用户名: 密码: 验证码:
改良钛支架人工角膜的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     研究与评估改良钛支架人工角膜的生物相容性和角膜生物愈合的过程;探讨制作这种新型人工角膜的方法。体内实验观察改良后其生物相容性是否增加,观察临床表现和并发症,并取材检测MMP-2、TIMP-2在兔角膜组织的表达,探讨角膜溶解并发症的机理,为临床治疗提供依据。
     方法:
     1.设计及制备改良钛支架人工角膜;采用喷砂(SB)工艺预处理人工角膜钛支架,使其表面变粗糙,然后用酸碱两步法在人工角膜钛支架表面快速沉积羟基磷灰石(HA)涂层,改良的人工角膜钛支架(HA/SB-Ti)外型由二襻改为三襻。采用美国Lambda Research Corporation开发的光学设计软件OSLO,按照几何光学原理设计人工角膜的镜柱,用聚甲基丙烯酸甲酯(polymethyl methacrylate PMMA)为原料按设计好的图纸手工磨制。XRD和SEM分析涂层成分、表面形貌。
     2.将18只正常新西兰白兔及18只新西兰白兔角膜碱烧伤模型随机分为3组,其中1组、2组右眼角膜基质层内分别植入人工角膜支架HA/SB-Ti、SB-Ti,第3组仅做角膜板层切口而不植入支架为手术对照组,另取两只正常白兔作空白对照。术后裂隙灯观察角膜水肿及新生血管产生情况,同时观察支架的存留时间和并发症。术后1个月、3个月取材,石蜡包埋后,行HE染色光镜下观察支架与组织界面愈合情况;2.5%戊二醛内固定后,透射电镜观察支架植入后对角膜组织的影响;支架取出后,SEM观察材料表面组织贴附情况及HA涂层存留情况。
     3.二期植入改良钛支架人工角膜镜柱,观察人工角膜植入后临床反应及并发症,于1个月、3个月取材,石蜡包埋后,行免疫组织化学检测MMP-2、TIMP-2在不同组别的表达;RT-PCR检测MMP-2、TIMP-2 mRNA在不同时间点的表达;免疫印迹法(Western blot)检测MMP-2、TIMP-2mRNA产物在不同时间点的表达。
     结果:
     1.支架经喷砂工艺后表面变粗糙,浸入SCS溶液中,表面沉积了致密的羟基磷灰石涂层,涂层由疏松的片状外层及密集的内层组成。酸碱两步法处理喷砂后的样品避免了机械打磨,其形状保持良好,且其表面涂层晶体尺寸大,生长充分,外型的三襻结构及表面的涂层均增加了支架的表面积,使支架与组织的界面变大,增加了支架的牢固性。改良人工角膜镜柱的直径为3.2mm、厚度为3.8mm、前表面曲率半径为8.874mm。
     2.临床观察:人工角膜支架植入术后均不同程度地出现角膜水肿和新生血管。角膜水肿于术后1周内逐渐消退,有一例植入SB-Ti支架碱烧伤模型出现角膜溶解的并发症。术后1个月、3个月取材,组织学检查见HA/SB-Ti组界面处成纤维细胞数多于SB-Ti组,术后1个月时材料/组织界面处仍有炎症细胞存在。拉出试验测定HA/SB-Ti支架植入角膜3月后的剪切力较SB-Ti支架增强(P<0.05)。SEM检查见:钛支架被细胞外基质包裹,HA/SB-Ti支架表面有一层致密物质存在,细胞外基质在HA表面伸展良好,与HA贴附紧密,而SB-Ti组支架细胞附着量明显少。碱烧伤植入支架组中支架表面沉着的细胞外基质少于正常角膜植入支架组。TEM检查见:HA/SB-Ti支架与SB-Ti支架植入术后,支架周围的胶原纤维束紊乱,角膜基质有大量成纤维细胞,HA/SB-Ti组角膜越靠近支架中心的成纤维细胞核越圆,核仁清晰,胞浆丰富,代偿增强。碱烧伤模型组角膜基质中胶原纤维出现断裂现象,较正常兔角膜组愈合延迟。
     3.人工角膜镜柱二期植入后,3周后结膜充血、角膜水肿症状消失,植入改良钛支架人工角膜的动物未出现角膜溶解等并发症,1月、3月各组取材,做免疫组织化学检查,碱烧伤模型HA/SB-Ti支架植入组1月、3月MMP-2表达的平均光密度较SB-Ti支架植入组有统计学差异(P<0.01);而3月时TIMP-2表达的平均光密度HA/SB-Ti支架较SB-Ti支架无统计学差异(P>0.05);正常动物模型HA/SB-Ti支架植入组1月、3月MMP-2、TIMP-2表达的平均光密度较SB-Ti支架植入组表达弱,有统计学差异(P<0.05);于2周、1月、3月、5月取材后,做RT-PCR、Western blot检测,MMP-2mRNA及MMP-2mRNA表达产物从支架植入开始升高,1月达到高峰,然后开始下降,除2周与3月MMP-2mRNA表达产物比较无统计学意义(P>0.05)外,其余各组比较有统计学意义(P<0.05)。而TIMP-2mRNA及TIMP-2mRNA表达产物则开始有波动,然后逐渐升高,各组比较有统计学意义(P<0.05)。
     结论:
     1.改良的人工角膜支架增加了表面的空隙率和表面积,增强了人工角膜在角膜中的固定。
     2.与单纯喷砂Ti支架相比,改良的支架增加了兔角膜基质成纤维细胞在其表面的粘附、伸展、增殖和分化的能力,促进了材料与组织界面的愈合,更适应角膜的微环境。
     3.改良人工角膜钛支架的活性鳞片状表面对抑制角膜组织中MMP-2过度表达与激活有积极作用,MMP-2、TIMP-2的表达在改良钛支架人工角膜植入后不同时间内差异显著,并与角膜溶解的临床病理过程具有同步性。MMP-2与TIMP-2的失衡是角膜溶解的可能原因之一,通过对MMP-2、TIMP-2的研究可为尽早解决人工角膜植入后角膜溶解穿孔提供新的途径。关于MMP-2与TIMP-2的激活和抑制的分子机制,以及如何为防治角膜溶解穿孔合理地调节二者之间的平衡有待进一步研究。
Objectives
     The research is engaged in developing an improved titanium skirt for keratoprosthesis,the aim of this study was to evaluate biocompatible of keratoprosthesis of novel design.And also to assess the long term clinical outcomes implanted to rabbit corneas(including compalications),to investigate the effect of MMP-2 and TIMP-2 for the skirt inserted eyes in rabbit,and the expression of MMP-2 and TIMP-2 during the course of cornea with HA/SB-Ti skirt and SB-Ti skirt,in order to explore the potential roles of MMP-2 and TIMP-2 during the course of the skirt inserted eyes in rabbit.
     Methods
     1.The pure titanium skirt for keratoprosthesis with three hands were first Sandblasted,and then bioactive hydroxyapatite coated on Sandblasted titanium for keratoprosthesis by a acid-alkali chemical treatment.The improved artificial cornea consists of a skirt and a transparent center of polymethyl methacrylate PMMA.The composition,the surface morphology and the cross-section were analyzed by means of X-ray diffraction(XRD) and scanning electron microscopy (SEM).
