hepatic stellate cells LX-2 through TGF-beta signaling pathway. FEBS Lett, 2007, 581(2): 203~210
    125Wiercinska E, Wickert L, Denecke B, et al. Id1 is a critical mediator in TGF-beta-induced transdifferentiation of rat hepatic stellate cells. Hepatology, 2006, 43: 1032~1041
    126Uemura M, Swenson ES, Gaca MD, et al. Smad2 and Smad3 playdifferent roles in rat hepatic stellate cell function andα-smooth muscle actin organization. Mol Biol Cell, 2005, 16(9): 4214~4224
    127Wells RG. The role of matrix stiffness in hepatic stellate cell activation and liver fibrosis. J Clin Gastroenterol, 2005, 39(4 Suppl 2): S158~S161
    128Dooley S, Hamzavi J, Breitkopf K, et al. Smad7 prevents activation of hepatic stellate cells and liver fibrosis in rats. Gastroenterology, 2003, 125(1): 178~191
    129Kopp J, Preis E, Said H, et al. Abrogation of transforming growth factor-beta signaling by SMAD7 inhibits collagen gel contraction of human dermal fibroblasts. J Biol Chem, 2005, 280(22): 21570~21576
    130Kopp J, Seyhan H, Muller B, et al. N-acetyl-L-cysteine abrogates fibrogenic properties of fibroblasts isolated from Dupuytren’s disease by blunting TGF-beta signalling. J Cell Mol Med, 2006, 10(1): 157~165
    131Ueno H, Sakamoto T, Nakamura T, et al. A soluble transforming growth factor beta receptor expressed in muscle prevents liver fibrogenesis and dysfunction in rats. Hum Gene Ther, 2000, 11(1): 33~42
    132Weng H, Mertens PR, Gressner AM, et al. IFN-gamma abrogates profibrogenic TGF-beta signaling in liver by targeting expression of inhibitory and receptor Smads. J Hepatol, 2007, 46(2): 295~303
    133Zeisberg M, Hanai J, Sugimoto H, et al. BMP-7 counteracts TGF-beta1-induced epithelial-to-mesenchymal transition and reverses chronic renal injury. Nat Med, 2003, 9(7): 964~968
    134Brigstock DR. The CCN family: a new stimulus package. J Endocrinol, 2003, 178(2): 169~175
    135Ozaki S, Sato Y, Yasoshima M, et al. Diffuse expression of heparan sulfate proteoglycan and connective tissue growth factor in fibrous septa with many mast cells relate to unresolving hepatic fibrosis of congenital hepatic fibrosis. Liver Int, 2005, 25(4): 817~828
    136Shin JY, Hur W, Wang JS, et al. HCV core protein promotes liver fibrogenesis via up-regulation of CTGF with TGF-beta1. Exp Mol Med, 2005, 37(2): 138~145
    137Paradis V, Dargere D, Bonvoust F, et al. Effects and regulation of connective tissue growth factor on hepatic stellate cells. Lab Invest, 2002, 82(6): 767~774
    138Gressner O, Lahme B, Gressner AM, et al. Differential effects of TGF-beta on connective tissue growth factor (CTGF/CCN2) expression in hepatic stellate cells and hepatocytes. J Hepatol, 2007, 47(5): 699~710
    139Marsden ER, Hu Z, Fujio K, et al. Expression of acidic fibroblast growth factor in regenerating liver and during hepatic differentiation. Lab Invest, 1992, 67(4): 427~433
    140Rosenbaum J, Blazejewski S, Préaux AM, et al. Fibroblast growth factor 2 and transforming growth factor beta 1 interactions in human liver myofibroblasts. Gastroenterology, 1995, 109(6): 1986~1996
    141Kawada N, Harada K, Ikeda K, et al. Morphological study of endothelin-1-induced contraction of cultured hepatic stellate cells on hydrated collagen gels. Cell Tissue Res, 1996, 286(3): 477~486
    142Rockey DC, Weisiger RA. Endothelin induced contractility of stellate cells from normal and cirrhotic rat liver: implications for regulation of portal pressure and resistance. Hepatology, 1996, 24(1): 233~240
    143Kinnman N, Housset C. Peribiliary myofibroblasts in biliary type liver fibrosis. Front Biosci, 2002, 7: D496~503
    144Marra F, Pinzani M. Role of hepatic stellate cells in the pathogenesis of portal hypertension. Nefrologia, 2002, 22 Suppl 5: 34~40
    145Rockey DC, Fouassier L, Chung JJ, et al. Cellular localization of endothelin-1 and increased production in liver injury in the rat: potential for autocrine and paracrine effects on stellate cells. Hepatology, 1998, 27(2): 472~480
    146Pinzani M, Milani S, De FR, et al. Endothelin 1 is overexpressed in human cirrhotic liver and exerts multiple effects on activated hepatic stellate cells. Gastroenterology, 1996, 110(2): 534~548
    147Kawada N, Seki S, Kuroki T, et al. ROCK inhibitor Y-27632 attenuates stellate cell contraction and portal pressure increase induced byendothelin-1. Biochem Biophys Res Commun, 1999, 266(2): 296~300
    148Kato M, Iwamoto H, Higashi N, et al. Role of Rho small GTP binding protein in the regulation of actin cytoskeleton in hepatic stellate cells. J Hepatol, 1999, 31(1): 91~99
    149Yee HF Jr. Rho directs activation-associated changes in rat hepatic stellate cell morphology via regulation of the actin cytoskeleton. Hepatology, 1998, 28(3): 843~850
    150Nakamura T, Arii S, Monden K, et al. Expression of the Na+/Ca2+ exchanger emerges in hepatic stellate cells after activation in association with liver fibrosis. Proc Natl Acad Sci USA, 1998, 95(9): 5389~5394
    151Kawada N, Klein H, Decker K. Eicosanoid-mediated contractility of hepatic stellate cells. Biochem J, 1992, 285 ( Pt 2): 367~371
    152Lee JS, Kang Decker N, Chatterjee S, et al. Mechanisms of nitric oxide interplay with Rho GTPase family members in modulation of actin membrane dynamics in pericytes and fibroblasts. Am J Pathol, 2005, 166(6): 1861~1870
    153Tao J, Mallat A, Gallois C, et al. Biological effects of C-type natriuretic peptide in human myofibroblastic hepatic stellate cells. J Biol Chem, 1999, 274(34): 23761~23769
    154Suematsu M, Goda N, Sano T, et al. Carbon monoxide: an endogenous modulator of sinusoidal tone in the perfused rat liver. J Clin Invest, 1995, 96(5): 2431~2437
