用户名: 密码: 验证码:
桑沟湾贝藻养殖区附着生物生态效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
附着生物又称污损生物,是附生在海洋设施和生物体表面的动物、植物和微生物等生物的总称(Azis et al., 2001)。附生在养殖器材和生物体表面的数量巨大的附着生物,对贝类养殖和海湾生态系统内的物质和营养盐循环等多个方面产生影响。本研究以北方重要的养殖海湾----桑沟湾为研究对象,对贝藻养殖区附着生物的群落演替及其生态效应进行了研究。主要研究结果如下:
     ①2007年5月至2008年5月,采用挂网的方法对桑沟湾栉孔扇贝和海带混养区的附着生物的季节变化进行了研究。结果显示挂网上的附着生物具有显著的季节变化特征,网片上的附着生物湿重与水温的变化相一致,生物量为3~1210 g·m~(-2)。2月份附着生物的生物量最低,8月份最高。2007年9月至11月,对栉孔扇贝养殖笼上和贝壳上的附着生物种类和数量进行了研究。结果显示9月份养殖笼上附着生物的湿重约为1.94 kg,10月份降至0.99 kg,11月份又稍有增加,为1.03 kg。扇贝壳上的附着生物变化趋势与养殖笼上的相同,9~11月份壳上附着生物的数量约0.49~2.09 g。扇贝养殖笼上可鉴定的大型附着生物约23种,包括藻类、海鞘类、苔藓虫类、环节动物、腔肠动物、软体动物、甲壳动物和海绵动物等。玻璃海鞘、柄海鞘、紫贻贝和苔藓虫等是附着生物群落中的优势种。
     ②通过在栉孔扇贝和虾夷扇贝上壳上添加不同重量的“模拟附着生物”(速凝水泥)的方法,研究了贝壳上附着生物的重量对这两种扇贝生长和存活的影响。结果显示水泥重量是上壳重0.5-3倍的各组实验组扇贝的生长和存活与对照组(未添加水泥的扇贝)之间没有显著差异。说明贝壳上附着生物重量为上壳的3倍重时,也不会显著影响扇贝生长存活。9~(-1)1月份贝壳上的自然附着生物的重量约为1.47-2.09 g,为上壳重的28.16 (±38.6)%—31.29±(31.63)%。因此,贝壳上附着的生物重量不太可能对扇贝的生长存活造成显著的负面影响。
     ③在桑沟湾现场测定了玻璃海鞘和柄海鞘的生物沉积速率。9月份(水温约24℃)玻璃海鞘和柄海鞘的生物沉积速率分别为32.14和90.06 mg·ind~(-1)·d~(-1)或(858.99和467.76 mg·gdw~(-1)·d~(-1)),据此计算,养殖笼上的两种海鞘的生物沉积速率约为84.29 mg·m~(-2)·d~(-1)。海区的自然沉积速率为41.49 mg·m~(-2)·d~(-1);玻璃海鞘和柄海鞘沉积物中有机质含量分别为14.34%和13.77%,对照组海区自然的有机质含量为14.36%;以上三者有机碳的含量分别为24.72%,23.74%和24.76%;氮的含量分别为0.27%和0.25%,自然沉积物中的氮含量为0.30%。9月份扇贝养殖笼上附着的海鞘将产生2588.16吨的沉积物,即向底部沉积363.77吨的有机物、6.99吨的氮和1.79吨的磷。
     ④通过测定扇贝养殖笼上优势种附着生物--玻璃海鞘、柄海鞘和贻贝的摄食、呼吸和排泄,研究了这些优势种类对贝类养殖和海湾环境的影响。9月份(水温约24.5℃)玻璃海鞘和柄海鞘对颗粒有机物(POM)的摄食率分别为14.30和17.01 mg·h~(-1)·ind~(-1)。根据实验结果计算这两种海鞘摄取的颗粒有机物相当于312个扇贝的摄取量,大于笼内养殖的扇贝的摄取量;玻璃海鞘和柄海鞘的耗氧率分别约为0.32和0.18 mg·h~(-1)·ind~(-1),养殖笼上的这两种海鞘消耗的溶解氧约等于75个扇贝消耗的溶解氧。栉孔扇贝、玻璃海鞘、柄海鞘和贻贝的排氨率分别为33.66±11.34,117.90±23.46,35.91±6.22,28.08±3.41 ug NH_4-N·gdw~(-1)·h~(-1)。以此估算,9月份玻璃海鞘、柄海鞘和贻贝每天排泄的氨氮约为654.08 kg,相当于16467吨栉孔扇贝(鲜重)排泄的氨氮。海鞘和贻贝排泄的氨氮可提供浮游植物等所需的2.75%的氮,可以提供1204吨海带的生长所需的氮。
     ⑤一个养殖笼内的栉孔扇贝和全部附着生物(Scallop Culture Unit, SCU)在夏季(6-9月)对颗粒有机物的摄食速率约为43.13-98.94 mg/h,平均74.05 mg/h,期间桑沟湾养殖的栉孔扇贝及附着生物摄取的POM约为1279.58吨;同期,SCU对氨氮和磷(PO_4 -P)的排泄速率分别为125.59-1432.23μmol·h~(-1)和76.2-252.89μmol·h~(-1),期间桑沟湾养殖扇贝及附着生物排泄的氮磷分别为211.09吨和83.79吨。一串牡蛎及吊绳和牡蛎壳上的附着生物(Oyster Culture Unit, OCU),夏季摄食率为5-41.43μmol·h~(-1),耗氧率为16.54-41.76μmol·h~(-1),对氨氮和磷(PO_4-P)的排泄速率分别为35.56-489.34μmol·h~(-1)和9.92~(-1)6.68μmol·h~(-1)。以此估算,夏季OCU可摄取POM535.68吨,消耗溶解氧955.58吨,排泄氮磷分别为62.37吨和15.50吨。
Biofouling is defined as the attachment and subsequent growth of a community of plants and animals on structures exposed to the seawater environment (Aziset al., 2001). Biofuling is common phenomenon in the cultivation of bivalves worldwide. Many net pens are made of multi-filament netting materials which are ideal substrates for bio-fouling. Biofouling influence bivalves’cultivation and water column in many ways. In this paper, the successional development of fouling communities on the scallop cultivation alntern nets and their ecological effects on the cultured scallop Chlamys farreri and the ambient water column characteristics were studied. The main resultes are as follows:
     The ecological succession of fouling communities on the experimental panels of net material at the scallop and kelp polyculture site was studied from May 2007 to April 2008. Seasonal succession of fouling on the scallop cultivation net and scallop shell were also investigated. The biomass of fouling organisms on the 1-month panels were positively correlated with water temperature, ranged from 3~1210 g·m~(-2). The wet weight of biofouling was lowest during February and highest in August. The biofouling on 3-month panels was most abundant on the summer and lowest during the winter, with a wet weight of about 2.20 and 0.65 g·m~(-2), respectively. Fouling quantities on both lantern nets and scallop shells were characterized by a pronounced seasonal pattern. Fouling on lantern nets peaked in September with an average wet weight of 1.94 kg and dropped precipitously in October, followed by a slight increase in November. Similarly, shell fouling declined from September to October, and re-increased in November. The mean weights were 1.47 g, 0.49 g and 2.09 g, respectively. Fouling community on scallop nets and shells is a complex assemblage composed by several taxonomic groups, including Alga, Ascidiacea, Bryozoa, Annelida, Colenterata, Annelida, Mollusa, Crustacea and Spongia. Twenty-three macro-fouling species were identified. In September, the most abundant fouling was ascidians, C. intestinalis and S. clava. In October, the fouling community was predominated by C. intestinalis and blue mussel, M. edulis. The M. edulis was the dominant fouling in November.
     The artificial fouling which was three times of the upper valve mass did not negatively affect the survival and growth performance (e.g. shell length, muscle, and remaining soft tissue) of the scallop. Under culture conditions, the wet weight of fouling organisms on C. farreri shell was about 28.16(±38.60) % of the mass of the upper valve in September and the dry mass of fouling on P. yessoensis shell was approximately 7.82 (±2.38) % of the dry mass of the upper valve in August, which were much lower than the mass of artificial fouling in this study. Thus, it is unlikely that the mass of natural fouling would exert markedly negative effects on the growth or survival of C. farreri and P. yessoensis.