     2.A total of 18 New Zealand white rabbits and 18 alkali burned rabbit corneas were respectively divided into three groups.Skirt of HA/SB-Ti and SB-Ti were inserted into the corneal stroma of rabbits for a 1 and 3 month period.The third group did not insert skirt as surgery control.Corneal oedema and neovascularisation were evaluated.The interfacial biointegration of skirt/cornea were examined under light microscopy by HE and TEM.The extracellular matrix deposited on the surface of skirt was examined by SEM.
     3.The transparent center was implanted to rabbit corneas after 3 months,and then assesses the long term clinical outcomes and compalications implanted to rabbit comeas.To investigate the effect of MMP-2 and TIMP-2 for the skirt inserted eyes in rabbit,the corneas were immunohistochemically analyzed with antibodies directed against MMP-2 and TIMP-2,and the expression of MMP-2 and TIMP-2 during the course of cornea with HA/SB-Ti skirt and SB-Ti skirt,and pathohistology and computerized corneal analysis were studied on month 1 and 3. The expression of MMP-2 and TIMP-2mRNAlevel was determined by real time-polymerase chainreaction,and its protein level was determined by western blot.
     Results
     1.Dense hydroxyapatite coating was deposited on the Sandblasted specimens by an acid-alkali chemical treatment,and was composed of two sublayers,i.e.an outside loose crystal HA sublayer and an inside dense HA sublayer.The thickness of the HA coating was about 30μm.The shape of titanium skirt was well maintained by the two-step acid-alkali chemical treatment.And compared to group SB-Ti,the HA crystals of group HA/SB-Ti growed larger and more sufficient.The skirt surfaces expanded and keratoprosthesis became firm when keratoprosthesis of novel design consist of three hands.The radius of transparent center of novel design is 8.874 mm;thickness of transparent center is 3.8 mm.
     2.Corneal oedema and neovascularisation were found in all of the skirt inserted eyes in healthy animals,but the corneal oedema subsided within 1 week.The skirt have been retained,now up to a period of 5 months,with no severe complications such as cataract,retrocorneal membrane formation and retinal detachment,but there was one case of corneal dissolving being found on the 1 month.The number of corneal fibroblasts increased significantly in HA-Ti skirt inserted eyes compared with Ti skirt inserted eyes.The extracellular matrix deposited on the surface of HA-Ti skirt was more dense and tight than that of Ti. Compared with healthy host tissue,skirt/cornea healing after alkali burn was impaired;there were more inflammatory cells and corneal fibroblasts in alkali burn cornea/skirt interface than that of heathy cornea.The investigation of the effects of skirt surface on the interaction of group HA/SB-Ti and SB-Ti,The results showed:HA/SB-Ti surface markedly influenced the corneal fibroblasts attachment pattern and orientation in relation to the rim of the skirt,cells attaching to it perpendicularly or at an angle.The observation of the tissue sections of HA/SB-Ti skirt inserted eyes revealed that there were cells and collagen-like fibres perpendicular to or at an angle to the rough interface and that dramatic changes occured in the cellular morphology within the interface,from spindle shape on the surface to round or ovoid shape with a large cellular body and abundant cellular plasm,which suggested that the cellular function was extremely active,in accordance with the results of TEM.