    155Rockey DC, Chung JJ. Inducible nitric oxide synthase in rat hepatic lipocytes and the effect of nitric oxide on lipocyte contractility. J Clin Invest, 1995, 95(3): 1199~1206
    156Li L, Julien B, Grenard P, et al. Molecular mechanisms regulating the antifibrogenic protein heme-oxygenase-1 in human hepatic myofibroblasts. J Hepatol, 2004, 41(3): 407~413
    157G?rbig MN, Ginès P, Bataller R, et al. Atrial natriuretic peptide antagonizes endothelin-induced calcium increase and cell contraction in cultured human hepatic stellate cells. Hepatology, 1999, 30(2): 501~509
    158Pinzani M, Abboud HE, Gesualdo L, et al. Regulation of macrophage colony-stimulating factor in liver fat-storing cells by peptide growth factors. Am J Physiol Cell Physiol, 1992, 262(4 Pt 1): C876~881
    159Marra F, Valente AJ, Pinzani M, et al. Cultured human liver fat-storing cells produce monocyte chemotactic protein-1. Regulation by proinflammatory cytokines. J Clin Invest, 1993, 92(4): 1674~1680
    160Czaja MJ, Geerts A, Xu J, et al. Monocyte chemoattractant protein 1 (MCP-1) expression occurs in toxic rat liver injury and human liver disease. J Leukoc Biol, 1994, 55(1): 120~126
    161Marra F, Grandaliano G, Valente AJ, et al. Thrombin stimulates proliferation of liver fat-storing cells and expression of monocyte chemotactic protein-1: potential role in liver injury. Hepatology, 1995, 22(3): 780~787
    162Pinzani M, Carloni V, Marra F, et al. Biosynthesis of platelet-activating factor and its 1O-acyl analogue by liver fat-storing cells. Gastroenterology, 1994, 106(5): 1301~1311
    163Yang Y, Nemoto EM, Harvey SA, et al. Increased hepatic platelet activating factor (PAF) and PAF receptors in carbon tetrachloride induced liver cirrhosis. Gut, 2004, 53(6): 877~883
    164Maher JJ, Lozier JS, Scott MK. Rat hepatic stellate cells produce cytokine-induced neutrophil chemoattractant in culture and in vivo. Am J Physiol Gastrointest Liver Physiol, 1998, 275(4 Pt 1): G847~853
    165Schwabe RF, Bataller R, Brenner DA. Human hepatic stellate cells express CCR5 and RANTES to induce proliferation and migration. Am J Physiol Gastrointest Liver Physiol, 2003, 285(5): G949~958
    166Canbay A, Feldstein A, Baskin-Bey E, et al. The caspase inhibitor IDN-6556 attenuates hepatic injury and fibrosis in the bile duct ligated mouse. J Pharmacol Exp Ther, 2004, 308(3): 1191~1196
    167Sprenger H, Kaufmann A, Garn H, et al. Induction of neutrophil- attracting chemokines in transforming rat hepatic stellate cells. Gastroenterology, 1997, 113(1): 277~285
    168Tacke F, Trautwein C, Yagmur E, et al. Up-regulated eotaxin plasma levels in chronic liver disease patients indicate hepatic inflammation, advanced fibrosis and adverse clinical course. J Gastroenterol Hepatol, 2007, 22(8): 1256~1264
    169Greenwel P, Rubin J, Schwartz M, et al. Liver fat-storing cell clones obtained from a CCl4-cirrhotic rat are heterogeneous with regard to proliferation, expression of extracellular matrix components, interleukin-6, connexin 43. Lab Invest, 1993, 69(2): 210~216
    170Tiggelman AM, Boers W, Linthorst C, et al. Interleukin-6 production by human liver (myo) fibroblasts in culture. Evidence for a regulatory role of LPS, IL-1 beta and TNF alpha. J Hepatol, 1995, 23(3): 295~306
    171Thompson KC, Trowern A, Fowell A, et al. Primary rat and mouse hepatic stellate cells express the macrophage inhibitory cytokine interleukin-10 during the course of activation in vitro. Hepatology, 1998, 28(6): 1518~1524
    172Wang SC, Ohata M, Schrum L, et al. Expression of interleukin-10 by in vitro and in vivo activated hepatic stellate cells. J Biol Chem, 1998, 273(1): 302~308
    173Louis H, Le Moine O, Peny MO, et al. Production and role of interleukin-10 in concanavalin A-induced hepatitis in mice. Hepatology, 1997, 25(6): 1382~1389
    174Louis H, Van Laethem JL, Wu W, et al. Interleukin-10 controls neutrophilic infiltration, hepatocyte proliferation, liver fibrosis induced by carbon tetrachloride in mice. Hepatology, 1998, 28(6): 1607~1615
    175Thompson K, Maltby J, Fallowfield J, et al. Interleukin-10 expression and function in experimental murine liver inflammation and fibrosis. Hepatology, 1998, 28(6): 1597~1606
    176Hellerbrand Wang SC, Tsukamoto H, Brenner DA, et al. Expression of intracellular adhesion molecule 1 by activated hepatic stellate cells. Hepatology, 1996, 24(3): 670~676
    177Knittel T, Dinter C, Kobold D, et al. Expression and regulation of celladhesion molecules by hepatic stellate cells (HSC) of rat liver: involvement of HSC in recruitment of inflammatory cells during hepatic tissue repair. Am J Pathol, 1999, 154(1): 153~167
    178Knittel T, Aurisch S, Neubauer K, et al. Cell-type-specific expression of neural cell adhesion molecule (N-CAM) in Ito cells of rat liver. Up-regulation during in vitro activation and in hepatic tissue repair. Am J Pathol, 1996, 149(2): 449~462
    179Nakatani K, Seki S, Kawada N, et al. Expression of neural cell adhesion molecule (N-CAM) in perisinusoidal stellate cells of the human liver. Cell Tissue Res, 1996, 283(1): 159~165
    180Nakatani K, Tanaka H, Ikeda K, et al. Expression of NCAM in activated portal fibroblasts during regeneration of the rat liver after partial hepatectomy. Arch Histol Cytol, 2006, 69(1): 61~72
    181Maher JJ, Friedman SL. Parenchymal and nonparenchymal cell interactions in the liver. Semin Liver Dis, 1993, 13(1): 13~20
    182MacDonald GA, Bridle KR, Ward PJ, et al. Lipid peroxidation in hepatic steatosis in humans is associated with hepatic fibrosis and occurs predominately in acinar zone 3. J Gastroenterol Hepatol, 2001, 16(6): 599~606
