用户名: 密码: 验证码:
多沙唑嗪光学异构体对大鼠血管平滑肌细胞增殖与凋亡的影响及其作用机制的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
血管平滑肌细胞(vascular smooth muscle cells, VSMCs)位于血管中膜,生理条件下,VSMCs通过收缩和舒张调节血管张力。VSMCs由中膜迁移到内膜下间隙并异常增殖是动脉粥样硬化(atherosclerosis, AS)、高血压和血管再狭窄(restenosis, RS)等疾病共同的细胞病理基础之一。血管内皮细胞损伤导致多种炎症因子和生长调节因子的表达和激活紊乱,诱导VSMCs发生表型改变,刺激VSMCs从血管中膜向内膜下间隙迁移,发生过度增生和凋亡抑制,从而导致血管壁结构改变。因此,血管内皮细胞损伤、VSMCs增殖与迁移及其表型改变是目前研究新生内膜形成和再狭窄的热点。
     多沙唑嗪[(±)doxazosin]属长效α1受体阻断药,临床广泛用于治疗良性前列腺增生(benign prostatic hyperplasia,BPH)并发下尿路症状(lower urinary tract symptoms,LUTS);对于BPH/LUTS合并高血压的患者,应用(±)doxazosin可获得双重效果。近年来,国内外研究表明,(±)doxazosin具有抑制主动脉VSMCs增殖的作用,该抑制作用具有浓度依赖性和α1受体非依赖性等特点。
     20世纪末,手性药物的研究受到重视。国内外学者利用HPLC技术和高效毛细管电泳技术对(±)doxazosin进行了手性分离,得到其单一光学异构体(+)doxazosin和(-)doxazosin。研究结果表明,在兔离体胸主动脉、颈动脉、肠系膜动脉等血管标本,(-)doxazosin对血管α1受体的阻断作用明显弱于(±)doxazosin和(+)doxazosin;静脉或十二指肠给予(-)doxazosin,其降低麻醉大鼠动脉血压的作用亦明显弱于(±)doxazosin和(+)doxazosin ;但是,(-)doxazosin降低麻醉大鼠和豚鼠的膀胱排尿压的作用与(±)doxazosin相同。这些研究资料说明(-)doxazosin的药理活性,在心血管系统和下尿路系统之间,具有立体结构的选择性。但是,在抑制动脉VSMCs增殖和诱导凋亡方面,(+)doxazosin与(-)doxazosin是否具有立体结构的选择性,与α1受体有无相关性等问题仍不清楚。本研究中,我们采用MTT比色法检测细胞增殖活性,采用流式细胞技术检测细胞增殖周期、凋亡率及凋亡蛋白(Bcl-2和Bax),探讨(-)doxazosin、(+)doxazosin和(±)doxazosin对体外培养大鼠主动脉VSMCs的增殖与凋亡的影响并分析其作用机制。
     第一部分多沙唑嗪光学异构体对大鼠主动脉平滑肌细胞增殖的影响及与α1受体相关性的实验研究
     观察(±)doxazosin及其光学异构体对大鼠VSMCs增殖的影响。在培养的大鼠主动脉VSMCs,采用MTT比色法检测细胞增殖活性,探讨(-)doxazosin、(+)doxazosin和(±)doxazosin的抗大鼠主动脉VSMCs的增殖作用以及与α1受体的相关性。
     1 (±)Doxazosin及其光学异构体对VSMCs增殖的影响(-)Doxazosin和(±)doxazosin在10~30μmol·L-1浓度范围作用于VSMCs 48h或72h,显著抑制大鼠胸主动脉VSMCs增殖;而(+)doxazosin仅在30μmol·L-1具有抑制作用。当延长药物与VSMCs的作用时间至96h时,(-)doxazosin、(+)doxazosin和(±)doxazosin在3~30μmol·L-1浓度均显著抑制主动脉VSMCs增殖。不同浓度的药物作用于大鼠胸主动脉VSMCs 48h、72h及96h时,(-)doxazosin、(+)doxazosin和(±)doxazosin对VSMCs增殖的抑制作用均具有浓度依赖性。双因素方差分析结果显示,药物作用于VSMCs 48h、72h,(-)doxazosin均在浓度为10μmol·L-1时,其抑制率显著高于同浓度(+)doxazosin(P<0.05);作用96h时,(-)doxazosin的抑制率在3~30μmol·L-1浓度范围显著高于同浓度的(+)doxazosin(P<0.01)。以30μmol·L-1浓度的药物处理大鼠胸主动脉VSMCs 48h、72h和96h,(-)doxazosin对主动脉VSMCs增殖的抑制率依次为27.13%、38.05%和58.87%,(+)doxazosin的抑制率依次为24.39%、33.43%和46.10%,(±)doxazosin的抑制率依次为24.29%、36.74%和52.35%。96h时三种药物对主动脉VSMCs增殖的抑制率均显著高于48h(p<0.05和0.01)和72h(p<0.05和0.01)的抑制率。以不同浓度的药物处理大鼠胸主动脉VSMCs 96h,(-)doxazosin、(+)doxazosin和(±)doxazosin抑制VSMCs增殖达40%的浓度(IC40)分别为12.1±2.6、10.2±1.3和20.9±2.2μmol·L-1;(+)doxazosin的IC40值显著大于(±)doxazosin和(-)doxazosin(P<0.01)。
     2 (±)Doxazosin及其光学异构体的非α1受体依赖性抗VSMCs增殖作用
     与溶媒Ⅰ组中的对照组相比,溶媒Ⅱ组中的对照组(0.001%乙醇自身)以及酚苄明组中的对照组(酚苄明自身)不影响大鼠VSMCs增殖(P>0.05)。在溶媒Ⅰ组中,30μmol·L-1的(-)doxazosin、(+)doxazosin和(±)doxazosin作用于VSMCs 48h,均显著抑制大鼠主动脉VSMCs增殖(P<0.01);其抑制率分别为33.00±2.79%、26.19±5.74%和31.76±4.29%;(+)doxazosin的抑制率显著弱于(-)doxazosin(P<0.05),而与(±)doxazosin的抑制率无显著性差别。在溶媒Ⅱ组与酚苄明组中,(-)doxazosin、(+)doxazosin和(±)doxazosin作用于VSMCs 48h,均显著抑制大鼠主动脉VSMCs增殖(P<0.01);尽管(+)doxazosin对VSMCs增殖的抑制率在绝对值上小于其他两种药物,但是药物的抑制率在三者之间无显著性差异。与溶媒Ⅰ组中(-)doxazosin的抑制作用相比,溶媒Ⅱ组以及酚苄明组中(-)doxazosin的抑制作用无显著性差异( P>0.05 ); (+)Doxazosin和(±)doxazosin的结果同(-)doxazosin。
     3 (±)Doxazosin及光学异构体α1受体依赖性抗VSMCs增殖作用
     苯肾上腺素(10μmol·L-1)可刺激大鼠主动脉VSMCs增殖,其促增殖作用的强度与含10%小牛血清的DMEM培养液相近。30μmol·L-1的(-)doxazosin、(+)doxazosin和(±)doxazosin作用于VSMCs 48 h,均显著抑制苯肾上腺素刺激的VSMCs增殖(P<0.01);(+)doxazosin的抑制率显著弱于同浓度(-)doxazosin(P<0.05),而与(±)doxazosin组相比无显著性差异。
     第二部分多沙唑嗪光学异构体对大鼠主动脉平滑肌细胞增殖周期和凋亡的影响
     本研究观察(±)doxazosin及其光学异构体对体外培养的大鼠胸主动脉VSMCs增殖周期和细胞凋亡的影响。应用Giemsa染色观察细胞形态学改变,采用FCM测定细胞周期、细胞凋亡率和凋亡蛋白(Bcl-2和Bax),探讨(±)doxazosin及其光学异构体抗VSMCs增殖的机制。
     1 (±)Doxazosin及其光学异构体对VSMCs的形态学影响经30μmol·L-1 (-)doxazosin、(+)doxazosin和(±)doxazosin处理96h后,在普通光学显微镜下的VSMCs,可见细胞体积缩小、染色质浓缩、靠近核膜和核边集现象、细胞核固缩,在细胞质内可见大小不等的颗粒状小体,即为凋亡小体;正常活细胞细胞核染成蓝色或蓝紫色,色泽均一。
     2 (±)Doxazosin及其光学异构体对VSMCs细胞增殖周期的影响
     VSMCs细胞经25μmol·L-1 (-)doxazosin、(+)doxazosin和(±)doxazosin处理72h后,增殖周期时相分布和增殖指数发生了改变。(±)Doxazosin和(-)doxazosin组G0/G1期细胞均显著增多(P<0.01),S期细胞、G2/M期细胞和增殖指数均显著减少或降低(P<0.01),而(+)doxazosin组仅见S期细胞显著减少(P<0.01)。与(-)doxazosin组比较,(+)doxazosin组G0/G1期细胞显著减少(P<0.01),S期细胞、G2/M期细胞和增殖指数均显著增多或增高(P<0.05和0.01)。
     3 (±)Doxazosin及其光学异构体对VSMCs凋亡率的影响
     VSMCs经25μmol·L-1 (-)doxazosin、(+)doxazosin和(±)doxazosin处理72h后,(-)doxazosin和(±)doxazosin均可诱导VSMCs凋亡(P<0.01),而(+)doxazosin不具有促进VSMCs凋亡的作用(P>0.05)。(-)Doxazosin和(±)doxazosin诱导VSMCs的凋亡率分别为6.06±0.31%和3.63±0.99%,(-)doxazosin诱导大鼠主动脉VSMCs凋亡的作用显著强于(±)doxazosin(P<0.01)。