     3.The keratoprosthesis of novel design have been retained during the experiment without severe complications such as cataract,retinal detachment and extrusion.Compared with HA/SB-Ti skirt inserted eyes from epithelium healing, corneal inflammation,neovascularization and scarring were all markedly improved in group E after injure,MMP-2 and TIMP-2 immunoreactivities were expressed in the normal corneas,predominantly in the corneal epithelium.After injury,immunoreactivities of both MMP-2 and TIMP-2 were increased notably in the healing corneal epithelium,infiltrating inflammatory cells,stromal fibroblasts and ingrowing vascular endothelial cells.The expression of MMP-2 was lower in the corneal tissue sections of HA/SB-Ti skirt inserted eyes than that in the tissue sections of SB-Ti skirt inserted eyes(P<0.01).The Western bolt revealed no significant differences of MMP-2mRNA between group 3 month and 2 week(t test of Ct,P>0.05);MMP-2 immunoreactivities were absent or lowly expressed predominantly in the corneal epithelium of normal corneas.The expression of MMP-2,TIMP-2 mRNA level was paralled that of protein level.
     Conclusions
     1.The titanium rough surface produced by sandblast(SB),then by a two-step acid-alkali chemical treatment and a proper solution,a hydroxyapatite coating can be quickly deposited on Sandblasted titanium skirt of keratoprosthesis, which is exempt from the procedure of polishing.The skirt surfaces expanded and keratoprosthesis became firm when keratoprosthesis of novel design consist of three hands.
     2.Hydroxyapatite modified Sandblasted titanium skirt for keratoprosthesis promoted superior rabbit corneal fibroblast adhension and proliferation in comparison with Sandblasted titanium,and it could promote the interfacial biointegration of skirt and host cornea,no matter in healthy comea or diseased cornea(alkali burn cornea).Hydroxyapatite coationg improved the bioactivity of titanium.
     3.By Immunohistochemitry and analysis system of pathologicpicture,the relative studies showed the different expressions of MMP-2 and TIMP-2 in different period and they have simultaneous incidence with corneal dissolving. The studies of MMP-2,TIMP-2 can provide a new way to prevent the incidence of corneal dissolving after surgery for keratoprosthesis,.The exciting and inhibiting mechanism of MMP-2 and TIMP-2 as well as how to balance those in order to prevent corneal dissolving perforation are still needed to be studied.
引文
[1]Hicks C,Fitton JH,Chirila TV,et al.Keratoprostheses:advancing toward a true artificial cornea.Surv Ophthalmol.1997,42:175-189
    [2]黄一飞,王丽强,王凤翔.人工角膜植入术的临床研究.中华眼科杂志.2003,39(10):9-12
    [3]Ilhan-Sarac O,Akpek EK.Current concepts and techniques in keratoprosthesis.Curr Opin in Ophthalmol.2005,16(4):246-50
    [4]Legeais JM,Rossi G,Renard G,et al.A new fluorocarbon for keratoprosthesis.Cornea.1992,11:538-45
    [5]Kasemo B.Biological surface science.Surface Science.2002,500:656-677
    [6]Puleo DA,Nanci A.Understanding and controlling the bone-implant interface.Biomaterials.1999;20:2311-2321
    [7]Ziats NP,Killer KM,Anderson JM.In vitro and in vivo interactionsof cells with biomaterials.Biomaterials.1988,9:5-13
    [8]Lewandowska K,Pergament E,Sukenik CN,et al.Cell-type-specific adhesion mechanisms mediated by fibronectin adsorbed to chemicallyderivatized substrata.Biomed Mater Res,1992,26:1343-1363
    [9]Perez-Luna VH,Horbett TA,Ratner BD.Developing correlations between fibrinogen adsorption and surface properties using multivariable statistics.Biomed Mater Res.1994,28:1111-1126
    [10]Stanislawski L,Serne H,Stanislawski M,et al.Conformational changes of fibronectin induced by polystyrene derivatives with a heperin-like function.J Biomed Mater Res.1993;27:619-626
    [11]Sharma CP,Paul W.Protein interactin with tantalum:Changes with oxide layer and hydroxyapatite at the interface.J Biomed Mater Res.1992,6:1179-1184
