用户名: 密码: 验证码:
蛋白酶体亚基PSMA7在结直肠癌中的表达及其功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蛋白酶体亚基PSMA7参与组成20S蛋白酶体核心复合体,其编码基因定位于20q13.33染色体。有报道在不同肿瘤中发现PSMA7的表达上调,一些研究表明PSMA7参与了多种重要的肿瘤相关蛋白的表达及活性调节,但PSMA7本身在肿瘤的发生发展中的作用尚未明确。
     目的:1.探讨PSMA7在结直肠癌组织中的表达情况及其与各临床病理因素的相关性。2.构建PSMA7 shRNA表达质粒,评价其RNA干扰的有效性。3.探讨PSMA7在结直肠癌发生发展中的作用及可能的分子机制。
     材料与方法:1.采用半定量RT-PCR方法检测32对结直肠癌组织及其对应正常组织中的PSMA7 mRNA表达水平;采用免疫组化方法检测62例结直肠癌原发灶、34例淋巴结转移灶和13例行手术切除的肝转移灶组织中PSMA7的蛋白表达情况,与对应的正常组织进行比较,并分析结直肠癌原发灶组织PSMA7蛋白的表达水平与结直肠癌不同临床病理因素的相关性。2.构建PSMA7 shRNA表达质粒,通过脂质体Lipofectamine 2000介导转染结直肠癌RKO细胞,并通过蛋白免疫印迹验证RNA干扰的有效性。3.对PSMA7 shRNA转染RKO细胞和对照细胞进行细胞表型的对比研究,包括细胞形态、细胞增殖、细胞凋亡、细胞周期、非锚定生长能力、迁移侵袭能力、细胞肌动蛋白骨架和裸鼠皮下移植瘤生长情况的检测;通过RT-PCR检测基质金属蛋白酶(MMP)和组织金属蛋白酶抑制剂(TIMP)的表达,通过RT-PCR和蛋白免疫印迹检测CD44mRNA和CD44蛋白的表达。
     结果:1.PSMA7在结直肠癌原发灶、淋巴结转移灶和肝转移灶组织中的表达高于对应的正常组织,结直肠癌原发灶组织的PSMA7表达与肝转移密切相关,结直肠癌原发灶PSMA7高表达患者的生存率明显低于低表达患者,生存率多因素分析显示结直肠癌原发灶组织PSMA7的表达为独立预后因素。2.成功构建PSMA7 shRNA表达质粒,转染RKO细胞,并筛选出PSMA7 shRNA表达克隆,蛋白免疫印迹检测表明PSMA7 shRNA转染明显下调PSMA7的蛋白表达。
     3.PSMA7 shRNA转染RKO细胞和对照细胞的对比研究结果表明:PSMA7 shRNA转染对RKO细胞的增殖、凋亡和细胞周期无明显影响,但可以影响细胞形态,抑制RKO细胞的非锚定生长能力和迁移侵袭能力,影响肌动蛋白细胞骨架的组装,抑制RKO细胞在裸鼠体内的成瘤能力。RT-PCR检测表明PSMA7 shRNA转染不影响MMP和TIMP的表达,RT-PCR和蛋白免疫印迹检测表明PSMA7 shRNA转染抑制CD44的表达。
     结论:PSMA7在结直肠癌组织中高表达,其表达与肝转移密切相关,是结直肠癌患者独立预后因素。通过构建PSMA7 shRNA表达质粒和脂质体介导转染RKO细胞成功实施RNAi,进行PSMA7的功能研究结果表明:PSMA7shRNA转染可以影响RKO细胞的细胞形态,抑制其非锚定生长能力和迁移侵袭能力,影响肌动蛋白细胞骨架的组装,抑制RKO细胞在裸鼠体内的成瘤能力,提示我们PSMA7可能在结直肠癌的进展中发挥重要作用。PSMA7作用分子机制初步研究结果表明:PSMA7 shRNA转染抑制RKO细胞CD44的表达,调控CD44的表达可能是PSMA7的部分作用机制。
The proteasome subunit PSMA7 located on the 20q13.33 is one of the 7 proteasomeα-subunits. PSMA7 was reported to be overexpressed in several malignant tumors, and play important roles in regulation of some important cancer-associated
     proteins. However, the role of PSMA7 in the development of cancer is still unknown. Objective:
     1. To investigate the expression of PSMA7 in colorectal cancer and clarify the
     correlations between of this expression and the clincopathologic factors.
