用户名: 密码: 验证码:
油菜柠檬酸合酶与柠檬酸裂解酶基因克隆及功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
油菜是世界重要的油料作物,也是我国具有传统优势的重要油料作物。研究油菜高含油量的机理,有重要的理论价值和广阔的应用前景。柠檬酸合酶与柠檬酸裂解酶都是糖代谢的关键酶,其作用底物和产物是糖代谢中的关键中间产物,并可以作为脂肪酸合成的底物,因此,在植物的代谢中与脂肪酸合成紧密相关。研究柠檬酸合酶与柠檬酸裂解酶对脂肪酸合成的影响,以及对种子含油量的贡献,具有一定的理论意义。
     根据已知的EST序列设计引物,利用现有的油菜cDNA文库及油菜cDNA,本实验成功克隆了油菜柠檬酸合酶、柠檬酸裂解酶A亚基、柠檬酸裂解酶B亚基的序列。分析表明,克隆到的序列含油菜柠檬酸合酶、柠檬酸裂解酶A亚基、柠檬酸裂解酶B亚基的完整开放阅读框。聚类分析表明,三个基因的序列在植物内高度同源。
     根据克隆的柠檬酸裂解酶A亚基、B亚基和柠檬酸合酶基因(ACLA,ACLB和CS)的cDNA序列,共设计了16对EST引物,其中ACLA 5对,ACLB 5对,CS 6对,用于高低油F2群体和不同含油量品种群体标记。将这些引物用于高低油F2群体,最终有5对引物在群体中有差异条带。将16对引物应用于15个高含油量和15个低含油量的油菜品种群体,有4对引物在群体中有差异条带。实验结果证明设计的EST引物可以用于油菜分子标记。
     采用半定量PCR和Real-time PCR的方法,检测柠檬酸合酶和柠檬酸裂解酶的表达。结果表明,在含油量不同的油菜品种中,其叶片内柠檬酸合酶表达量有差异,高油品种内表达量较高;在油菜的不同器官和组织中,柠檬酸合酶和柠檬酸裂解酶的表达强度不同,在角果发育早期表达量都较高,随着胚珠的成熟,表达量逐渐下降。在不同的胁迫条件下,油菜叶片中柠檬酸合酶和柠檬酸裂解酶的表达呈现不同的表达规律。柠檬酸合酶在水渍、干旱、高温和低温胁迫下, IAA和6-BA、ABA处理后表达量在特定时期均有上升,同样,柠檬酸裂解酶在水渍、低、强光和ABA处理后在表达量在特定时期均有上升。本实验结果表明,柠檬酸合酶在不同含油量油菜品种叶片中表达强度存在差异。柠檬酸合酶和柠檬酸裂解酶在油菜各器官中广泛表达,而且表达强度存在差异,说明这两个酶是组织和器官发育和执行生理功能不可缺少的。
     根据克隆的油菜柠檬酸合酶基因,分别构建了油菜柠檬酸合酶基因的顺式植物表达质粒pMD-tCS,pMN-tCS,和反式植物表达质粒pMD-rCS、pMN-rCS,另外成功构建了柠檬酸裂解酶A亚基基因的顺式表达载体Gate-tACLA、反式表达质粒pMD-rACLA、pMN-rACLA。将构建好的植物表达载体转化拟南芥后,经抗性筛选和PCR检测后,除质粒pMN-rCS外,其余得到不同数量的阳性株系。而质粒pMN-rACLA和Gate-tACLA植株尚未进行性状检测。
     在拟南芥中正义和反义表达油菜柠檬酸合酶基因,均造成了表型的变化。正义表达的植株中,侧枝的生长比野生型旺盛,种子和叶片中含油量均有上升,并且在叶片中尤为明显,此外,种子和叶片的脂肪酸组分也发生了一定的变化。而在反义表达的植株中,出现了矮化、叶片变小、果荚缩短等表型,种子和叶片中含油量降低,组分发生了变化。因此,实验结果表明,柠檬酸合酶在植物的正常生长发育中起重要作用,过量表达和降低表达均会造成植株发育的变化;另外,在植物的脂肪酸合成中,是重要的调控酶,该酶表达的上升会造成脂肪酸合成的增加,反义造成脂肪酸合成的降低。而在拟南芥中,反义表达柠檬酸裂解酶A亚基基因,同样会造成矮化、叶片变小、果荚缩短等表型。反义表达柠檬酸裂解酶,也同样造成了植物脂肪酸合成的降低,说明柠檬酸裂解酶同样是脂肪酸合成的调控酶。
Brassica napus is one of major oil crops in China and whole world. The mechanism of high oil content in Brassica napus is a very important subject for theoritic and applied studies. As the key enzymes of sugar metabolism, citrate synthase and ATP-citrate lyase are related to fatty acid synthesis by the fact that their production can be used to synthesize fatty acid. It has significant value theoretically to discover the function of citrate synthase and ATP-citrate lyase in oil content accumulation in seed.