    [12]Williams DF,Askill TN,Smith R.Protein adsorption and desorption phenomena on clean metal surfaces.J Biomed Mater Res.1985,19:313-320
    [13]Julian DJ,Saavedra SS,Truskey GA.Effect of the conformation and orientation of adsorbed fibronectin on endothelial cell spreading and the strength of adhesion.J Biomed Mater Res.1993,27:1103-1113
    [14]Truskey GA,Pirone JS.The effect of fluid shear stress upon cell adhesion to fibronectin-treated surfaces.J Biomed Mater Res.1990,24:1333-1353
    [15]Petlit DK,Horbett TA,Hoffman AS.Influence of the substrata binding characteristics of fibronectin on corneal epithelial cell outgrowth.J Biomed Mater Res.1992,26:1259-1275
    [16]Grinnell F,Feld MK.Fibronectin adsorption on hydrophilic and hydrophobic surfaces detected by antibody binding and analyzed during cell adhesion in serum-containing medium.Biol Chem.1982,257(9):4888-4893
    [17]Stanford C,Gohring D,Keller J,Collagen expressin on cpTi as a function of sterilization treatment.J Dent Res.1992,71(AADR Abstracts):183
    [18]Merrett K,G riffith CM,Deslandes Y,et al.Interactions of corneal cells with transforming growth factorp2-modified poly dimethyl siloxane surfaces.J Biomed Mater Res.2003,67(3):981-993
    [19]K.Seisuke.Application of Hydroxyapatite-sofas Drug Carrier.J.Bio Med Mater and Eng.1994,4(4):283-290
    [20]Lishipu,Zhangshicheng,Chen Wenjie.Effects of Hydroxyapatite Ultra fine powder on Colony Formation and cytoskeletons of MGC-803cell.J.Bioceramics.1996,44(9):225-230
    [21]Matsubara M,Girard MT,Kublin CL,et al.Differential roles foe two gelatinolytic enzymes of the matrix metalloproteinase family in the remodeling cornea.Dev Biol.1991,147:125
    [22]Dong Z,Katar M,Berk RS.In Vivo Study of MT MMPs,MMP-2 and TIMP-2 in Infected Mouse Corneas.Invest Ophthalmol Vis Sci.2002,43:E-Abstract 1595
    [23]Zhang J,Gruber BL,Marchese MJ,et al.Mast cell tryptase does not alter matrix metalloproteinase expression in human dermal fibroblasts:further evidence that proteolytically-active tryptase is a potent fibrogenic factor.J Cell Physiol.1999,181:312-318
    [1]Cardona H.Keratoprosthesis:acrylic optical cylinder with supporting intralamellar plate.Am J Ophthalmol.1962,54:284-294
    [2]Ilhan-Sarac O, Akpek EK. Current concepts and techniques in keratoprosthesis.Curr Opin in Ophthalmol.2005,16(4):246-50
    [3]Legeais JM,Rossi G,Renard G,et al.A new fluorocarbon for keratoprosthesis.Cornea.1992,11:538-45.
    [4]Kasemo B.Biological surface science.Surface Science.2002,500:656-677
    [5]Puleo DA,Nanci A.Understanding and controlling the bone-implant interface.Biomaterials.1999,20:2311-2321
    [6]Thomas KA,Kay JF,Cook SD,et al.The Effect of Surface Macrotexture and Hydroxylapatite Coating on the mechanical Strengths and Histological Profiles of Titanium Implant Materi-als.J Biomed Mater Res.1987,21:1395-1414
    [7]Wen HB,Liu Q,Wijn JR,et al.Preparation of bioactive microporous titanium surface by a new two-step chemical treatment.J Mater Sci:Mater Med.1998,9:121-128
    [8]Cuperus PL,Jongebloed WW,Van Andel P, et al. Glass-metal keratoprosthesis:light and electron microscopical evaluation of experimental surgery on rabbit eyes.Doc Ophthalmol.1989,71:29-47
    [9]Ilhan-Sarac O, Akpek EK. Current concepts and techniques in keratoprosthesis.Curr Opin in Ophthalmol.2005,16(4):246-50
    [10]Linnola RJ,Happonen RP,Andersson OH,et al.Titanium and bioactive glass-ceramic coated titanium as materials for keratoprosthesis.Exp Eye Res.1996,63:471-478
    [11]Doane MG,Dohlman CH,Bearse G.Fabrication of a keratoprosthesis.Cornea.1996,15:179-184
    [12]Kasemo B,Gold J.Implant surfaces and interface processes.Adv Dent Res.1999,13:8-20
    [13]Puleo DA,Nanci A.Understanding and controlling the bone-implant interface.Biomaterials.1999,20:2311-2321
    [14]Das K,Bose S,Bandyopadhyay A.Surface modifications and cell-materials interactions with anodized Ti.Acta Biomater.2007,3(4):573-585