     2. To construct the shorthairpin RNA (shRNA) expressing plasmids which target to PSMA7 and evaluate its effectiveness of RNA interference.
     3. To explore the roles and possible mechanisms of PSMA7 in the progression of colorectal cancer.
     Material and methods:
     1. RT-PCR to evaluate the level of PSMA7 mRNA was carried out in 32 cases colorectal cancerous tissues and matched normal colorectal mucosa. Immunohistiochemistry to evaluate the level of PSMA7 protein in the colorectal cancer was performed in tissues from 62 primary sites, 34 metastatic lymph nodes and 13 metastatic liver lesions as well as matched normal colorectal mucosa. The correlations between the level of PSMA7 protein in the primary sites of colorectal cancer and the clincopathologic factors were analyzed.
     2. The shRNA expressing plasmids which target to PSMA7 was constructed and transfected to human colorectal cancer line RKO by cationic liposome, Lipofectamine 2000. The effectiveness of RNA interference was evaluated by Western Blot.
     3. Comparative studies between PSMA7 shRNA transfected RKO cell and control cells were carried out, including cell morphology, proliferation, apoptosis, cell cycle, anchorage-independent growth, invasion and migration, actin cytoskeleton and the growth of human colorectal RKO xenograft in nude mice. Expression of MMPs and TIMPs were evaluated by RT-PCR, expression of CD44 was evaluated by RT-PCR and
     Western Blot.
     Results:
     1. PSMA7 was found to be overexpressed in colorectal cancer when compared to
     matched normal mucosa. Moreover, expression of PSMA7 in primary tumor was significantly correlated with liver metastasis. High expression of PSMA7 was associated with poor survival, and multivariate analysis revealed expression of PSMA7 to be an independent prognosis factor.
     2. The shRNA expressing plasmids which target to PSMA7 was constructed and transfected to human colorectal cancer line RKO by cationic liposome, Lipofectamine 2000, successfully. The stable PSMA7 shRNA transfected clone was selected and efficient inhibition of PSMA7 expression was confirmed by Western Blot.
     3. Comparative studies between PSMA7 shRNA transfected RKO cell and control cells revealed that knockdown of PSMA7 affected the cell morphology, inhibited the anchorage-independent growth, suppressed cell invasion and migration, affected the organization of actin cytoskeleton as well as suppressed the tumorigenicity in vivo without significant influence on the proliferation, apoptosis and cell cycle transition. PSMA7 shRNA transfection resulted in significant inhibition of CD44 expression without obvious effect on the expression of MMPs and TIMPs.
     Conclusions:
     PSMA7 was found to be overexpressed in colorectal cancer when compared to matched normal mucosa. Moreover, expression of PSMA7 in primary tumor was significantly correlated with liver metastasis and was an independent prognosis factor. RNAi was successfully carried out by construction of PSMA7 shRNA expressing plasmid and transfection to RKO cell by liposome, and the functional study of PSMA7 revealed that: knockdown of PSMA7 affected the cell morphology, inhibited the anchorage-independent growth, suppressed cell invasion and migration, affected the organization of actin cytoskeleton as well as suppressed the tumorigenicity in vivo. These results indicated that PSMA7 may play an important role in the progression of colorectal cancer. The initiative study on molecular mechanism of PSMA7 revealed that PSMA7 shRNA transfection inhibited the expression of CD44, regulation of CD44 expression may contribute to the effects of PSMA7.
引文
[1]Espey DK,Wu XC,Swan J,Wiggins C,Jim MA,Ward E,Wingo PA,Howe HL,Ries LA,Miller BA,Jemal A,Ahmed F,Cobb N,Kaur JS,Edwards BK.Annual report to the nation on the status of cancer,1975-2004,featuring cancer in American Indians and Alaska Natives.Cancer,2007,110(10):2119-2152.