     The in situ biodepostion rates of two ascidians C.intestinalis or S.clava were 32.14 and 90.06 mg·ind~(-1)·d~(-1) (or 858.99 and 467.76 mg·gdw~(-1)·d~(-1)), respectively, in September, under a water temperature of 24℃.The organic matter contents were 14.34% and 13.77%, respectively, and the organic carbon contents were 24.72% and 23.74%. The nitrogen contents were 0.27% and 0.25%, respectively. The C.intestinalis and S.clava on one scallop cultivation net may produce 4.14 and 2.55 mg nitrogen one day. In September, the ascidians which fouled on the scallop cultivation nets produced 2588.16 tons biodeposition, including 363.77 tons organic matter, 6.99 tons nitrogen and 1.79 tons phosphorus. The present experiment results indicated that the biodeposition of ascidians may strongly enhance the pelagic-benthic coupling and play an important role in the nutrient regeneration. Thus, the ascidians should be considered as an important component in the bay’s ecological processes ecosystem.
     The POM uptaked by C.intestinalis and S.clava in Sepember were 14.30 and 17.01 mg·h~(-1)·ind~(-1), respectively. The POM consumed by C. intestinalis or S. clava of one lantern net was equal 312 scallops. The dissolved oxygen consumed by C. intestinalis or S. clava were 0.32 and 0.18 mg·h~(-1)·ind~(-1), the oxygen consumed by the ascidians on the lantern net was equivalent to the oxygen consumed by 75 scallops. The ammonium excretion rates of C. intestinalis, S. clava and M. edulis were 117.90 and 35.52 and 28.08 ug NH_4-N·g~(-1)·h~(-1), respectively. The C. intestinalis, S. clava and M. edulis contribute 654.08 kg NH_4 -N·d~(-1) to the bay in September, which equal to the NH_4-N excreted by 1019 tons of scallop (DTW). The ascidians and blue mussel on lantern nets would provide 2.75% of N demands for primary production and can support a production of kelp about 1204 tons.
     The assemblage of scallop in one cultivation net and the organisms which fouled on cultivation net and scallop shell was defined as scallop culture unit (called, SCU). The assemblage of oyster on a culture rope and organism on rope and oyster shells was defined as oyster culture unit (called, OCU). From June to September the uptake of POM by SCU ranged from 43.13 to 98.94 mg·h~(-1), with a mean value of 74.05 mg·h~(-1). The excretion of NH_4 -N ranged from 125.59 to 1432.23μmol·h~(-1), and the excretion of PO_4-P ranged from 76.2-252.89μmol·h~(-1), from June to September, which means the SCU contribute 211.09 tons N and 83.79 tons. The uptake of POM by OCU in June, August and September ranged from 5 to 41.43 mg·h~(-1) indicating that the OCU consume 535.68 tons of POM from the bay. The oxygen consumption of OCU ranged from 16.54 to 41.76 mg·h~(-1),from May to September. The OCU consume 955.58 tons dissolved oxygen from May to September. The excretion of NH_4 -N by OCU ranged from 35.56 to 489.34μmol·h~(-1). The excretion of PO_4-P by OCU ranged from 9.92-16.68μmol·h~(-1), which means the OCU contribute 62.37 tons N and 15.50 tons PO_4 -P to Sanggou Bay, from June to September.
引文
1. Abarzua, S. and S. Jakubowski. Biotechnological investigation for the prevention of biofouling. I. Biological and biochemical principles for the prevention of biofouling. Mar Ecol Prog Ser, 1995(123): 301-312.
    2. Agius C, Schembri PJ, Jaccarini V. A preliminary report on organisms fouling oyster cultures in Malte (central Mediterranean) Mem Biol Mar Ocean, 1977(6): 51–59.
    3. Ahlgren, M.O. Consumption and assimilation of salmon net pen fouling debris by the Red Sea cucumber Parastichopus californicus: implications for polyculture. J. World Aquac. Soc., 1998(29): 133-139.
    4. Ahn I. Y. Enhanced particle flux through the biodeposi-tion by the Antarctic suspension-feeding bivalve Later-nula elliptica in Marian Cove, King George Island. J Exp Mar Biol Ecol, 1993(171): 75–90.
    5. Alpine. A. E, Cloern J.E. Trophic interactions and direct physical effects control phytoplankton biomass and pro-duction in an estuary. Limnol Oceanogr, 1992(37): 946–955.
    6. Arakawa K. Y. Competitors and fouling organisms in the hanging culture of the Pacific oyster Crassostrea gigas (Thunberg). Mar Behav Physiol, 1990(17): 67–94.
    7. Asmus, R.M., and Asmus, H. Mussel beds: limiting or promoting phytoplankton? J. Exp. Mar. Biol. Ecol., 1991(148): 215-232.
    8. Azéma, M. Recherches sur le sang l’excretion chez les Ascides. Ann. Inst. Oceanogr. Monaco, 1937(17): 1-50.
    9. Azis P.K.A., Al-Tisan I. and Sasikumar N. Biofouling po-tential and environmental factors of seawater at a desali-nation plank intake. Desalination, 2001(135): 69-82.
    10. B. M. Forrest, G. A. Hopkins, T. J. Dodgshun, J.P.A. Gardner. Efficacy of acetic acid treatments in the management of marine biofouling. Aquaculture, 2007(262): 319-332.
    11. Barber, B.J., Davis, C.V. Growth and mortality of cultured bay scallops in the Damariscotta River, Maine, USA. Aquacult. Int., 1997 (5): 451-460.
    12. Bazes A, Silkina A, Defer D, Bernède-Bauduin C, Quéméner E, Braud JP, Bourgougnon N. Active substances from Ceramium botryocarpum used asantifouling products in aquaculture. Aquaculture, 2006(258):664-674
    13. Beveridge, M.. Cage Aquaculture. The University Press, Cambridge. 1996, 376 pp.
    14. Bhadury P, Wright P. C. Exploitation of marine algae biogenic compounds for potential antifouling applications. Planta, 2004(219): 561-578.
    15. Boynton WR, Kemp W M, Osborne CG. Nutrient fluxes across the sediment-water interface in the turbid zone of a coastal plain estuary. 1980. In: Kennedy VS (ed) Estuarine perspectives. Academic Press, New York, p 515–532
    16. Braithwaite, R.A. and McEvoy, L.A. Marine Biofouling on Fish Farms and Its Remediation, Advances in Marine Biology, 2005(47): 215-252.
    17. Branch, G. M. Competition between marine organisms: eco-logical and evolutionary implications. Oceanogr. Mar. Biol. Ann. Rev. 1984(22): 429-593.
    18. C Bacher, H Bioteau, A Chapelle. Modelling the impact of a cultivated oyster popilation on the nitrogen dynamics the Thau lagoon case (France). Ophelia, 1995(42): 29-54.
    19. Campell, J. W. and S. H. Bishop. Nitrogen metabolism in mollusks. In, Comparative biochemistry of nitrogen metabolism. 1970. Edited by J. W. Campell, Academic Press, New York, pp. 103-206.
    20. Cao, S. M., C. Y. Zhang, G. F. Zhang, and Y. J. Wu. Study on species composition of fouling organisms on mariculture cages. Journal of Dalian fisheries university, 1998(13): 15-21 (in Chinese with English abstract).
    21. Cao, S.M., Zhang, C.Y., Zhang, G.F., Wu, Y.J. Study on species composition of fouling organisms on mariculture cages. J. Dalian. Fisheries. Univ., 1998(13): 15-21 (in Chinese, with English abstract).
    22. Carefoot T. H. Aplysia: its biology and ecology. Oceanogr marBiol A Rev 25:167-284.
    23. Carver, A. Chisholm, and A. L. Mallet. Strategies to mitigate the impact of Ciona intestinalis (L.) biofouling on shellfish production. Journal of Shellfish Research, 2003(22): 621–631.
    24. Cayer, D., M. MacNeil and A. G. Bagnall. Tunicate fouling in Nova Scotia aquaculture: a new development. J. Shellfish Res. (Abatract), 1999(18):327.