     In this study, we cloned cDNA of citrate synthase, ATP-citrate lyase A and ATP-citrate lyase B from cDNA library or cDNA in Brassica napus. Those products had full open reading frames which were confirmed by sequencing. Alignment analysis indicated that those genes were highly conserved in plants.
     We designed 16 pairs of EST primers by cDNA sequences of citrate synthase, ATP-citrate lyase A and ATP-citrate lyase B, including 5 pairs of ALCA, 5 pairs of ALCB and 6 pairs of CS, and used them in an oil content segregation F2 population and a different oil content strain population. There were 5 pair of polymorphic primers found in oil content segregation F2 population and 4 pair of polymorphic primers found in different oil content strain population. Correlation analysis between markers and oil content indicated that there was no marker linked to oil content.
     We detected the expression of citrate synthase and ATP-citrate lyase by semi-quantity PCR and Real-time PCR, and found that the expression of citrate synthase was different in different oil content rapeseed leaves. The expression of citrate synthase was higher in the leaf of high oil content strain than in the leaf of low oil content strain. It suggested that the expression of citrate synthase maybe be related to oil content. And the expression of citrate synthase and ATP-citrate lyase was diverse in organs, so that those enzymes might be indispensable for normal physiological function. The expression levels of those two enzymes were high in early days and digressive latterly in ovule. This fact indicated that they were important in early development of ovule. The expression of citrate synthase gene was increased at different time in treatments of water logging, drought, low or high temperature, IAA, 6-BA, and ABA., and the expression of ATP-citrate lyase gene was increased at different time in treatments of water logging, low temperature, high illumination, and ABA. The expressing analysis of enzymes under stresses with various pattern proved they took a part in these metabolic control and responding to some environmental changes.
     Then we constructed over expressing vectors and repressive expressing vectors for citrate synthase gene and ATP-citrate lyase A gene, named pMD-tCS, pMN-tCS, Gate-tACLA, pMD-rCS, pMN-rCS, pMD-rACLA and pMN-rACLA. After transfoming above plasmids to Arabidopsis thaliana, we otained a respective transgenic plants of diffenent plasmids except pMN-rCS. The successful transformation was confirmed by fastness filtration and PCR. The properties of transgenic plants of plasmid Gate-tACLA and pMN-rACLA were not been analyzed in this study.
     Both over or repressive expression of citrate synthase gene made phenotypes changed in transgenic plants. It had thicker side shoots, higher oil content in leaf and seed, and different fatty acid composition in over expression plants compared with wild type. Repressive expression plants were dwarf with miniature leaf, short silique and low oil content. It indicated that citrate synthase played an important role in plant growth, as its expression variety could affect development. And it was one of main regulative enzyme in fatty acid synthesis in plant, because of up or down regulation of its expression resulted in oil content increased or decreased respectively. Furthermore, repressive expression of ATP-citrate lyase A gene led to phenotypes such as dwarfing, leaf miniaturization, shorten silique and oil content decreasing, sugesst that ATP-citrate lyase was also a regulative enzyme in oil synthesis.