    [2]Albertson DG,Collins C,McCormick F,Gray JW.Chromosome aberrations in solid tumors.Nat.Genet.,2003,34(4):369-376.
    [3]Kimura Y,Noguchi T,Kawahara K,Kashima K,Daa T,Yokoyama S.Genetic alterations in 102 primary gastric cancers by comparative genomic hybridization:gain of 20q and loss of 18q are associated with tumor progression.Mod.Pathol.,2004,17(11):1328-1337.
    [4]Tsafrir D,Bacolod M,Selvanayagam Z,Tsafrir I,Shia J,Zeng Z,Liu H,Krier C,Stengel RF,Barany F,Gerald WL,Paty PB,Domany E,Notterman DA.Relationship of gene expression and chromosomal abnormalities in colorectal cancer.Cancer Res.,2006,66(4):2129-2137.
    [5]Hidaka S,Yasutake T,Takeshita H,Kondo M,Tsuji T,Nanashima A,Sawai T,Yamaguchi H,Nakagoe T,Ayabe H,Tagawa Y.Differences in 20ql3.2 copy number between colorectal cancers with and without liver metastasis.Clin.Cancer Res.,2000,6(7):2712-2717.
    [6]Coax O,Tanaka K,Goldberg A L.Structure and function of the 20S and 26S proteasomes.Annu.Rev.Biochem.,1996,65:801-847.
    [7]Vabulas RM.Proteasome function and protein biosynthesis.Curr.Opin.Clin.Nutr.Metab.Care.,2007,10(1):24-31.
    [8]Paul S.Dysfunction of the ubiquitin-proteasome system in multiple disease conditions:therapeutic approaches.Bioessays.2008,30(11-12):1172-1184.
    [9]Goldberg AL.Functions of the proteasome:from protein degradation and immune surveillance to cancer therapy.Biochem.Soc.Trans.,2007,(Pt 1):12-17.
    [10]Orlowski RZ,Kuhn DJ.Proteasome inhibitors in cancer therapy:lessons from the first decade.Clin.Cancer Res.,2008,14(6):1649-1657.
    [11]Sato K,Rajendra E,Ohta T.The UPS:a promising target for breast cancer treatment.BMC Biochem.,2008,9 Suppl.1:S2.
    [12]Ryo A,Suzuki Y,Arai M,Kondoh N,Wakatsuki T,Hada A,Shuda M,Tanaka K,Sato C,Yamamoto M,Yamamoto N.Identification and characterization of differentially expressed mRNAs in HIV type 1-infected human T cells.AIDS Res.Hum.Retroviruses.,2000,16(10):995-1005.
    [13]Krüger M,Beger C,Welch PJ,Barber JR,Manns MP,Wong-Staal F.Involvement of proteasome alpha-subunit PSMA7 in hepatitis C virus internal ribosome entry site-mediated translation.Mol.Cell.Biol.,2001,21(24):8357-8364.
    [14]Shi YY,Wang HC,Yin YH,Sun WS,Li Y,Zhang CQ,Wang Y,Wang S,Chen WF.Identification and analysis of tumour-associated antigens in hepatocellular carcinoma.Br.J.Cancer,2005,92(5):929-934.
    [15].Scotto L,Narayan G,Nandula SV,Arias-Pulido H,Subramaniyam S,Schneider A,Kaufmann AM,Wright JD,Pothuri B,Mansukhani M,Murty VV.Identification of copy number gain and overexpressed genes on chromosome arm 20q by an integrative genomic approach in cervical cancer:potential role in progression.Genes Chromosomes Cancer,2008,47(9):755-765.
    [16]Ohnami S,Matsumoto N,Nakano M,Aoki K,Nagasaki K,Sugimura T,Terada M,Yoshida T.:Identification of genes showing differential expression in antisense K-rastransduced pancreatic cancer cells with suppressed tumorigenicity.Cancer Res.,1999,59:5565-5571.
    [17]Huang J,Kwong J,Sun EC and Liang TJ:Proteasome complex as a potential cellular target of hepatitis B virus X protein.J.Virol.,1996,70:5582-5591.