    25. César Lodeiros , Natividad García. The use of sea urchins to control fouling during suspended culture of bivalves. Aquaculture, 2004(231): 293-298.
    26. Chiantore, M., Cattaneo-Vietti, R., Albertelli, G., Misic, C., Fabiano, M. Role of filtering and biodeposition by Adamussium colbecki in circulation of organic matter in Terra Nova Bay (Ross Sea, Antarctica). J. Mar. Syst, 1998(17): 411-424.
    27. Claereboudt, M.R., Bureau, D., C?té, J., Himmelman, J.H. Fouling development and its effect on the growth of juvenile giant scallops Placopecten magellanicus in suspended culture. Aquaculture, 1994(121): 327-342.
    28. Cloern J E. Does the benthos control phytoplankton bio-mass in South San Francisco Bay? Mar Ecol Prog Ser 1982(9):191–202.
    29. Colin K.F. Tan, Barbara F. Nowak, Stephen L. Hodson. Biofouling as a reservoir of Neoparamoeba pemaquidensis, the causative agent of amoebic gill disease in Atlantic salmon. Aquaculture, 2002(210): 49-58.
    30. Connell, S. D. Floating pontoons create novel habitats for subtidal epibiota. J. Exp. Mar. Biol. Ecol., 2000(247): 183-194.
    31. Costello M. J., A. Grant, I.M. Davies, S. Cecchini, S. Papoutsoglou, D. Quigley and M. Saroglia. The control of chemicals used in aquaculture in Europe. J Appl Ichthyol, 2001(17): 173-180.
    32. C?té, J., Himmelman, J.H., Claereboudt, M.R., Bonardelli, J. Influence of density and depth on the growth of juvenile giant scallops (Placopecten magellanicus, Gmelin 1791) in suspended culture in the Baie des Chaleurs. Can. J. Fish. Aquat. Sci., 1993(50): 1857-1869.
    33. Cranford, P. J, Grant, J. Particle clearance and absorption of phytoplankton and detritus by the sea scallop Placopecten magellanicus (Gmelin). J. Exp. Mar. Biol. Ecol. 1990, 137(2): 105-121.
    34. Cronin, E.R., Cheshire, A.C., Clarke, S.M., Melville, A.J. An investigation into the composition, biomass and oxygen budget of the fouling community on a tuna aquaculture farm. Biofouling, 1999(13): 279-299.
    35. Cropp, D. and M. Hortle. Midwater cage culture of the commercial scallop, Pecten fumatus Reeve 1852 in Tasmania. Aquaculture, 1992(102): 55-64.
    36. Dahlb?ck B, Gunnarsson LAH. Sedimentation and sulfate reduction under a mussel culture. Mar Biol, 1981(63): 269–275.
    37. Dalby JE, Young CM. Variable effects of ascidian com-petitors on oysters in a Florida epifaunal community. J Exp Mar Biol Ecol, 1993(167): 47–57.
    38. Dame R F. The role of bivalve filter feeder material fluxes in estuarine ecosystems. Dame R F. Bivalve Filter feeder in Estuarine and Coastal Ecosystem Processes. NATOASI Series, 1993(33): 245-270.
    39. Dame R, Dankers N, Prins T, Jongsma H, Smaal A. The influence of mussel beds on nutrients in the Western Sea and Eastern Scheldt estuaries. Estuaries, 1991(14): 130-138.
    40. Dame R. F. The role of bivalve filter feeder material fluxes in estuarine ecosystems. NATO ASI Ser G, 1993(33): 245–269.
    41. Dame RF, Dankers N. Uptake and release of materials by a Wadden Sea mussel bed. J Exp Mar Biol Ecol, 1988(118): 207–216.
    42. Dame RF, Spurrier JD, Wolawer TG. Carbon, nitrogen and phosphorus processing by an oyster reef. Mar Ecol Prog Ser, 1989(54): 249–256.
    43. Dame, R. F. and S. Libes. Oyster reefs and nutrient retention in tidal creeks. J. Exp. Mar. Biol. Ecol., 1993(17): 251–258.
    44. Dame, R.F., Prins, T.C. Bivalve carrying capacity in coastal ecosystems. Aquat. Ecol., 1998(137): 105-121.
    45. Das. S. M. The physiology of excretion in Molgula (Tunicata, Ascidiancea). Biol. Bull (Woods Hole, Mass.), 1948(95): 307-319.
    46. David A. Relations trophiques entre le plancton, les hu?tres d’élevage et les cionesépibiontes (étang de Thau). 1970. Thesis, UniversitéAix-Marseille II, Marseille
    47. De Nys R, Dworjanyn SA, Steinberg PD. A new method for determining surface concentrations of marine products on seaweeds. Mar Ecol Prog Ser.1998, (162): 79-87.
    48. Devi P, Soilimabi W, D’Souza L, Sonak S, Kamat S, Singbal S. Screening of some marine plant for activity against marine fouling bacteria. Bot Mar. (1997), 40: 87-91.
    49. Doroudi, MS. Infestation of the pearl oyster by the boring and fouling organisms in the pearl culture farm and natural beds from northern coast of Persian Gulf. J. Shellfish Res., 1994(13): 333.
    50. Dybern, B. I. The life cycle of Ciona intestinalis (L.) f. typica in relation to the environmental temperature. Oikos, 1965(16): 109-131.
    51. Eckman, J.E., Thistle, D., Burnett, W.C., Paterson, G.L.J., Robertson, C.Y., Lambshead, P.J.D. Performance of cages as large animal-exclusion devices in the deep sea. J. Mar. Res. 2001(59): 79-95.
    52. Enright, C. Control of fouling in bivalve aquaculture. World Aquac. 1993(24): 44-46.
    53. Fang, J.G., Kuang, S.H., Sun, H.L., Sun, Y., Zhou, S.L., Song, Y.L., Cui, Y., Zhao, J., Yang, Q.F., Li, F., Grant, J., Emersom, C., Zhang, A.J., Wang, X.Z. and Tang, T.Y. Study on the carrying capacity of Sanggou Bay for the culture of scallop chlamys farreri. Mar. Fish. Res., 1996(17): 18-31 (in Chinese, with English abstract).
    54. FAO. The State of World Fisheries and Aquaculture (SOFIA). Food and Agriculture Organization of the United Nations, 2002, Rome.
    55. Federico S, Maria C B. Water-sediment exchange of nutrients during early diagenesis and resuspension of anoxic sediments from the northern Adriatic Sea shelf. Water, Air and Pollution, 1997(99): 541-556.
    56. Fiala-Médioni A. Ethologie alimentaire d’invertébrés benthiques filtreurs (ascidies). II. Variations des taux de filtration et de digestion en fonction de l’espèce. Mar Biol 1974(28):199–206.
    57. Fiala-Médioni A. Filter-feeding ethology of benthic invertebrates (ascidians). IV. Pumping rate, filtration rate, filtration efficiency. Mar Biol, 1978(48): 243–249.
    58. Fisher, T. R. Bioenergetics, growth, and reproduction of the solitary tunicate Styela plicata. Ph. D. thesis, Duke University (Abstract), 1975. p182.
    59. Folke, C., Kautsky, N., Troell, M. The costs of eutrophication from salmon farming implications for policy. J. Environ. Manag. 1994(40): 173-182.
    60. Fusetani N. Biofouling and antifouling. Nat Prod Rep 2004(2): 194-104.
    61. Ge, C.Z., Fang, J.G., Guan, C.T., Wang, W., Jiang, Z.J. Metabolism of marine net pen fouling organism community in summer. Aquac. Res., 2007(38): 1106-1109.
    62. Goodbody, I. The physiology of ascidians. Adv. Mar. Biol., 1974(12): 1-149.
    63. Goodbody, I.: Nitrogen excretion in Ascidiacea. I. Excretion of ammonia and total non-protein nitrogen. J. exp. Biol., 1957, 34, 297-305.
    64. Grant. J., Hatcher. A., Scott DB, Pocklington P, Schafer C. T, Win-ters GV. A Multidisciplinary approach to evaluating impacts of shellfish aquaculture on benthic communities. Estuaries, 1995(18):124-144.