引文
1.陈全求,詹先进, et al. Est分子标记开发研究进展.中国农学通报2008, 24(9): 72-77
    2.陈光尧,王国槐, et al.外源激素对甘蓝型油菜种子萌发的影响.中国种业2006, 12: 46-47
    3.陈锦清,黄锐之.基因工程创制油菜种子基生物燃油的关键技术.生物技术通报2005, 6: 46-50
    4.陈锦清,郎春秀.反义pep基因调控油菜籽粒蛋白质/油脂含量比率的研究.农业生物技术学报1999, 4(7): 316-320
    5.蔡传杰陈善娜.植物激素的研究进展.云南大学学报:自然科学版2001,
    6.丁昕,刁文一, et al.植物脂肪酸代谢途径遗传调控的研究进展.现代生物医学进展2007, 7(4): 611-614
    7.董媛媛,俞咪娜, et al. Est-ssr和rapd标记检测油菜(brassica napus)遗传多样性.核农学报2008, 22(5): 611-616
    8.傅寿仲,张洁夫, et al.甘蓝型油菜高含油量种质选育研究.中国油料作物学报2008, 30(3): 279-283
    9.葛正龙.长链脂肪酸醇氧化酶基因在油菜不同组织中的表达.遵义医学院学报2003, 26(3): 213-215
    10.耿站军,钟颖, et al.水分胁迫对不同基因型油菜的生态适应性影响.干旱地区农业研究2008, 26(6): 159-162
    11.郭彦,杨洪双, et al.激素对野生大豆幼苗抗旱能力的影响.河南农业科学2007, 4: 37-39
    12.华玮,李荣俊, et al.烟草幼苗两种钙调素结合蛋白激酶的活性调节及基因表达.植物生理与分子生物学学报2005, 31(3): 305-310
    13.胡立勇,傅廷栋, et al.油菜生长发育期间内源激素含量的变化.植物生理与分子生物学学报2003, 29(3): 239-244
    14.金美芳,连阳梅, et al. Nacl胁迫对油菜幼苗膜脂过氧化和抗氧化酶活性的影响.福建师大福清分校学报2009, 2: 16-20
    15.金梦阳,李加纳, et al.甘蓝型油菜含油量及皮壳率的qtl分析.中国农业科学2007, 40(4): 677-684
    16.李爱民,张永泰, et al.芸苔属主要油料作物黄籽性状分子遗传研究进展.分子植物育种2009, 7(2): 407-412
    17.李春龙.盐胁迫对油菜种子萌发的影响.安徽农业科学2008, 36(26): 11198-11199
    18.李小白,崔海瑞, et al. Est分子标记开发及在比较基因组学中的应用.生物多样性2006, 14(6): 541-547
    19.李劲峰,郑树松, et al.农杆菌介导法将深黄被孢霉△^6-脂肪酸脱氨酶基因(d6d)导入油菜的研究.西南农业学报2006, 19(1): 29-31
    20.李祥,易自力, et al.反义rna及其在植物基因工程领域的应用.生物技术通讯2003, 14(2): 162-164
    21.李西腾.养分胁迫对油菜碳酸酐酶活性的影响.农业科技与装备2008, 5: 10-11
    22.李震,杨春杰, et al. Peg胁迫下甘蓝型油菜品种(系)种子发芽耐旱性鉴定.中国油料作物学报2008, 30(4): 438-442
    23.梁宗锁,丁钟荣.两个油菜种对水分胁迫的适应.西北植物学报1992, 12(1): 38-45
    24.刘列钊,林呐, et al.甘蓝型油菜5个重要性状qtl分析.农业生物技术学报2006, 14(5): 747-751
    25.刘梓谕,王新发, et al.三个高含油量甘蓝型油菜新品系ssr指纹图谱的构建.中国油料作物学报2008, 4(30): 389-396
    26.陆光远,杨光圣, et al.应用于油菜研究的简便银染aflp标记技术的构建.华中农业大学学报2001, 20(5): 413—415
    27.农业部油料及钳品质量监督检验测试中心. 2005年双低油菜质量安全普查结果与总结报告. 2005,
    28.彭琦,张源, et al.甘蓝型油菜fad2与fae1基因双干扰rnai载体的构建.生物技术通报2007, 5: 163-166
    29.忻雅崔海瑞.植物表达序列标签(est)标记及其应用研究进展.生物学通报2004, 39(8): 4-6
    30.忻雅,崔海瑞, et al.白菜的est标记及其对油菜的通用性.遗传2005, 27(3): 410-416
    31.任蔷,胥婷, et al.单核苷酸多态性及其在油菜分子标记辅助育种中的应用.生物技术通报2007, 1: 37-41
    32.石东乔,周奕华, et al.农杆菌介导的油菜脂肪酸调控基因工程研究.高技术通讯2001, 11(2): 1-7
    33.谭祖猛,李云昌, et al.分子标记在油菜杂种优势利用中的研究进展.植物学通报2008, 25(2): 230-239
    34.田保明,陈占宽, et al.甘蓝型油菜脂肪酸延长酶fae1 rna干扰体的构建.河南农业科学2006, 3: 43-47
    35.田保明,陈占宽, et al.基于rnai技术转移脂肪酸延长酶基因fae1及转基因油菜的获得.中国油料作物学报2007, 29(2): 133-137
    36.涂红艳刘元风.反义rna的作用机理及其在植物基因工程领域的应用.生物磁学2005, 5(2): 32-34
    37.王伏林,王远山, et al.反义rna在植物基因工程中的应用.生物技术2003, 13(1): 34-35
    38.王关林,方宏筠.植物基因工程(第二版).北京科学出版社, 2002
    39.王贵春,刘智, et al.利用小孢子培养技术创建高含油量甘蓝型油菜.中国油料作物学报2007, 29(4): 382-386
    40.王贵春,杨光圣.油菜高含油量育种研究进展.安徽农业科学2007, 35(18): 5373-5375
    41.王汉中.中国油菜品种改良的中长期发展战略.中国油料作物学报2004, 26(3): 99-101
    42.王汉中.我国油菜产需形势分析及产业发展对策.中国油料作物学报2007, 29(1): 101-105
    43.王汉中.我国食用油供给安全形势分析与对策建议.中国油料作物学报2007, 29(3): 347-349
    44.王岩军.外源基因在油菜改良中的应用.种子2007, 26(11): 54-60
    45.韦冬萍,刘鹏, et al. Al胁迫下油菜生物量al积累及保护酶系统的响应.农业环境科学学报2008, 27(6): 2351-2356
    46.邬贤梦,官春云, et al.油菜脂肪酸品质改良的研究进展.作物研究2003, 17(3): 152-158
    47.肖玲,卢长明.以油菜脂肪酸延长酶基因fae1为靶标rnai载体的构建.中国油料作物学报2004, 26(4): 6-11
    48.徐平丽,张传坤, et al.模式植物拟南芥基因组研究进展.山东农业科学2006, 6: 100-102
    49.徐一兰,官春云, et al.油菜种子油分形成的生理生化基础研究进展.中国农学通报2006, 22(4): 255-259