    [18]Hu Z,Zhang Z,Doo E,Coux O,Goldberg AL and Liang TJ:Hepatitis B virus X protein is both a substrate and a potential inhibitor of the proteasome complex.J.Virol.1999,73:7231-7240.
    [19]Zhang Z,Torii N,Furusaka A,Malayaman N,Hu Z and Liang TJ:Structural and functional characterization of interaction between hepatitis B virus X protein and the proteasome complex.J.Biol.Chem.,2000,275:15157-15165.
    [20]Cho S,Choi YJ,Kim JM,Jeong ST,Kim JH,Kim SH and Ryu SE:Binding and regulation of HIF-lalpha by a subunit of the proteasome complex,PSMA7.FEBS Lett.,2001,498:62-66.
    [21]Liu X,Huang W,Li C,Li P,Yuan J,Li X,Qiu XB,Ma Q,Cao C.Interaction between c-Abl and Arg tyrosine kinases and proteasome subunit PSMA7 regulates proteasome degradation.Mol.Cell.,2006,22(3):317-327.
    [22]Ogiso Y,Tomida A,Tsuruo T Nuclear localization of proteasomes participates in stress-inducible resistance of solid tumor cells to topoisomerase Ⅱ-directed drugs.Cancer Res.,2002,62(17):5008-5012.
    [23]Lin HK,Altuwaijri S,Lin WJ,Kan PY,Collins LL and Chang C:Proteasome activity is required for androgen receptor transcriptional activity via regulation of androgen receptor nuclear translocation and interaction with coregulators in prostate cancer cells.J.Biol.Chem.,2002,277:36570-36576.
    [24]Dong J,Chen W,Welford A,Wandinger-Ness A.The proteasome alpha-subunit XAPC7 interacts specifically with Rab7 and late endosomes.J.Biol.Chem.,2004,279(20):21334-21342.
    [25]Hannon GJ.RNA interference.Nature,2002,418(6894):244-251.
    [26]Wyatt CA,Geoghegan JC,Brinckerhoff CE.Short hairpin RNA-mediated inhibition of matrix metalloproteinase-1 in MDA-231 cells:effects on matrix destruction and tumor growth.Cancer Res.,2005,65(23):11101-11108.
    [27]Rossi JJ.Expression strategies for short hairpin RNA interference triggers.Hum.Gene.Ther.,2008,19(4):313-317.
    [28]Pushparaj PN,Aarthi JJ,Manikandan J,Kumar SD.siRNA,miRNA,and shRNA:in vivo applications.J.Dent.Res.,2008,87(11):992-1003.
    [29]Elbashir SM,Martinezj,Patkaniowska A,Lendeckel W,Tuschl T.Functional anatomy of siRNAs for mediating efficient RNAi in Drosophila melanogaster embryo lysate.EMBO J.,2001,20:6877-6888.
    [30]Gerlier D,Thomasset N.Use of MTT colorimetric assay to measure cell activation.J.Immunol.Methods,1986,94(1-2):57-63.
    [31]Vermes I,Haanen C,Steffens-Nakken H,Reutelingsperger C.A novel assay for apoptosis.Flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labelled Annexin V.J.Immunol.Methods,1995,184(1):39-51.
    [32]Tsao MS,Earp HS,Grisham JW.Gradation of carcinogen-induced capacity for anchorage-independent growth in cultured rat liver epithelial cells.Cancer Res.,1985,45(9):4428-4432.
    [33]Eccles SA,Box C,Court W.Cell migration/invasion assays and their application in cancer drug discovery.Biotechnol.Annu.Rev.,2005,11:391-421.
    [34]Petroski MD.The ubiquitin system,disease,and drug discovery.BMC Biochem.,2008,9 Suppl 1:S7.
    [35]Russell SJ,Reed SH,Huang W,Friedberg EC,Johnston SA.The 19S regulatory complex of the proteasome functions independently of proteolysis in nucleotide excision repair.Mol.Cell,1999,3(6):687-695.
    [36]Ferdous A,Gonzalez F,Sun L,Kodadek T and Johnston SA:The 19S regulatory particle of the proteasome is required for efficient transcription elongation by RNA polymerase Ⅱ.Mol.Cell,2001,7:981-991.