    65. Grasshoff, K., Erhardt, M., Kremling, K. Methods of Seawater Analysis. Verlag Chemie, Weiheim, Germany. 1983.
    66. Greene, J. K.and Grizzle, R. E. Successional development of fouling communities on open ocean aquaculture fish cages in the western Gulf of Maine, USA. Aquaculture, 2007(262): 289-301.
    67. Griffiths, C. L. and Griffiths, R.J.1987. Bivalvia in: T L Pandian and E J Vernberg (Editors), Animals Energetics, vol 2, Academic press, New York, pp: 1-88.
    68. Gulliksen, B. Spawning, larval settlement, growth, biomass, and distribution of Ciona intestinalis L. (Tunicata) in Borgenfjorden, North-Trondelag, Norway. Sarsia, 1972(51): 83–96.
    69. Guo, X. M., S. E. Ford, and F. S. Zhang. Molluscan aquaculture in China. Journal of Shellfish Research, 1999(18): 19-31.
    70. H. U. Riisg?rd and A. Randl?v. Energy Budgets, Growth and Filtration Rates in Mytilus edulis at Different Algal Concentrations. Marine Biology, 1981(61): 227-234.
    71. Hammond D. E., C. Fuller, D. Harmon, B. Hartan, M. Korosec, L. G. Miller, R. Rea, S. Warren, W. Berelson and S. W. Hager. Benthic ?uxes in San Francisco Bay. Hydrobiologia, 1985(129): 69-90.
    72. Hanson, C.H., Bell, J.Subtidal and intertidal marine fouling on artificial substrata in northern Puget Sound, Washington. Fish. Bull., 1976(74): 377-385.
    73. Harder T, Qian PY. Waterborne compounds from the green seaweed Ulva reticulata as inhibitive cues for larval attachment and metamorphosis in the polychaete Hydro-ides elegans. Biofouling, 2000(16): 205-214.
    74. Hatcher A, Grant J, Schofield B. Effects of suspended mussel culture (Mytilus spp.) on sedimentation, benthic respiration and sediment nutrient dynamics in a coastal bay. Mar Ecol Prog Ser, 1994(115): 219-235.
    75. Haven D S, Morales-Alamo R. Aspects of biodeposition by oysters and other invertebrate filter feeders. Limnol Oceanogr, 1966(11): 487-498.
    76. Haven, D.A. and R.morales-Alamo. Filtration of particles from suspension by the American oyster Crassostrea virginica. Biol. Bull. 1970(139): 248-264.
    77. Hawkins, A.J.S., Duarte, P., Fang, J.G., Pascoe, P.L., Zhang, J.H., Zhang, X.L., Zhu, M.Y. A functional model of responsive suspension-feeding and growth inbivalve shellfish configured and validated for the scallop Chlamys farreri during culture in China. J. Exp. Mar. Biol. Ecol., 2002(281): 13-40.
    78. Hawkins, A.J.S., Fang, J.G., Pascoe, P.L., Zhang, J. H., Zhang, X.L., Zhu, M.Y. Modelling short-term responsive adjustments in particle clearance rate among bivalve suspension-feeders: separate unimodal effects of seston volume and composition in the scallop Chlamys farreri. J. Exp. Mar. Biol. Ecol., 2001(262): 61-73.
    79. Hecht, T. and K. Heasman. The culture of Mytilus galloprovincialis in South Africa and the carrying capacity of mussel farming in Saldanha Bay. World Aquaculture, 1999(30): 50-55.
    80. Heffernan, P.B., Walker, R.L., Gillespie, D.M. Biological feasibility of growing the northern bay scallop Argopecten irradians irradians (Lamark, 1819), in coastal waters of South Georgia. J. Shellfish Res., 1988(7): 83-88.
    81. Heiskanen, A. S. Contamination of sediment trap fluxes by vertically migrating phototrophic micro-organisms in the coastal Baltic Sea. Mar Ecol Prog Ser., 1995(122): 45-58.
    82. Heiskanen, A. S., Haaphla, J., and Gundersen, K. Sedimentation and pelagic retention of particulate C, N and P in the coastal northern Baltic sea. Estuarine, Coastal and Science, 1998(46): 703-712.
    83. Hellio C, Bremer G, Pons AM, Le Gal Y, Bourgougnon N. Inhibition of the development of microorganisms (bacteria and fungi) by extracts of marine algae from Brit-tany, France. Appl Microbiol Biotechnol, 2000(54): 543-549.
    84. Hellio C, Marechal J-P, Veron B, Bremer G, Clare AS, Le Gal Y. Seasonal variation of antifouling activities of marine algae from the Brittany Coast (France). Mar Biotechnol, 2001(6): 67-82.
    85. Hodson, S.L., Burke, C.M., Bissett, A.P. Biofouling of fish-cage netting: the efficacy of a silicone coating and the effect of netting colour. Aquaculture, 2000(184): 277-290.
    86. Hodson, S.L., Lewis, T.E., Burke, C.M. Biofouling of fish-cage netting: efficacy and problems of in situ cleaning. Aquaculture, 1997(152): 77–90.
    87. Howard, K.T., Kingwell, S.J.Marine fish farming: development of holding facilities (with particular reference to work by the white fish authority on the Scottish West coast). Oceanogr. Int. 1975(75): 183-190.
    88. IMO. International Maritime Organization, Antifouling Systems. 2002. http://www.imo.org.
    89. J I Hedges, C Lee, SG Wakeham, PJ Hernes, ML. Effects of poisons and preservatives on the fluxes and elemental ompositions of sediment trap materials. J. Marine Research, 1993(51): 651-668.
    90. J. Guenther, P.C. Southgate, R. de Nys. The effect of age and shell size on accumulation of fouling organisms on the Akoya pearl oyster Pinctada fucata (Gould). Aquaculture, 2006(253): 366-373.
    91. J. M. Navarro and R. J. Thompson. Biodeposition by the horse mussel Modiolus modiolus (Dillwyn) during the spring diatom bloom. Journal of Experimental Marine Biology and Ecology, 1997(209): 1-13.
    92. J. S. Hawkins, J. G. Fang, P. L. Pascoe, J. H. Zhang, X. L. Zhang and M. Y. Zhu. Modelling short-term responsive adjustments in particle clearance rate among bivalve suspension-feeders: separate unimodal effects of seston volume and composition in the scallop Chlamys farreri. J. Exp. Mar. Biol. Ecol. 2001, 262(1): 61-73.
    93. J. Widdows, P. Fietch and C. M. Worrall. Relationship between seston available food and feeding activity in the common musse activity in the common mussel Mytilus edulis. Marine biology, 1979(50): 195-207.
    94. Jaramillo E, Bertrán C, Bravo A. Mussel biodeposition in an estuary in southern Chile. Mar Ecol Prog Ser, 1992(82): 85-94.
    95. Jarry V, Fiala M, Frisoni GF, Jacques G, Neveux J, Panouse M. The spatial distribution of phytoplankton in a Mediterranean lagoon (Etang de Thau). Oceanol Acta, 1990(13): 503–512
    96. Jennifer K. Greene and Raymond E. Grizzle. Successional development of fouling communities on open ocean aquaculture fish cages in the western Gulf of Maine, USA. Aquaculture, 2007(262): 289-301.
    97. Jiang Ai-li, Yu Zhen, CaiWen-gui, Wang Chang-hai. Feeding selectivity of the marine ascidian Styela clava. Aquaculture Research. 2008, 1-8.
    98. Jiang, Z., Fang, J., Men, Q., Wang, W. Studies on the interaction between shellfish long-line culture and environment in Sungou Bay. South China Fisheries Science, 2006 (2): 23-29 (in Chinese, with English abstract).
    99. Jiang, Z., J. Fang, Q. Men, and W. Wang. Studies on the interaction between shellfish long-line culture and environment in Sungou Bay. South China Fisheries Science, 2006(2): 23-29 (in Chinese with English abstract).
    100. Karayucel, S. Mussel culture in Scotland. World Aquaculture, 1997(28): 4-10.
    101. Kaspar HF, Gillespie PA, Boyer IC, MacKenzie A L. Effects of mussel aquaculture on the nitrogen cycle and benthic communities in Kenepuru Sound, Marlborough Sounds, New Zealand. Mar Biol, 1985(85):127–136.