    183Nieto N, Friedman SL, Cederbaum AI. Cytochrome P450 2E1-derived reactive oxygen species mediate paracrine stimulation of collagen I protein synthesis by hepatic stellate cells. J Biol Chem, 2002, 277(12): 9853~9864
    184Knittel T, Fellmer P, Neubauer K, et al. The complement-activating protease P100 is expressed by hepatocytes and is induced by IL-6 in vitro and during the acute phase reaction in vivo. Lab Invest, 1997, 77(3): 221~230
    185Zhang LP, Takahara T, Yata Y, et al. Increased expression of plasminogen activator and plasminogen activator inhibitor during liver fibrogenesis of rats: role of stellate cells. J Hepatol, 1999, 31(4): 703~711
    186Schuftan GG, Bachem MG. Alpha2-macroglobulin reduces paracrine- and autocrine-stimulated matrix synthesis of cultured rat hepatic stellate cells.Eur J Clin Invest, 1999, 29(6): 519~528
    187Mikula M, Proell V, Fischer AN, et al. Activated hepatic stellate cells induce tumor progression of neoplastic hepatocytes in a TGF-beta dependent fashion. J Cell Physiol, 2006, 209(2): 560~567
    188Kato J, Sato Y, Inui N, et al. Ethanol induces transforming growth factor-alpha expression in hepatocytes, leading to stimulation of collagen synthesis by hepatic stellate cells. Alcohol Clin Exp Res, 2003, 27(8 Suppl): 58S~63S
    189Brenzel A, Gressner AM. Characterization of insulin-like growth factor (IGF)-I-receptor binding sites during in vitro transformation of rat hepatic stellate cells to myofibroblasts. Eur J Clin Chem Clin Biochem, 1996, 34(5): 401~409
    190Gressner AM, Lahme B, Brenzel A. Molecular dissection of the mitogenic effect of hepatocytes on cultured hepatic stellate cells. Hepatology, 1995, 22(5): 1507~1518
    191Skrtic S, Wallenius V, Ekberg S, et al. Insulin-like growth factors stimulate expression of hepatocyte growth factor but not transforming growth factor beta1 in cultured hepatic stellate cells. Endocrinology, 1997, 138(11): 4683~4689
    192Corpechot C, Barbu V, Wendum D, et al. Hepatocyte growth factor and c-Met inhibition by hepatic cell hypoxia: a potential mechanism for liver regeneration failure in experimental cirrhosis. Am J Pathol, 2002, 160(2): 613~620
    193Kim WH, Matsumoto K, Bessho K, et al. Growth inhibition and apoptosis in liver myofibroblasts promoted by hepatocyte growth factor leads to resolution from liver cirrhosis. Am J Pathol, 2005, 166(4): 1017~1028
    194Ozaki I, Zhao G, Mizuta T, et al. Hepatocyte growth factor induces collagenase (matrix metalloproteinase-1) via the transcription factor Ets-1 in human hepatic stellate cell line. J Hepatol, 2002, 36(2): 169~178
    195Yamano T, Hirai R, Hato S, et al. Delayed liver regeneration with negative regulation of hepatocyte growth factor and positive regulation oftransforming growth factor-beta1 mRNA after portal branch ligation in biliary obstructed rats. Surgery, 2002, 131(2): 163~171
    196Corpechot C, Barbu V, Wendum D, et al. Hypoxia-induced VEGF and collagen I expressions are associated with angiogenesis and fibrogenesis in experimental cirrhosis. Hepatology, 2002, 35(5): 1010~1021
    197Asai K, Tamakawa S, Yamamoto M, et al. Activated hepatic stellate cells overexpress p75NTR after partial hepatectomy and undergo apoptosis on nerve growth factor stimulation. Liver Int, 2006, 26(5): 595~603
    198Oakley F, Trim N, Constandinou CM, et al. Hepatocytes express nerve growth factor during liver injury: evidence for paracrine regulation of hepatic stellate cell apoptosis. Am J Pathol, 2003, 163(5): 1849~1858
    199Bansal MB, Kovalovich K, Gupta R, et al. Interleukin-6 protects hepatocytes from CCl4-mediated necrosis and apoptosis in mice by reducing MMP-2 expression. J Hepatol, 2005, 42(4): 548~556
    200Myung SJ, Yoon JH, Gwak GY, et al. Bile acid-mediated thrombospondin-1 induction in hepatocytes leads to transforming growth factor-beta-dependent hepatic stellate cell activation. Biochem Biophys Res Commun, 2007, 353(4): 1091~1096
    201Basu A, Saito K, Meyer K, et al. Stellate cell apoptosis by a soluble mediator from immortalized human hepatocytes. Apoptosis, 2006, 11(8): 1391~1400
    202Faouzi S, Lepreux S, Bedin C, et al. Activation of cultured rat hepatic stellate cells by tumoral hepatocytes. Lab Invest, 1999, 79(4): 485~493
    203Watanabe T, Shibata N, Westerman KA, et al. Establishment of immortalized human hepatic stellate scavenger cells to develop bioartificial livers. Transplantation, 2003, 75(11): 1873~1880
    204Schulze-Krebs A, Preimel D, Popov Y, et al. Hepatitis C virus-replicating hepatocytes induce fibrogenic activation of hepatic stellate cells. Gastroenterology, 2005, 129(1): 246~258
    205Tillmann HL, Manns MP, Rudolph KL. Merging models of hepatitis C virus pathogenesis. Semin Liver Dis, 2005, 25(1): 84~92
    206Sanz-Cameno P, Martin-Vilchez S, Lara-Pezzi E, et al. Hepatitis B virus promotes angiopoietin-2 expression in liver tissue: role of HBV x protein. Am J Pathol, 2006, 169(4): 1215~1222
    207Ramm GA, Crawford DH, Powell LW, et al. Hepatic stellate cell activation in genetic haemochromatosis. Lobular distribution, effect of increasing hepatic iron and response to phlebotomy. J Hepatol, 1997, 26(3): 584~592
    208Ramm GA, Ruddell RG. Hepatotoxicity of iron overload: mechanisms of iron-induced hepatic fibrogenesis. Semin Liver Dis, 2005, 25(4): 433~449
    209Holt AP, Salmon M, Buckley CD, et al. Immune interactions in hepatic fibrosis. Clin Liver Dis, 2008, 12(4): 861~882, x
    210Bonacchi A, Petrai I, Defranco RM, et al. The chemokine CCL21 modulates lymphocyte recruitment and fibrosis in chronic hepatitis C. Gastroenterology, 2003, 125(4): 1060~1076
    211Paik YH, Schwabe RF, Bataller R, et al. Toll-like receptor 4 mediates inflammatory signaling by bacterial lipopolysaccharide in human hepatic stellate cells. Hepatology, 2003, 37(5): 1043~1055
