用户名: 密码: 验证码:
玉米谷氨酰胺合成酶基因Gln1-3、Gln1-4氮利用效率关联性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
玉米是重要的粮食、饲料和工业原料作物,在国民经济发展中占有重要地位。氮肥是农作物生产上使用最多的大量营养元素肥料,氮肥利用效率低是世界农业研究领域的难题,提高玉米氮肥利用效率具有重要研究意义。培育耐低氮品种是提高玉米氮利用效率的有效途径,而发掘耐低氮基因资源是培育耐低氮品种的前提和基础。玉米Gln1-3和Gln1-4基因编码茎秆与穗部GS同工酶,与全株氮向籽粒蛋白质同化、氮利用效率及产量紧密相关。与连锁分析相比,关联分析方法可鉴定出与玉米表型性状密切相关的功能等位基因变异,因而成为研究玉米氮利用效率的有效途径。本文以我国玉米生产上常用的189份自交系为材料,通过两年一点田间试验鉴定和评估相关性状的耐低氮性,结合180份自交系群体结构分析和氮代谢2个关键基因(Gln1-3、Gln1-4)开展基于候选基因策略的关联性分析,旨在发掘与氮利用效率性状相关的功能等位变异及氮高效单体型。获得的主要研究结果如下:
     1.2007年和2008年冬季分别在海南三亚对189份玉米自交系进行田间耐低氮评价,调查分析大喇叭口期叶片叶绿素含量、开花期和开花后10天穗三叶叶绿素含量、株高、穗位高、结实株数百分率、ASI、穗长、穗粗、穗行数、穗粒数、秃尖度、单穗重、百粒重和小区产量等19个表型性状。通过典型相关分析和因子分析,发现大喇叭口期叶片叶绿素含量、开花期穗上叶叶绿素含量、株高、百粒重、穗粒数和小区产量6个性状可以作为玉米自交系耐低氮性评价指标。以大喇叭口期叶片叶绿素含量、开花期穗上叶叶绿素含量、株高、百粒重、穗粒数、小区产量耐低氮系数的加权平均值作为评价玉米自交系耐低氮能力的综合指数,对189份玉米自交系进行耐低氮性评价,将试验材料分为高度耐低氮、中度耐低氮、中度敏感和高度敏感4种类型。两点试验耐低氮级别典型一致的材料有59份,其中高度耐低氮自交系17份,即齐205、7595-2、早49、郑28、郑30、CA339、川273、川321、合344、获唐黄、沈137、品1P6Co、辽2345、吉818、x178、H201和E28;一致中度耐低氮的材料有19份,即1029、临系11、郑22、铁7922、502、CML292、昌7-2、77、H152、金黄96B、CN962、冀53、鲁原133、4379、辽白371、196、CA335、丹340和郑58;一致中度敏感的材料有12份,即龙抗11、31778、掖107、掖515、金黄55、PI143、中自01、200B、M0113、东91、374和吉81162;一致高度敏感的材料有11份,即CML206、齐209、65232宽、QB80、四F1、y75、7379-2、塔5、长3、吉8415和吉842。这些材料为玉米耐低氮育种奠定基础。
     2.采用PCR与接头步移(walking)方法分离得到Gln1-3、Gln1-4基因区域基因组DNA全长。Gln1-3基因全长4571 bp,起始密码子至终止密码子序列长3062 bp;Gln1-4基因全长3724 bp,起始密码子至终止密码子序列长2858 bp。对这两个基因的结构进行分析并确定保守功能域,为关联分析奠定了基础。
     3.在180份玉米自交系中,对Gln1-3、Gln1-4基因的5′非编码区、氨离子结合功能域与ATPase活性保守功能域等重要分析区间分析表明,(1)Gln1-3基因中,共检测到182个位点的等位变异,其中140个位点为SNP, 42个位点为Indel。等位基因频率大于5%的位点为80个,其中58个位点为SNP,平均每39 bp一个;22个位点为indel,平均每104 bp一个。(2)在Gln1-4基因中,共检测到186个位点的等位变异,其中148个位点为SNP,38个位点为Indel。等位基因频率大于5%的位点为58个,其中32个位点为SNP,平均每71 bp一个;26个位点为indel,平均大约每88 bp一个。连锁不平衡结构分析表明,这两个基因的5′端、氨离子结合域和ATP酶结合结构域都分布着较强的LD结构(r2>0.5)。
     4.通过关联分析发现,在低氮胁迫下,(1)Gln1-3基因中19个序列多态性位点与开花期穗上叶叶绿素含量、株高、穗粒数、百粒重和小区产量显著关联。其中,与小区产量关联显著的位点10个;与株高呈显著关联的位点8个。位点2069对小区产量的效应最大,其值为26.8%,10位点对小区产量的总贡献率达到32.7%。选取具有较大贡献的5个位点将180份自交系分为11种单体型,其中单体型7含有对小区产量贡献较大的位点-172的C位、889的C位、2069的C位和2072的0位,包含于郑30、CA339和CA156等多个高度耐低氮和中度耐低氮自交系,推断该单体型可能为Gln1-3基因的耐低氮单体型。(2)Gln1-4基因中14个序列多态性位点与大喇叭口期叶片叶绿素含量、开花期穗上叶叶绿素含量、株高、穗粒数和小区产量显著关联。其中,与穗粒重关联显著的位点有11个;与株高和大喇叭口期叶片叶绿素含量呈显著关联的位点分别有2个。位点-218对小区产量的效应最大,其值为22.1%,11位点对穗粒数的总贡献率为36.7%。选取具有较大贡献的5个位点将180份自交系分为10种单体型,其中单体型1中含有对穗粒数贡献较大的位点-574的A位、-218的A位和-199的1位;对应4个高度耐低氮和中度耐低氮自交系齐205、7595-2、吉1037、吉495,推断该单体型可能为Gln1-3基因的耐低氮单体型。(3)两个基因的33个位点分别与氮利用效率相关性状存在显著关联,其中一些单体型累积可解释表型变异达20%以上,具有功能分子标记开发与育种利用前景。
Maize (Zea mays L.) is one of the most important crops as food, feed and industry use. Nitrogen is the important factor in the crop production. The low nitrogen use efficiency of cereals is difficult to handle in the agricultural research around the world. Therefore, it has become of major importance to improve nitrogen use efficiency of maize. Development of high nitrogen use efficiency varieties using maize diverse germplasm is an available way to resolve the yield loss caused by nitrogen stress. Discovering those inbred lines with high nitrogen use efficiency is the basis of maize breeding. Gln1-3 and Gln1-4 are members of GS (Glutamine synthetase)gene family that encoded the isozyme expressed in stalk and ear of maize. To generate new information for maize breeding programs, association mapping is an effective way to identify functional natural allelic variations related to high nitrogen use efficiency traits. Gln1-3 and Gln1-4 were chosen as the candidate genes in this study, which were certified to responsible for the kernel number and kernel weight of maize respectively. 189 maize inbred lines used in breeding programs of China were chosen for SNP (Single nucleotide polymorphism) genotyping and nitrogen use efficiency phenotyping. The objectives of this study were to identify functional alleles and haplotypes of high nitrogen use efficiency. The major results obtained were as follows:
     1. A total of 189 maize inbred lines were grown in the field , to evaluate for nitrogen use efficiency, on two levels of nitrogen fertilization (low nitrogen and normal nitrogen) in Hainan province over two consecutive years (2007 and 2008). The 19 phenotypic traits including chlorophyll content in pre-tassel stage, chlorophyll content of three leaves of the ear in pollination stage, chlorophyll content of three leaves of the ear in ten days after pollination stage, percentage of plant with seed, ASI (Anthesis-silking interval), plant height, ear height, kernel weight per ear, ear length, ear width, ear row number, kernel number, bared tip, ear weight, a hundred kernel weight and grain yield of the plot were investigated in these trials. The descriptive statistics from 19 traits investigated showed that 6 traits, chlorophyll content in pre-tassel stage, chlorophyll content of the top leave of the ear in pollination stage, plant height, a hundred kernel weight, kernel number and grain yield of the plot, were identified to evaluate inbred lines for nitrogen use efficiency. Based on factor analysis, integrated NTSI (Nitrogen tolerance synthesis index) of each inbred line was calculated to classify the maize inbreds tested into 4 different Nitrogen-tolerant types: highly nitrogen tolerance, medium nitrogen tolerance, medium nitrogen susceptible and highly nitrogen susceptible. 59 maize inbred lines had the same responses for nitrogen tolerance, including 17 highly nitrogen tolerant inbreds, 19 medium tolerant, 12 medium susceptible and 11 hghly susceptible.