     4 (±)Doxazosin及其光学异构体对VSMCs中Bcl-2蛋白和Bax蛋白表达的影响
     VSMCs经25μmol·L-1的(-)doxazosin、(+)doxazosin和(±)doxazosin处理72h后,实验组细胞Bcl-2蛋白和Bax蛋白含量与溶媒组比较,均无显著性差异(P>0.05)。
     VSMCs经(-)doxazosin、(+)doxazosin和(±)doxazosin处理72h后,Bcl-2/Bax蛋白比值分别为0.68±0.01、0.92±0.03和0.82±0.10。与溶媒组(0.99±0.06)相比较,(-)doxazosin和(±)doxazosin均显著降低Bcl-2/Bax的蛋白比值(P<0.05和0.01);而(+)doxazosin不影响VSMCs的Bcl-2/Bax蛋白比值(P>0.05)。(-)Doxazosin组细胞的Bcl-2/Bax蛋白比值亦显著小于(+)doxazosin组(P<0.01)。
     第三部分多沙唑嗪光学异构体对多种促增殖因子诱导大鼠主动脉平滑肌细胞增殖的影响
     本研究采用MTT比色法测定细胞增殖活性,观察了(±)doxazosin及其光学异构体对血小板源生长因子(PDGF-BB)、血管紧张素II (Ang II)、凝血酶和髙糖诱导的大鼠主动脉VSMCs增殖的影响。
     1 (±)Doxazosin及其光学异构体对PDGF-BB诱发VSMCs增殖的影响
     PDGF-BB(1nmol·L-1)可刺激大鼠主动脉VSMCs增殖,其促增殖作用的强度显著强于含10%小牛血清的DMEM培养液(P<0.01)。与溶媒组相比,(-)doxazosin、(+)doxazosin和(±)doxazosin(3~30μmol·L-1)作用于VSMCs 48h,均显著抑制PDGF-BB刺激的大鼠主动脉VSMCs增殖(P<0.01)。在抑制率方面,在含10%小牛血清的DMEM培养液中,(±)doxazosin及其光学异构体作用于VSMCs 48h时的最大抑制率为24.29±3.72%~27.13±2.41%;而在含0.4%小牛血清及PDGF-BB的DMEM培养液中,(±)doxazosin及其光学异构体作用于VSMCs 48h时的最大抑制率为95.21±6.05%~99.67±1.99%。双因素方差分析结果显示,在3μmol·L-1浓度时,(+)doxazosin的抑制率显著低于(±)doxazosin(P<0.05)。(-)Doxazosin、(+)doxazosin和(±)doxazosin抑制VSMCs增殖达50%的浓度(IC50)分别为5.44±3.16、7.50±3.40和4.98±4.52μmol·L-1。
     2 (±)Doxazosin及其光学异构体对Ang II诱发VSMCs增殖的影响
     Ang II(100nmol·L-1)可刺激大鼠主动脉VSMCs增殖,其促增殖作用的强度显著强于含10%小牛血清的DMEM培养液(P<0.01)。与溶媒组相比,(-)doxazosin、(+)doxazosin和(±)doxazosin在3~30μmol·L-1浓度作用于VSMCs 48h,均显著抑制Ang II刺激的大鼠主动脉VSMCs增殖(P<0.01)。在抑制率方面,(-)doxazosin、(+)doxazosin和(±)doxazosin在0.3~30μmol·L-1浓度范围内随着浓度的升高而抑制作用明显增强。双因素方差分析结果显示,(-)doxazosin的抑制率与(+)doxazosin和(±)doxazosin相比,无显著性差异(P>0.05)。在含0.4%小牛血清及Ang II的DMEM培养液中(±)doxazosin及其光学异构体作用于VSMCs 48h时的最大抑制率为93.01±3.23%~94.61±3.11%。(-)Doxazosin、(+)doxazosin和(±)doxazosin抑制VSMCs增殖的IC50值分别为13.38±2.50、14.24±2.47和13.71±2.89μmol·L-1。
     3 (±)Doxazosin及其光学异构体对凝血酶诱发VSMCs增殖的影响
     凝血酶(1U·ml-1)亦可刺激大鼠主动脉VSMCs增殖,其促增殖作用的强度与含10%小牛血清的DMEM培养液相近。与溶媒组相比,(-)doxazosin、(+)doxazosin和(±)doxazosin在3~30μmol·L-1浓度作用于VSMCs 48h,均显著抑制凝血酶刺激的大鼠主动脉VSMCs增殖(P<0.01)。在抑制率方面,(-)doxazosin、(+)doxazosin和(±)doxazosin在0.3~30μmol·L-1浓度范围内随着浓度的升高而抑制作用明显增强。双因素方差分析结果显示,(-)doxazosin的抑制率与(+)doxazosin和(±)doxazosin相比,无显著性差异(P>0.05)。在含0.4%小牛血清及凝血酶的DMEM培养液中,(±)doxazosin及其光学异构体作用于VSMCs 48h时的最大抑制率为91.87±5.13%~94.63±3.33%。(-)Doxazosin、(+)doxazosin和(±)doxazosin抑制VSMCs增殖的IC50值分别为13.52±2.87、14.60±2.95和14.32±2.75μmol·L-1。
     4 (±)Doxazosin及其光学异构体对髙糖诱发VSMCs增殖的影响
     高糖(25.6mmol·L-1)可刺激大鼠主动脉VSMCs增殖,其促增殖作用的强度与凝血酶相同。与溶媒组相比,(-)doxazosin、(+)doxazosin和(±)doxazosin在3~30μmol·L-1浓度作用于VSMCs 48h,均显著抑制髙糖刺激的大鼠主动脉VSMCs增殖(P<0.01)。双因素方差分析结果显示,(-)doxazosin在浓度为3μmol·L-1时的抑制率显著高于同浓度(+)doxazosin(P<0.05)。在含0.4%小牛血清及高糖的DMEM培养液中,(±)doxazosin及其光学异构体作用于VSMCs 48h时的最大抑制率为94.17±4.75%~96.16±3.09%。(-)Doxazosin、(+)doxazosin和(±)doxazosin抑制VSMCs增殖的IC50值分别为14.20±6.34、14.10±3.29和13.98±3.53μmol·L-1。
     结论
     1 (-)Doxazosin、(+)doxazosin和(±)doxazosin均可抑制10%小牛血清DMEM液中大鼠胸主动脉VSMCs的增殖反应;其中,(-)doxazosin的抑制作用明显强于(+)doxazosin,提示doxazosin在该培养条件下的抗VSMCs增殖作用具有手性药理学差异。
     2除α1受体非依赖性抗VSMCs增殖作用以外,(-)doxazosin、(+)doxazosin和(±)doxazosin也具有α1受体依赖性抗VSMCs增殖作用。
     3 (-)Doxazosin和(±)doxazosin抗大鼠胸主动脉VSMCs增殖的作用与其抑制G0/G1期细胞向S期转化以及降低细胞增殖指数有关;(+)doxazosin的对细胞周期的抑制作用显著弱于(-)doxazosin。
     4 (-)Doxazosin和(±)doxazosin具有诱导大鼠胸主动脉VSMCs凋亡的作用,该作用与其调控Bcl-2蛋白/Bax蛋白比值有关;提示(±)doxazosin诱导VSMCs凋亡的物质基础是其光学异构体(-)doxazosin而非(+)doxazosin。
     5 (±)Doxazosin及其光学异构体对PDGF-BB、Ang II、凝血酶和高糖诱发大鼠主动脉VSMCs增殖反应具有显著的抑制作用。与小牛血清和苯肾上腺素诱发的VSMCs增殖反应相比,(±)doxazosin及其光学异构体对前四种促增殖剂的抑制作用更强,且未见明显的手性药理学差异。
Vascular smooth muscle cells (VSMCs) located in the middle layer of the arterial wall regulate blood pressure by contraction and relaxation in physiological condition. Migration from the media to the intima space and abnormal proliferation of VSMCs are the common pathological bases of atherosclerosis (AS), hypertension and vascular restenosis (RS). Injury of vascular endothelial cells causes production and activation of a variety of inflammatory cytokines and growth regulation factors, which induce a change in VSMCs phenotype, a migration of VSMCs from the media to the intima, and excessive proliferation as well as apoptosis inhibition. Therefore, protecting vascular endothelial cells and inhibiting proliferation and migration of VSMCs might prevent the diseases such as AS, RS and hypertension.