    212Brun P, Castagliuolo I, Pinzani M, et al. Exposure to bacterial cell wall products triggers an inflammatory phenotype in hepatic stellate cells. Am J Physiol Gastrointest Liver Physiol, 2005, 289: G571~578
    213Unanue ER. Ito cells, stellate cells, myofibroblasts: new actors in antigen presentation. Immunity, 2007, 26(1): 9~10
    214Vinas O, Bataller R, Sancho-Bru P, et al. Human hepatic stellate cells show features of antigen-presenting cells and stimulate lymphocyte proliferation. Hepatology, 2003, 38(4): 919~929
    215Muhanna N, Doron S, Wald O, et al. Activation of hepatic stellate cells after phagocytosis of lymphocytes: A novel pathway of fibrogenesis. Hepatology, 2008, 48(3): 963~977
    216Winau F, Hegasy G, Weiskirchen R, et al. Ito cells are liver-resident antigen-presenting cells for activating T cell responses. Immunity, 2007, 26(1): 117~129
    217Kobayashi S, Seki S, Kawada N, et al. Apoptosis of T cells in the hepatic fibrotic tissue of the rat: a possible inducing role of hepatic myofibroblast-like cells. Cell Tissue Res, 2003, 311(3): 353~364
    218Fimmel CJ, Brown KE, O’Neill R, et al. Complement C4 protein expression by rat hepatic stellate cells. J Immunol, 1996, 157(6): 2601~2609
    219Safadi R, Ohta M, Alvarez CE, et al. Immune stimulation of hepatic fibrogenesis by CD8 cells and attenuation by transgenic interleukin-10 from hepatocytes. Gastroenterology, 2004, 127(3): 870~882
    220Paik YH, Lee KS, Lee HJ, et al. Hepatic stellate cells primed with cytokines upregulate inflammation in response to peptidoglycan or lipoteichoic acid. Lab Invest, 2006, 86(7): 676~686
    221Yu MC, Chen CH, Liang X, et al. Inhibition of T-cell responses by hepatic stellate cells via B7-H1-mediated T-cell apoptosis in mice. Hepatology, 2004, 40(6): 1312~1321
    222Greenwald RJ, Freeman GJ, Sharpe AH. The B7 family revisited. Annu Rev Immunol,2005, 23: 515~548
    223Chen CH, Kuo LM, Chang Y, et al. In vivo immune modulatory activity of hepatic stellate cells in mice. Hepatology, 2006, 44(5): 1171~1181
    224Benten D, Kumaran V, Joseph B, et al. Hepatocyte transplantation activates hepatic stellate cells with beneficial modulation of cell engraftment in the rat. Hepatology, 2005, 42(5): 1072~1081
    225Friedman SL. Mac the knife? Macrophages–the double-edged sword of hepatic fibrosis. J Clin Invest, 2005, 115(1): 29~32
    226Kmie? Z. Cooperation of liver cells in health and disease. Adv Anat Embryol Cell Biol, 2001, 161: III-XIII, 1~151
    227Hines JE, Johnson SJ, Burt AD. In vivo responses of macrophages and perisinusoidal cells to cholestatic liver injury. Am J Pathol, 1993, 142(2): 511~518
    228Johnson SJ, Hines JE, Burt AD. Macrophage and perisinusoidal cell kinetics in acute liver injury. J Pathol, 1992, 166(4): 351~358
    229Kawashima R, Mochida S, Matsui A, et al. Expression of osteopontin in Kupffer cells and hepatic macrophages and stellate cells in rat liver after carbon tetrachloride intoxication: a possible factor for macrophage migration into hepatic necrotic areas. Biochem Biophys Res Commun, 1999, 256(3): 527~531
    230Thirunavukkarasu C, Watkins S, Harvey SA, et al. Superoxide-induced apoptosis of activated rat hepatic stellate cells. J Hepatol, 2004, 41(4): 567~575
    231Rivera CA, Bradford BU, Hunt KJ, et al. Attenuation of CCl(4)-induced hepatic fibrosis by GdCl(3) treatment or dietary glycine. Am J Physiol Gastrointest Liver Physiol, 2001, 281(1): G200~207
    232Leicester KL, Olynyk JK, Brunt EM, et al. CD14-positive hepatic monocytes/macrophages increase in hereditary hemochromatosis. Liver Int, 2004, 24(5): 446~451
    233Pietrangelo A. Iron-induced oxidant stress in alcoholic liver fibrogenesis. Alcohol, 2003, 30(2): 121~129
    234Fischer R, Cariers A, Reinehr R, et al. Caspase 9-dependent killing of hepatic stellate cells by activated Kupffer cells. Gastroenterology, 2002, 123(3): 845~861
    235Akita K, Okuno M, Enya M, et al. Impaired liver regeneration in mice by lipopolysaccharide via TNF-alpha/kallikrein-mediated activation of latent TGF-beta. Gastroenterology, 2002, 123(1): 352~364
    236Kim TH, Mars WM, Stolz DB, et al. Expression and activation of pro-MMP-2 and pro-MMP-9 during rat liver regeneration. Hepatology, 2000, 31(1): 75~82
    237Kim TH, Mars WM, Stolz DB, et al. Extracellular matrix remodeling at the early stages of liver regeneration in the rat. Hepatology, 1997, 26(4): 896~904
    238Mars WM, Kim TH, Stolz DB, et al. Presence of urokinase in serum-free primary rat hepatocyte cultures and its role in activating hepatocyte growth factor. Cancer Res, 1996, 56(12): 2837~1843
    239Ankoma-Sey V, Matli M, Chang KB, et al. Coordinated induction of VEGF receptors in mesenchymal cell types during rat hepatic wound healing. Oncogene, 1998, 17(1): 115~121
    240Olaso E, Salado C, Egilegor E, et al. Proangiogenic role of tumor-activated hepatic stellate cells in experimental melanoma metastasis. Hepatology, 2003, 37(3): 674~685
    241De Bleser PJ, Niki T, Rogiers V, et al. Transforming growth factor-beta gene expression in normal and fibrotic rat liver. J Hepatol, 1997, 26(4): 886~893
    242Ikejima K, Lang T, Zhang YJ, et al. Expression of leptin receptors in hepatic sinusoidal cells. Comp Hepatol, 2004, 3 Suppl 1: S12
    243Ikejima K, Takei Y, Honda H, et al. Leptin receptor-mediated signaling regulates hepatic fibrogenesis and remodeling of extracellular matrix in the rat. Gastroenterology, 2002, 122(5): 1399~1410
    244Leyland H, Gentry J, Arthur MJ, et al. The plasminogen-activating system in hepatic stellate cells. Hepatology, 1996, 24(5): 1172~1178