    [37]Gillette TG,Huang W,Russell SJ,Reed SH,Johnston SA,Friedberg EC:The 19S complex of the proteasome regulates nucleotide excision repair in yeast.Genes Dev.,2001,15:1528-1539.
    [38]Szulc J,Wiznerowicz M,Sauvain M O,Trono D,Aebischer P..A versatile tool for conditional gene expression and knockdown.Nat.Methods,2006,3(2):109-116.
    [39]Hunter KW,Crawford NP,Alsarraj J.Mechanisms of metastasis.Breast Cancer Res.,2008, 10 Suppl 1:S2.
    [40]Small JV,Resch GP.The comings and goings of actin:coupling protrusion and retraction in cell motility.Curr.Opin.Cell Biol.,2005,17(5):517-523.
    [41]Howlin J,Rosenkvist J,Andersson T.TNK2 preserves epidermal growth factor receptor expression on the cell surface and enhances migration and invasion of human breast cancer cells.Breast Cancer Res.2008,10(2):R36.
    [42]Azios NG,Krishnamoorthy L,Harris M,Cubano LA,Cammer M,Dharmawardhane SF.Estrogen and resveratrol regulate Rac and Cdc42 signaling to the actin cytoskeleton of metastatic breast cancer cells.Neoplasia,2007,9(2):147-158.
    [43]Sneath RJ,Mangham DC.The normal structure and function of CD44 and its role in neoplasia.Mol.Pathol.,1998,51(4):191-200.
    [44]Bourguignon LY.CD44-mediated oncogenic signaling and cytoskeleton activation during mammary tumor progression.J.Mammary Gland Biol.Neoplasia,2001,6:287-297.
    [45]Yu Q,Stamenkovic I.Localization of matrix metalloproteinase 9 to the cell surface provides a mechanism for CD44-mediated tumor invasion.Genes Dev.,1999,13(1):35-48.
    [46]Yu Q,Stamenkovic I.Cell surface-localized matrix metalloproteinase-9 proteolytically activates TGF2 P and promotes tumor invasion and angiogenesis.Genes Dev.,2000,14(2):163-176.
    [47]Yu WH,Woessner J FJ r,McNeish JD,et al.CD44 anchors the assembly of matrilysin/ MMP27 with heparin2binding epidermal growth factor precursor and ErbB4 and regulates female reproductive organ remodeling.Genes Dev,2002,16 (3)-.3072323.
    [48]Godar S,Ince TA,Bell GW,Feldser D,Donaher JL,Bergh J,Liu A,Miu K,Watnick RS,Reinhardt F,McAllister SS,Jacks T,Weinberg RA.Growth-inhibitory and tumor-suppressive functions of p53 depend on its repression of CD44 expression.Cell,2008,134(1):62-73.
    [49]Orian-Rousseau V,Chen L,Sleeman JP,Herrlich P,Ponta H.CD44 is required for two consecutive steps in HGF/c-Met signaling.Genes Dev.,2002,16(23):3074-3086.
    [50]Sherman LS,Rizvi TA,Karyala S,Ratner N.CD44 enhances neuregulin signaling by Schwann cells.J.Cell Biol,2000,150(5):1071-1084.
    [51]Morrison H,Sherman LS,Legg J,Banine F,Isacke C,Haipek CA,Gutmann DH,Ponta H,Herrlich P.The NF2 tumor suppressor gene product,merlin,mediates contact inhibition of growth through interactions with CD44.Genes Dev.,2001,15(8):968-980.
    [52]Yu Q,Toole BP,Stamenkovic I.Induction of apoptosis of metastatic mammary carcinoma cells in vivo by disruption of tumor cell surface CD44 function.J.Exp.Med.,1997,186(12):1985-1996.
    [53]Schmits R,Filmus J,Gerwin N,Senaldi G,Kiefer F,Kundig T,Wakeham A,Shahinian A,Catzavelos C,Rak J,Furlonger C,Zakarian A,Simard JJ,Ohashi PS,Paige CJ,Gutierrez-Ramos JC,Mak TW.CD44 regulates hematopoietic progenitor distribution,granuloma formation,and tumorigenicity.Blood,1997,90(6):2217-2233.