    50.徐一兰,官春云, et al.油菜种子形成中含油量与其合成相关酶活性的变化及其相关性.作物学报2008, 34(10): 1854-1857
    51.严明理,刘忠松, et al.甘蓝型油菜黄籽育种研究进展.湖南农业科学2008, 5: 8-10
    52.袁晶,汪俏梅, et al.植物激素信号之间的相互作用.细胞生物学杂志2005, 27(3): 325-328
    53.朱惠霞,孙万仓, et al.白菜型冬油菜品种的抗寒性及其生理生化特性.西北农业学报2007, 16(4): 34-38
    54.张洁夫,戚存扣, et al.甘蓝型油菜含油量的遗传与qtl定位.作物学报2007, 33(9): 1495-1501
    55.杨畅,郑普英, et al.甘蓝型油菜est分子标记技术体系的建立.中国油料作物学报2008, 30(1): 17-24
    56.张琦,李明春, et al.少根根霉△^6-脂肪酸脱氢酶基因在转基因油菜中的表达.中国农业科学2006, 39(3): 463-469
    57.张国彬,刘小香, et al.营养胁迫诱导的油菜子叶衰老过程中iaa氧化酶和细胞分裂素氧化酶活性的变化.西北植物学报2004, 24(7): 1237-1240
    58.赵小虎,陈翠莲, et al.不同油菜品种对油菜菌核病敏感性差异的生理生化特性研究.华中农业大学学报2006, 25(5): 488-492
    59.赵雪,谢华, et al.植物功能基因组研究中出现的新型分子标记.中国生物工程杂志2007, 27(8): 104-110
    60.钟雪花,杨万年, et al.淹水胁迫下对烟草、油菜某些生理指标的比较研究.武汉植物学研究2002, 20(5): 395-398
    61.钟兆飞,朱亚娜, et al.分子标记在油菜遗传作图中的应用.浙江农业科学2008, 3: 313-318
    62.朱家成,高玉千, et al.甘蓝型油菜细胞质雄性不育恢复基因的分子标记及定位.河南农业科学2008, 10: 33-36
    63.朱惠霞,孙万仓, et al.白菜型冬油菜品种的抗寒性及其生理生化特性.西北农业学报2007, 16(4): 34-38
    64. Alex Cernac C. B. Wrinkled1 encodes an ap2/ereb domain protein involved in the control of storage compound biosynthesis in arabidopsis. The Plant Journal 2004, 40(4): 575-585
    65. Andre C.,Froehlich J. E., et al. A heteromeric plastidic pyruvate kinase complex involved in seed oil biosynthesis in arabidopsis. Plant Cell 2007, 19(6): 2006-2022
    66. Anoop V. M.,Basu U., et al. Modulation of citrate metabolism alters aluminum tolerance in yeast and transgenic canola overexpressing a mitochondrial citrate synthase. Plant Physiol. 2003, 132(4): 2205-2217
    67. Bao X. Ohlrogge J. Supply of fatty acid is one limiting factor in the accumulation of triacylglycerol in developing embryos. Plant Physiol. 1999, 120(4): 1057-1062
    68. Barone P.,Rosellini D., et al. Bacterial citrate synthase expression and soil aluminum tolerance in transgenic alfalfa. Plant Cell Reports 2008, 27(5): 893-901
    69. Baud S.,Wuilleme S., et al. Function of plastidial pyruvate kinases in seeds of arabidopsis thaliana. The Plant Journal 2007, 52(3): 405-419
    70. Beisson F.,Koo A. J. K., et al. Arabidopsis genes involved in acyl lipid metabolism. A 2003 census of the candidates, a study of the distribution of expressed sequence tags in organs, and a web-based database. Plant Physiol. 2003, 132(2): 681-697
    71. Bonaventure G.,Bao X., et al. Metabolic responses to the reduction in palmitate caused by disruption of the fatb gene in arabidopsis. Plant Physiol. 2004, 135(3): 1269-1279
    72. Borisjuk L.,Nguyen T. H., et al. Gradients of lipid storage, photosynthesis and plastid differentiation in developing soybean seeds. New Phytologist 2005, 167(3): 761-776
    73. Branen J. K.,Chiou T.-J., et al. Overexpression of acyl carrier protein-1 alters fatty acid composition of leaf tissue in arabidopsis. Plant Physiol. 2001, 127(1): 222-229
    74. Brown A. P.,Affleck V., et al. Tandem affinity purification tagging of fatty acid biosynthetic enzymes in synechocystis sp. Pcc6803 and arabidopsis thaliana. J. Exp. Bot. 2006, 57(7): 1563-1571
    75. Bundock,Bundock P., et al. Single nucleotide polymorphisms in cytochrome p450 genes from barley. TAG Theoretical and Applied Genetics 2003, 106(4): 676-682