    245Rockey DC, Chung JJ. Reduced nitric oxide production by endothelial cells in cirrhotic rat liver: endothelial dysfunction in portal hypertension. Gastroenterology, 1998, 114(2): 344~351
    246Rockey DC, Chung JJ. Regulation of inducible nitric oxide synthase in hepatic sinusoidal endothelial cells. Am J Physiol Gastrointest Liver Physiol, 1996, 271(2 Pt 1): G260~267
    247Yokomori H, Oda M, Ogi M, et al. Enhanced expression of endothelial nitric oxide synthase and caveolin-1 in human cirrhosis. Liver, 2002, 22(2): 150~158
    248Kinnman N, Goria O, Wendum D, et al. Hepatic stellate cell proliferation is an early platelet-derived growth factor-mediated cellular event in rat cholestatic liver injury. Lab Invest, 2001, 81(12): 1709~1716
    249Kruglov EA, Nathanson RA, Nguyen T, et al. Secretion of MCP-1/CCL2 by bile duct epithelia induces myofibroblastic transdifferentiation of portal fibroblasts. Am J Physiol Gastrointest Liver Physiol Gastrointest LiverPhysiol, 2006, 290(4): G765~771
    250Gieling RG, Burt AD, Mann DA. Fibrosis and cirrhosis reversibility - molecular mechanisms.Clin Liver Dis, 2008, 12(4): 915~937, xi
    251Issa R, Zhou X, Constandinou CM, et al. Spontaneous recovery from micronodular cirrhosis: evidence for incomplete resolution associated with matrix cross-linking. Gastroenterology, 2004, 126(7): 1795~1808
    252Dixon JB, Bhathal PS, Hughes NR, et al. Nonalcoholic fatty liver disease: Improvement in liver histological analysis with weight loss. Hepatology, 2004, 39(6): 1647~1654
    253Fallowfield JA, Iredale JP. Reversal of liver fibrosis and cirrhosis—an emerging reality. Scott Med J, 2004, 49(1): 3~6
    254Friedman SL, Bansal MB. Reversal of hepatic fibrosis—fact or fantasy? Hepatology, 2006, 43(2 Suppl 1): S82~88
    255Iredale JP. Hepatic stellate cell behavior during resolution of liver injury. Semin Liver Dis, 2001, 21(3): 427~436
    256Gaca MD, Zhou X, Issa R, et al. Basement membrane-like matrix inhibits proliferation and collagen synthesis by activated rat hepatic stellate cells: evidence for matrix-dependent deactivation of stellate cells. Matrix Biol, 2003, 22(3): 229~239
    257Olaso E, Ikeda K, Eng FJ, et al. DDR2 receptor promotes MMP-2- mediated proliferation and invasion by hepatic stellate cells. J Clin Invest, 2001, 108(3): 1369~1378
    258Issa R, Williams E, Trim N, et al. Apoptosis of hepatic stellate cells: involvement in resolution of biliary fibrosis and regulation by soluble growth factors. Gut, 2001, 48(4): 548~557
    259Ruddell RG, Oakley F, Hussain Z, et al. A role for serotonin (5-HT) in hepatic stellate cell function and liver fibrosis. Am J Pathol, 2006, 169(3): 861~876
    260Anan A, Baskin-Bey ES, Bronk SF, et al. Proteasome inhibition induces hepatic stellate cell apoptosis. Hepatology, 2006, 43(2): 335~344
    261Radaeva S, Sun R, Jaruga B, et al. Natural killer cells ameliorate liverfibrosis by killing activated stellate cells in NKG2D-dependent and tumor necrosis factor-related apoptosisinducing ligand-dependent manners. Gastroenterology, 2006, 130(2): 435~452
    262Rockey DC, Chung JJ. Interferon gamma inhibits lipocyte activation and extracellular matrix mRNA expression during experimental liver injury: implications for treatment of hepatic fibrosis. J Invest Med, 1994, 42(4): 660~670
    263Melhem A, Muhanna N, Bishara A, et al. Anti-fibrotic activity of NK cells in experimental liver injury through killing of activated HSC. J Hepatol, 2006, 45(1): 60~71
    264Morishima C, Paschal DM, Wang CC, et al. Decreased NK cell frequency in chronic hepatitis C does not affect ex vivo cytolytic killing. Hepatology, 2006, 43(3): 573~580
    265Hudnall SD. Cyclosporin A renders target cells resistant to immune cytolysis. Eur J Immunol, 1991, 21(1): 221~226
    266Fauci AS, Mavilio D, Kottilil S. NK cells in HIV infection: paradigm for protection or targets for ambush. Nat Rev Immunol, 2005, 5(11): 835~843
    267Poynard T, Mathurin P, Lai CL, et al. A comparison of fibrosis progression in chronic liver diseases. J Hepatol, 2003, 38(3): 257~265
    1 Zeng L, Imamoto A, Rosner MR. Raf kinase inhibitory protein (RKIP): a physiological regulator and future therapeutic target. Expert Opin Ther Targets, 2008, 12(10): 1275~1287
    2 Bernier I, Jollès P. Purification and characterization of a basic 23 kDa cytosolic protein from bovine brain. Biochim Biophys Acta, 1984, 790(2): 174~181
    3 Schoentgen F, Jollès P. From structure to function: possible biological roles of a new widespread protein family binding hydrophobic ligands and displaying a nucleotide binding site. FEBS Lett, 1995, 369(1): 22~26
    4 Banfield MJ, Barker JJ, Perry AC, et al. Function from structure? The crystal structure of human phosphatidylethanolamine-binding protein suggests a role in membrane signal transduction. Structure, 1998, 6(10): 1245~1254
    5 Simister PC, Banfield MJ, Brady RL. The crystal structure of PEBP-2, a homologue of the PEBP/RKIP family. Acta Crystallogr D Biol Crystallogr, 2002, 58(Pt 6 Pt 2): 1077~1080
    6 Klysik J, Theroux SJ, Sedivy JM, et al. Signaling crossroads: the function of Raf kinase inhibitory protein in cancer, the central nervous system and reproduction. Cell Signal, 2008, 20(1): 1~9
    7 Schoentgen F, Saccoccio F, Jollès J, et al. Complete amino acid sequence of basic 21-kDa protein from bovine brain cytosol. Eur J Biochem, 1987, 166(2): 333~338
    8 Serre L, Vallee B, Bureaud N, et al. Crystal structure of the phosphatidylethanolamine-binding protein from bovine brain: a novel structural class of phospholipid-binding proteins. Structure, 1998, 6(10): 1255~1265
    9 Frayne J, Ingram C, Love S, et al. Localisation of phosphatidylethanolamine-binding protein in the brain and other tissues of the rat. Cell Tissue Res, 1999, 298(3): 415~423