    102. Katherine A. Ross, John P. Thorpe, and Andrew R. Brand. Biological control of fouling in suspended scallop cultivation. Aquaculture, 2004 (299): 99-116.
    103. Kautsky N, Evans S. Role of biodeposition by Mytilus edulis in the circulation of matter and nutrients in a Baltic coastal ecosystem. Mar Ecol Prog Ser, 1987(38): 201-212.
    104. Kong, Y.T., Wang, Q., Cheng, Z.M., Liu, M.Q., Deng, Z.F., Chen, S.H. Fouling organisms and control in ocean-based cultivation of abalone Haliotis discus hannai.. Mar. Environ. Sci., 2000(19): 40-43 (in Chinese, with English abstract).
    105. K?nig.G. M. and Wright. A. D. Sesquiterpene content of the antibacterial dichloromethane extract of the marine red alga Laurencia obtusa. 1997, 63(2): 186-187.
    106. Kuang, S. Seasonal studies of filtration rate and absorption efficiency in the scallop Chlamys farreri. J. Shellfish Res. 1997(16): 39-45.
    107. Lai, H., Kessler, A.O., Khoo, L.E. Biofouling and its possible modes of control at fish farms in Penang, Malaysia. Asian Fish. Sci. 1993(6): 99-116.
    108. Lambert, C. C. and G. Lambert. Non-indigenous ascidians in southern California harbors and marinas. Mar. Biol., 1998(130): 675–688.
    109. Lamy N. Organisation, structure et dynamique des peuplements macrobenthiques d’une table conchylicole de l’étang de Thau (Hérault, France). 1996. Thesis, UniversitéMontpellier II, Montpellier
    110. Leblanc, A.R., Landry, T., Miron, G. Fouling organisms of the blue mussel Mytilus edulis: their effect on nutrient uptake and release. J. Shellfish Res., 2003(22): 633-638.
    111. Lee, C., Wakeham, S. G. and Hedges, J. I. The measurement of oceanic particle flux-Are“swimmers”a problem? Oceanography, 1998(1): 34-36.
    112. Leighton D.L. A growth profile for the rock scallop Hinnites multirugosus held at several depths off La Jolla, California. Mar. Biol., 1979(51): 229-232.
    113. Lerat Y. P., Lasserre. P. le Corre. Seasonal changes in pore water concentrations of nutrients and their diffusive fluxes at the sediment-water interface. J. Exp. Mar. Biol. Ecol, 1990(135): 135-160.
    114. Lesser, M. P., S. E. Shumway, T. Cucci, and J. Smith. Impact of fouling organisms on mussel rope culture: interspecific competition for food among suspension-feeding invertebrates. Journal of Experimental Marine Biology and Ecology, 1992(165): 91-102.
    115. Liu, H., Fang, J.G., Zhu, J.X., Dong, S.L., Wang, F., Liang, X.M., Zhang, J.H., Lian, Y., Wang, L.C., Jiang, W.W. Study on limiting nutrients and phytoplankton at long-lineculture areas in Laizhou Bay and Sanggou Bay, northeastern China. Aquatic Conserv: Mar. Freshw. Ecosyst, 2004(14): 551-574.
    116. Lodeiros, C. J. M. and J. H. Himmelman. Identification of environmental factors affecting growth and survival of the tropical scallop, Euvola (Pecten) ziczac in suspended culture in the Golfo de Cariaco, Venezuela. Aquaculture, 2000(182): 91-114.
    117. Lodeiros, C. J. M. and J. H. Himmelman. Influence of fouling on the growth and survival of the tropical scallop, Euvola (Pecten) ziczac (L. 1758) in suspended culture. Aquaculture Research, 1996(27): 749-756.
    118. Lodeiros, C., Galindo, L., Buitrago, E., Himmelman, J.H. Effects of mass and position of artificial fouling added to the upper valve of the mangrove oyster Crassostrea rhizophorae on its growth and survival. Aquaculture, 2007(262): 168-171.
    119. Lodeiros, C., Himmelman, J.H. Identification of environmental factors affecting growth and survival of the tropical scallop Euvola (Pecten) ziczac in suspended culture in the Golfo de Cariaco, Venezuela. Aquaculture, 2000(182): 91-114.
    120. Lodeiros, C., L. Galindo, E. Buitrago, and J. H. Himmelman. Effects of mass and position of artificial fouling added to the upper valve of the mangrove oyster, Crassostrea rhizophorae on its growth and survival. Aquaculture, 2007(262): 168-171.
    121. Lodeiros, C.J.M., Himmelman, J.H. Influence of fouling on the growth and survival of the tropical scallop, Euvola (Pecten) ziczac (L. 1758) in suspended culture. Aquaculture Res., 1996 (27): 749-756.
    122. Lopez GR, Levinton J. S. Ecology of deposit-feeding ani-mals in marine sediments. Q Rev Biol, 1987(62):235–260.
    123. Lovegrove, T. Anti-fouling paint in farm ponds. Fish Farming Int.1979 (9): 13-15.
    124. Lovegrove, T. Control of fouling in farm cages. Fish Farming International, 1979(6): 35-37.
    125. Lu, Y.T., Blake, N.J. The culture of the southern bay scallop in Tampa Bay, an urban Florida estuary. Aquacult. Int., 1997(5): 439-450.
    126. M Nakamura, M Yamamuro, M Ishikawa, H Nishimura. Role of the bivalve Corbicula japonica in the nitrogen cycle in a mesohaline lagoon. Marine Biology, 1988(99): 369-374.
    127. M. G. Holloway,S. D. Connell. Why do floating structures create novel habitats for subtidal epibiota? Mar Ecol Prog Ser, 2002(235): 43–52.
    128. M. Robinson Swift, David W. Fredriksson, Alexander Unrein, Brett Fullerton, Oystein Patursson, Kenneth Baldwin. Drag force acting on biofouled net panels. Aquacultural Engineering, 2006(35): 292-299.
    129. MacDonald B.A., Bourne N.F. Growth of the purple-hinge rock scallop, Crassadoma gigantea Gray, 1825 under natural conditions and those associated with suspended culture. J. Shellfish Res., 1989(7): 146-147.
    130. MacDonald, B. A. and R. J. Thompson. Influence of temperature and food availability on the ecological energetics of the giant scallop, Placopecten magellanicus. I. Growth rates of shell and soft tissue. Mar Ecol Prog Ser. 1985(25): 279-294.
    131. Mallet, A.L., Carver, C.E. An assessment of strategies for growing mussels in suspended culture. J. Shellfish Res., 1991(10): 471-477.
    132. Mao, Y. Z., Y. Zhou, H. S. Yang, and R. C. Wang. Seasonal variation in metabolism of cultured Pacific oyster, Crassostrea gigas, in Sanggou Bay, China. Aquaculture, 2006(253): 322-333.
    133. Marin, M.G., Bressan, M., Beghi, L.and Brunetti, R. Thermo-haline tolerance of Ciona intestinalis (L., 1767) at different developmental stages. Biol. Mar., 1987(28): 47–57.
    134. Markusa, J.A., Lambert, C.C. Urea and Ammonium excretion by solitary ascidians. J. Exp. Mar. Biol. Ecol., 1983(66): 1-10.
    135. Mazouni N, Gaertner JC, Deslous-Paoli JM, Landrein S, Geringer d’Oedenberg M. Nutrient and oxygen ex-changes at the water-sediment interface in a shellfish farming lagoon (Thau, France). J Exp Mar Biol Ecol, 1996(203): 92–113.
    136. Mazouni N. Etude in situ de l’influence desélevages ostréicoles sur le fonctionnement d’un ecosystème lagu-naire méditerraneén. 1995. Thesis, UniversitéAix-Marseille II
    137. Mazouni, N., Gaertner, J.-C., Deslous, P. J.-M. Composition of biofouling communities on suspended oyster cultures: an in situ study of their interactions with the water column. Mar. Ecol. Prog. Ser., 2001(214): 93-102.