    76. de la Fuente J. M.,Ramirez-Rodriguez V., et al. Aluminum tolerance in transgenic plants by alteration of citrate synthesis. Science 1997, 276(5318): 1566-1568
    77. Dehesh K.,Tai H., et al. Overexpression of 3-ketoacyl-acyl-carrier protein synthase iiis in plants reduces the rate of lipid synthesis. Plant Physiol. 2001, 125(2): 1103-1114
    78. Delhaize E.,Hebb D. M., et al. Expression of a pseudomonas aeruginosa citrate synthase gene in tobacco is not associated with either enhanced citrate accumulation or efflux. Plant Physiol. 2001, 125(4): 2059-2067
    79. Dennis D. T. Miernyk J. A. Compartmentation of nonphotosynthetic carbohydrate metabolism. Annual Review of Plant Physiology 1982, 33(1): 27-50
    80. Eastmond P. J. Rawsthorne S. Coordinate changes in carbon partitioning and plastidial metabolism during the development of oilseed rape embryos. Plant Physiol. 2000, 122(3): 767-774
    81. Eccleston V. S. Ohlrogge J. B. Expression of lauroyl-cyl carrier protein thioesterase inbrassica napus seeds induces pathways for both fatty acid oxidation and biosynthesis and implies a set point for triacylglycerol accumulation. Plant Cell 1998, 10(4): 613-622
    82. Fatland B.,Anderson M., et al. Molecular biology of cytosolic acetyl-coa generation. Biochem Soc Trans 2000, 28(6): 593-5
    83. Fatland B. L.,Ke J., et al. Molecular characterization of a heteromeric atp-citrate lyase that generates cytosolic acetyl-coenzyme a in arabidopsis. Plant Physiol. 2002, 130(2): 740-756
    84. Fatland B. L.,Nikolau B. J., et al. Reverse genetic characterization of cytosolic acetyl-coa generation by atp-citrate lyase in arabidopsis. Plant Cell 2005, 17(1): 182-203
    85. Hutchings D.,Rawsthorne S., et al. Fatty acid synthesis and the oxidative pentose phosphate pathway in developing embryos of oilseed rape (brassica napus l.). J. Exp. Bot. 2005, 56(412): 577-585
    86. Jako C.,Kumar A., et al. Seed-specific over-expression of an arabidopsis cdna encoding a diacylglycerol acyltransferase enhances seed oil content and seed weight. Plant Physiol. 2001, 126(2): 861-874
    87. Ke J.,Behal R. H., et al. The role of pyruvate dehydrogenase and acetyl-coenzyme a synthetase in fatty acid synthesis in developing arabidopsis seeds. Plant Physiol. 2000, 123(2): 497-508
    88. Klaus D.,Ohlrogge J. B., et al. Increased fatty acid production in potato by engineering of acetyl-coa carboxylase. Planta 2004, 219(3): 389-396
    89. Koyama H.,Kawamura A., et al. Overexpression of mitochondrial citrate synthase in arabidopsis thaliana improved growth on a phosphorus-limited soil. Plant Cell Physiol. 2000, 41(9): 1030-1037
    90. Kozak M. An analysis of 5'-noncoding sequences from 699 vertebrate messenger rnas. Nucl. Acids Res. 1987, 15(20): 8125-8148
    91. Koziol C. Overexpression of atp citrate lyase in arabidopsis thaliana. 2002,
    92. Lardizabal K.,Effertz R., et al. Expression of umbelopsis ramanniana dgat2a in seed increases oil in soybean. Plant Physiol. 2008, 148(1): 89-96