     2. 4571 bp of genomic region of Gln1-3 was sequenced using PCR combined PCR walking strategy. The 3062 bp coding region of the gene was comprised of ten exons that were separated by nine introns. At the same time, 3824 bp of genomic region of Gln1-4 was sequenced using the same method. The full length of the coding region was 2858 bp, which was comprised of ten exons separated by nine introns. Gene structure of these two genes were analysed and two conserved domains were found through blast, this is the research base for association analysis.
     3. Software ClustalX was used to analyse the sequence polymorphism of these two candidate genes in 180 maize inbred lines. 1) A total of 140 SNPs and 42 Indels (Insertion and deletion) were identified in Gln1-3 gene. The number of sites’frequency more than 5% were 80, including 58 SNPs and 22 Indels, of which there was one SNP variation every 39 bp and one Indel every 104 bp, respectively. 2) A total of 148 SNPs and 38 Indels were identified in Gln1-3 gene. The number of sites’frequency more than 5% were 58, including 32 SNPs and 26 Indels, of which there was one SNP variation every 71 bp and one Indel every 88 bp, respectively. Relative higher LD (Linkage disequilibrium, r2>0.5) was identified in the region of 5' UTR, ammonium ion binding domain and ATPase domain of these two genes, association analysis should be focused on these regions.
     4. The results of candidate gene association analysis between genotypes and phenotypes of nitrogen use efficiency were: 1) A total of 19 polymorphism sites of Gln1-3 gene were identified significantly to be associated with 5 traits (LOD>2.5), chlorophyll content of the top leaves of the ear in pollination stage, plant height, hundred kernel weight , kernel number and grain yield. Of them, 10 polymorphism sites were identified significantly to be associated with grain yield, 8 polymorphism sites were identified significantly to be associated with plant high. Nucleotide variation C/T on site 2069 was most significantly associated with grain yield with contribution of 26.8%.In total, the contribution of the 10 polymorphism sites associated with grain yield was 32.7%. Based on five sites significantly associated with grain yield, 11 haplotypes were identified among 180 maize inbred lines. Haplotype 7 contained three positive contribution sites associated significantly with grain yield was speculated to be candidate nitrogen tolerance haplotype, which was included in nitrogen tolerant inbreds, such as Zheng30, CA339, CA156, etc. 2) A total of 14 polymorphism sites of Gln1-4 gene were identified significantly to be associated with 5 traits (LOD>2.5), chlorophyll content in pre-tassel stage, chlorophyll content of the top leaves of the ear in pollination stage, plant height, kernel number and grain yield. Of them, 11 polymorphism sites were identified significantly to be associated with kernel number and chlorophyll content in pre-tassel stage. 2 SNP sites were identified significantly to be associated with plant high respectively. SNP variation T/A on site -218 was most significantly associated with kernel number with contribution of 22.1%. In total, the contribution of the 11 polymorphism sites associated with kernel number was 36.7%. Based on five sites significantly associated with kernel number and chlorophyll content in pre-tassel stage, 10 haplotypes were identified among 180 maize inbred lines. Haplotype 1 contained three positive contribution sites associated significantly with kernel number was speculated to be candidate nitrogen tolerance haplotype, which was included in nitrogen tolerant inbreds, such as Qi205, 7595-2, Ji1037, Ji495, etc. 3) A total of 33 polymorphism sites of Gln1-3 and Gln1-4 were identified significantly to be associated with related trait of nitrogen use efficiency, the total contribution of some of the polymorphism sites were more than 20%, these results will be used to develop functional molecular markers in molecular assisted breeding in the future.
引文
1.曹敏建,衣莹,佟占昌,宫国安.耐低氮胁迫玉米的筛选与评价.玉米科学, 2000, 8 (4): 64~69.
    2.曹卫冬,贾继增,金继运.不同供氮水平下小麦苗期叶绿素含量的QTL及互作研究.植物营养与肥料学报, 2004, 10 (5): 473~478.
    3.陈范骏,米国华,张福锁,王艳,刘向生,春亮.华北区部分主栽玉米杂交种的氮效率分析.玉米科学, 2003, 11(2): 78~82.
    4.陈俊意,徐军,况守峰.不同玉米基因型磷效率的因子分析.种子, 2008, 27 (8): 64~67
    5.党廷辉,彭琳,戴鸣钧.长武旱源玉米氮肥效应研究.水土保持通报, 1995, 15 (6): 22~27.
    6.杜红斌,王秀峰,崔秀敏.植物NO3~积累的生理机制研究.中国蔬菜, 2001, (2): 49~51.
    7.何新华,安·奥克斯,李明启. C3和C4禾本科作物的氮素利用效率.植物学通报, 1995, 12 (3): 20~27.
    8.黄明勤,杨素铀,张仲明.硝酸还原酶活力与作物耐肥性的研究. IV.玉米幼苗硝酸还原酶活力与品种耐肥性的关系.作物学报, 1987, 13 (1): 19~22.
    9.黄勤妮,印莉萍,柴晓清.不同氮源对小麦幼苗谷氨酞胺合成酶的影响.植物学报, 1995, 37(11): 856~862.
    10.黎亮, Longin C H,孙文涛, Melchinger A E,陈绍江.华北平原夏玉米氮利用效率的遗传参数估计.中国农业大学学报, 2007, 12 (6): 50~56.
    11.李加纳.在作物品质育种中典型相关分析的运用初探.西南农业大学学报, 1985 (4): 106~112.
    12.林振武,陈敬祥,汤玉玮.,硝酸还原酶活力与作物耐肥性的研究.Ⅰ.不同耐肥性和水稻、玉米小麦硝酸还原酶活力.中国农业科学, 1983, 16 (3): 37~43.