    138. Millar, R.H. Ascidiacea. University Press, Cambridge. 1960, 160 pp.
    139. Milne, P.H. Fish farming: a guide to the design and construction of net enclosures. Mar. Res., 1970(1): 1-31.
    140. Monniot, C. and F. Monniot. Additions to the inventory of eastern tropical Atlantic ascidians: arrival of cosmopolitan species. Bull. Mar. Sci., 1994(54): 71-93.
    141. Morin J and Morse J W. Ammonium release from resuspended sediments in the Laguna Madre estuary. Marine Chemistry, 1999(65): 97-110.
    142. Mortensen, S., Meeren, T.V.D., Fosshagen, A., Hernar, I., Harkestad, L., Torkildsen, L., Bergh, ?. Mortality of scallop spat in cultivation, infested with tube dwelling bristle worms, Polydora sp. Aquacult. Int., 2000(8): 261–271.
    143. Murad-B. M. Mohammad, F.L.S. Relationship between biofouling and growth of the peral oyster pinctada fucata (ould) inKuwat, Arablan Gulf. Hydrobiologia, 1976(51): 129-138
    144. Murphy RC, Kremer J. N. Bivalve contribution to benthic metabolism in a California lagoon. Estuaries, 1985(8): 330–341.
    145. Nabila Mazouni, Jean-Claude Gaertner, Jean-Marc Deslous-Paoli. In?uence of oyster culture on water column characteristics in a coastal lagoon (Thau, France). Hydrobiologia, 1998(373/374): 149–156.
    146. Nathalie Dubost, Cerard Masson, Jean-Claude Moreteau. Temperate freshwater fouling on floating net cages: method of evaluation, model and composition. Aquaculture, 1996(143): 303-318.
    147. Navarro E, Iglesias JIP, Perez Camacho A, Labarta U and Beiras R. The physiological energetics of mussels (Mytilus galloprovincialis Lmk) fromdifferent cultivation rafts in the Ria de Arosa (Galicia, N.W. Spain). Aquacul ture, 1991(94):197–212.
    148. Naylor, R.L., Goldburg, R.J., Primavera, J.H., Kautsky, N., Beveridge, M.C.M., Clay, J., Folke, C., Lubchenco, J., Mooney, H., Troell, M. Effect of aquaculture on world fish supplies. Nature, 2000(405): 1017–1024.
    149. Nolfi, J. R. Biosynthesis of uric acid in the tunicate Molgula manhattensis with a general scheme for the functions of stored purines in animals. Comp. Biochem. Physiol., 1970(35): 185-190.
    150.Norkko, A., Hewitt, J.E., Thrush, S.F., Funnell, G.A. Benthic-pelagic coupling and suspension-feeding bivalves: linking site- specific sediment flux and biodeposition to benthic community structure. Limnol. Oceanogr., 2001(46): 2067-2072.
    151. Nunes, J.P., Ferreira, J.G., Gazeau, F., Lenceart-Silva, J., Zhang, X.L., Zhu, M.Y., Fang, J.G. A model for sustainable management of shellfish polyculture in coastal bays. Aquaculture, 2003(219): 257–277.
    152. Nylund GM, Pavia H. Chemical versus mechanical inhibition of fouling in the red alga Delisea carnosa. Mar Ecol Prog Ser, 2005 ( 299):111-121
    153. Nylund GM, Pavia H. Inhibitory effects of algal extracts on larval settlement of the barnacle Balanus improvisus. Mar Biol, 2003(143): 875–882.
    154. Osman, R.W., R. Withlatch and R. N. Zajac. Effects of resident species on recruitment into a community: larval settlement versus post-settlement mortality in the oyster Crassostrea virginica. Mar.Ecol. Prog. Ser., 1989(54): 61–73.
    155. Parsons, G. J. and M. J. Dadswell. Effect of stocking density on growth, production and survival of the giant scallop, held in intermediate suspension culture in Passamaquoddy Bay, New Brunswick. Aquaculture, 1992(103): 291-309.
    156. Petersen JK, Schou O, Thor P. In situ growth of the ascidian Ciona intestinalis (L.) and the blue mussel Mytilus edulis in an eelgrass meadow. J Exp Mar Biol Ecol, 1997(218): 1–11.
    157. Petersen, J. K., Riisg?rd, H.U. Filtration capacity of the ascidian Ciona intestinalis and its grazing impact in a shallow fjord. Mar. Ecol. Prog. Ser., 1992(88): 9-17.
    158.Peterson, B.J., Heck Jr., K.L. The potential for suspension feeding bivalves to increase seagrass productivity. J. Exp. Mar. Biol. Ecol., 1999(240): 37-52.
    159. Phillippi, A.L., O' Conner, N.J., Lewis, A.F., Kim, Y.K. Surface flocking as a possible anti-biofoulant. Aquaculture, 2001(195): 225–238.
    160. Phillips DW, Towers GHN. Chemical ecology of red algal bromophenols. I. Temporal, interpopulational and within-thallus measurements of lanosol levels in Rhodo-mela larix (Turner) C. Agardh. J Exp Mar Biol Ecol, 1982 (58): 285–293
    161. Plough, H. H. Sea squirts of the Atlantic continental shelf from Maine to Texas. Baltimore, MD: Johns Hopkins University Press, 1978, 118 pp.
    162. Prins TC, Smaal AC. The role of the blue mussel Mytilus edulis in the cycling of nutrients in the Oostershelde estuary (The Netherlands). Hydrobiologia, 1994, (282/283): 413-429
    163. Prins. T. C, Smaal A. C. Benthic-pelagic coupling: the release of inorganic nutrients by an intertidal bed of Mytilus edulis. In: Barnes M, Gibson RN (eds) Trophic relationship in the marine environment. 1990. Aberdeen University Press, Aberdeen, p 89–103
    164. Qi, Z.H., Fang, J.G., Zhang, J.H., Ge, C.Z., Mao, Y.Z., Jiang, Z.J., in press. Effects of mass of artificial fouling added to the upper valve on the growth and survival of two scallops Chlamys farreri and Patinopecten yessoesis longline cultured in Sanggou Bay, China. J. World. Aquacult. Soc.
    165. Qu, K.M., Song, Y.L., Xu, Y., Sun, Y., Fang J.G. Experiment on nutrient limitations in cultured areas of Sanggou Bay in situ in spring and summer. Mar. Environ. Sci., 2008(27): 124-127 (in Chinese, with English abstract).
    166. R. C. Newell, J. G. Field and C. L. Griffiths. Energy Balance and Significance of Micro-organisms in a Kelp Bed Community. Mar. Ecol. Prog. Ser. 1982(8): 103-113.
    167. Rajagopal. Mussel colonization of a high flow artificial benthic habitat: Byssogenesis holds the key. Marine Environmental Research, 2006(62): 98–115.
    168. Randl?v and H. U. Riisg?rd. Efficiency of Particle Retention and Filtration Rate in Four Species of Ascidians. Mar. Ecol. Prog. Ser., 1979(1): 55-59.
    169. Reiswig H. M. Particle feeding in natural populations of three marine demosponges. Biol Bull, 1972(141): 568–591.
    170. Riisg?rd H U, Christensen PB, Olesen NJ, Petersen JK, Moller MM, Andersen P. Biological structure in a shallow cove (Kertinge Nor, Denmark). Control by benthic nutrient fluxes and suspension-feeding ascidians and jellyfish. Ophelia, 1995(41): 329–344.
    171. Robbins, I. J. The regulation of ingestion rate, at higher suspended particulate concentrations, by some phleobranchiate ascidians. J. exp. mar. Biol. Ecol., 1984(82): 1–10.
    172. Romo, H., Alveal, K., Werlinger, C. Growth of the commercial carrageenophyte Sarcothalia crispata (Rhodophyta, Gigartinales) on suspended culture in central Chile. J. Appl. Phycol., 2001(13): 229-234.
    173. Ross, K. A., J. P. Thorpe, T. A. Norton, and A. R. Brand. Fouling in scallop cultivation: help or hindrance? Journal of Shellfish Research, 2002(21): 529-547.
    174. Ross, K.A. Fouling in suspended cultivation of the scallop, Pecten maximus (L). Ph.D thesis. 2002. University of Liverpool: Port Erin Marine. Laboratory. 191pp.