     (±)Doxazosin, a long-acting selectiveα1-adrenergic receptor antagonist, has been extensively used in the treatment of benign prostatic hyperplasia (BPH) complicated with lower urinary tract symptoms (LUTS). BPH/LUTS patients with hypertension treated with (±)doxazosin received two beneficial therapeutic actions. Recent studies demonstrated that (±)doxazosin markedly inhibited proliferation of the aortic VSMCs, and the inhibitory effects had characteristics of concentration-dependent andα1-receptor independent.
     In the late 20th century, the study of chiral drug became an important field of the drug development. It was reported that (-)doxazosin and (+)doxazosin were prepared using chiral mobile phase HPLC and high performance capillary electrophoresis. The blocking effect of (-)doxazosin onα1-adrenoceptor was significantly weaker than that of (±)doxazosin and (+)doxazosin in the isolated rabbit thoracic aorta, carotid artery and mesenteric artery. The effect of (-)doxazosin on arterial blood pressure in the anesthetized rats was also significantly weaker than that of (±)doxazosin and (+)doxazosin administered intravenously or intraduodenally. However, the effect of decreasing urinary bladder pressure by (-)doxazosin in the anesthetized rats and guinea-pig was the same as that of (±)doxazosin. These findings suggested that the pharmacological activity of (-)doxazosin had chiral selective effect between the cardiovascular system and lower urinary tract system. However, it remains to be clarified whether (+)doxazosin and (-)doxazosin have chiral selective effect on the cell proliferation and apoptosis of VSMCs and whether their effects are related toα1-adrenoceptor blockade. In the present study, MTT assay was used to determine the cell proliferation; and cell cycle distribution, cell apoptosis and apoptotic proteins (Bcl-2 and Bax) were analyzed using flow cytometry (FCM). The purpose of the study is to observe the effects of (±)doxazosin and its enantiomers on the cell proliferation and apoptosis in cultured VSMCs of the rat aorta and to analyze the related mechanisms.
     Part 1 Effects of doxazosin and its enantiomers on cell proliferation in VSMCs of the rat aorta and a relationship of the effects withα1-adrenoceptor
     VSMCs of the rat aorta were cultured, and MTT assay was used to determine the cell proliferation. The effects of (-)doxazosin, (+)doxazosin and (±)doxazosin on the cell proliferation of VSMCs and a relationship of the effects induced by (-)doxazosin and (+)doxazosin withα1-adrenoceptor were investigated.
     1 Effects of (±)doxazosin and its enantiomers on cell proliferation in VSMCs of the rat aorta
     Treatment with (-)doxazosin and (±)doxazosin at 10~30μmol·L-1 for 48h or 72h significantly inhibited cell proliferation in VSMCs of the rat aorta, but (+)doxazosin had an inhibitory effect only at 30μmol·L-1. When the VSMCs were incubated with the three agents for 96h, (-)doxazosin, (+) doxazosin and (±)doxazosin at 3~30μmol·L-1 inhibited the cell proliferation significantly. Treatments with (-)doxazosin, (+)doxazosin and (±)doxazosin at used concentrations for 48h, 72h or 96h inhibited cell proliferation of the VSMCs in a concentration-dependent manner. Statistic results with two-way ANOVA showed that the inhibition rate of cell proliferation by (-)doxazosin at 10μmol·L-1 was significantly higher than that by (+)doxazosin in VSMCs exposed to the drugs for 48h or 72h (P <0.05 ), and the inhibition rate of cell proliferation by (-)doxazosin at 3~30μmol·L-1 was significantly higher than that by (+)doxazosin in VSMCs exposed to the drugs for 96h (P<0.01). when the VSMCs were treated with the three agents at 30μmol·L-1 for 48h, 72h and 96h, the inhibition rates of cell proliferation in VSMCs were 27.13%, 38.05% and 58.87% by (-)doxazosin, 24.39%, 33.43% and 46.10% by (+)doxazosin, and 24.29%, 36.74% and 52.35% by (±)doxazosin, respectively. The inhibition rates of cell proliferation in VSMCs incubated with the three agents for 96h were significantly higher than those for 48h (p<0.05 and 0.01) and 72h (p<0.05 and 0.01). When the VSMCs were exposed to (-)doxazosin, (+)doxazosin and (±)doxazosin at different concentrations for 96h, the concentrations required for 40-percent inhibition (IC40) of the cell proliferation were 10.2±1.3μmol·L-1, 20.9±2.2μmol·L-1 and 12.1±2.6μmol·L-1, respectively. The IC40 value of (+)doxazosin was significantly higher than that of (±)doxazosin or (-)doxazosin (P<0.01).
     2α1-Adrenoceptor-independent effects of (±)doxazosin and its enantiomers on cell proliferation in VSMCs of the rat aorta
     The value of cell proliferation in sub-control group (0.001% alcohol) of solventⅡgroup or in sub-control group (phenoxybenzamine) of phenoxybenzamine group was not significantly different from that in sub-control group (distilled water) of solventⅠgroup (P>0.05). In solventⅠgroup, the proliferation of VSMCs was significantly inhibited after 48h-incubation with (-)doxazosin, (+)doxazosin and (±)doxazosin at 30μmol·L-1 (P<0.01), and the inhibition rates were 33.00±2.79%, 26.19±5.74% and 31.76±4.29%, respectively. The inhibition rate of (+)doxazosin was significantly lower than that of (-)doxazosin (P<0.05), but was not significantly different from that of (±)doxazosin. In solventⅡgroup and phenoxybenzamine group, the proliferation of VSMCs was significantly inhibited after 48h-incubation with (-)doxazosin, (+)doxazosin and (±)doxazosin as well (P<0.01). Although the inhibition rate of VSMCs proliferation by (+)doxazosin was lower than that by (-)doxazosin or (±)doxazosin, there was no statistical differences among the three agents. In comparison with the sub-group [(-)doxazosin] of solventⅠgroup, the inhibition of VSMCs proliferation by (-)doxazosin in solventⅡgroup and in phenoxybenzamine group was not significantly different (P>0.05); and the same results were obtained in the experiments treated with (+)doxazosin and (±)doxazosin.
     3α1-Adrenoceptor-dependent effects of (±)doxazosin and its enantiomers on cell proliferation in VSMCs of the rat aorta
     Phenylephrine (10μmol·L-1) was able to stimulate VSMCs proliferation of the rat thoracic aorta, and the extent of cell proliferation promoted by phenylephrine was similar to that by 10% fetal bovine serum contained in DMEM. The VSMCs proliferation stimulated by phenylephrine was significantly inhibited after 48h-incubation with (-)doxazosin, (+)doxazosin and (±)doxazosin at 30μmol·L-1 (P<0.01). The inhibition rate of VSMCs proliferation by (+)doxazosin was significantly lower than that by (-)doxazosin (P<0.05), but was to the same extent as (±)doxazosin.
     Part 2 Effects of doxazosin and its enantiomers on cell cycle and apoptosis in VSMCs of the rat aorta
     Effects of doxazosin and its enantiomers on cell cycle and apoptosis in cultured VSMCs of the rat thoracic aorta were investigated. Morphological changes in VSMCs were analyzed using Giemsa staining method, and the cell cycle, cell apoptosis and apoptotic proteins (Bcl-2 and Bax) were detected by FCM in order to investigate mechanisms of antiproliferation and induction of apoptosis b (±)doxazosin and its enantiomers in VSMCs of the rat thoracic aorta.
     1 Morphological changes in VSMCs of the rat aorta induced by (±)doxazosin and its enantiomers
     Morphological changes in cultured VSMCs of the rat thoracic aorta incubated with (-)doxazosin, (+)doxazosin and (±)doxazosin at 30μmol.L-1 for 96h were seen under an ordinary optical microscope. The overall cell shrinkage, chromatin condensation, nuclear margination toward the nuclear membrane, nuclear shrinkage, and apoptotic bodies of various sizes in the cytoplasm were observed,and the nucleus of alive normal cells uniformly stained blue or violet-blue.