    [15]Kasemo B.Biological surface science.Surface Science.2002,500:656-677
    [16]K.Seisuke.Application of Hydroxyapatite-sofas Drug Carrier.J.Bio Med Mater and Eng.1994,4(4):283-290
    [17]王乐耘,王小平,崔福斋.钛合金经酸碱两步预处理快速沉积HA涂层.生物骨科材料与临床研究.2007,01
    [18]Lishipu,Zhangshicheng,Chen Wenjie.Effects of Hydroxyapatite Ultra fine powder on Colony Formation and cytoskeletons of MGC-803cell.J.Bioceramics.1996,44(9):225-230
    [19]Hi lle K,Landau H,Ruprecht KW.Improvement of the osteo-odonto-keratoprothesis according to Strampelli:influence of diameter of PMMA cylinder on visual field.Graefes Archive for Clinical&Experimental Ophthalmology.1999,237(4):308-312
    [20]Chirila TV,Crawford GJ.A controversial episode in the history of artificial cornea:the first use of poly(methyl methacrylate).Gesnerus.1996,53(3-4):236-242
    [21]Chirila TV,Vijayasekaran S,Home R,et al.Interpenetrating polymer network (IPN) as a permanent joint between elements of a new type of artificial cornea.J Biomed Mater Res.1994,28:745-753
    1.本实验的动物模型能够模拟临床上的实际情况,适合本实验人工角膜的实验研究。
    2.改良人工角膜支架鳞片状表面增加了支架与角膜组织的结合力,即剪切强度增加,使人工角膜更牢固。
    3.改良人工角膜支架植入兔角膜,能主动诱导细胞在材料表面大量附着、铺展并促进增殖;改良人工角膜支架更适应这种长期的增殖反应。
    4.改良人工角膜支架植入兔角膜,细胞增殖分裂能力增强、代谢功能代偿性增强。
    5.改良人工角膜支架植入兔角膜,角膜出现新生血管的生长为角膜细胞的增殖和迁徙提供了一个良好的营养环境及微环境,能促进人工角膜在宿主体内的稳定性。
    [1]Allan BDS.Closer to nature:new biomaterials and tissue engineering in ophthalmology.BrJ Ophthalmol.1999,83:1235-40
    [2]Ziats NP,Killer KM,Anderson JM.In vitro and in vivo interactionsof cells with biomaterials.Biomaterials.1988,9:5-13
    [3]Lewandowska K,Pergament E,Sukenik CN,et al.Cell-type-specific adhesion mechanisms mediated by fibronectin adsorbed to chemicallyderivatized substrata.Biomed Mater Res.1992,26:1343-1363
    [4]Ilhan-Sarac O,Akpek EK.Current concepts and techniques in keratoprosthesis.Curr Opin in Ophthalmol.2005,16(4):246-50
    [5]Kobayashi Masanori,Toguchida Jyunya,Oka Masanori.Preliminary study of polyvinyl alcohol-hydrogel(PVA-H) artificial meniscus.Biomaterials.2003,24:639-647
    [6]Zheng-Qiu G,Jiu-Mei X,Xiang-Hong Z.The development of artificial articular cartilage PVA-hydrogel.Biomed Mater Eng.1998,8:75-81
    [7]Cauich-Rodriguea JV,Deb S,Smith R.Effect of cross-linking agents on the dynamic mechanical properties of hydrogel blends of poly(acrylic acid)-poly(vinyl alcohol)vinyl acetate).Biomaterials.1996,17(23):2259-2264
    [8]Lopour P,Plichta Z,Volfova Z,et al.Silicon rubber-hydrogel composites as polymeric biomaterials.Biomaterial.1993,14(14):1051-1055
    [9]Ong JL,Prince CW,Raikar GN,Lucas LC.Effect of surface topography of titanium on surface chemistry and cellular response.Implant Dent.1996,5(2):83-8
    [10]Kay MI,Young RA.Crystal structure of hydroxyapatite.Nature.1964,204:1050-1052
    [11]Gross U,Muller-Mai Ch,Fritz Th,et al.Implant surface roughness and mode of load transmission influence periimplant bone structure.In:Heimke G,Soltesz U,and Lee AJC eds.Clincal Implant Materials.Advance in Biomterials.Amsterdam:Elsevier Science Publishers B.V.1990,19(8):303-308
    [12].Schroeder A,Van der Zypen E,Stich H,et al.The reactions of bone,con-nective tissue,and epithelium to endosteal implants with titanium-sprayed surfaces.J Max-fac.Surg.1981,9:15-25
    [13]Listgarten MA,Buser D,Steinemann SG,et al.Light and transmission electron microscopy of the intact interfaces between non-submerged titanium-coated epoxy resin implants and bone or gingiva.J Dent Res.1992,71(2):364
    [14]Pilliar RM,Deporter DA,Watson PA,et al.Dental implant design on bone remodeling.J Biomed Mater Res.1991,25:467-470
    [15]Okamoto K,Matsuura T,Hosokawa R,et al.RGD peptides regulate the specific adhesion of osteoblasts to hydroxyapatite but not titanium.J Dental Res.1998,77:481-7
    [16]Garcia AJ,Ducheyne P,Boettiger D.Effect of surface reaction stage on fibronectin mediated adhesion of osteoblast like cells to bioactive glass.J Biomed Mater Res.1998,40:48-51