    13.刘贤德,李新海,张世煌.玉米开花期耐旱相关性状的遗传及育种策略.玉米科学, 2002, 10 (3): 13~18.
    14.刘建安,米国华,张福锁.不同基因型玉米氮效率差异的比较研究.农业生物技术学报, 1999, 7(3): 248~254.
    15.刘永红.借鉴国内外高产创建经验提高四川玉米单产水平.四川农业科技, 2008, 4: 16~17.
    16.刘宗华,汤继华,卫晓轶,王春丽,田国伟,胡彦民,陈伟程.氮胁迫和正常条件下玉米穗部性状的QTL分析.中国农业科学, 2007, 40 (11): 2409~2417.
    17.陆景陵.植物营养学.北京:中国农业大学出版社, 2003年第二版.
    18.李新海,王振华,席章营,李明顺,张世煌.我国玉米种质基础及改良途径.第一届玉米产业技术大会论文集.北京.2008, 5~9
    19.米国华,刘建安,张福锁.玉米杂交种氮效率的构成因素分析.中国农业大学学报, 3(增刊): 1998, 97~104.
    20.莫良玉,吴良欢,陶勤南.高等植物GS-GOGAT循环研究进展.植物营养与肥料学报, 2001, 7 (2): 223~231.
    21.苏正淑,张宪政.几种测定植物叶绿素含量的方法比较.植物生理学通讯, 1989, 5: 77~78.
    22.孙世杰.种植业结构调整中的玉米生产问题.华北农学报, 2000, 15: 1~3.
    23.孙友位,李明顺,张德贵,肖木辑,谢振江,李新海,谢传晓,郝转芳,张世煌.利用SSR标记研究85个玉米自交系的遗传多样性.玉米科学, 2007, 215 (6): 19~26.
    24.孙志梅,武志杰,陈利军,刘永刚.农业生产中的氮肥施用现状及其环境效应研究进展.土壤通报, 2006, 37(4): 782~786.
    25.唐亮,徐正进.水稻苗期干物重和叶绿素含量的遗传分析.安徽农业科学, 2007,35(6): 1633~1635.
    26.王艳,米国华,陈范骏,张福锁.玉米氮素吸收的基因型差异及其与根系形态的相关性.生态学报, 2003, 23 (2): 297~302.
    27.王爱玉,张春庆.玉米叶绿素含量的QTL定位.遗传, 2008,30 (8): 1083~1091
    28.王荣焕,王天宇,黎裕.植物基因组中的连锁不平衡.遗传, 2007, 29(11): 1317~1323
    29.王艳,米国华,陈范骏,张福锁.玉米氮素吸收的基因型差异及其与根系形态的相关性.生态学报, 2003, 23 (2): 297~302.
    30.王艳,米国华,陈范骏,张福锁.玉米自交系氮效率基因型差异的比较研究.应用与环境生物学报, 2002, 8 (4) : 361~36.
    31.吴永升,李新海,张征,李明顺,郝转芳,张世煌,谢传晓.玉米Gln1-3 gDNA序列分离、基因结构、保守功能域与等位变异分析.作物学报, 2008, 34 (7): 1114~1120
    32.吴子恺.玉米几个光合作用性状与生物学产量及籽粒产量的关系.作物学报, 1983,9 (1): 23~28.
    33.武维华.植物生理学.北京:科学出版社, 2003年第一版.
    34.肖炎波,李文学,段宗颜.植物对硝态氮的吸收及其调控.中国农业科技导报, 2002,4 (2 ) : 56~59.
    35.谢传晓,王振华,於琍,张玮,李明顺,李新海,程备久,张世煌. 160个玉米自交系光周期敏感性鉴定.玉米科学, 2008, 16 (3): 15–18
    36.许海涛,许波,王友华,王成业,张海申.典型相关分析在玉米遗传育种中的应用研究.河南科技学院学报, 2008, 36 (3): 6~8
    37.杨小红,严建兵,郑艳萍,余建明,李建生.植物数量性状关联分析研究进展. 2007,3(34): 523~530
    38.印莉萍,刘祥林,林忠平.植物谷氨酰胺合成酶基因以及基因表达.生物工程进展, 1995, 15: 36~41
    39.于永涛.玉米核心自交系群体结构及耐旱相关候选基因rab17的等位基因多样性分析[博士学位论文].北京:中国农业科学院研究生院学位论文, 2006
    40.张福锁,马文奇.肥料投入水平与养分资源高效利用的关系.土壤与环境, 2000, 9 (2): 154~157.
    41.张福锁,米国华,刘建安.玉米氮效率遗传改良及应用,农业生物技术学报, 1997, 5 (6): 112~116
    42.张福锁,王激清,张卫峰,崔振岭,马文奇,陈新平,江荣风.中国主要粮食作物肥料利用率现状与提高途径.土壤学报, 2008, 45 (5): 915~924.
    43.张福锁.养分资源利用的问题及其研究重点.李春剑主编:土壤与植物营养研究新动态(第四卷)北京:中国农业大学出版社.2001.12~23.
    44.张世煌,徐志刚.耕作制度改革及其对农业技术发展的影响.作物杂志, 2008, 1: 1~3
    45.张维理,武淑霞,冀宏杰.中国农业面源污染形势估计及控制对策I. 21世纪初期中国农业面源污染的形势估计.中国农业科学, 2004, 37 (7): 1008~1017.
    46.张毅.防治氮肥流失氮污染及提高氮肥利用率的对策和措施.化肥工业, 1991, 3: 1l~14
    47.赵久然,郭强,郭景伦,尉德铭,王长武,刘友,凌昆.北京郊区粮田化肥投入和产量现状的调查分析.北京农业科学. 1997, (15) 2: 36~38
    48.赵曦,王荣焕,于永涛,王天宇,黎裕.关联分析在玉米遗传学研究中的应用.玉米科学, 2008, 16 (1): 52~55
    49.郑祖平,何川,李钟,黄玉碧.两种供氮水平下玉米穗长QTL定位分析.玉米科学, 2005, 13 (4): 102~104.
    50.中国农业年鉴编辑部.中国农业年鉴.北京:中国农业出版社, 2001
    51.中国人民共和国国家统计局.中国统计年鉴(2008年).北京:中国统计出版社, 2009
    52.周院宝,谷丽萍.植物硝酸还原酶的研究进展.植物杂志, 1994, 3: 5~7.
    53.朱兆良.农田生态系统中化肥的去向和氮素管理.南京:江苏科学技术出版社, 1992, 228~245.
    54.朱兆良.我国氮肥的使用现状、问题和对策.南京:江苏科学技术出版社, 1998, 38~51.
    55. Abdallah J M, offinet B, Cierco-Ayrolles, and pèrez-Enciso M. Linkage disequilibrium fine mapping of quantitative trait loci: a simulation study. Genetics Sel Evol 2003, 35, (5): 513~532.
    56. Agrama H A, Zakaria A G, Said F B, Tuinstra M, Identification of quantitative trait loci for nitrogen use efficiency in maize. Mol Breeding, 1999, 5:187~195.