     2 Effects of (±)doxazosin and its enantiomers on cell cycle in VSMCs of the rat aorta
     Cell cycle distribution and proliferation index (PI) of the rat aortic VSMCs changed significantly after incubation with (-)doxazosin, (+)doxazosin and (±)doxazosin at 25μmol·L-1 for 72h. In the VSMCs treated with (±)doxazosin or (-)doxazosin, the proportion of cells in G0/G1-phase was significantly increased; and the proportions of cells in S-phase and G2/M-phase, and PI were significantly decreased (P<0.01). In the (+)doxazosin group, however, only the proportion of cells in S-phase was decreased significantly (P<0.01). The proportions of cells in G0/G1-phase, S-phase and G2/M-phase, and PI value in the VSMCs treated with (-)doxazosin were significantly different from that treated with (+)doxazosin (P<0.05 and 0.01).
     3 Effects of (±)doxazosin and its enantiomers on the cell apoptosis in VSMCs of the rat aorta
     In the VSMCs incubated with (-)doxazosin, (+)doxazosin and (±)doxazosin at 25μmol·L-1 for 72h, the cell apoptosis was induced by (-)doxazosin and (±)doxazosin (P<0.01), but not by (+)doxazosin (P>0.05). The apoptotic rates of the cultured VSMCs treated with (-)doxazosin and (±)doxazosin were 6.06±0.31% and 3.63±0.99%, respectively. The induction of VSMCs apoptosis induced by (-)doxazosin was significantly stronger than that by (±)doxazosin (P<0.01).
     4 Effects of (±)doxazosin and its enantiomers on the expression of apoptosis protein Bcl-2 and Bax in VSMCs of the rat aorta
     After incubation of VSMCs with (-)doxazosin, (+)doxazosin and (±)doxazosin at 25μmol·L-1 for 72h, the expression of antiapoptotic protein Bcl-2 and proapoptotic protein Bax did not change significantly in comparison with solvent-treated VSMCs (P>0.05). On the other hand, the ratios of Bcl-2 protein/Bax protein in the cultured VSMCs treated with (-)doxazosin, (+)doxazosin and (±)doxazosin were 0.68±0.01, 0.92±0.03 and 0.82±0.10, respectively. The ratios of Bcl-2 protein/Bax protein in the cultured VSMCs were significantly reduced by (-)doxazosin and (±)doxazosin in comparison with the VSMCs treated with solvent (P<0.05 and 0.01), but (+)doxazosin did not significantly affect the ratio of Bcl-2 protein/Bax protein (P>0.05). The ratio of Bcl-2 protein/Bax protein in VSMCs treated by (-)doxazosin was significantly lesser than that by (+)doxazosin (P<0.01).
     Part 3 Effects of doxazosin and its enantiomers on cell proliferation of the rat aortic VSMCs induced by different stimulators
     Effects of (±)doxazosin and its enantiomers on cell proliferation determined by MTT assay in the rat aortic VSMCs stimulated by platelet-derived growth factor-BB (PDGF-BB), angiotensin II, high concentration glucose and thrombin.
     1 Effects of (±)doxazosin and its enantiomers cell proliferation of the rat aortic VSMCs induced by PDGF-BB
     PDGF-BB (1nmol·L-1) induced cell proliferation of the rat aortic VSMCs, and the extent of cell proliferation promoted by PDGF-BB (1nmol·L-1) was significantly stronger than that by 10% fetal bovine serum contained in DMEM (P<0.01). Incubation of the rat aortic VSMCs with (-)doxazosin, (+)doxazosin and (±)doxazosin (3~30μmol·L-1) for 48h inhibited the cell proliferation stimulated by PDGF-BB significantly (P<0.01). In the culture medium of DMEM containing 10% fetal bovine serum, the maximal inhibition rates of VSMCs proliferation by 48h-incubation with (-)doxazosin, (+)doxazosin and (±)doxazosin were from 24.29±3.72% to 27.13±2.41%, in the culture medium of DMEM containing 0.4% fetal bovine serum and 1nmol·L-1PDGF-BB, however, the maximal inhibition rates of cell proliferation by 48h-incubation with (-)doxazosin, (+)doxazosin and (±)doxazosin were from 95.21±6.05% to 99.67±1.99%. Statistic results with two-way ANOVA showed that the inhibition rate of cell proliferation by (+)doxazosin at 3μmol·L-1 was significantly lower than that by (±)doxazosin at the same concentration (P<0.05). A concentration required for 50-percent inhibition (IC50) of the VSMCs proliferation by (-)doxazosin, (+)doxazosin or (±)doxazosin was 5.44±3.16, 7.50±3.40 or 4.98±4.52μmol·L-1.
     2 Effects of (±)doxazosin and its enantiomers cell proliferation of the rat aortic VSMCs induced by angiotensin II
     Angiotensin II (100 nmol·L-1) induced cell proliferation of the rat aortic VSMCs, and the extent of cell proliferation promoted by angiotensin II (100 nmol·L-1) was significantly stronger than that by 10% fetal bovine serum contained in DMEM (P<0.01). Incubation of the rat aortic VSMCs with (-)doxazosin, (+)doxazosin and (±)doxazosin (3~30μmol·L-1) for 48h inhibited the cell proliferation stimulated by angiotensin II significantly (P<0.01). The inhibition rates of the VSMCs proliferation by (-)doxazosin, (+)doxazosin and (±)doxazosin were increased with the increase in concentrations used (0.3~30μmol·L-1). Statistic results with two-way ANOVA showed that the inhibition rate of VSMCs proliferation by 48h-incubation with (-)doxazosin was not significantly different from that with (+)doxazosin or (±)doxazosin (P>0.05). In the culture medium of DMEM containing 0.4% fetal bovine serum and 100 nmol·L-1 angiotensin II, the maximal inhibition rates of cell proliferation by 48h-incubation with (-)doxazosin, (+)doxazosin and (±)doxazosin were from 93.01±3.23% to 94.61±3.11%. A concentration required for 50-percent inhibition (IC50) of the VSMCs proliferation by (-)doxazosin, (+)doxazosin or (±)doxazosin was 13.38±2.50, 14.24±2.47 or 13.71±2.89μmol·L-1.
     3 Effects of (±)doxazosin and its enantiomers cell proliferation of the rat aortic VSMCs induced by thrombin
     Thrombin (1μmol·L-1) induced cell proliferation of the rat aortic VSMCs, and the extent of cell proliferation promoted by thrombin (1μmol·L-1) was similar to that by 10% fetal bovine serum contained in DMEM. Incubation of the rat aortic VSMCs with (-)doxazosin, (+)doxazosin and (±)doxazosin (3~30μmol·L-1) for 48h inhibited the cell proliferation stimulated by angiotensin II significantly (P<0.01). The inhibition rates of the VSMCs proliferation by (-)doxazosin, (+)doxazosin and (±)doxazosin were increased with the increase in concentrations used (0.3~30μmol·L-1). Statistic results with two-way ANOVA showed that the inhibition rate of VSMCs proliferation by 48h-incubation with (-)doxazosin was not significantly different from that with (+)doxazosin or (±)doxazosin (P>0.05). In the culture medium of DMEM containing 0.4% fetal bovine serum and 1μmol·L-1 thrombin, the maximal inhibition rates of cell proliferation by 48h-incubation with (-)doxazosin, (+)doxazosin and (±)doxazosin were from from 91.87±5.13% to 94.63±3.33%. A concentration required for 50-percent inhibition (IC50) of the VSMCs proliferation by (-)doxazosin, (+)doxazosin or (±)doxazosin was 13.52±2.87, 14.60±2.95 or 14.32±2.75μmol·L-1.
     4 Effects of (±)doxazosin and its enantiomers cell proliferation of the rat aortic VSMCs induced by a high concentration of glucose
     A high concentration of glucose (25.6mmol·L-1) induced cell proliferation of the rat aortic VSMCs, and the extent of cell proliferation promoted by the high concentration of glucose (25.6mmol·L-1) was similar to that by 1μmol·L-1 thrombin contained in DMEM. Incubation of the rat aortic VSMCs with (-)doxazosin, (+)doxazosin and (±)doxazosin (3~30μmol·L-1) for 48h inhibited the cell proliferation stimulated by the high concentration of glucose significantly (P<0.01). Statistic results with two-way ANOVA showed that the inhibition rate of VSMCs proliferation by 48h-incubation with 3μmol·L-1 (-)doxazosin was significantly higher than that with (+)doxazosin at the same concentration (P<0.05). In the culture medium of DMEM containing 0.4% fetal bovine serum and 25.6mmol·L-1 glucose, the maximal inhibition rates of cell proliferation by 48h-incubation with (-)doxazosin, (+)doxazosin and (±)doxazosin were from 94.17±4.75% to 96.16±3.09%. A concentration required for 50-percent inhibition (IC50) of the VSMCs proliferation by (-)doxazosin, (+)doxazosin or (±)doxazosin was 14.20±6.34, 14.10±3.29 or 13.98±3.53μmol·L-1.
     Conclusion
     1 (-)Doxazosin, (+)doxazosin and (±)doxazosin inhibit the rat aortic VSMCs proliferation induced by 10% fetal bovine serum, and the extent of inhibition of cell proliferation by (-)doxazosin is stronger than that by (+)doxazosin, suggesting that (±)doxazosin and its enantiomers have chirally selective effect on cell proliferation in the used experimental condition.