    [54]Weber GF,Bronson RT,Ilagan J,Cantor H,Schmits R,Mak TW.Absence of the CD44 gene prevents sarcoma metastasis.Cancer Res.,2002,62(8):2281-2286.
    [55]Wong K,Rubenthiran U,Jothy S.Motility of colon cancer cells:modulation by CD44 isoform expression.Exp.Mol.Pathol.,2003,75(2):124-130.
    [56]Subramaniam V,Vincent IR,Jothy S:Upregulation and dephosphorylation of cofilin:modulation by CD44 variant isoform in human colon cancer cells.Exp.Mol.Pathol.,2005,79(3):187-193.
    [1]Tomari Y,Zamore PD.Perspective:machines for RNAi.Genes Dev.,2005,19(5):517-29.
    [2]Peters L,Meister G.Argonaute proteins:mediators of RNA silencing.Mol.Cell,2007,26(5):611-623.
    [3]Kloosterman WP,Plasterk RH.The diverse functions of microRNAs in animal development and disease.Dev.Cell,2006,11(4):441-450.
    [4]Zamore PD,Tuschh T,Sharp PA,Bartel DP.RNAi:double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals.Cell,2000,101(1):25-33.
    [5]Hutvagner G,Zamore P D.RNAi:nature abhors a double-strand.Curr.Opin.Genet.Dev.,2002,12:225-232.
    [6]Elbashir SM,Lendeckel W,Tuschi T.RNA interference is mediated by 21-and 22-nucleotide RNAs.Genes Dev.,2001,15:188-200.
    [7]Ketting RF,Fischer SE,Bernstein E,Sijen T,Hannon GJ,Plasterk RH..Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing in C.elegans.Genes Dev.,2001,15(20):2654-2659.
    [8]Campbell TN,Choy FY.RNA interference:past,present and future.Curr.Issues Mol.Biol.,2005,7(1):1-6.
    [9]Joshua-Tor L.The Argonautes.Cold Spring Harb.Symp.Quant.Biol.,2006,71:67-72.
    [10]Kawasaki H,Taira K.Short hairp in type of dsRNAs that are controlled by tRNA (Val) promoter significantly induce RNAi-mediated gene silencing in the cytoplasm of human cells.Nucleic Acids Res.,2003,31(2):700-707.
    [11]Caplen NJ,Fleenor J,Fire A,Morgan RA.dsRNA-mediated gene silencing in cultured Drosophila cells:a tissue culture model for the analysis of RNA interference.Gene,2000,252(1-2):95-105.
    [12]Davenport RJ.Gene silencing:A fasterway to shut down genes.Science,2001,292(5521):1469-1471.
    [13]Elbashir SM,Martinezj,Patkaniowska A,Lendeckel W,Tuschi T.Functional anatomy of siRNAs for mediating efficient RNAi in Drosophila melanogaster embryo lysate.EMBO J.,2001,20:6877-6888.
    [14]Meister G,Tuschl T.Mechanisms of gene silencing by double-stranded RNA.Nature,2004,431(7006):343-349.
    [15]Xia Y,Lin RX,Zheng SJ,Yang Y,Bo XC,Zhu DY,Wang SQ.Effective siRNA targets screening for human telomerase reverse transcriptase.World J.Gastroenterol.,2005,11(16):2497-2501.
    [16]Hagerkvist R,Mokhtari D,Myers J W,Tengholm A,Welsh N.siRNA produced by recombinant dicer mediates efficient gene silencing in islet cells.Ann.N.Y.Acid.Sci.,2005,1040:114-122.
    [17]Gu JW,Zhang T,Chen BB,Lu Y,Lin GW.Functional study of mdrl and GSTpi expression reversed by hairpin siRNA in K562/A02 cell line.Zhonghua Xue Ye Xue Za Zhi,2006,27(1):17-20.
    [18]Jia F,Zhang YZ,Liu CM.A retrovirus-based system to stably silence hepatitis B virus genes by RNA interference.Biotechnol Lett.,2006,28(20):1679-1685.