    93. Li R.-J.,Wang H.-Z., et al. Identification of differentially expressed genes in seeds of two near-isogenic brassica napus lines with different oil content. Planta 2006: 1-11
    94. Lin M. Oliver D. J. The role of acetyl-coenzyme a synthetase in arabidopsis. Plant Physiol. 2008, 147(4): 1822-1829
    95. Livak K. J. Schmittgen T. D. Analysis of relative gene expression data using real-time quantitative pcr and the 2-[delta][delta]ct method. Methods 2001, 25(4): 402-408
    96. Morgunov I. Srere P. A. Interaction between citrate synthase and malate dehydrogenase. Substrate channeling of oxaloacetate. J. Biol. Chem. 1998, 273(45): 29540-29544
    97. Mu J.,Tan H., et al. Leafy cotyledon1 is a key regulator of fatty acid biosynthesis in arabidopsis thaliana. Plant Physiol. 2008: pp.108.126342
    98. Nikolau B. J.,Oliver D. J., et al. Molecular biology of acetyl-coa metabolism. Biochem SocTrans 2000, 28(6): 591-3
    99. Ramli U. S.,Salas J. J., et al. Metabolic control analysis reveals an important role for diacylglycerol acyltransferase in olive but not in oil palm lipid accumulation. FEBS J 2005, 272(22): 5764-5770
    100. Rangasamy D. Ratledge C. Genetic enhancement of fatty acid synthesis by targeting rat liver atp:Citrate lyase into plastids of tobacco. Plant Physiol. 2000, 122(4): 1231-1238
    101. Rangasamy D.,Ratledge C., et al. Plastid targeting and transient expression of rat liver atp: Citrate lyase in pea protoplasts. Plant Cell Reports 1997, 16(10): 700-704
    102. Ratcliffe R. G. Shachar-Hill Y. Measuring multiple fluxes through plant metabolic networks. The Plant Journal 2006, 45(4): 490-511
    103. Ravel C.,Nagy I., et al. Single nucleotide polymorphism, genetic mapping, and expression of genes coding for the dof wheat prolamin-box binding factor. Functional & Integrative Genomics 2006, 6(4): 310-321
    104. Rawsthorne S. Carbon flux and fatty acid synthesis in plants. Progress in Lipid Research 2002, 41(2): 182-196
    105. Ruvkun G. Glimpses of a tiny rna world. Science 2001, 26(294): 797-799
    106. Saha S.,Enugutti B., et al. Cytosolic triacylglycerol biosynthetic pathway in oilseeds. Molecular cloning and expression of peanut cytosolic diacylglycerol acyltransferase. Plant Physiol. 2006, 141(4): 1533-1543
    107. Sakamoto R.,Honma K., et al. Isolation and characterization of citrate synthase isozymes from castor bean endosperm. Biochemistry 1970, 45: 405-411
    108. Sastien Baud,Santos M., et al. Wrinkled1 specifies the regulatory action of leafy cotyledon2 towards fatty acid metabolism during seed maturation in arabidopsis. The Plant Journal 2007, 50(5): 825-838
    109. Schnarrenberger C. Martin W. Evolution of the enzymes of the citric acid cycle and the glyoxylate cycle of higher plants: A case study of endosymbiotic gene transfer. Eur J Biochem 2002, 269(3): 868-883
    110. Schwender J.,Ohlrogge J. B., et al. A flux model of glycolysis and the oxidative pentosephosphate pathway in developing brassica napus embryos. J. Biol. Chem. 2003, 278(32): 29442-29453
    111. Schwender J.,Shachar-Hill Y., et al. Mitochondrial metabolism in developing embryos of brassica napus(sup). J. Biol. Chem. 2006, 281(45): 34040-34047