    [17]Lobel KD,Hench LL.In vitro adsorption and activity of enzymes on reaction layers of bioactive glass substrates.J Biomed Mater Res.1998,39:575-9
    [18]Lange.R,Beck U,Baumann A,et al.Cell-extracellular matrix interaction and physico-chemical characteristics of titanium surfaces depend on the roughness of material.Biomolecular Engineering.2002,19:255-261
    [19]Balto H,Al-Nazhan S.Attachment of human periodontal ligament fibroblasts to 3 different root-end filling materials:Scanning electron microscope observation.Oral Surg Oral Med Oral Pathol Oral Radiol Endod.2003,95(2):222-7
    [20]Hicks CR,Vijayasekaran S,Chirila TV,et al.Implantation of PHEMA keratoprostheses after alkali burns in rabbit eyes.Cornea.1998,17(3):301-308
    [21]Gabbiani GS Hirschel BJ,Statkov PR,et al.Granulation tissue as acontractile organ.A study of structure and function.J Exp Med.1972,135:719-34
    [22]Ryan GB,Cliff WJ,Gabbiani G,et al.Myofibroblasts in human granulation tissue.Human Pathol.1974,5:55-67
    [23]Sandeman SR,Lloyd AW,Tighe BJ,et al.A model for the preliminary biological screening of potential keratoprosthetic biomaterials.Biomaterials.2003,24:4729-4739
    [24]Marques AP,Reis RL,Hunt JA.The biocompatibility of novel starchbased polymers and composites:In vivo studies.Biomaterials.2002,23:1471-1478
    [25]Pu FR,Williams RL,Markkula TK,et al.Expression of leukocyte endothelial cell adhension molecules on monocyte adhension to human endothelial cells on plasma treated PET and PTFE in vitro.Biomaterials.2002,23:4705-4718
    [26]Linnola RJ,Happonen RP,Andersson OH,et al.Titanium and bioactive glass-ceramic coated titanium as materials for keratoprosthesis.Exp Eye Res.1996,63:471-478
    [1]Ashworth JL,Rhatigan M Sampath R,et al.The hydroxyapatite orbital implant:a prospective study.Eye.1996,10:29-37
    [2]Leon C R,Barraquer J J,Barraquer J S.Coralline hydroxyapatite keratoprosthesis in rabbits.J Refract Surg.1997,13(1):74-77
    [3]张效房,杨进献,眼外伤学.河南医科大学出版社.1997,594-596
    [4]Smith VA,John HB,Easty DL.Role of ocular matrix metalloproteinases in peripheral ulcerative keratitis.Br J Ophthamol.1999,83:1376
    [5]Brew Dinakarpandian D,Nagase H.Tissue inhibitors of metalloproteinases:evolution,stucture and function.Biochi Biophys Acta.2000,1477:267-283
    [6]Dong Z,Katar M,Berk RS.In Vivo Study of MT MMPs,MMP-2 and TIMP-2 in Infected Mouse Corneas.Invest Ophthalmol Vis Sci.2002,43:E-Abstract 1595
    [7]Eric E Q Samia M,Emanuelle S,et al.Differential Expression of Extracellular Matrix Metalloproteinase Inducer(CD147)in Normal and Ulcerated Corneas.American Journal of Pathology.2005,166:209-219
    [8]Murphy G,Willenbrock F.Tissue inhibitors of matrix metal loendopeptidases.Methods Enzymol.1995,248:496-510
    [9]Ye HQ,Azar DT.Expression of gelatinases A and B,and TIMPs 1 and 2 during corneal wound healing.Invest Ophthalmol Vis Sci.1998,39(6):913-21
    [10]Zhang J,Gruber BL,Marchese MJ,et al.Mast cell tryptase does not alter matrix metalloproteinase expression in human dermal fibroblasts:further evidence that proteolytically-active tryptase is a potent fibrogenic factor.J Cell Physiol.1999,181:312-318
    [11]Ma DH,Chen JK,Kim WS,et al.Expression of matrix metalloproteinases 2 and 9 and tissue inhibitors of metalloproteinase 1 and 2 in inflammation-induced corneal neovascularization.Ophthalmic Res.2001,33(6):353-62
    [12]Yang YN,Bauer D,Wasmuth S,et al.Matrix metalloproteinases(MMP-2 and 9)and tissue inhibitors of matrix metalloproteinases(TIMP-1 and 2)during the course of experimental necrotizing herpetic keratitis.Exp Eye Res.2003,77(2):227-237
    [13]Kasemo B.Biological surface science.Surface Science.2002,500:656-677
    [14]Puleo DA,Nanci A.Understanding and controlling the bone-implant interface.Biomaterials.1999,20:2311-2321
    [15]Ziats NP,Killer KM,Anderson JM.In vitro and in vivo interactionsof cells with biomaterials.Biomaterials.1988,9:5-13