    57. Amanda C, Yang A P, Heather M, Rosalind C L, Nicola A. Ramsay. Identification of DNA sequences flanking T~DNA insertions by PCR~Walking. Plant Mol Biol Rep, 2001, 19: 321~327
    58. Andersen J R, Lübberstedt T. Functional markers in plants. Trends Plant Sci, 2003, 8 : 554~560
    59. Andersen J R, Schrag T, Melchinger A E, Zein I, Lübberstedt T. Validation of Dwarf8 polymorphisms associated with flowering time in elite European inbred lines of maize (Zea mays L). Theor Appl Genet . 2005, 111: 206~217.
    60. Anderson E L, Kamprath E J , Moll R H. Prolificacy and N fertilizer effects on yield and N utilization in maize. Crop Sci , 1985, 25: 598~ 605.
    61. Anderson E L, Kamprath E J, Moll R H. Nitrogen fertility effects on accumulation, remobilization and partitioning of N and dry matter in corn genotypes differing in prolicacy. Agron J, 1984, 76: 397~404.
    62. Aranzana M J, Kim S, Zhao K, Bakker E, Horton M, Jakob K, Lister C, Molitor J, Shindo C, Tang C, Toomajian C, Traw B, Zheng H, Bergelson J, Dean C, Marjoram P, Nordborg M. Genome-wide association mapping in Arabidopsis identifies previously known flowering time and pathogen resistance genes. PLoS Genet, 2005, 1: 60.
    63. Atsushi S, Masahiro O, Takehiro M, Daisuke S, Takeba G, Kunisuke T and Shoji F. Three cDNA sequences coding for glutamine synthetase polypeptides in Oryza sativa L. Plant Mole Biol. 1989, 13: 611~614.
    64. Balko L G and Russell W A. Effects of rate of nitrogen fertilizer on maize inbred lines and hybridprogeny. I. Prediction of yield response. Maydica, 1980, 25: 65~79
    65. Beauchamp E .G, L W Kannenberg, R .B Hunter. Nitrogen accumulation and translocation in corn genotypes of following silking. Agron J, 1976, 68:418~422.
    66. Below F. E. Growth and productivity of maize under nitrogen developing drought and low N-tolerant maize proceeding of a symposium.CIMMYT, Mexico. 1996, March, 25~29.
    67. Below FE. Nitrogen metabolism and crop productivity. In: Pessarakli M, ed. Handbook of plant and crop physiology. New York: Marcel Dekker Inc, 2002, 385~406
    68. Bertin P and Gallais A. Physiological and genetic basis of nitrogen use efficiency in maize. II. QTL detection and coincidences. Maydica, 2001, 46:53~68.
    69. Bertin, P. and A. Gallais. Genetic variation for nitrogen use efficiency in a set of recombinant maize inbred lines I. Agrophysiological results. Maydica, 2000, 45: 53~66
    70. Botstein D, White R.L. Skolnick, M. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet, 1980, 32 (3): 314~331.
    71. Brunner S, Fengler K, Morgante M, Tingey S and Rafalski A. Evolution of DNA sequence nonhomologies among maize inbreds. Plant Cell, 2005, 17: 43~360.
    72. Caboche M.,Rouze P. Nitrate reductase: a target for molecular and cellular studies in higher plants.Trends Genet.Sci, 1990, 6: 187~192
    73. Cacco G, Saccomani M, Ferrari G. Changes in the uptake and assimilation efficiency for sulfate and nitrate in maize hybrids selected during the period 1930 through 1975. Physiol Plant, 1983, 58:171~174.
    74. Caldwell K S, Russell J, Langridge P, and Powell W. Extreme population-dependent linkage disequilibrium detected in an inbreeding plant species, Hordeum vulgare. Genetics, 2006, 172,(1): 557~567.
    75. Camus-Kulandaivelu L, Veyrieras J.B, Madur D, Combes V,Fourmann M, Barraud S, Dubreuil P, Gouesnard B, Manicacci D, Charcosset A. Maize adaptation to temperate climate: relationship with population structure and polymorphism in the Dwarf8 gene. Genetics, 2006, 172: 2449~2463.
    76. Cassman K.G. ,Ecological intensification of cereal production systems: yield potential, soil quality, and precision agriculture. P Natl Acad Sci USA, 1999, 96: 5952~5959.
    77. Chapman S, Baretto H. Using a chlorophyll meter to estimate specific leaf nitrogen of tropical maize during vegetative growth. Agron J, 1997, 89: 557~562.
    78. Connor D j, Hall A J, Sadras V O. Effect of nitrogen content on the photosynthetic characteristics of sun flowerleaves. Aust J Plant Physiol, 1993, 20: 251~263.
    79. Coque M and Gallais A. Gonomic regions involved in response to grain yield selection at high and low nitrogen fertilization in maize. Theor Appl Genet, 2006, 112: 1205~1220
    80. Corder E H, Saunders A M, Risch N J, Strittmatter W J, Schmechel D E, Gaskell P C, Rimmler J B, Locke P A, Conneally P M, Schmader K E, Small G W, Roses A D, Haines J L, Pericak-Vance M A. A protective effect of apolipoprotein E type 2 allele for late onset Alzheimer disease. Nat Genet, 1994, 7: 180~184.
    81. Crawford N M and Campbell W H. Fertile fields.Plant Cell, 1990, 2: 829~835
    82. Crossa J, Burgueno J, Dreisigacker S, Vargas M, Herrera-Foessel S A, Lillemo M, Singh R P, Trethowan R, Warburton M, Franco J, Reynolds M, Crouch J H, Ortiz R. Association analysis of historical bread wheat germplasm using additive genetic covariance of relatives and population structure. Genetics, 2007, 177: 1889~1913.
    83. Da-wei XUE, Ming-can CHEN, Mei-xue ZHOU4,Song CHEN, Ying MAO, Guo-ping ZHANG. QTL analysis of flag leaf in barley (Hordeum vulgare L.) for morphological traits and chlorophyll content. Journal of Zhejiang University Science B, 2008, 9 (12): 938~943
    84. Ducrocq S, Madur D, Veyrieras J B, Camus-Kulandaivelu L, Kloiber-Maitz M, Presterl T, Ouzunova M, Manicacci D, Charcosset A . Key impact of Vgt1 on flowering time adaptation in maize: evidence from association mapping and ecogeographical information. Genetics, 2008, 178: 2433~2437.
    85. Edmeades GO and B?nziger M. What have we learned and where do we go? In: Edmeades GO, B?nziger M eds. Developing drought and low N tolerant maize, CIMMYT, 1996, 557~563
    86. Eichelberger K D , Lambert R J , Below R E. divergent phenotypic recurrent selection for nitrate reductase activity in maize 1 selection and correlated responses. Crop Sci, 1989a, 29: 1393 ~ 1397.
    87. Eichelberger K D, Lambert R J , Below R E. divergent phenotypic recurrent selection for nitrate reductase activity in maize. 2 Efficient use of fertilizer nitrogen. Crop Sci, 1989b, 29: 1397~1402.
    88. Falk C T and Rubinstein P. Haplotype relative risks: an easy reliable way to construct a proper control sample for risk calculations, Ann Hum Genet, 1987, 51(3): 227~233.
    89. Falush D, Stephens M, and Pritchard J K. Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics, 2000, 164:1567~1587.
    90. Feil B, Thiraporn R, Stamp P. In vitro nitrate reductase activity of laboratory-grown seedlings as an indirect selection criterion for maize. Crop Sci 1993, 33: 1280~1286.