    112. Shen H.,Ligaba A., et al. Effect of k-252a and abscisic acid on the efflux of citrate from soybean roots. J. Exp. Bot. 2004, 55(397): 663-671
    113. Silva P. M. F. R. d.,Eastmond P. J., et al. Starch metabolism in developing embryos of oilseed rape. Planta 1997, 203(4): 480-487
    114. Singh M.,Richards E. G., et al. Structure of atp citrate lyase from rat liver. Physicochemical studies and proteolytic modification. J. Biol. Chem. 1976, 251(17): 5242-5250
    115. Slabas A. R.,White A., et al. Investigations into the regulation of lipid biosynthesis in brassica napus using antisense down-regulation. Biochem. Soc. Trans. 2002, 30(Pt 6): 1056-1059
    116. Stahl U.,Carlsson A. S., et al. Cloning and functional characterization of a phospholipid:Diacylglycerol acyltransferase from arabidopsis. Plant Physiol. 2004, 135(3): 1324-1335
    117. Sullivan A. C.,Singh M., et al. Reactivity and inhibitor potential of hydroxycitrate isomers with citrate synthase, citrate lyase, and atp citrate lyase. J. Biol. Chem. 1977, 252(21): 7583-7590
    118. Tompa P.,Batke J., et al. Quantitation of the interaction between citrate synthase and malate dehydrogenase. J. Biol. Chem. 1987, 262(13): 6089-6092
    119. Tsuwamoto R.,Fukuoka H., et al. Identification and characterization of genes expressed in early embryogenesis from microspores of brassica napus. Planta 2007, 225(3): 641-652
    120. Valentini G.,Chiarelli L., et al. The allosteric regulation of pyruvate kinase. A site-directed mutagenesis study. J. Biol. Chem. 2000, 275(24): 18145-18152
    121. Vigeolas H.,Mohlmann T., et al. Embryo-specific reduction of adp-glc pyrophosphorylase leads to an inhibition of starch synthesis and a delay in oil accumulation in developing seeds of oilseed rape. Plant Physiol. 2004, 136(1): 2676-2686
    122. Wakao S.,Andre C., et al. Functional analyses of cytosolic g6pdhs and their contribution to seed oil accumulation in arabidopsis. Plant Physiol. 2007: pp.107.108423
    123. Wakao S.,Andre C., et al. Functional analyses of cytosolic glucose-6-phosphate dehydrogenases and their contribution to seed oil accumulation in arabidopsis. Plant Physiol. 2008, 146(1): 277-288
    124. Wang H.,Guo J., et al. Developmental control of arabidopsis seed oil biosynthesis. Planta 2007, 226(3): 773-783
    125. Wayne Powell,Machray G. C., et al. Polymorphism revealed by simple sequence repeats. Trends in Plant Science 1996, 1(7): 215-222
    126. Weselake R. J.,Shah S., et al. Metabolic control analysis is helpful for informed genetic manipulation of oilseed rape (brassica napus) to increase seed oil content. J. Exp. Bot. 2008: ern206
    127. Wolf-Dieter Hatzfeld M. S. Regulation of glycolysis in heterotrophic cell suspension cultures of chenopodium rubrum in response to proton fluxes at the plasmalemma. Physiologia Plantarum 1991, 81(1): 103-110
    128. Wolfe A. J. The acetate switch. Microbiol. Mol. Biol. Rev. 2005, 69(1): 12-50
    129. Zou J.,Katavic V., et al. Modification of seed oil content and acyl composition in the brassicaceae by expression of a yeast sn-2 acyltransferase gene. Plant Cell 1997, 9(6): 909-923

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700