    10 Rautureau G, Jouvensal L, Decoville M, et al. Cloning, high yield over-expression, purification, and characterization of CG18594, a new PEBP/RKIP family member from Drosophila melanogaster. Protein Expr Purif, 2006, 48(1): 90~97
    11 Pnueli L, Gutfinger T, Hareven D, et al. Tomato SP-interacting proteins define a conserved signaling system that regulates shoot architecture and flowering. Plant Cell, 2001, 13(12): 2687~2702
    12 Hengst U, Albrecht H, Hess D, et al. The phosphatidylethanolamine- binding protein is the prototype of a novel family of serine protease inhibitors. J Biol Chem, 2001, 276(1): 535~540
    13 Ojika K, Katada E, Tohdoh N, et al. Demonstration of deacetylated hippocampal cholinergic neurostimulating peptide and its precursor protein in rat tissues. Brain Res, 1995, 701(1-2): 19~27
    14 Maki M, Matsukawa N, Yuasa H, et al. Decreased expression of hippocampal cholinergic neurostimulating peptide precursor protein mRNA in the hippocampus in Alzheimer disease. J Neuropathol Exp Neurol, 2002, 61(2): 176~185
    15 Yuasa H, Ojika K, Mitake S, et al. Age-dependent changes in HCNP-related antigen expression in the human hippocampus. Brain Res Dev Brain Res, 2001, 127(1): 1~7
    16 Hepler DJ, Wenk GL, Cribbs BL, et al. Memory impairments following basal forebrain lesions. Brain Res, 1985, 346(1): 8~14
    17 Moore C, Perry AC, Love S, et al. Sequence analysis and immunolocalisation of phosphatidylethanolamine binding protein (PBP) in human brain tissue. Brain Res Mol Brain Res, 1996, 37(1-2): 74~78
    18 Goumon Y, Angelone T, Schoentgen F, et al. The hippocampal cholinergic neurostimulating peptide, the N-terminal fragment of the secreted phosphatidylethanolamine-binding protein, possesses a new biological activity on cardiac physiology. J Biol Chem, 2004, 279(13): 13054~13064
    19 Vallée BS, Tauc P, Brochon JC, et al. Behavior of bovinephosphatidylethanolamine-binding protein with model membranes. Evidence of affinity for negatively charged membranes. Eur J Biochem, 2001, 268(22): 5831~5841
    20 Perry AC, Hall L, Bell AE, et al. Sequence analysis of a mammalian phospholipid-binding protein from testis and epididymis and its distribution between spermatozoa and extracellular secretions. Biochem J, 1994, 301(Pt 1): 235~242
    21 Frayne J, McMillen A, Love S, et al. Expression of phosphatidylethanolamine-binding protein in the male reproductive tract: immunolocalisation and expression in prepubertal and adult rat testes and epididymides. Mol Reprod Dev, 1998, 49(4): 454~460
    22 Yeung K, Seitz T, Li S, et al. Suppression of Raf-1 kinase activity and MAP kinase signalling by RKIP. Nature, 1999, 401(6749): 173~177
    23 Jazirehi AR, Vega MI, Chatterjee D, et al. Inhibition of the Raf-MEK1/2-ERK1/2 signaling pathway, Bcl-xL down-regulation, and chemosensitization of non-Hodgkin's lymphoma B cells by Rituximab. Cancer Res, 2004, 64(19): 7117~7126
    24 Genot E, Cantrell DA. Ras regulation and function in lymphocytes. Curr Opin Immunol, 2000, 12(3): 289~294
    25 Morrison DK, Cutler RE. The complexity of Raf-1 regulation . Curr Opin Cell Biol, 1997, 9(2): 174~179
    26 Marais R, Marshall CJ. Control of the ERK MAP kinase cascade by Ras and Raf. Cancer Surv, 1996, 27: 101~125
    27 Rajalingam K, Wunder C, Brinkmann V, et al. Prohibitin is required for Ras-induced Raf-MEK-ERK activation and epithelial cell migration. Nat Cell Biol, 2005, 7(8): 837~843
    28 Adams DG, Coffee RL Jr, Zhang H, et al. Positive regulation of Raf1-MEK1/2-ERK1/2 signaling by protein serine/threonine phosphatase
    2A holoenzymes. J Biol Chem, 2005, 280(52): 42644~42654
    29 Shin SY, Rath O, Choo SM, et al. Positive- and negative-feedback regulations coordinate the dynamic behavior of the Ras-Raf-MEK-ERKsignal transduction pathway. J Cell Sci, 2009, 122(Pt 3): 425~435
    30 Schnidar H, Eberl M, Klingler S, et al. Epidermal growth factor receptor signaling synergizes with Hedgehog/GLI in oncogenic transformation via activation of the MEK/ERK/JUN pathway. Cancer Res, 2009, 69(4):1284~1292
    31 Park S, Rath O, Beach S, et al. Regulation of RKIP binding to the N-region of the Raf-1 kinase. FEBS Lett, 2006; 580(27): 6405~6412
    32 Yeung K, Janosch P, McFerran B, et al. Mechanism of suppression of the Raf/MEK/extracellular signal-regulated kinase pathway by the Raf kinase inhibitor protein. Mol Cell Biol, 2000, 20(9): 3079~3085
    33 Yip-Schneider MT, Miao W, Lin A, et al. Regulation of the Raf-1 kinase domain by phosphorylation and 14-3-3 association. Biochem J, 2000, 351 (Pt 1): 151~159
    34 Nicholas TR, Marsha RR. Modulation of the MAP kinase signalling cascade by Raf kinase inhibitory protein.Cell Research, 2005, 15(1): 19~23
    35 Li X, Stark GR. NF-kappaB-dependent signaling pathways. Exp Hematol, 2002, 30(4): 285~296
    36 Ghosh S, May MJ, Kopp EB. NF-kappaB and Rel proteins: evolutionary conserved mediators of immune responses. Annu Rev Immunol, 1998, 16: 225~260
    37 Karin M, Cao Y, Greten FR, et al. NF-kappaB in cancer: from innocent bystander to major culprit. Nat Rev, 2002, 2(4): 301~310
    38 Yeung KC, Rose DW, Dhillon AS, et al. Raf kinase inhibitor protein interacts with NF-kappaB-inducing kinase and TAK1 and inhibits NF-kappaB activation. Mol Cell Biol, 2001, 21(21): 207~217
    39 Krupnick JG, Benovic JL. The role of receptor kinases and arrestins in G-protein coupled receptor regulation. Annv Rev Pharmacol Toxicol, 1998, 38: 289~319
    40 Kroslak T, Koch T, Kahl E, et al. Human phosphatidylethanolamine-binding protein facilitates heterotrimeric Gprotein-dependent signaling. J Biol Chem, 2001, 276(43): 39772~39778.