    91. Flint-Garcia S A, Thornsberry J .M, Buckler E S. Structure of linkage disequilibrium in plants. Annu Rev Plant Biol, 2003, 54: 357~374.
    92. Flint-Garcia S A, Thuillet A C, Yu J, Pressoir G, Romero S M, Mitchell S E, Doebley J, Kresovich S, Goodman M M, Buckler E S. Maize association population: a high-resolution platform for quantitative trait locus dissection. Plant J, 2005, 44: 1054~1064.
    93. Fu H, Zheng Z, Dooner H.K. Recombination rates between adjacent genetic and retrotransposon regions in maize vary by 2 orders of magnitude. Natl Acad Sci, 2002. 99: 1082~1087.
    94. Gallais A and Coque M. Genetic variation and selection for nitrogen use efficiency in maize: a synthesis. Maydica, 2005, 50: 531~537.
    95. Gallais A and Hirel B. An approach of the genetics of nitrogen use efficiency in maize. J Exp Bot, 2004, 55: 295~306.
    96. Gaut BS and Long A.D. The lowdown on linkage disequilibrium. Plant Cell, 2003,15:1502~1506.
    97. Gonzalez-Martinez S C, Wheeler N C, Ersoz E, Nelson C D, Neale D B . Association genetics in Pinus taeda L I. Wood property traits. Genetics, 2007, 175: 399~409.
    98. Guillet-Claude C, Birolleau-Touchard C, Manicacci D, Fourmann M, Barraud S, Carret V, Martinant J P, Barriere Y. Genetic diversity associated with variation in silage corn digestibility for three O-methyltransferase genes involved in lignin biosynthesis. Theor Appl Genet, 2004a, 110: 126~135.
    99. Guillet-Claude C, Birolleau-Touchard C, Manicacci D, Rogowsky P M, Rigau J, Murigneux A, Martinant J P, Barriere Y. Nucleotide diversity of the ZmPox3 maize peroxidase gene: relationships between a MITE insertion in exon 2 and variation in forage maize digestibility. BMC Genet , 2004b, 5: 19.
    100. Gupta P K, Rustgi S, Kulwal P L. Linkage disequilibrium and association studies in higher plants: Present status and future prospects. Plant Mol Biol, 2005, 57: 461~485.
    101. Habash DZ, Bernard S, Shondelmaier J, Weyen Y, Quarrie SA. The genetics of nitrogen use on hexaploid wheat: N utilization, development and yield. Theor Appl Genet, 2006, 114: 403~419.
    102. Halushka M.K, Fan J B, Bentley K. Patterns of single-nucleotide polymorphisms in candidate genes for blood-pressure homeostasis. Nat Genet, 1999, 22 (3): 239~47.
    103. Hansen M, Kraft T, Ganestam S, Sall T, and Nilsson N O. Linkage disequilibrium mapping of the bolting gene in sea beet using AFLP markers, Genet Res, 2001, 77 (1): 61~66.
    104. Harvey P. H. Hereditary variation in plant nutrition. Genetics, 1939, 24: 437~461.
    105. H?stbacka J, De La Chapelle A, Kaitila I, Sistonen P, Weaver A, Lander E. Linkage disequilibrium mapping in isolated founder populations: diastrophic dysplasia in Finland. Nat Genet, 1992, 2: 204~211.
    106. Hirel B and Gouis J L, Ney B, and Gallais A. The challenge for improving nitrogen use efficiency in crop plants: towards a more central role for genetic variability and quantitative genetics within integrated approaches. J Exp Bot, 2007, 58 (9): 2369~2387
    107. Hirel B and Lemaire G. From agronomy and ecophysiology to molecular genetics for improving nitrogen use effciency in crops. Journal of Crop Improvement , 2005b, 15: 369~420
    108. Hirel B, Martin T, Laforgue T, Gonzalez-Moro M B, Estavillo JM. Physiology of maize. I. A comprehensive and integrated view of nitrogen metabolism in a C4 plant. Physiologia Plantarum, 2005a, 124: 167~177
    109. Hirel B, P Bertin, Quiller I, Bourdoncle W, Attagnant C, Dellay C, Gouy A, Cadiou S, Retailliau C, Falque M, Gallais A. Towards a better understanding of the genetic and Physiological basis for nitrogen use efficiency in maize. Plant Physiol, 2001, 125: 1258~1270.
    110. Hirel B. Control of plant gene expression. CRC Press Inc, 1993, 425~427
    111. Hirel, B. Andrieu, Valadier B, Renard M H, Quillere S, Chelle I, Pommel M, Fournier B C, and Drouet JL. Physiology of maize II: Identification of physiological markers representative of the nitrogen status of maize (Zea mays) leaves during grain filling. Physiol Plant, 2005b, 124, 178~188
    112. Hirel, B. Martin A, Terce-Laforque T, Gonzalez-Moro M.B, and Estavillo J M. Physiology of maize I: A comprehensive and integrated view of nitrogen metabolism in a C4 plant. Physiol Plant, 2005a, 124, 167~177
    113. http://ftp.fao.org/ agl/agll/docs/cwfto07.pdf
    114. http://genomics.energy.gov/gallery/
    115. http://zzys.agri.gov.cn
    116. Huttley G A, Smith M W, Carrington M, and Brien S J. A scan for linkage disequilibrium across the human genome, Genetics, 1999, 152 (8): 1711~1722.
    117. Ibrokhim Y A and Abdusattor A. Application of Association mapping to understanding the genetic diversity of plant germplasm resources. Int J Plant Geno, 2008, 10: 1~18.
    118. Jannink J. L and Walsh B. Association mapping in plan populations in Quantitative Genetics, Genomics and Plant Breeding, Kang M S, Ed, CAB International, Oxford, UK, 2002: 59~68.
    119. Jocic B and Saric M R. Genetic Aspects of plant nutrition. Martings Nijboff Publishers 1983, 255~260.
    120. Jones D H and Winistorfer S C. Genome walking with 2 to 4 kb steps using panhandle PCR. PCR Methods Appl, 1993, 2: 197~203.
    121. Jorde J B. Linkage disequilibrium and the search for complex disease gene, Genome Res, 2000, 10 (10): 1435~1444.
    122. Jung M, Ching A, Bhattramakki D, Dolan M, Tingey S, Morgante M, Rafalski A. Linkage disequilibrium and sequence diversity in a 500-kb region around the adh1 locus in elite maize germplasm. Theor Appl Genet, 2004, 109: 681~689
    123. Katsantonis N, Gagianas A, Fotiadis N. Genetic control of nitrogen uptake reduction and partitioning in maize (Zea mays L.). Maydica 1988, 33: 99~10.
    124. Kerem B, Rommens J .M, Buchanan J A, Markievicz D, Cox D K, Chakravarti A, Buchwald M, Tsui L C. Identification of the cystic fibrosis gene: genetic analysis. Science, 1989, 245: 1073~1080.