     2Αnα1-adrenoceptor-dependent mechanism is involved in the anti-proliferation of the rat aortic VSMCs by (±)doxazosin and its enantiomers besides a knownα1-adrenoceptor-independent mechanism.
     3 (-)Doxazosin and (±)doxazosin are able to inhibit cell proliferation by a cell-cycle arrest in G0/G1 phase and a decrease in PI. The effect on cell cycle by (-)doxazosin is significantly stronger than that by of (+)doxazosin.
     4 (-)Doxazosin and (±)doxazosin are able to induce cell apoptosis in the rat aortic VSMCs, and the proapoptotic effects are partially related to a reduced ratio of Bcl-2 protein/Bax protein, indicating that (-)doxazosin might be the main component of (±)doxazosin to induce cell apoptosis in the rat aortic VSMCs.
     5 (±)Doxazosin and its enantiomers significantly inhibit cell proliferation in the rat aortic VSMCs stimulated by PDGF-BB, angiotensin II, thrombin and high concentration of glucose without chirally selective effects. The inhibition extent of cell proliferation by (-)doxazosin is much stronger in the VSMCs stimulated with PDGF-BB, angiotensin II, thrombin or high concentration of glucose than that in the VSMCs stimulated with fetal bovine serum or phenylephrine.
引文
1 Ross R. The pathogenesis of atherosclerosis—an update. N Engl J Med, 1986, 314(8): 488~500
    2 Ross R. The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature, 1993, 362(6423): 801~809
    3 Gibbons GH, Dzau VJ. The emerging concept of vascular remodeling. N Engl J Med, 1994, 330(20): 1431~1438
    4 Rose R. Atherosclereosis-an inflammatory disease. N Eng J Med, 1999,340(2): 115~126
    5 Baun-dullaeus R C, Mannmj, dzau V J. Cellcycle progression: new therapeutic target for vascular proliferative disease. Circulation, 1998, 98 (1): 82~89
    6 Liuzzo G. Atherosclerosis: an inflammatory disease. Rays, 2001,26 (4):221~230
    7 Willis AI, Pierre-Paul D, Sumpio BE, et al. Vascular smooth muscle cell migration: current research and clinical implications. Vasc Endovascular Surg, 2004,38 (1): 11~23
    8 Chen J, Han Y, Lin C, et al. PDGF-D contributes to neointimal hyperplasia in rat model of vessel injury. BiochemBiophys Res Commun, 2005,329(3): 976~983
    9 Bauters C, Meurice T, Hamon M, et al. Mechanisms and prevention of restenosis: from experimental models to clinical practice. Cardiovasc Res 1996;31(6): 835~846
    10 Fawzy A, Hendry A, Cook E, et al. Long-term (4 year) efficacy and tolerability of doxazosin for the treatment of concurrent benign prostatic hyperplasia and hypertension. Int J Urol, 1999, 6(7): 346~354
    11 Chung BH, Hong SJ. Long-term follow-up study to evaluate the efficacy and safety of the doxazosin gastrointestinal therapeutic system in patients with benign prostatic hyperplasia with or without concomitant hypertension. BJU Int, 2006, 97(1): 90~95
    12 Hu ZW, Shi XY, Hoffman BB. Doxazosin inhibits proliferation and migration of human vascular smooth-muscle cells independent ofα1-adrenergic receptor antagonism. J Cardiovasc Pharmacol, 1998, 31(6): 833~839
    13杨君,赵仙先,秦永文,等.多沙唑嗪抑制大鼠血管平滑肌细胞增殖的实验研究.中国动脉硬化杂志, 2002, 10(3): 234~235
    14 Owens PK, Fell AF, Coleman MW, et al. Chiral recognition in liquid chromatography utilizing chargeable cyclodextrins for resolution of doxazosin enantiomers. Chirality, 1997, 9(2): 184~190
    15牛长群,任雷鸣. 3种新型α1-受体阻断剂的手性流动相HPLC分离与制备.药学学报, 2002, 37(6): 450~453
    16 Niu CQ, Zhao D, Jia XM, et al.α1-Adrenoceptor antagonist profile of doxazosin and its enantiomers in isolated rabbit blood vessels. ChinJ Pharmacol Toxical, 2003, 17(5): 354~359
    17卢海刚,刘丽芳,任雷鸣,等.多沙唑嗪对映体对兔四种血管α受体的作用.药学学报, 2007, 42(2): 145~151
    18 Ma SP, Ren LM, Zhao D, et al. Chiral selective effects of doxazosin enantiomers on blood pressure and urinary bladder pressure in anesthetized rats. Acta Pharmac Sin, 2006, 27(11): 1423~1430
    19田和林,任雷鸣,何东伟,等.多沙唑嗪对映体对大鼠血压和排尿功能的影响.中国药理学通报, 2007, 23(2): 240~246
    20杨君,秦永文,赵霞,等.多沙唑嗪抑制人血管平滑肌细胞增殖的实验研究.实用医学杂志, 2002, 19(6): 452~454
    21 Nishio E, Watanabe Y. The involvement of reactive oxygen species and arachidonic acid inα1-adrenoceptor-induced smooth muscle cell proliferation and migration. Br J Pharmacol, 1997, 121(4): 665~670
    22马晶,孙中翠,郑铭,等.β2-肾上腺素受体亚型激动对于血管平滑肌细胞增殖的影响.中华老年心血管病杂志, 2006, 8(4): 257~260
    23 Nishio E, Watanabe Y. Troglitazone inhibitsα1 -adrenoceptor -induced DNA synthesis in vascular smooth muscle cells. Eur J Pharmacol,1999 , 374(4): 127~135
    1 Thompson CB. Apoptosis in the pathogenesis and treatment of disease. Science, 1995, 267(5203): 1456~1462
    2 Han DK, Haudenschildcc, Hong, et al. Evidence for apoptosis in human atherogenesis and in a rat vascular injury model. Am J Pathol,1995, 147(2): 267~277
    3 Bennett MR, Evan GI, Schwatz SM. Apoptosis of rat vascular smooth muscle cells is regulated by P53-dependent and independented pathways. Circ Res, 1995, 77(2): 266~273
    4 Bennett MR, Evan GI, Schwatz SM. Apoptosis of human vascular smooth muscle cells derived from normal vessels and coronary atherosclerotic plaque. J Clin Invest, 1995, 95(9): 2266~2274
    5 Bauriedel G, Huntter R, Welsch U, et al. Role of smmoth muscle cell death in advanced coronary primary lesions: implications for plaque instability. Cardiovasc Res, 1999, 41(2): 480~488
    6 Stoneman VE, Bennett MR. Role of apoptosis in atherosclerosis and its therapeutic implications. Clin Sci (Lond), 2004, 107(4): 343~354
    7 Boyle JJ, Bowyer DE, Weissberg PL, et al. Human blood-derived macrophages induce apoptosis in human plaque-derived vascular smooth muscle cells by Fas-ligand/Fas interactions. Arterioscler Thromb Vasc Biol, 2001, 21(9): 1402~1407
    8 Mayr M, Xu Q. Smooth muscle cell apoptosis in arteriosclerosis. Exp Gerontol , 2001, 36(7): 969~987
    9 Ulrich K, Shu W, Sarah K, et al. Doxazosin inhibits retinoblastoma protein phosphorylation and G1→S transition in human coronary smooth muscle cells. Arterioscler Thromb Vasc Biol. 2000, 20(5): 1216~1224
    10温进坤,韩梅.血管平滑肌细胞.北京:科学出版社, 2005
    11秦葵,朱忠宁,任雷鸣,等.外源性三磷酸腺苷对人食管癌Eca-109和肝癌SMMC-7721细胞增殖和周期的影响.基础医学与临床, 2007, 27(9): 975~980
    12 Kowala MC, Nunnari JJ, Durham SK, et al. Doxazosin and cholestyramine similarly decrease fatty streak formation in the aortic arch of hyperlipidemic hamsters. Atherosclerosis, 1991, 91(1-2): 35~49
    13 Wilson TA, Foxall TL, Nicolosi RJ. Doxazosin, anα-1 antagonist, prevents further progression of the advanced atherosclerotic lesion inhypercholesterolemic hamsters. Metabolism, 2003, 52(10): 1240~1245
    14 Swindell AC, Krupp MN, Twomey TM, et al. Effects of doxazosin on atherosclerosis in cholesterol-fed rabbits. Atherosclerosis, 1993, 99(2): 195~206
    15 Vashisht R, Sian M, Franks PJ, et al. Long-term reduction of intimal hyperplasia by the selective alpha-1 adrenergic antagonist doxazosin. Br J Surg, 1992, 79(12): 1285~1288
    16卢竞前,曹晶茗,符明龙,等.多沙唑嗪控释片对高血脂兔腹主动脉球囊损伤后血管狭窄的影响.中华实用医药杂志, 2005, 5(8): 45~47
    17 Gonzalez-Juanatey JR, Iglesias MJ, Alcaide C, et al. Doxazosin induces apoptosis in cardiomyocytes cultured in vitro by amechanism that is independent ofα1-adrenergic blockade. Circulation, 2003,107(1): 127 ~131