    175. Ross, K.A., Thorpe, J.P., Norton, T.A., Brand, A.R. Fouling in scallop cultivation: help or hindrance? J. Shellfish Res., 2002(21): 539-547.
    176. S. Howes, C.M. Herbinger, P. Darnell, B. Vercaemer. Spatial and temporal patterns of recruitment of the tunicate Ciona intestinalis on a mussel farm in Nova Scotia, Canada. Journal of Experimental Marine Biology and Ecology, 2007(342): 85–92.
    177. S. P. Hubbell. A unifed theory of biogeography and relative species abundance and its application to tropical rain forests and coral reefs. Coral Reefs, 1997, 16, Suppl.: S9-S21.
    178. Sabbadin, A. and A. Tontodonati. Nitrogenous excretion in the compound ascidians Botryllus schlosseri (Pallas) and Botrylloides leachi (Savigny). Monit. Zool. Ital. (N.S.)., 1967(1): 185-190.
    179. Salazar, M. Biota Asociada a la ostra de mangle, Crassostrea rhizophorae (Guilding, 1828) en cultivo suspendido sometido a tres tratamientos de exondacion. 2004. Instituto Universitario de Tecnologias del Mar, Fundacion La Salle de Ciencias Naturales, Isla Margarita.
    180. Schmitt T, Hay M, and Lindquist N. Constraints on chemi- cally-mediated coevolution: Multiple functions for sea-weed secondary metabolites. Ecology,1995(76): 107–123
    181. Scholten, H., Smaal, A.C. The ecophysiological response of mussels (Mytilus edulis) in mesocosms range of inorganic nutrient loads: simulations with the model EMMY. Aquat. Ecol., 1999(33): 83–100.
    182. Skjaeggestad, H. Environmental and biological aspects of oyster and scallop cultivation. Ph.D thesis.1997. Belfast: Queen’s University of Belfast, 238 pp.
    183. Smaal, A. C. and M. R. Van Stralen. Average annual growth and condition of mussels as a function of food source. Hydrobiologia, 1990(195): 179–188.
    184. Smaal, A., Stralen, M.V., Schuiling, E. The interaction between shellfish culture and ecosystem processes. Can. J. Fish. Aquat. Sci., 2001(585): 991-1002.
    185. Sornin JM, Collos Y, Delmas D. and Feuillet-Girard M, Gouleau D. Nitrogenous nutrient transfers in oyster ponds: role of sediment in deferred primary production. Mar Ecol Prog Ser., 1990(68):15–22
    186. Steinberg P, De Nys R, Kjelleberg S. Chemical cues for surface colonization. J Chem Ecol , 1998 (28): 1935–1951
    187. Steinberg P, Schneider R, Kjelleberg S. 1997. Chemical defenses of seaweeds against microbial colonization. Biodegradation, 1997(8): 211–220.
    188. Strickland, J.D., Parson, T.R. A Practical Handbook of Seawater Analysis, 2nd ed. vol. 167. Bulletin of the Fish Research Board of Canada, Ottawa, Canada. 1972. 310 pp.
    189. Stuart V, Klumpp D. W. Evidence for food-resource partitioning by kelpbed filter feeders. Mar Ecol Prog Ser, 1984(16): 27–37.
    190. Stuart, V. Absorbed ration, respiratory costs and resultant scope for growth in the mussel Aulacomya ater (Molina) fed on a diet of kelp detritus of different ages. MAR. BIOL. LETT. 1982(3): 289-306.
    191. Su, Z. X., H. Xiao, and L. M. Huang. Effect of fouling organisms on food uptake and nutrient release of scallop Chlamys nobilis in Daya Bay. Journal of Huaihai Institute of Technology, 2008(17): 61-64 (in Chinese with English abstract).
    192. Svane, I., Havenhand, J.N. Spawning and dispersal in Ciona intestinalis. Mar. Ecol., 1993(14): 53–66.
    193. Taylor, J. J., P. C. Southgate, and R. A. Rose. Fouling animals and their effect on the growth of silver-lip oysters, Pinctada maxima (Jameson) in suspended culture. Aquaculture, 1997(153): 31-40.
    194. Tenore KR, Boyer LF, Cal R. M. Corral J and 14 others Coastal upwelling in the Rias Bajas, NW Spain: contrast-ing the benthic regimes of the Rias de Arosa and de Muros. J Mar Res, 1982(40): 701–772.
    195. Tenore, K.R. and Dunstan, W.M. Comparison of feeding and biodeposition of three bivalves at different food levels. Mar. Biol., 1973, 21: 190-195.
    196. Tsuchiya, M. Biodeposit production by the mussel Mytilus edulis L. on rocky shores. Aquatic ecology, 1980(47): 203-222.
    197. U Riisg?rd. Filtration rate and growth in the blue mussel, Mytilus edulis Linneaus, 1758: dependence on algal. J. Shellfish Res, 1991(7): 377-380.
    198. Uribe, E. and I. Etchepare. Effects of biofouling by Ciona intestinalis on suspended culture of Argopecten purpuratus in Bahia Inglesa, Chile. Bull. Aquacul. Assoc. Can. 2002(102): 93–95.
    199. Uribe, E., C. Lodeiros, E. Felix-Pico, and I. Etchepare. Epibiontes en pectínidos de Iberoamérica. 2001.Pages 249–266 in Maeda-Martínez, A.N. (Ed.), Los Moluscos Pectínidos de Iberoamérica: Ciencia y Acuicultura. Limusa, México.
    200. Uribe, E., Lodeiros, C., Felix-Pico, E., Etchepare, I. Epibiontes en pectínidos de Iberoamérica. In: Maeda-Martínez, A.N. (Ed.), Los Moluscos Pectínidos de Iberoamérica: Cienciay Acuicultura. Limusa, México, 2001. pp. 249–266.
    201. Van Name, W. G. The North and South American ascidians. Bull. Am. Mus. Nat. Hist., 1945(84): 1-476.
    202. Vélez, A., Freites, L., Himmelman, J.H., Senior, W., Marín, N. Growth of the tropical scallop, Euvola (Pecten) ziczac, in bottom and suspended culture in the Golfo de Cariaco, Venezuela. Aquaculture, 1995(136): 257-276.
    203. Ventilla, R. F. The scallop industry in Japan. Advances in Marine Biology, 1982(20): 310-382.
    204. W Peterson, HG Dam. The influence of copepod" swimmers" on pigment fluxes in brine-filled vs. ambient seawater-filled sediment traps. Limnology and Oceanography, 1990(35): 448-455.
    205. Wahl M. Marine Epibiosis. I. Fouling and Antifouling: Some Basic Aspects. Mar Ecol Progr Ser. 1989, (58):175-189.
    206. Wallace, J. C. and T. G. Reinsnes. The significance of various environmental parameters for growth of the Iceland scallop, Chlamys islandica (Pectinidae) in hanging culture. Aquaculture, 1985(44): 229-242.
    207. Walters L. J, Hadfield M. G, Smith CM. Waterborne chemical compounds in tropical macroalgae: positive and negative cues for larval settlement. Mar Biol, 1996(126): 383-393.
    208. Wastson, R., Pauly, D. Systematic distortions I world fisheries catch trend. Nature, 2001(414): 534–536.
    209. WHOI. Marine Fouling and its Prevention. United States Naval Institute, Annapolis. 1952, 388 pp.
    210. Widman, J. C. and E. W. Rhodes. Nursery culture of the bay scallop, Argopecten irradians irradians, in suspended mesh nets. Aquaculture, 1991(99): 257-267.
    211. Wildish, D. J., Kristmanson, D.D. Growth response of giant scallops to periodicity of flow. Mar. Ecol. Progr. Ser.1988(42): 163-169
    212. Wildish. D. J. and Saulnier A. M. Hydrodynamic control of filtration in Placopecten magellanicus. J. Exp. Mar. Biol. Ecol., 1993, 174(1):65-82.
    213. Wong, Y. S., Z. G. Huang, A. P. S. Lau, and W. H. Liu. Biofouling communities on piers in Victoria Harbour. Acta Oceanologica Sinica, 1999(21): 86-92 (in Chinese with English abstract).