    41 Lorenz K, Lohse MJ, Quitterer U. Protein kinase C switches the Raf kinase inhibitor from Raf-1 to GRK-2. Nature, 2003, 426(6966): 574~579
    42 Corbit KC, Trakul N, Eves EM, et al. Activation of Raf-1 signaling by protein kinase C through a mechanism involving Raf kinase inhibitory protein. J Biol Chem, 2003, 278(15): 13061~13068
    43 Ribas C, Penela P, Murga C, et al. The G protein-coupled receptor kinase (GRK) interactome: role of GRKs in GPCR regulation and signaling. Biochim Biophys Acta, 2007, 1768(4): 913~922
    44 Huang J, Mahavadi S, Sriwai W, et al. Cross-regulation of VPAC(2) receptor desensitization by M(3) receptors via PKC-mediated phosphorylation of RKIP and inhibition of GRK2. Am J Physiol Gastrointest Liver Physiol, 2007, 292(3): G867~874
    45 Arakaki T, Neely H, Boni E, et al. The structure of Plasmodium vivax phosphatidylethanolamine-binding protein suggests a functional motif containing a left-handed helix. Acta Crystallogr Sect F Struct Biol Cryst Commun, 2007, 63(Pt 3): 178~182
    46 Rath O, Park S, Tang HH, et al. The RKIP (Raf-1 Kinase Inhibitor Protein) conserved pocket binds to the phosphorylated N-region of Raf-1 and inhibits the Raf-1-mediated activated phosphorylation of MEK. Cell Signal, 2008, 20(5): 935~941
    47 Granovsky AE, Clark MC, McElheny D, et al. Raf kinase inhibitory protein function is regulated via a flexible pocket and novel phosphorylation-dependent mechanism. Mol Cell Biol, 2009, 29(5): 1306~1320
    48 Gupta GP, MassaguéJ. Cancer metastasis: building a framework. Cell, 2006, 127(4): 679~695
    49 Christofori G. New signals from the invasive front. Nature, 2006, 441(7092): 444~450
    50 Steeg PS. Tumor metastasis: mechanistic insights and clinical challenges. Nat Med, 2006, 12(8): 895~904
    51 Nguyen DX, MassaguéJ. Genetic determinants of cancer metastasis. Nature Rev Genetics, 2007, 8(5): 341~352
    52 Granovsky AE, Rosner MR. Raf kinase inhibitory protein: a signal transduction modulator and metastasis suppressor. Cell Res, 2008, 18(4): 452~457
    53 Hagan S, Garcia R, Dhillon A, et al. Raf kinase inhibitor protein regulation of raf and MAPK signaling. Methods Enzymol, 2006, 407: 248~259
    54 Fu Z, Smith PC, Zhang L, et al. Effects of raf kinase inhibitor protein expression on suppression of prostate cancer metastasis. J Natl Cancer Inst, 2003, 95(12): 878~889
    55 Woods Ignatoski KM, Grewal NK, Markwart SM, et al. Loss of Raf kinase inhibitory protein induces radioresistance in prostate cancer. Int J Radiat Oncol Biol Phys, 2008, 72(1): 153~160
    56 Chatterjee D, Bai Y, Wang Z, et al. RKIP sensitizes prostate and breast cancer cells to drug-induced apoptosis. J Biol Chem, 2004, 279(17): 17515~17523
    57 Fu Z, Kitagawa Y, Shen R, et al. Metastasis suppressor gene Raf kinase inhibitor protein (RKIP) is a novel prognostic marker in prostate cancer. Prostate, 2006, 66(3): 248~256
    58 Seraj MJ, Samant RS, Verderame MF, et al. Functional evidence for a novel human breast carcinoma metastasis suppressor, BRMS1, encoded at chromosome 11q13. Cancer Res, 2000, 60(11): 2764~2769
    59 Hagan S, Al-Mulla F, Mallon E, et al. Reduction of Raf-1 kinase inhibitor protein expression correlates with breast cancer metastasis. Clin Cancer Res, 2005, 11(20): 7392~7397
    60 Nam JS, Suchar AM, Kang MJ, et al. Bone sialoprotein mediates the tumor cell-targeted prometastatic activity of transforming growth factor beta in a mouse model of breast cancer. Cancer Res, 2006, 66(12): 6327~6335
    61 Delassus GS, Cho H, Park J, et al. New pathway links from cancer-progression determinants to gene expression of matrixmetalloproteinases in breast cancer cells. J Cell Physiol, 2008, 217(3): 739~744
    62 Molinaro RJ, Jha BK, Malathi K, et al. Selection and cloning of poly(rC)-binding protein 2 and Raf kinase inhibitor protein RNA activators of 2',5'-oligoadenylate synthetase from prostate cancer cells. Nucleic Acids Res, 2006, 34(22): 6684~6695
    63 Baritaki S, Katsman A, Chatterjee D, et al. Regulation of tumor cell sensitivity to TRAIL-induced apoptosis by the metastatic suppressor Raf kinase inhibitor protein via Yin Yang 1 inhibition and death receptor 5 up-regulation. J Immunol, 2007, 179(8): 5441~5453
    64 Beach S, Tang H, Park S, et al. Snail is a repressor of RKIP transcription in metastatic prostate cancer cells. Oncogene, 2008, 27(15): 2243~2248
    65 Dangi-Garimella S, Yun J, Eves EM, et al. Raf kinase inhibitory protein suppresses a metastasis signalling cascade involving LIN28 and let-7. EMBO J, 2009, 28(4): 347~358
    66 Bonavida B, Baritaki S, Huerta-Yepez S, et al. Novel therapeutic applications of nitric oxide donors in cancer: roles in chemo- and immunosensitization to apoptosis and inhibition of metastases. Nitric Oxide, 2008, 19(2): 152~157
    67 Schuierer MM, Bataille F, Weiss TS, et al. Raf kinase inhibitor protein is downregulated in hepatocellular carcinoma. Oncol Rep, 2006, 16(3): 451~456
    68 Lee HC, Tian B, Sedivy JM, et al. Loss of Raf kinase inhibitor protein promotes cell proliferation and migration of human hepatoma cells. Gastroenterology, 2006, 131(4): 1208~1217
    69 Momeny M, Khorramizadeh MR, Ghaffari SH, et al. Effects of silibinin on cell growth and invasive properties of a human hepatocellular carcinoma cell line, HepG-2, through inhibition of extracellular signal-regulated kinase 1/2 phosphorylation. Eur J Pharmacol, 2008, 591(1-3): 13~20
    70 Calvisi DF, Pinna F, Pellegrino R, et al. Ras-driven proliferation and apoptosis signaling during rat liver carcinogenesis is under genetic control.Int J Cancer, 2008, 123(9): 2057~2064
    71 Schuierer MM, Bataille F, Hagan S, et al. Reduction in Raf kinase inhibitor protein expression is associated with increased Ras-extracellular signal-regulated kinase signaling in melanoma cell lines. Cancer Res, 2004, 64(15): 5186~5192
    72 Zhang L, Fu Z, Binkley C, et al. Raf kinase inhibitory protein inhibits beta-cell proliferation. Surgery, 2004, 136(3): 708~715
    73 Park S, Yeung ML, Beach S, Shields JM, Yeung KC. RKIP downregulates B-Raf kinase activity in melanoma cancer cells. Oncogene, 2005, 24(21): 3535~3540
    74 Houben R, Michel B, Vetter-Kauczok CS, et al. Absence of classical MAP kinase pathway signalling in Merkel cell carcinoma. J Invest Dermatol, 2006, 126(5): 1135~1142
    75 Akaishi J, Onda M, Asakas S, et al. Growth-suppressive function of phosphatidylethanolamine-binding protein in anaplastic thyroid cancer. Anticancer Res, 2006, 26(6B): 4437~4442
    76 Al-Mulla F, Hagan S, Behbehani AI, et al. Raf kinase inhibitor protein expression in a survival analysis of colorectal cancer patients. J Clin Oncol, 2006, 24(36): 5672~5679