    18 Roesch ST, Dooler G, Ramoner R, et al. Effects ofα1-Adrenoceptor antagonists on cultured prostatic smooth muscle cells. Prostate, 2000, 9 (Sup): 34~41
    19 Kyprianou N, Litvak JP, Borkowski A, et al. Induction of prostate apoptosis by doxazosin in benign prostatic hyperplasia. J Urol, 1998, 159(6): 1810~1815
    20郭峰,严奉祥.血管平滑肌细胞凋亡机制的研究进展.心血管病学进展, 2006, 27(2): 218~220
    21宝福凯.Bcl-2基因家族对细胞凋亡的调节.生理科学进展, 1996, 27(1): 67~69
    22李奎,刘英,康相涛.主要凋亡基因对细胞凋亡的调控.解剖科学进展, 2007, 13(1): 62~65
    23 Kyprianou N, Litvak JP, Borkowski A, et al. Induction of prostate apoptosis by doxazosin in benign prostatic hyperplasia. J Urol, 1998, 159(6): 1810~1815
    24 Chon JK, Borkowski A, Partin AW, et al.α1-Adrenoceptor antagonists terazosin and doxazosin induce prostate apoptosis without affectingcell proliferation in patients with benign prostatic hyperplasia. J Urol, 1999, 161(6): 2002~2008
    25 Kyprianou N, Benning CM. Suppression of human prostate cancer cell growth byα1-adrenoceptor antagonists doxazosin and terazosin via induction of apoptosis. Cancer Res, 2000, 60(16): 4550~4555
    26 Benning CM, Kyprianou N. Quinazoline-derivedα1-adrenoceptor antagonists induce prostate cancer cell apoptosis via anα1-adrenoceptor-independent action. Cancer Res, 2002, 62(2): 597~602
    27 Ilio KY, Park II, Pins MR, et al. Apoptotic activity of doxazosin on prostate stroma in vitro is mediated through an autocrine expression of TGF-β1. Prostate, 2001, 48(3): 131~135
    28 Zhao HJ, Lai F, Nonn L, et al. Molecular targets of doxazosin in human prostatic stromal cells. Prostate, 2005, 62(4): 400~410
    29 Garrison JB, Kyprianou N. Doxazosin induces apoptosis of benign and malignant prostate cells via a death receptor-mediated pathway. Cancer Res, 2006, 66(1): 464~472
    1 Libby P, Ridker PM, Maseri A. Inflammation in atherosclerosis. Circulation, 2002, 105(9): 1135~1143
    2 Jia G, Cheng G, Agrawal DK. Differential effects of insulin-like growth factor-1 and atheroma-associated cytokines on cell proliferation and apoptosis in plaque smooth muscle cells of symptomatic and asymptomatic patients with carotid stenosis. Immunol Cell Biol, 2006, 84(5): 422~429
    3 Jia G, Cheng G, Agrawal DK. Autophagy of vascular smooth muscle cells in atherosclerotic lesions. Autophagy, 2007, 3(1): 63~64
    4 Wang C, Wu LL, Liu J, et al. Crosstalk between angiotensinⅡand platelet derived growth factor-BB mediated signal pathways in cardiomyocytes. Chin Med J, 2008, 121(3): 236~240
    5王云雅,汪静,邓敬兰,等.放射性PDGF-R反义寡核苷酸对血管平滑肌细胞增殖和凋亡的影响.心脏杂志, 2006, 18(4): 388~390
    6 Raines EW. PDGF and cardiovascular disease. Cytokine Growth Factor Rev, 2004, 15(4): 237~254
    7 Xing DQ, Bai H, Sun YP, et al. Role of angiotensin II in the regulation of platelet-derived growth factor receptor-βsubunit of vascular smooth muscle. Chin J Pathophysiol, 2001, 17(5): 485~488
    8 Heeneman S, Haendeler J, Saito Y, et al. Angiotensin II induces transactivation of two different populations of the platelet-derived growth factorβreceptor: Key role for the p66 adaptor protein Shc. J Biol Chem, 2000, 275(21): 15926~15932
    9 Bydlowski SP, Pares MM, Soares RP, et al. Stimulation of human smooth muscle cell proliferation by thrombin involves increased synthesis of platelet-derived growth factor. Chest, 1998, 114(1): 236~240
    10 Hu ZW, Shi XY, Hoffman BB. Doxazosin inhibits proliferation and migration of human vascular smooth-muscle cells independent ofα1-adrenergic receptor antagonism. J Cardiovasc Pharmacol, 1998, 31(6): 833~839
    11 Swindell AC, Krupp MN, Twomey TM, et al, Chichester CO. Effects of doxazosin on atherosclerosis in cholesterol-fed rabbits. Atherosclerosis, 1993, 99(2): 195~206
    12卢竞前,曹晶茗,符明龙,等.多沙唑嗪控释片对高血脂兔腹主动脉球囊损伤后血管狭窄的影响.中华实用医药杂志, 2005, 5(8): 45~47
    13 Labios M, Martinez M, Gabriel F, et al. Flow cytometric analysis of platelet activation in hypertensive patients. Effect of doxazosin. Thromb Res, 2003, 110(4): 203~208
    14 Courtney CH, McCance DR, Atkinson AB, et al. Effect of the alpha-adrenergic blocker, doxazosin, on endothelial function and insulin action. Metabolism, 2003, 52(9): 1147~1152
    15张健,蔡生业,姚成芳.花刺参粘多糖对血小板源生长因子BB诱导的大鼠血管平滑肌细胞增殖和凋亡的影响.中国动脉硬化杂志, 2007, 15(1): 1~5
    16 McNamara CA, Sarembock IJ, Gimple LW, et al. Thrombin stimulates proliferation of cultured rat aortic smooth muscle cells by a proteolytically activated receptor. J Clin Invest, 1993, 91(1): 94~98
    17 Patterson C, Stouffer GA, Madamanchi N, et al. New tricks for olddogs: nonthrombotic effects of thrombin in vessel wall biology. Circ Res, 2001, 88(10): 987~997
    18 Hatton MW, RossB, Southward SM, et al. Platelet and fibrinogen turnover at the exposed subendothelium measured over 1 year after a balloon catheter de-endothelializing injury to the rabbit aorta: thrombotic eruption at the late re-endothelialization stage. Atherosclerosis, 2002, 165(1): 57~67
    19 Wilcox JN, Rodriguez J, Subramanian R, et al. Characterization of thrombin receptor expression during vascular lesion formation. Circ Res, 1994, 75(6): 1029~1038
    20 Nelken NA, Soifer SJ, OKeefe J, et al. Thrombin receptor expression in normal and atherosclerotic human arteries. J Clin Invest, 1992, 90(4): 1614~1621
    21 Bassus S, Herkert O, Kronemann N, et al. Thrombin causes vascular endothelial growth factor expression in vascular smooth muscle cells: role of reactive oxygen species. Arterioscler Thromb Vasc Biol, 2001, 21(9): 1550~1555
    22王启贤,吕俊升.凝血酶对大鼠血管平滑肌细胞血小板源性生长因子基因表达的影响.中国动脉硬化杂志, 2000, 8(1): 26~31
    23李国凡,张延斌,陈清枝.川芎嗪对凝血酶诱导的血管平滑肌细胞增殖的影响.心脏杂志, 2007, 19(6): 646~648
    24 Temelkova-kurktschiev TS, Koehler C, Leonhardt W, et al. Increased intimal-medial thickness in newly detected type 2 diabetes: risk factors. Diabetes Care, 1999, 22(2): 333~381
    25郭立新,王晓霞,李慧.新诊断2型糖尿病亚临床动脉粥样硬化发生率及相关危险因素的分析.中国实用内科杂志, 2008, 28(3): 208~210
    26 Lavrentyev EN, Estes AM, Malik KU. Mechanism of high glucose–induced angiotensin II production in rat vascular smooth muscle cells. Circ Res, 2007, 101(5): 455~464
    27 Ling S, Little PJ, Williams MRI, et al. High glucose abolishes theantiproliferative effect of 17β-estradiol in human vascular smooth muscle cells. Am J Physiol Endocrinol Metab, 2002, 282(4): 746~751
    28张学亮,舒昌达,何军.高糖加高胰岛素对人血管平滑肌细胞增殖及细胞内游离钙水平的影响.中国病理生理杂志, 1999, 15(3): 237~239
    29 Shehla H, Li Y, Nagakura A, et al. Modulation of G-protein expression and adenylyl cyclase signaling by high glucose in vascular smooth muscle. Cardiovasc Res, 2004, 63(4): 709~718
    1 Ross R. The pathogenesis of atherosclerosis—an update. N Engl J Med, 1986, 314(8): 488~500
    2 Ross R. The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature, 1993, 362(6423): 801~809
    3 Rose R. Atherosclereosis-an inflammatory disease. N Eng J Med, 1999, 340(2): 115~126
    4 Gibbons GH, Dzau VJ. The emerging concept of vascular remodeling. N Engl J Med, 1994, 330(20): 1431~1438