    [16]Lewandowska K,Pergament E,Sukenik CN,et al.Cell-type-specific adhesion mechanisms mediated by fibronectin adsorbed to chemicallyderivatized substrata.Biomed Mater Res.1992,26:1343-1363
    [17]Perez-Luna VH,Horbett TA,Ratner BD.Developing correlations between fibrinogen adsorption and surface properties using multivariable statistics.Biomed Mater Res.1994,28:1111-1126
    [18]Stanislawski L,Serne H,Stanislawski M,et al.Conformational changes of fibronectin induced by polystyrene derivatives with a heperin-like function.J Biomed Mater Res.1993,27:619-626
    [19]Sharma CP,Paul W.Protein interactin with tantalum:Changes with oxide layer and hydroxyapatite at the interface.J Biomed Mater Res.1992,6:1179-1184
    [20]Williams DF,Askill TN,Smith R.Protein adsorption and desorption phenomena on clean metal surfaces.J Biomed Mater Res.1985,19:313-320
    [21]Julian DJ,Saavedra SS,Truskey GA.Effect of the conformation and orientation of adsorbed fibronectin on endothelial cell spreading and the strength of adhesion.J Biomed Mater Res.1993,27:1103-1113
    [22]Truskey GA,Pirone JS.The effect of fluid shear stress upon cell adhesion to fibronectin -treated surfaces.J Biomed Mater Res.1990,24:1333-1353
    [23]Petlit DK,Horbett TA,Hoffman AS.Influence of the substrata binding characteristics of fibronectin on corneal epithelial cell outgrowth.J Biomed Mater Res.1992,26:1259-1275
    [24]Grinnell F,Feld MK.Fibronectin adsorption on hydrophilic and hydrophobic surfaces detected by antibody binding and analyzed during cell adhesion in serum-containing medium.Biol Chem.1982,257(9):4888-4893
    [25]Stanford C,Gohring D,Keller J.Collagen expressin on cpTi as a function of sterilization treatment.J Dent Res.1992,71(AADR Abstracts):183
    [26]Allan BDS.Closer to nature:new biomaterials and tissue engineering in ophthalmology.Br J Ophthalmol.1999,83:1235-40
    [27]Kasemo B.Biological surface science.Surface Science.2002,500:656-677
    [28]Hulboy DL,Rudolph LA,Matrisian LM.Matrix metalloproteinases as mediators of reproductive function.Mol Hum Reprod.1997,3(1):2745
    [29]Lafleur MA,Forsyth PA,Atkinson SJ,et al.Perivascular cells regulate endothelial membrane type-1 matrix metalloproteinase activity.BiochemBiophys Res Commun.2001,282:463-473
    [30]Saika S,Kawashima Y,Okada Y,et al.Related articles recombinant TIMP-1 and -2 enhance the proliferation of rabbit corneal epithelial cells invitro and the spreading of rabbit corneal epithelium in situ.Curr Eye Res.1998,17(1):47-52.
    [1]John P,Whitcher M,Srinivascan,et al.Corneal blindness:a global perspective.Bull World Health Organ.2001,79:214-221
    [2]Hicks C,Fitton JH,Chirila TV et al.Keratoprostheses:advancing toward a true artificial comea.Surv Ophthalmol.1997,42:175-189
    [3]Cardona H.Keratoprosthesis:acrylic optical cylinder with supporting intralamellar plate.Am J Ophthalmol.1962,54:284-294
    [4]Choyce P.Management of endothelial corneal dystrophy with acrylic corneal inlays.Br J Ophthalmol.1965,49:432-440
    [5]Cardona H.Anterior and posterior mushroom keratoprostheses.An experimental study.Am J Ophthalmol.1966,61:498-504
    [6]Cardona H.The Cardona keratoprosthesis 40 years experience.Refract Corneal Surg.1991,7:468-471
    [7]Castroviejo,Cardona H,DeVoe AG.The present status of prosthokeratoplasty.Trans Am Ophthalmol Soc.1969,67:207-234
    [8]Vijayasekaran S,Robertson T,Hicks C,et al.Histopathology of long-term Cardona Keratoprosthesis:a case report.Cornea.2005,24:233-237
    [9]Doane MG,Dohlman CH,Bearse G.Fabrication of a keratosprosthesis.Cornea.1996,15:179
    [10]Khan BF,Harissi-Dagher M,Pavan LD,et al.The Boston keratoprosthesis in herpetic keratitis.Arch Ophthalmol.2007,125:745-749
    [11]DohIman CH,Schneider HA,Doane MG.Prosthokeratoplasty.Am J Ophthalmol.1974,77:694-700
    [12]Aquavella JV,Qian Y,Mccormick GJ,et al.Keratoprosthesis:current techniques.Cornea.2006,25:656-662