    77 Minoo P, Zlobec I, Baker K, et al. Loss of raf-1 kinase inhibitor protein expression is associated with tumor progression and metastasis in colorectal cancer. Am J Clin Pathol, 2007, 127(5): 820~827
    78 Zlobec I, Baker K, Minoo P, et al. Node-negative colorectal cancer at high risk of distant metastasis identified by combined analysis of lymph node status, vascular invasion, and Raf-1 kinase inhibitor protein expression. Clin Cancer Res, 2008, 14(1): 143~148
    79 Chatterjee D, Sabo E, Tavares R, et al. Inverse association between Raf Kinase Inhibitory Protein and signal transducers and activators of transcription 3 expression in gastric adenocarcinoma patients: implications for clinical outcome. Clin Cancer Res, 2008, 14(10): 2994~3001
    80韩海勃,张志谦,赵威. RKIP蛋白在多个人肺癌细胞系中的表达下调.基础医学与临床, 2007, 27(8): 849~852
    81 Li HZ, Wang Y, Gao Y, et al. Effects of raf kinase inhibitor protein expression on metastasis and progression of human epithelial ovarian cancer. Mol Cancer Res, 2008, 6(6): 917~928
    82 Zaravinos A, Bizakis J, Spandidos DA. RKIP and BRAF aberrations in human nasal polyps and the adjacent turbinate mucosae. Cancer Lett, 2008, 264(2): 288~298
    83 Chen Y, Ouyang GL, Yi H, et al. Identification of RKIP as an invasion suppressor protein in nasopharyngeal carcinoma by proteomic analysis. J Proteome Res, 2008, 7(12): 5254~5262
    84 Zlobec I, Baker K, Terracciano L, et al. Two-marker protein profile predicts poor prognosis in patients with early rectal cancer. Br J Cancer, 2008, 99(10): 1712~1717
    85 Fougner SL, Bollerslev J, Latif F, et al. Low levels of raf kinase inhibitory protein in growth hormone-secreting pituitary adenomas correlate with poor response to octreotide treatment. J Clin Endocrinol Metab, 2008, 93(4): 1211~1216
    86 Zaravinos A, Kanellou P, Baritaki S, et al. BRAF and RKIP are significantly decreased in cutaneous squamous cell carcinoma. Cell Cycle, 2009, 8(9): 1402~1408
    87 Park S, Ahn ES, Lee S, et al. Proteomic analysis reveals upregulation of RKIP in S-180 implanted BALB/C mouse after treatment with ascorbic acid. J Cell Biochem, 2009, 106(6): 1136~1145
    88 Eves EM, Shapiro P, Naik K, et al. Raf kinase inhibitory protein regulates aurora B kinase and the spindle checkpoint. Mol Cell, 2006, 23(4): 561~574
    89 Rosner MR. MAP kinase meets mitosis: a role for Raf Kinase Inhibitory Protein in spindle checkpoint regulation. Cell Div, 2007, 2: 1
    90 Al-Mulla F, Hagan S, Al-Ali W, et al. Raf kinase inhibitor protein: mechanism of loss of expression and association with genomic instability. J Clin Pathol, 2008, 61(4): 524~529
    91 Zhu S, Mc Henry KT, Lane WS, Fenteany G. A chemical inhibitor reveals the role of Raf kinase inhibitor protein in cell migration. Chem Biol, 2005, 12(9): 981~991
    92 Mc Henry KT, Montesano R, Zhu S, et al. Raf kinase inhibitor protein positively regulates cell-substratum adhesion while negatively regulating cell-cell adhesion. J Cell Biochem, 2008, 103(3): 972~985
    93 Ma J, Li F, Liu, L et al. Raf kinase inhibitor protein inhibits cell proliferation, but promotes cell migration in rat hepatic stellate cells. Liver Int, 2009, 29(4): 567~574
    94 Garcia R, Grindlay J, Rath O, et al. Regulation of human myoblast differentiation by PEBP4. EMBO Rep, 2009, 10(3): 278~284
    95 Wu J, Wang F, Gong Y, et al. Proteomic analysis of changes induced by nonylphenol in Sprague-Dawley rat Sertoli cells. Chem Res Toxicol, 2009, 22(4): 668~675
    96 Moffit JS, Boekelheide K, Sedivy JM, et al. Mice lacking Raf kinase inhibitor protein-1 (RKIP-1) have altered sperm capacitation and reduced reproduction rates with a normal response to testicular injury. J Androl, 2007, 28(6): 883~890
    97 Gibbons R, Adeoya-Osiquwa SA, Fraser LR. A mouse sperm decapacitation factor receptor is phosphatidylethanolamine-binding protein 1. Reproduction, 2005, 130(4): 497~508
    98 Nixon B, MacIntyre DA, Mitchell LA, et al. The identification of mouse sperm-surface-associated proteins and characterization of their ability to act as decapacitation factors. Biol Reprod, 2006, 74(2): 275~287
    99 Cruts M, Van Broeckhoven C. Molecular genetics of Alzheimer's disease. Ann Med, 1998, 30(6): 560~565
    100Hardy J. Amyloid, the presenilins and Alzheimer's disease. Trends Neurosci, 1997, 20(4): 154~159
    101Sherrington R, Rogaev EI, Liang Y, et al. Cloning of a gene bearing missense mutations in early-onset familial Alzheimer's disease. Nature, 1995, 375(6534): 754~760
    102Levy-Lahad E, Wasco W, Poorkaj P, et al. Candidate gene for the chromosome 1 familial Alzheimer's disease locus. Science, 1995, 269(5226): 973~977
    103Corder EH, Saunders AM, Strittmatter WJ, et al. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer's disease in late onset families. Science, 1993, 261(5123): 921~923
    104Mitake S, Ojika K, Hirano A. Hirano bodies and Alzheimer’s disease. Kaohsiung J Med Sci, 1997, 13(1): 10~18
    105Tsugu Y, Ojika K, Matsukawa N, et al. High levels of hippocampal cholinergic neurostimulating peptide (HCNP) in the CSF of some patients with Alzheimer’s disease. Eur J Neurol, 1998, 5(6): 561~569
    106George AJ, Holsinger RM, McLean CA, et al. Decreased phosphatidylethanolamine binding protein expression correlates with Abeta accumulation in the Tg2576 mouse model of Alzheimer's disease. Neurobiol Aging, 2006, 27(4): 614~623
    107Guo J, Wu HW, Hu G, et al. Sustained activation of Src-family tyrosine kinases by ischemia: a potential mechanism mediating extracellular signal-regulated kinase cascades in hippocampal dentate gyrus. Neuroscience, 2006, 143(3): 827~836
    108Theroux S, Pereira M, Casten KS, et al. Raf kinase inhibitory protein knockout mice: expression in the brain and olfaction deficit. Brain Res Bull, 2007, 71(6): 559~567
    109Zuo HY, Wang DW, Peng RY, et al. Influence of electromagnetic radiation on raf kinase inhibitor protein and its related proteins of hippocampus. Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi, 2008, 26(9): 533~537
    110Okita K, Matsukawa N, Maki M, et al. Analysis of DNA variations in promoter region of HCNP gene with Alzheimer's disease. Biochem Biophys Res Commun, 2009, 379(2): 272~276
    111Tuttle KR, Anderson PW. A novel potential therapy for diabetic nephropathy and vascular complications: protein kinase C beta inhibition.Am J Kidney Dis, 2003, 42(3): 456~465
    112Thongboonkerd V, Klein JB. Practical bioinformatics for proteomics. Contrib Nephrol, 2004, 141: 79~92

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700