    5 Willis AI, Pierre-Paul D, Sumpio BE, et al . Vascular smooth muscle cell migration: current research and clinical implications. Vasc Endovascular Surg, 2004, 38(1): 11~23
    6 Chen J, Han, Lin C, et al. PDGF-D contributes to neointimal hyperplasia in rat model of vessel injury. BiochemBiophys Res Commun, 2005, 329(3): 976~983
    7 Baun-dullaeus RC, Mann MJ, Dzau VJ. Cellcycle progression: new therapeutic target for vascular proliferative disease. Circulation, 1998,98(1): 82~89
    8 Papapetropoulos A, Rudic RD, Scssa WC. Molecular control of nitric oxide syntheses in the cardiovascular system. Cardiovas Res, 1999, 43(3): 509~520
    9 Dashwood MR, Tsui JS. Endothelin-1 and atherosclerosis: potential complications associated with endothelin-receptor blockade. Atherosclerosis, 2002, 160(2): 297~304
    10 ReidyMA, Irvin C, Lindner V. Migration of arterial wall cells: expression of plasminogen activators and inhibitors in injured rat arteries. Circ Res, 1996, 78(3): 405~414
    11 Jacoby DS, Rader DJ. Renin-angiotensin systems and atherthrombotic disease: from genes to treatment. Arch Intern Med, 2003, 163(10): 1155~1164
    12 HanadaM, Saito E, Kambe T, et al. Evidence for the involvement of platelet-derived growth factor in the angiotensinⅡinduced growth of rat vascular smooth muscle cells. Biol Pharm Bull, 1999, 22(2): 137~141
    13 Mondrof UF, Geiger H, Herrero M, et al. Involvernent of the platelet-derived growth factor receptor in angiotensinⅡ-induced adtivation of extracellular regulated dinases 1 and 2 in human mesangial cells. FEBS Lett, 2000, 472(1): 129~132
    14 Greene EL,Velarde V, Jaffa AA. Role of reactive oxygen species in bradykinin-induced mitogen-activated protein kinase and c-fos induction in vascular cells. Hypertension, 2000, 35(4): 942~947
    15 Yang CM, Chien CS, Wang CC, et al. Interleukin-1 beta enhances bradykinin–induced phosphoinositide hydrolysis and Ca2+ mobilization in canine tracheal smooth–muscle cells; involvement of the Ras/Raf/mitogen–activated protein kinase(MAPK) kinase (MEK)/MAPK pathway. Biochem J 2001, 354(Pt2): 439~446
    16 Christopher J, Velarde V, Jaffa AA. Induction of B(1)-kinin receptors in vascular smooth muscle cells:celluar mechanisms of map kinase activation. Hypertension, 2001, 38(3Pt2): 602~605
    17 Yan L, Wilson DP, Warner JP, et al. Bradykinin receptor antagonists attenuate neointimal proliferation postangioplasty. Am J Physiol Heart Cire Physiol, 2001, 281(4): H1648~1656
    18晋军.血小板源生长因子在血管平滑肌细胞异常增殖中的作用.国外医学生理、病理科学分册, 2001, 21(4): 286~288
    19 Li J, Huang SL, Guo ZG. Platelet derived growth factor stimulated vascular smoothmuscle cell proliferation and itsmolecularmechanism. Scta Phamacol Sin, 2000,21(37): 340~344
    20 Boucher P, Gotthardt M, Li WP, et al. LRP: role invascular wall integrity and protection from atherosclerosis. Science, 2003, 300(5617): 329~332
    21 Dandre F, Owens GK. Platelet-derived growth factor-BB and Ets-1 transcription factor negatively regulate transcription of multiple smooth muscle cell differentiation marker genes. Am J Physiol Heart Circ Physiol, 2004, 286(6): H2042~H2051
    22 Li J, Zhu X, Chen M, et al. Myocardin-related transcription factor B is required incardiac neural crest for smooth muscle differentiation and cardiovascular development. Proc Natl Acad Sci USA, 2005, 102(25): 8916~8921
    23 McKinnon RD,Waldron S, Kiel ME. PDGF alpha-receptor signal strength controls an RTK rheostat that integrates phosphoinositol 3-kinase and paospholipase C gamma pathways during oligodendrocyte maturation. J Neurosci, 2005, 25(14): 3499~3508
    24 Werth C, Stuhlmann D, Cat B, et al.Stromal resistance of fibroblasts against oxidative damage: involvement of tumor cell-secreted platelet derived growth factor (PDGF) and phosphoinositide 3-kinase (PI3K) activation. Carcinogenesis, 2008, 3 [Epub ahead of print].
    25 Francy J M, Nag A, Concroy E J, et al. Sphingosine kinase 1 expression is regulated by signaling through PI3K, AKT2, and mTOR in human coronary artery smooth muscle cells. Biochim Biophys Acta, 2007, 1769(4): 253-265
    26李英,段惠军. Raf/MEK/ERK信号转导通路在糖尿病肾病发生发展中的作用.国际内分泌代谢杂志, 2007, 27(7): 269~271
    27 Nakata S, Fujita N, Kitagawa Y, et al. Regulation of platelet derived growth factor receptor activation by afadin through SHP-2: implications for cellular morphology. J Biol Chem, 2007, 282 (52): 37815~37825
    28 Sandilands E, Cans C, Fincham V J, et a1. RhoB and actin polymerization coordinate Src activation with endosome-mediated delivery to the membrane. Dev Cell, 2004, 7(6): 855~869
    29 Kojima N, Hori M, Murata T, et a1. Different profiles of Ca2+ responses to endothelin-1 and PDGF in liver myofibroblasts during the process of cell differentiation. Br J Pharmacol, 2007, 151(6): 816~827
    30 Egan GG, Wainwright CL, Wadsworth RW, et a1. PDGF induced signaling in proliferating and differentiated vascular smooth muscle: effects of altered intracellular Ca(2+) regulation. Cardiovasc Res, 2005, 67(2): 308~316
    31周玉杰,汪丽蕙,柯元南,等.Ⅰ及Ⅱ型胶原mRNA表达的影响.中华心血管病杂志,1998, 26(1): 59~61
    32 Skaletz-Rovowski A,Waltenberger J. Protein kinase C mediates basic fibroblast growth factor-induced proliferation through mitogen activated protein kinase in coronary smooth muscle cells. ArteriosclerThromb Vasc Biol, 1999, 19(7): 1608~1614
    33 Pasche B. Role ofTGF-beta in cancer. Journal of Cellular Physiology, 2001, 186(3): 153~168
    34杜静.转化生长因子β的结构、受体及作用方式.国外医学免疫学分册, 1996, 19(6): 22~25
    35 Stanislaw JW, Minghao Z, Ying F, et al. Express of TGF-β1and urokinase type plasminogen activator genes during arterial repair in the pig. Cardiovascular Res, 1996, 31(1): 28~33
    36 Agrotis J, Saltis A, Bobik A, et al. Transforming growth factor-beta1 gene activation and growth of smooth muscle from hypertensive rats. Hypertension, 1994, 23(5): 593~599
    37 Smith JD, BryantSR, CouperL, et al. Solube transforminggrowth factor-βtypeⅡreceptor inhibits negative remodeling, fibroblast transdifferentation and intimal lesion formation but not endothelin growth. Circ Res, 1999, 84(10): 1212~1222
    38 Shi YO, Brien JE JR, Fard A, et al. Transforming growth factor-β
    1expression and myofibroblast formation during arterial repair. Arterioscler Thromb Vasc Biol, 1996, 16(10): 1298~1305
    39 Gibbons CH, Dzau VJ. Molecular Therapies for Vascular Disease. Science, 1996, 272(5262): 689
    40 Imai Y, Clemmons DR. Roles of phosphatidylinositol 3-kinase and mitogen-activated protein kinase pathways in stimulation of vascular smooth muscle cell migration and deoxyriboncleic acid synthesis by insulin-like growth factor-I. Endocrinology, 1999, 140(9): 4228~4235
    41 Koyama H, Nishizawa Y, Hosoi M, et al. The fumagillin analogue TNP-470 inhibits DNA synthesis of vascular smooth muscle cells stimulated by platelet-derived growth factor and insulin-1ike growth factor-l, possible invo1vement of cyclindependent kinase 2. Cir Res, 1996,79(4): 757~764
    42 Thommoles KB, Hoppe J, Vetter H, et al. The synergistic effectof PDGF-AA and IGF-l on SMC pro1iferation might be explained by the differential activation of their intracellular signaling pathways. Exp Cell Res, 1996, 26(1): 59~66