    125. Kiniry J. R and Ritchie J T. Shade sensitive interval of kernel number of maize. Crop Sci, 1985, 26:1017~1022.
    126. Kraakman A T, Martìnez F, Mussiraliev B, Eeuwijk F A, and Niks R E. Linkage disequilibrium mapping of morphological, resistance, and other agronomically relevant traits in modern spring barley cultivars, Mol Breeding 2006, 17, (1): 41~58.
    127. Kraakman A T, Niks R E, Van den Berg P M, Stam P, Van Eeuwijk F A. Linkage disequilibrium mapping of yield and yield stability in modern spring barley cultivars, Genetics 2004, 168 (1): 435~446.
    128. Lafitte H R and Edmeades G O. Improvement for tolerance to low soil nitrogen in tropical maize. Ⅱ.Grain yield, biomass production, and N accumulation. Field Crop Res, 1994b, 39: 15~25
    129. Lafitte H R and Edmeades G O. Improvement for tolerance to low soil nitrogen in tropical maize. Variation in yield across environments. Field Crop Res, 1994c, 39: 27~38.
    130. Lafitte H R and Edmeades G O. Improvement for tolerance to low soil nitrogen in tropical maize.Ⅰ. Selection certeria. Field Crop Res, 1994a ,39: 1~14.
    131. Lai J, Ma J, Swigonova Z, Ramakrishna W, Linton E, Llaca V, Tanyolac B, Park Y J, Jeong O Y, and Bennetzen J L. Gene loss and movement in the maize genome. Genome Res, 2004, 14: 1924~1931.
    132. Lance R V and Lee M. Genetic mapping of quantitative trait loci in maize in stress and nonstress environments:Ⅰ. Grain yield and yield components. Crop Sci, 1996, 36: 1310~1319.
    133. Lauter R R, Ninneman O, Bucher M. Preferential expression of an ammonium transporter and of two putative nitrate transporters in root hairs of tomato. Proc Natl.Acad Sci USA, 1996, 93: 8139~8144
    134. Lea P J, Robinson S A, Stewart G R. The enzymology and metabolism of glutamine, glutamate and asparagine. In: Miflin BJ, Lea 1 J eds. The Biochemistry of Plants. New York, Academic 1990, 16: 121~159.
    135. Li M G, Villemur R, Hussey P J, Silflow C D, Gantt J S, and Snustad D P. Differential expression of six glutamine synthetase genes in Zea mays. Plant Mol Biol, 1993, 23: 401~440.
    136. Liu K.J, Goodman M, Muse S, Smith J S, Buckler E S, Doebley J. Genetic structure and diversity among maize inbred lines as inferred from DNA microsatellites. Genetics, 2003, 165: 2117~2118.
    137. Lopez-Bellido R J, Shepherd C E, Barraclough P B. Predicting post-anthesis N requirements of bread wheat with a Minolta SPAD meter. Eur J Agron, 2004, 20: 313~320.
    138. Maccaferri M, Sanguineti M C, Noli E, and Tuberosa R. Population structure and long-range linkage disequilibriuin a drum wheat elite collection, Mol Breeding, 2005, 15 (3): 271~289.
    139. Machado A T, Magalhaes J R , Magnavaca R. Activity of enzymes involved in the nitrogen metabolism in different maize genotypes. Revista Gbrasileira de Fisiologia Vegetal, 1992, 4(1): 45~47.
    140. Machado A T, Magalhaes J R , Magnavaca R. Activity of enzymes involved in the nitrogen metabolism in different maize genotypes Revista Gbrasileira de Fisiologia Vegetal 1992, 4(1): 45~47.
    141. Mae T, Makino A, Ohira K. Changes in the amounts of ribulose bisphosphate carboxylase synthesized and degraded during the life span of rice leaf (Oryza sativa L.). Plant Cell Physiol, 1983, 24: 1079~1086.
    142. Magalhaes J R, Purcino A A, Machado A T. Study of physiological parameters for the selection of maize genotypes efficient in ammonium uptake. Documentos Empresa Capixaba de Pesquisa A gropecuaria 1990, 65: 104.
    143. Manicacci D, Camus-Kulandaivelu L, Fourmann M , Arar C , Barraul S, Roussele A, Feminias N, Consoli L, FrancèL, Méchi V, Murigneux A, Prioul J L, Charcosset A, Damerval C. Epistatic interactions between Opaque2 transcriptional activator and its target gene CyPPDK1 control kernel trait variation in maize, Plant Physiol, 2009, 10: 108~131
    144. Marchler-Bauer A, Anderson J B, Cherukuri P F, Deweese-Scott C, Geer L Y, Gwadz M, He S, Hurwitz D I, Jackson J D, Ke Z, Lanczycki C, Liebert C A, Liu C, Lu F, Marchler G H, Mullokandov M, Shoemaker B A, Simonyan V, Song J S, Thiessen P A, Yamashita R A, Yin J J, Zhang D, Bryant S H. CDD: a conserved domain database for protein classification. Nucl Acids Res, 2005, 33: 192~196.
    145. Martin A, Belastegui-Macadam X, Quillere′I, Floriot M, Valadier M H, Pommel B, Andrieu B,Donnison I, Hirel B. Nitrogen management and senescence in two maize hybrids differing in the persistence of leaf greenness. Agronomic, physiological and molecular aspects. New Phytol, 2005, 167: 483~492.
    146. Martin A, Lee J, Kichey T, Gerentes D, Zivy M, Tatout C, Dubois F, Balliau T, Valot B, Davanture M, Tercé-Laforgue T, QuilleréI, Coque M, Gallais A, Gonzalez-Moro M, Bethencourt L, Habash D Z, Lea P J, Charcosset A, Perez P, Murigneux A, Sakakibara H, Edwards K J, Hirel B. Two cytosolic glutamine synthetase isoforms of maize are specifically involved in the control of grain production. Plant Cell 2006, 18: 3252~3274.
    147. Martre P, Porter JR, Jamieson PD, Tribo? E. Modeling grain nitrogen accumulation and protein composition to understand the sink/source regulations of nitrogen utilization in wheat. Plant Physiology, 2003, 133, 1959~1967
    148. McRae A F, McEwan J C, Dodds K G, Wilson T, Crawford A M, Slate J. Linkage disequilibrium in domestic sheep, Genetics 2002, 160(3): 1113~1122.
    149. Messmer M.J , Lambert R.J , Hageman R H. Classification of certain N traits as criteria for the identification of productive maize genotypes. Crop Sci, 1984, 24: 605~610.
    150. Mickelson S M, Stuber C S, Senior L. Quantitative trait loci controlling leaf and tassel traits in a B73×MO17 population of maize.Crop sci, 2002, 42, 42: 1902~1909 .
    151. Miflin B J and Lea P J. Ammonia assimilation. In: The biochemistry of plants. New York: Acadimic Press,1980, 169~202
    152. Miflin B J and Lea P J. Glutamine and asparagine as nitrogen donors for reductant-dependent glutamate synthesis in pea roots. Biochem J, 1975, 149: 403~409.
    153. Miflin B. J and Habash D Z. The role of glutamine synthetase and glutamate dehydrogenase in nitrogen assimilation and possibilities for improvement in the nitrogen utilization of crops. J Exp Bot, 2002, 53: 979~987.
    154. Miller R E. Glutamate synthase from Escherichia: an iron sulphide flavoproten. In: Prusinier S, Standtman E R eds.The Enzymes of Glutamate Metobolism. New York, Academic 1973, 183~205.