    [13]Mona HD,Claes H,DohIman.The Boston keratoprosthesis in severe ocular trauma.Can J Ophthalmol.2008,43:165-169
    [14]黄一飞,王丽强,王凤翔.人工角膜植入术的临床应用.中华眼科杂志.2003,39:1-4
    [15]黄一飞.人工角膜植入术.眼科.2005,14:197-200
    [16]黄一飞,王大江,王丽强,等.人工角膜在治疗严重化学烧伤眼中的应用.中华眼科杂志.2007,43:297-302
    [17]Hicks CR,Chirila TV,Clayton AB,et al.Clinical results of implantation of the chirila keratoprosthesis in rabbits.Br J Ophthalmol.1998,82:18-25
    [18]Coassin M,Zhang C,Green WR,et al.Histopathologic and immunologic aspects of Alphacor artificial corneal failure.Am J Ophthalmol.2007,144:699-704
    [19]Marchi V,Ricci R.Pecorella I,et al.Osteo-odonto-keratoprosthesis Description of surgical technique with results in 85 patients.Cornea.1994,13:125-130
    [20]Hille K,Hille A,Ruprecht KW.Medium term results in keratoprostheses with biocompatible and biological haptic.Graefes Arch Clin Exp Ophthalmol.2006,244:696-704
    [21]Falcinelli G,Falsini B,Talon M,et al.Modified osteo-odonto-keratoprosthesis for treatment of corneal blindness:long-term anatomical and functional outcomes in 181 cases.Arch Ophthalmol.2005,123:1399-1429
    [22]Tan DT,Tay AB,Theng JT,et al.Keratoprosthesis surgery for end-stage corneal blindness in asian eyes.Ophthalmology.2008,115:503-510
    [23]Tay AB,Tan DT,Lye KW,et al.Osteo-odonto-keratoprosthesis surgery:a combined ocular-oral procedure for ocular blindness.Int J Oral Maxillofac Surg.2007,36:807-813
    [24]Lee JH,Wee WR,Chung ES,et al.Development of a newly designed double-fixed seoul-type keratoprosthesis.Arch Ophthalmol.2000,118:1673-1678
    [25]Kim MK,Lee JL,Wee WR,et al.Comparative experiments for in vivo fibroplasias and biological stability of four porous polymers intended for use in the Seoul-type Keratoprosthesis.Br J Ophthalmol.2002,86:809-814
    [26]Kim MK,Lee SM,Lee JL,et al.Long-term outcome in ocular intractable surface disease with Seoul-type keratoprosthesis.Cornea.2007,26:546-551
    [27]孙秉基,徐锦堂,主编.角膜病的理论基础与临床.北京:科学技术出版社.1994:484-493
    [28]Kain HL.General diseases and the posterior eye segment.Klin Monatsbl Augenheilkd.1993,202:356-360
    [29]Cald well DR.The soft keratoprosthesis.Trans Am Ophthalmol Soc.1997,95:751-758
    [30]Fenglan X,Yubao L,Xiaoming Y,et al.Preparation and in vivo investigation of artificial cornea made of nano-hydroxy apatite/poly(vingl alcohol)hydrogel composite.Mater Sci Mater Med.2007,18:635-640
    [31]Legeais JM,Renard G,Pouliquen Y.Keratoprosthesis with biocolonizable support.J Fr Ophthalmol.1993,16:577-583
    [32]Pintucci S,Pintucci F,Cecconi M,et al.New Dacron tissue colonisable keratoprosthesis:clinical experience.Br J Ophthalmol.1995,79:825-829
    [33]Leon CR,Barraquer JI Jr,Barraquer JI Sr.Coralline hydroxyapatite keratoprosthesis in rabbit.J Refract Surg.1997,13:74-78
    [34]Rohrbach JM,Wohlrab TM,Sadowski B,et al.Biological corneal replacement-an alternative to keratoplasty and keratoprosthesis? A pilot study with heterologous hyaline cartilage in the rabbit model.Klin Monatsbl Augenheilkd.1995,207:191-196
    [35]Nakao H,Matsuda T,Nakayama Y,et al.Development of hybrid keratoprosthesis 1 Design of artificial extracellular matrix and construction of hybrid corneal stroma.Folia Ophthalmol Jpn 1993,44:247-254
    [36]Myung D,Koh W,Bakri A,et al.Design and fabrication of an artificial cornea based on a photolithographically patterned hydrogel construct.Biomed Microdevics.2007,9:911-22.
    [37]Merrett K,Griffith CM,Deslandes Y,et al.Interactions of corneal cells with transforming growth factor beta 2-modifiedpolydimenthyl siloxane surfaces.J Biomed Mater Res A.2003,67(3):981-93
    [38]Lin RR,Mao X,Yu QC,et al.Preparation of bioactive nano-hydroxyapatite coating for artificial cornea.Curr Appl Phys.2007,7:85-89
    [39]Myung D,Farooqui N,Waters D,et al.Glucose-permeable interpenetrating polymer network hydrogels for corneal implant applications:a pilot study.Curr Eye Res.2008,33:29-43

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700