    43吴兴利,王士霞,杨中苏,等.胰岛素样生长因子-1促血管平滑肌细胞增殖的信号转导机制.中华老年医学杂志, 2003, 22(4): 233~236
    44 Bai HZ, Pollman MJ, Inish Y, et al. Regulation of vascular smooth muscle cell apotosis: modulation of BAD by a phosphatidylinositol 3-kinase-dependent pathway. Circ Res, 1999, 85(3): 229~237
    45 Okura Y, Itabe H, Ono K, et al. Expression of insulin-like growth factor-1 in vascular smooth muscle cells is associated with oxidized LDL in human atherosclerotic plaque. Atherosclerosis Supplements, 2003, 4(2): 63
    46 Okura Y, Brink M, Zahid AA, et al. Decreased Expression of Insulin-like Growth Factor-1 and Apoptosis of Vascular Smooth Muscle Cells inHuman Atherosclerotic Plaque. J Mol Cekk Cardiol, 2001, 33(10): 1777~1789
    47 Grewe P , Deneke T, Machraoui A. Acute and chronic tissue response to coronary stent implantation. Pathologic findings in human specimen. J Am Coll Cardiol, 2000, 35(1): 157~163
    48 Farb A, Sangiorgig, Carter A J, et al. Pathology of acute and chronic coronary stenting in humans. Circulation, 1999, 99(1): 44~52
    49 Jacob T, Ascher E, Alapat D, et al . Activation of p38 MAPK signaling cascade in a VSMC injury model: role of p38 MAPK inhibitors in limiting VSMC proliferation. Eur J Vasc Endovasc Surg, 2005, 29(5): 470~478
    50 Kim S, Iwao H. Stress and vascular responses: mitogen activated protein kinases and activator protein-1 as promising therapeutic targets of vascular remodeling. J Pharmacol Sci, 2003, 91(3): 177~181
    51 Susan M, Keenan A, Clifford B, et al. Cyclin dependent kinase 2 nucleocytoplasmic translocation is regulated by extracellular regulated kinase. J Biol Chem, 2001, 276(25): 22404~22409
    52 Martelli A M, Tabellini G, Borgatti P, et al. Nuclear lipids: new functions for old molecules? J CellBiochem, 2003, 88(3): 455~461
    53 Hanada M, Feng J, Hemmings B A. Structure, regulation and function of PKB/ AKT-a major therapeutic target. Biochim Biophys Acta, 2004, 1697(1-2): 3~16
    54 Duan C, Bauchat JR, Hsieh T. Phosphatidylinositol 3-kinase is required for insulin-like growth factor I-induced vascular smoothmuscle cellproliferation andmigration. Circ Res, 2000, 86(1): 15~23
    55 Dull JL, Berk BC. AngiotensinⅡ-mediated signal transduction events in vascular smooth muscle cells:kinases and phosphatases. Blood Press, 1995, (2): 55~60
    56 Marrero MB. Direct stimulation of jak/STAT pathway by the angiotensinⅡAT1receptor. Nature, 1995, 375(6528): 247~250
    57 Schmitt JF, KeoghMC, NDennehyU, et al.Tissue-selective expression of dominant-negative proteins for the regulation of vascular smooth musclecell proliferation. Gene Ther, 1999, 6(6): 1184~1191
    58 Wang X, Wang W, Li Y, et al. Mechanism of SNAP potentiating antiproliferative effect of calcitonin gene-related peptide in cultured vascular smooth muscle cells. J Mol Cell Cardiol, 1999, 31(9): 1599~1606
    59 LePage DF, Altomare DA, Testa JR, et al. Molecular cloning and localization of the human GAX gene to 7p21. Genomics, 1994, 24(3): 535~540
    60 Maillard L, Van-Belle E, Tio FO, et al. Effect of percutaneous adenovirus-mediated Gax gene delivery to the arterial wall in double-injured atheromatous stented rabbit iliac arteries. Gene Ther, 2000, 7(16): 1353~1361
    61 Smith RC, Branellec D, Gorski DH, et al. p21 CIP1-mediated inhibition of cell proliferation by overexpression of the gax homeodomain gene. Genes Dev, 1997, 11(13): 1674~1689
    62 Alain Tedgui. Apoptosis as a determinant of atherothrombosis. Thromb Haemost , 2001, 86(1): 420~426
    63 Han DK, Haudenschild CC, Hong MK. Evidence for apoptosis in human atherogenesis and in a rat vascular injury model. Am J Pathol, 1995, 147(2): 267~277
    64 Bennett MR, Evan GI, Schwatz SM. Apoptosis of human vascular smooth muscle cells derived from normal vessels and coronary atherosclerotic plaque. J Clin Invest, 1995, 95(5): 2266~2274
    65 Heggi L, Skepper JN, Cary NR. Foam cell apoptosis and the development of the lipid core of human atherosclerosis. Am J Pathol, 1996, 18 (4): 423~429
    66 Diane Proudfoot, Jeremy N. Apoptosis regulates human vascular calcification in vitro. Circ Res, 2000, 87(11): 1055~1062
    67 Lee TS, Lee YC. Fas /Fas ligand-mediate death pathway is involved in Ox-LDL-induced apoptosis in vascular smooth muscle cells. Am J Physiol, 2001, 208(4): 709~718
    68 Hsieh CC, Yen MH, Yen CH, et a1. Oxidized low density lipoproteininduces apoptosis via generation of reactive oxygen species in vascular smooth muscle cells. Cardiovasc Res, 2001, 49(1): 135~145
    69彭刚艺,凌文华.氧化低密度脂蛋白诱导大鼠血管平滑肌细胞凋亡的细胞周期分析.第一军医大学分校学报, 2000, 23(1): 12~14
    70 Jing Q, Xin SM, Cheng ZJ, et al. Activation of p38 mitogen-activated protein kinase by oxidized LDL in vascular smoothrnusclecells:mediation via perlussis toxinsensitive G proteins and association with oxidized LDLinduced cyotoxicity. Circ Res, 1999, 84(7): 831~839
    71 Ziad M, Alain T. NF-kB activation in atherosclerosis: a friend or a foe? Blood, 2004, 13(3): 754~755
    72 Li PF, Massch C, Haller H, et al. Requirement for protein kinase C in reactive oxygen species-induced apoptosis of vascular smooth muscle cells. Circulation, 1999, 100(9): 967~973
    73 Sandberg EM, Sayeski PP. Jak-2 tyrosine mediates oxidative stress-induces apoptosis in vascular smooth muscle cells. J Biol Chem, 2004, 279(33): 34547~34552
    74 Boyle JJ, Weissberg PL, Bennett MR. Human macrophage-induced vascular smooth muscle cell apoptosis requires NO enhancement of Fas /Fas-L interactions. Arterioscler Thromb Vasc Biol, 2002, 22(10): 1624~1630
    75 Shaw A, Xu Q. Biomechanical stress-induced signaling in smooth muscle cell: an update. Curr Vasc Pharmacol, 2003, 1(1): 41~58
    76 Mayk M, Li C, Zou Y, et al. Biomechanical stressinduced apoptosis in vein grafts involves p38 mitogenactivated protein kinases. FASEB J, 2000, 14(2): 261~270
    77 Wernig F, Mayr M, Xu Q. Mechanical stretch-induced apoptosis in smooth muscle cells is mediated byβ1-integrin signaling pathways. Hyptertension, 2003, 41(40): 903~911
    78 Degterev A, Lugovskoy A, Cardone M, et al. Identification of small-molecule inhibitors of internation between the BH3 domain and Bcl-xL. Nat Cell Biol, 2001, 3(2): 173~182
    79 Chiou FL, Chia LC, Chang WT, et al. Bcl-2 rescues ceramide and etoposide-induced mitochondrial apoptosis is through blockage of caspase-2 activation. J Biol Chem, 2005, 280(25): 23758~23765
    80 Okura T, Nakamura M, Takata Y, et al. Troglitazone induces apoptosis via the p53 and Gadd45 pathway in vascular smooth muscle cells. Eur J Pharmacol, 2000, 407(3): 227~235
    81 Forte A, Galderisi U, Feo MD, et al. c-Myc antisense oligonucleotides preserve smooth muscle differentiation and reduce negative remodelling following rat carotid arteriotomy. J Vasc Res, 2005, 42(3): 214~225
    82 Jiang C,Yang YF,Cheng SH. Fas ligand gene therapy for vascular intimal hyperplasia. Curr Gene Ther, 2004, 4(1): 33~39

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700