    [19]Yin J,Ma Z,Selliah N,Shivers DK,Cron RQ,Finkel TH.Effective gene suppression using small interfering RNA in hard-to-transfect human T cells.J.Immunol.Methods,2006,312(1-2):1-11.
    [20]Dowler T,Bergeron D,Tedeschi A L,Paquet L,Ferrari N,Damha MJ.Improvements in siRNA properties mediated by 2'-deoxy-2'-fluoro-0-D-arabinonucleic acid (FANA).NucleicAcids Res.,2006,34(6):1669-1675.
    [21]Davidson B L,Harper S Q.Viral delivery of recombinant short hairpin RNAs.Methods Enzymol.,2005,392:145-173.
    [22]Stewart S A,Dykxhoorn D M,Palliser D,Mizuno H,Yu EY,An DS,Sabatini DM,Chen IS,Hahn WC,Sharp PA,Weinberg RA,Novina CD..Lenti virus delivered stable gene silencing by RNAi in primary cells.RNA,2003,9(4):493-501.
    [23]Deroose C M,Reumers V,Gijsbers R,Bormans G,Debyser Z,Mortelmans L,Baekelandt V. Noninvasive monitoring of long-term lentiviral vector-mediated gene expression in rodent brain with bioluminescence imaging.Mol.Then,2006,14(3):423-431.
    [24]Szulc J,Wiznerowicz M,Sauvain M O,Trono D,Aebischer P..A versatile tool for conditional gene expression and knockdown.Nat.Methods,2006,3(2):109-116.
    [25]Zhang C,Tang N,Liu X,Liang W,Xu W,Torchilin VP.siRNA-containing liposomes modified with polyarginine effectively silence the targeted gene.J.Control Release,2006,112(2):229-239.
    [26]Werth S,Urban-Klein B,Dai L,Hobel S,Grzelinski M,Bakowsky U,Czubayko F,Aigner A.A low molecular weight fraction of polyethylenimine (PEI) displays increased transfection efficiency of DNA and siRNA in fresh or lyophilized complexes.J.Control Release,2006,112(2):257-270.
    [27]Schiffelers RM,Ansari A,Xu J,Zhou Q,Tang Q,Storm G,Molema G,Lu PY,Scaria PV,Woodle MC.Cancer siRNA therapy by tumor selective delivery with ligand-targeted sterically stabilized nanoparticle.Nucleic Acids Res.,2004,32(19):el49.
    [28]Kim SH,Jeong JH,Lee SH,Kim SW,Park TG.PEG conjugated VEGF siRNA for anti-angiogenic gene therapy.J.Control Release,2006,116(2):123-129.
    [29]Howard KA,Rahbek UL,Liu X,Damgaard CK,Glud SZ,Andersen M0,Hovgaard MB,Schmitz A,Nyengaard JR,Besenbacher F,Kjems J.RNA interference in vitro and in vivo using a novel chitosan/siRNA nanoparticle system.Mol.Ther.,2006,14(4):476-484.
    [30]Li H,Li WX,Ding SW.Induction and suppression of RNA silencing by an animal virus.Science,2002,296(5571):1319-1321.
    [31]Anandalakshmi R,Marathe R,Ge X,Herr JM Jr,Mau C,Mallory A,Pruss G,Bowman L,Vance VB.A calmodulin-related protein that suppresses posttranscriptional gene silencing in plants.Science,2000,290(5489):142-144.
    [32]Reinhart BJ,Bartel DP.Small RNAs correspond to centromere heterochromatic repeats.Science,2002,297(5588):1831.
    [34]Mochizuki K,Fine NA,Fujisawa T,Gorovsky MA.Analysis of a piwi-related gene implicates small RNA in genome rearrangement in tetrahymena.Cell,2002,110(6):689-699.
    [35]Taverna SD,Coyne RS,Allis CD.Methylation of histone h3 at lysine 9 targets programmed DNA elimination in tetrahymena.Cell,2002,110(6):701-711.
    [36]Koldehoff M,Steckel NK,Beelen DW,Elmaagacli AH.Therapeutic application of small interfering RNA directed against bcr-abl transcripts to a patient with imatinib-resistant chronic myeloid leukaemia.Clin.Exp.Med.,2007,7(2):47-55.