    155. Mohlke K L, Lange E M, Valle T T. Linkage disequilibrium between microsatellite markers extends beyond 1 cM on chromosome 20 in Finns, Genome Res, 2001, 11( 7): 1221~1226.
    156. Moll R H, Jackson W A, Mikkesen R L. Recurrent selection for maize grain field: dry matter and nitrogen accumulation and partitioning changes. Crop Sci 1994, (34): 874~888.
    157. Moll R H, KamPrath E J, Jacson W A. Analysis and interpretation of factors which contribute to efficiency of nitrogen utilization. Agron J, 1982, 74: 562~564.
    158. Mozafar A. Kernel abortion and distribution of mineral elements along the maize ear. Agron J, 1990, 82: 511~514.
    159. Muchow R C. Effect of nitrogen supply on the comparative productivity of maize and sorghum in a Semi-arid tropical environment.Ⅱ.Grain yield and nitrogen accumulation. Field Crop Res, 1988, 18: 31~43
    160. Muhitch M J, Liang H, Rastogi R, and Sollenberger K G. Isolation of a promoter sequence from theglutamine synthetase1-2 gene capable of conferring tissue-specific gene expression in transgenic maize. Plant Sci. 2002, 163, 865~872
    161. Muhitch MJ. Distribution of the glutamine synthetase isozyme GS (p1) in maize (Zea mays). J. Plant Physiol. 2003, 160, 601~605
    162. Mungoma C and Mwambula C. Drought and low N in Zambia:The problems and a breeding strategy.In Edmeades G.O.,Banziger H.R.,Mickelson H.R.(Eds).Developing drought and low N-tolerant maize, 1997, 83~86
    163. Nigel M C, Jack Q W, Samuel T. Control of nitrate reduction in plants. Aust J Physiol, 1992, 19: 377~385.
    164. Nordborg M, Hu T T, Ishino Y. The pattern of polymorphism in Arabidopsis thaliana, PLoS Biol, 2005, 3 (7): 196.
    165. Nordborg M., Borevitz J O, Bergelson J. The exten of linkage disequilibrium in Arabidopsis thaliana, Nat Genet, 2002, 30 (2): 190~193.
    166. Novoa R and Loomis R S. Nitrogen and plant production. Plant Soil, 1981, 58: 177~204.
    167. Ohashi J, Yamamoto S, Tsuchiya N. Comparison of statistical power between 2×2 allele frequency and allele positivity tables in case-control studies of complex disease genes, Annals of Human Genetics, 2001, 65 (2): 197~206.
    168. Ohnisii M, Horie T, Homma K, Supapoj N, Takano H, Yamamoto S. Nitrogen management and cultivar effects on rice yield and nitrogen use efficiency in northeast Thailand. Field Crop Res, 1999, (64): 109~120.
    169. Olsen K M, Halldorsdottir S S, Stinchcombe J R, Weinig C, Schmitt J, Purugganan M D. Linkage disequilibrium mapping of Arabidopsis CRY2 flowering time alleles. Genetics 2004, 167: 1361~1369.
    170. Oraguzie N C, Wilcox P L, Rikkerink EH and. Da Silva H N. Linkage disequilibrium Association Mapping in Plants. Springer, New York, NY, USA, 2007: 11~39.
    171. Osterberg M K, Shavorskaya O, Lascoux M, Lagercrantz U. Naturally occurring indel variation in the Brassica nigra COL1 gene is associated with variation in flowering time. Genetics, 2002, 161: 299~306.
    172. Panguluri K, Long L O, Chen W. COX22 gene promoter haplotypes and prostate cancer risk . Carcinogenesis. 2004, 25 (6): 961~966.
    173. Pate J S and Layzell D B. Carbon and nitrogen partitioning in the whole plant. A thesis based on empirical modeling.In:J.W. Bewley (ed.), Nitrogen and carbon metabolism Nijhoff. The Hague, Netherlands 1981, 94~134.
    174. Paulo R F S, Mércio L S, Rúbia P S C, Lisandro R, Luís S, Gilber A, Everton L F, Adriano A S. Grain yield and kernel crude protein content increases of maize hybrids with late nitrogen side-dressing. Sci Agr, 2005, 62 (5): 487~492.
    175. Pearce L , Hirschhorn N , Wu H. Clarifying the PROGINS allele association in ovarian and breast cancer risk : A haplotype2 based analysis. J Natl Cancer Inst, 2005, 97 (1): 51 ~ 59.
    176. Pearson C J and Jambs B C. Yeld components and nitrogen partitioning of maize in response to nitrogen before and after anthesis. Aust J Agr Res, 1987,38: 1001~1009.
    177. Peng S, Garcia FV, Laza R C, Sanico A L, Visperas R M, Cassman K G. ,Increased N-use efficiency using a chlorophyll meter on high yielding irrigated rice. Field Crop Res, 1996, 47: 243~252.
    178. Peterman T K and Goodman H M. The glutamine synthetase gene family of Arabidopsis thaliana light-regulation and differential expression in leaves, roots and seeds. Mol Gen Genet, 1991, 230 (1): 145~154.
    179. Pollmer W G, D Eberhart, Klein D, Dhillon B S. Genetic control of nitrogen uptake and translocation in maize. Crop Sci, 1979, 19: 82~86.
    180. Posthuma E F, Falkenburg J H, Apperley J F. HLA2 B8and HLA-A3 coexpressed with HLA-B8 are associated with a reduced risk of development of chronic myeloid leukemia. Blood, 1999, 93: 3863 ~ 3865 .
    181. Posthuma EFM, Falkenburg JHF, Apperley JF. HLA-DR4 is associated with a diminished risk of the development of chronic myeloid leukemia ( CML ). Leukemia, Leukemia, 2000, 14: 859 ~ 862
    182. Presterl T, Groh S, Landbeck M, Seitz G, Schmidt W and Geiger H H. Nitrogen uptake and utilization efficiency of European maize hybrids developed under conditions of low and high nitrogen input. Plant Breeding, 2002, 121: 480~486
    183. Presterl T, Seitz G, Landbeck M, Thiemt E M, Schmidt W, and Geiger H H. Improving nitrogen-use efficiency in European maize: estimation of quantitative genetic parameters. Crop Sci. 2003 , 43: 1259~1265
    184. Presterl T, Seitz G, Landbeck M, Thiemt E M, Schmidt W, Geiger H H. Improving nitrogen-use efficiency in European maize: estimation of quantitative genetic parameters. Crop Sci, 2003, 43: 1259~1265.
    185. Pritchard J. K. and Rosenberg N A. Use of unlinked genetic markers to detect population stratification in association studies. Am J Hum Genet, 1999, 65: 220~228
    186. Pritchard J. K. Deconstructing maize population structure. Nature. 2001 28: 203~204.
    187. Pritchard J.K, Stephens M and Donnelly P. Inference of population structure using multilocus genotype data. Genetics. 2000, 155: 945~959.
    188. Rafalski A and Morgante M. Corn and humans: recombination and linkage disequilibrium in two genomes of similar size. Trends Genet, 2004, 20 (2): 103~111.