    [37]Brummelkamp TR,Bernards R,Agami R.Stable suppression of tumorigenicity by virus-mediated RNA interference.Cancer Cell,2002,2:243-247.
    [38]Hung L,Kumar V.Specific inhibition of gene expression and transactivation functions of hepatitis B virus X protein and c-myc by small interfering RNAs.FEBS Lett.,2004,560(1-3):210-214.
    [39]Berns K,Hijmans EM,Mullenders J,Brummelkamp TR,Velds A,Heimerikx M,Kerkhoven RM,Madiredjo M,Nijkamp W,Weigelt B,Agami R,Ge W,Cavet G,Linsley PS,Beijersbergen RL,Bernards R.A large-scale RNAi screen in human cells identifies new components of the p53 pathway.Nature,2004,428(6981):431-437.
    [40]Klein C,Vassilev LT.Targeting the p53-MDM2 interaction to treat cancer.Br.J.Cancer,2004,91(8):1415-1419.
    [41]Zhang L,Yang N,Mohamed-Hadley A,Rubin SC,Coukos G.Vector-based RNAi,a novel tool for isoform-specific knock-down of VEGF and anti-angiogenesis gene therapy of cancer.Biochem.Biophys.Res.Commun..,2003,303(4):1169-1178.
    [42]Salvi A,Arici B,De Petro G,Barlati S.Small interfering RNA urokinase silencing inhibits invasion and migration of human hepatocellular carcinoma cells.Mol.Cancer Ther.,2004,3(6):671-678.
    [43]Simp son KJ,Dugan AS,Mercurio AM.Functional analysis of the contribution of RhoA and RhoC GTPases to invasive breast carcinoma.Cancer Res.,2004,64(23):8694-8701.
    [44]Chen Y,Stamatoyannopoulos G,Song CZ.Down-regulation of CXCR4 by inducible small interfering RNA inhibits breast cancer cell invasion in vitro.Cancer Res.,2003,63(16): 4801-4804.
    [45]Ohtsuka T,Ryu H,Minamishima YA,Ryo A,Lee SW.Modulation of p53 and p73 levels by cyclin G:implication of a negative feedback regulation.Oncogene,2003,22(11):1678-1687.
    [46]Nagy P,Arndt-Jovin DJ,Jovin TM.Small interfering RNAs suppress the expression of endogenous and GFP-fused epidermal growth factor receptor (erbBl) and induce apoptosis in erbB1-overexpressing cells.Exp.Cell Res.,2003,285(1):39-49.
    [47]Fu GF,Lin XH,Han QW,Fan YR,Xu YF,Guo D,Xu GX,Hou YY.RNA interference remarkably suppresses bcl-2 gene expression in cancer cells in vitro and in vivo.Cancer Biol.Then,2005,4(8):822-829.
    [48]Nie L,Li YP,Nie D,Peng Z,Zhang HY,Zhang B.To knockdown survivin gene expression by siRNA in SO-Rb50 cells.Zhonghua Yan Ke Za Zhi,2008,44(10):906-911.
    [49]Collis SJ,Swartz MJ,Nelson WG DeWeese TL.Enhanced radiation and chemotherapy-mediated cell killing of human cancer cells by small inhibitory RNA silencing of DNA repair factors.Cancer Res.,2003,63(7):1550-1554.
    [50]Peng Y,ZhangQ,Nagasawa H,Okayasu R,Liber HL,Bedford JS.Silencing expression of the catalytic subunit of DNA-dependent protein kinase by small interfering RNA sensitizes human cells for radiation-induced chromosome damage,cell killing,and mutation.Cancer Res.,2002,62(22):6400-6404.
    [51]Nieth C,Priebsch A,Stege A,Lage H.Modulation of the classical multidrug resistance (MDR) phenotype by RNA interference (RNAi).FEBS Lett.,2003,545(2-3):144-150.
    [52]Putral LN,Bywater MJ,Gu W,Saunders NA,Gabrielli BG,Leggatt GR,McMillan NA.RNA interference against human papillomavirus oncogenes in cervical cancer cells results in increased sensitivity to cisplatin.Mol.Pharmacol.,2005,68(5):1311-1319.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700