    189. Rajcan I and Tollenaar M. Source: sink ratio and leaf senescence in maize. II. Nitrogen metabolism during grain filling. Field Crop Res, 1999, 60: 255~265.
    190. Reddy A. Alternative splicing of pre-messenger RNAs in plants in the genomic era. Annu Rev Plant Biol, 2007, 58: 267~294.
    191. Reich D E and Goldstein D B. Detecting association in a case-control study while correcting for population stratification. Genet Epidemiol, 2001, 20: 4~16.
    192. Remington D L, Thornsberry J M, Matsuoka Y, Wilson L M, Whitt S R, Doebley J, Kresovich S, Goodman M M and Buckler E S. Structure of linkage disequilibrium and phenotypic associations inthe maize genome. Proc Natl Acad Sci USA, 2001, 98, 11479~11484
    193. Saghai-Maroof M A, Soliman K, Jorgensen R A, Allard R W. Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance, chromosomal location, and population dynamics. Proc Natl Acad Sci USA, 1984, 81:8014~8018.
    194. Schnder L E, Rilenour G L, Eilrich G L. Some characteristics of nitrate reduatase from higher plants. Plant Physiol, 1968, 13: 930~934.
    195. Schulze T G and Mcmahon F J. Genetic association mapping at the crossroads: which test and why? Overview and practical guidelines. Am J Med Genet B, 2002, 114 (1): 1~11,
    196. Sherrard J H, Lambert R J, Below F E . Use of physiological traits, especially those of nitrogen metabolism for selection in maize In: C A.Beyra (Eds), biochemical Basis of Plant Breeding,Vol.2, Nitrogen Metabolism. CRC Press. Boca Raton. FL 1986: 109~130.
    197. Spielman R. S.and Ewens W J. The TDT and other family based tests for linkage disequilibrium and association, Am J Hum Genet, 1996, 59(5): 983~989.
    198. Stich B, Maurer H P, MelchingerA. E. Comparisoof linkage disequilibrium in elite European maize inbred lines using AFLP and SSR markers. Mol Breeding, 2006, 17 (3): 217~226.
    199. Stich B, Melchinger A E, Frisch M, Maurer H P, Heckenberger M, and Reif J C. Linkage disequilibrium I European elite maize germplasm investigated with SSRs, Theor Appl Genet, 2005, 111, ( 4): 723~730.
    200. Stich B, Melchinger A E, Piepho H P. Potential causes of linkage disequilibrium in a European maize breeding program investigated with computer simulations, Theor Appl Genet, 2007, 115, ( 4) : 529~536.
    201. Stoy V. Use of tracer techniques to study yield components in sea crops. Tracer Techniques for Plant Breeding. Proc Panel Vienna, IAEA, Vienna 1974, 1975, 43~45.
    202. Suzuki A, Burkhart W, Rothstein S. Nitrogen effects of Feredoxin-dependent glutamate and its mRNA in maize on the induction leaves under the light.Plant Sci Limerick 1996, 114 (1): 83~91
    203. Syv?nen A C. Toward genome-wide SNP genotyping. Nat Genet, 2005, 37: 5~10.
    204. Szalma S J, Buckler IV E S, Snook M E, McMullen M D. Association analysis of candidate genes for maysin and chlorogenic acid accumulation in maize silks. Theor Appl Genet 2005, 110: 1324~1333.
    205. Tabuchi M, Abiko T, Yamaya T. Assimilation of ammonium~ions and re-utilization of nitrogen in rice (Oryza sativa L.). J Exp Bot, 2007, 58 (in press).
    206. Tenaillon M I, Sawkins M C, Anderson L K, Stack S M, Doebley J and Gaut B S. Patterns of diversity and recombination along chromosome 1 of maize (Zeamays mays L.) .Genetics, 2002, 162, 1401~1413.
    207. Terwilliger J D. and Weiss K M. Linkage disequilibrium mapping of complex disease: fantasy or reality? Curr. Opin.Biotech, 1998, 9: 578~594
    208. Thomas H, Stoddart JL. Separation of chlorophyll degradation from other senescence processes in leaves of a mutant genotype of meadow fescue. Plant Physiol. 1975, 56 (3): 438~441.
    209. Thornsberry J M, Goodman M M, Buckler E S et al. Dwarf8 polymorphisms associate with variation in flowering time. Nat Genet. 2001, 28: 286~89.
    210. Tollenaar M, Bruulsema T W. Efficiency of maize dry matter production during periods of complete leaf area expansion. Agron J, 1988, 80: 580~585.
    211. Tollenaar M, Dwyer L M, Stewart D W. Ear and kernel formation in maize hybrids representing three decades of gain yield improvement in Ontario. Crop Sci, 1992, 32: 432~438.
    212. Tollenaar M. Sink-source relationships during reproductive development in maize. A review. Maydica, 1977, 22: 49~75.
    213. Trueman L J, Richardson A, Forde B G. Molecular cloning of higher plant homologues of the high-affinity nitrate transporters of Chlamydomonas reinharditii and Aspergillus nidulans.Gene, 1996, 175: 223~231
    214. Tsai C Y, Huber D M, Glover D V. Relationship of N deposition to grain yield and response of three maize hybrids. Crop Sci, 1984, 24: 277~281.
    215. Ueno O, Yoshimura Y. and Sentoku N. Variation in the activity of some enzymes of photorespiratory metabolism in C-4 grasses. Ann. Bot, (Lond.) .2005, 96, 863~869
    216. Uhart S A and Andrade F H. Nitrogen deficiency in maize: I.Effects on crop growth, development, dry matter partitioning and kernel set. Crop Sci, 1995, 35: 1376~1383.
    217. Weight S I, Bi I V, Schroeder S G, Yamasaki M, Doebley J F, McMullen M D, Gaut B S. The effects of artificial selection on the maize genome. Science, 2005, 308: 1310~1314
    218. Whitt S R. and Buckle E S. Using natural allelic diversity to evaluate gene function, in Plant Functional Genomics: Methods and Protocols, E. Grotewald, Ed, Humana Press, Clifton, NJ, USA 2003: 123~139.
    219. William R R and Gordon V J. Improving nitrogen use efficiency for cereal production. Agron J 1999, 91(3): 357~363.
    220. Wilson L M, Whitt S R, Ibánêz A M, Rocheford T R, Goodman M M, Buckler E S. Dissection of maize kernel composition and starch production by candidate gene association. Plant Cell 2004, 16: 2719~2733.
    221. Wray J and Kinghorn J. Molecular and genetic aspects of nitrate assimilation. Oxford: Oxford Science Publications, 1989, 12~96
    222. Xie C X, Warburton M L, Li M S, Li X H, Xiao M J, Hao Z F, Zhao Q, Zhang S H. An analysis of population structure and linkage disequilibrium using multilocus data in 187 maize inbred lines. Mol Breeding, 2008, 21: 407~418
    223. Yu J, Buckler E S. Genetic association mapping and genome organization of maize. Curr Opin Biotech, 2006a, 17: 155~160.
    224. Yu J, Pressoir G, Briggs W H, Bi I V, Yamasaki M, Doebley J F, McMullen M.D, Gaut B S, Nielsen D M and Holland J B. A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet, 2006b, 38: 203~208.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700