    214. Yamamoto, K., Hiraishi, T., Kojima, T. Drags of a float and a rope encrusted with marine organisms in scallop culture. Jpn. Soc. Sci. Fish. 1989(55): 1747-1751.
    215. Yang, H.S., Zhang, T., Wang, J., He, Y.C., Zhang, F.S. Growth characteristics of Chlamys farreri and its relation with environmental factors in intensive raft-culture areas of Sishiliwan Bay, Yantai. J. Shellfish Res., 1999(18): 71–83.
    216. Yang, H.S., Zhou, Y., Mao, Y.Z., Li, X.X., Liu, Y., Zhang, F.S. Growth characters and photosynthetic capacity of Gracilaria lemaneiformis as a biofilter in a shellfish farming area in Sanggou Bay, China. J. Appl. Phycol., 2005(17): 199-206.
    217. Yi Zhou, Hongsheng Yang, Tao Zhang, Peibing Qin, Xinling Xu, Fusui Zhang. Density-dependent effects on seston dynamics and rates of filtering and biodeposition of the suspension-cultured scallop Chlamys farreri in a eutrophic bay (northern China): An experimental study in semi-in situ flow-through systems. Journal of Marine Systems, 2006(59): 143-158.
    218. Yi Zhou, Hongsheng Yang, Tao Zhang, Shilin Liu, Shumei Zhang, Qun Liu, Jianhai Xiang, Fusui Zhang. Influence of filtering and biodeposition by the cultured scallop Chlamys farreri on benthic-pelagic coupling in a eutrophic bay in China. Mar Ecol Prog Ser, 2006(317): 127–141.
    219. Yuze Mao, Yi Zhou, Hongsheng Yang, Rucai Wang. Seasonal variation in metabolism of cultured Pacific oyster, Crassostrea gigas, in Sanggou Bay, China. Aquaculture, 2006(253): 322– 333.
    220. Zhao, J., Zhou, S.L., Sun, Y., Fang, J.G. Research on Sanggou bay aquaculture hydro-environment. Mar. Fish. Res., 1996,17 (2), 68–79.
    221. Zheng, D.Q., Huang, Z.G. Fouling organisms on mariculture cages in Daya Bay, China. J. Fish. China, 2005(14): 15-24 (in Chinese, with English abstract).
    222. Zhou Y, Yang HS, Liu SL, Yuan XT, Mao Y, Liu Y, Xu XL, Zhang FS. Feeding and growth on bivalve biode-posits by the deposit feeder Stichopus japonicus Selenka (Echinidermata: Holothuroidea) co-cultured in lantern nets. Aquaculture, 2006a (256): 510–520.
    223. Zhou Y. Foundational studies on effects of suspension culture of filter-feeding bivalves on coastal ecological environment. PhD dissertation. 2000. Chinese Academy of Sciences, Qingdao (in Chinese, with English abstract)
    224. Zhou, Y., Yang, H.S., Liu, S.L., He, Y.C., Zhang, F.S. Chemical composition and net organic production of cultivated and fouling organisms in Sishili Bay and their ecological effects. J. Fish. China, 2002, 26 (1): 21–27 (in Chinese with English abstract).
    225. Zhou, Y., Yang, H.S., Mao, Y.Z., Yuan, X.T., Zhang, T., Liu, Y., Zhang, F.S. Biodeposition by the Zhikong scallop Chlamys farreri in Sanggou Bay, Shandong, northern China. Chin. J. Zool., 2003(38): 40-44 (in Chinese with English abstract).
    226. Zhou, Y., Yang, H.S., Mao, Y.Z., Zhang, T., Liu, S.L., Liu, Q.,Xu, X.L., Zhang, F.S. Influence of filtering and biodeposition by cultured scallops Chlamys farreri on benthic–pelagic coupling in a eutrophic bay in China. Mar. Ecol. Prog. Ser., 2006b (317): 127-141.
    227.蔡立胜,方建光,梁兴明。规模化浅海养殖水域沉积作用的初步研究。中国水产科学, 2003(4): 305-310。
    228.曹善茂,张丛尧,张国范,邬玉静。海洋贝类养殖网笼污损生物类群的研究.大连水产学院学报,1998, 13(4): 16-22.
    229.曹善茂,周一兵,牟红梅。大连市沿海污损生物种及分布的研究。大连水产学院学报,1999, 14(4): 36-42.
    230.方建光,匡世焕,孙惠玲,孙耀,周诗赉,宋云利,崔毅,赵俊,杨琴芳,李锋,Jon Grant, Craig Emersom,张爱君,王兴章,汤庭耀。桑沟湾栉孔扇贝养殖容量的研究。海洋水产研究,1996(17): 18-31。
    231.方建光,匡世焕,孙慧玲等。桑沟湾栉孔扇贝养殖容量的研究。海洋水产研究,1996, 17(2): 18-31.
    232.葛长字,方建光,关长涛,王巍,蒋增杰。海水网箱养殖的关键生物过程研究:花鲈生理代谢。海洋水产研究,2007(28): 45-50。
    233.黄宗国,王建军,林盛,李传燕,郑成兴。北部湾污损生物生态研究。海洋学报,1992(14): 95-105。
    234.蒋增杰,方建光,门强,王巍.桑沟湾贝类筏式养殖与环境相互作用研究。南方水产,2006(2): 23-29。
    235.蒋增杰,方建光,张继红,毛玉泽。桑沟湾沉积物中磷的赋存形态及生物有效性。环境科学, 2007(28): 2783-2788。
    236.匡世焕,方建光,孙慧玲,李锋。桑沟湾海水中悬浮颗粒物的动态变化。海洋水产研究,1996(17): 60-67。
    237.李克元,刘忠颖。柄海鞘对栉孔扇贝养殖的危害和预防措施。水产科学,1999, 18(1): 25-27.
    238.马红波,宋金明,吕晓霞。渤海沉积物中氮的形态及其在循环中的作用。地球化学, 2003(32): 48-54。
    239.毛玉泽。桑沟湾滤食性贝类对环境的影响及其生态调控。2003.中国海洋大学博士学位论文。
    240.宋金明,马红波,李学刚。渤海南部海域沉积物中吸附态无机氮的地球化学特征。海洋与湖沼, 2004(35): 315-322。
    241.宋云利,崔毅,孙耀,方建光,孙慧玲,杨琴芳,匡世焕。桑沟湾养殖海域营养状况及其影响因素分析。海洋水产研究,1996(17): 41-51。
    242.隋锡林等。大连沿海太平洋牡蛎大量死亡原因解析。大连水产学院学报,2002, 17(4): 272-278。
    243.孙惠玲,方建光,匡世焕,李锋,王兴章,汤庭耀。不同季节海鞘滤水率的测定。海洋水产研究,1996,17(2): 103-107.
    244.孙耀。丁字湾沉积物间隙水氮磷营养盐含量及其在沉积物-水界面的扩散通量。海洋水产研究, 1993(14): 105-111。
    245.王爱敏,张晓凌,姜爱丽,曲慧。盐度对柄海鞘滤水率的影响。齐鲁渔业,2006(23): 6-8。
    246.王建军,黄宗国,李传燕,郑成兴,林娜,严颂凯。厦门港网箱养殖场污损生物的研究。海洋学报,1996(18): 93-102。
    247.徐林梅,孙耀,石晓勇,武晋宣。桑沟湾养殖海域沉积物中磷的溶出动力学特性。海洋水产研究,2006(27): 67-71。
    248.严颂凯,黄宗国。大亚湾码头桩柱的污损生物群落。海洋学报,1992,14(3): 114-120.
    249.严涛,严文侠,董钰,梁冠和,严岩,王华接。珠江口东南近海海区污损生物研究。海洋学报, 2003, 25(6):117-125。
    250.曾地刚,蔡如星等.东海污损生物群落研究I.种类组成和分布。东海海洋,199917(1): 48-55.
    251.张继红,方建光,董双林。4种海鞘排泄的初步研究。海洋水产研究,2000(21): 31-36。
    252.张继红,方建光。几种常见海鞘的呼吸代谢研究。中国水产科学, 2000(7): 16-19.
    253.张继红,方建光。栉孔扇贝对春季桑沟湾颗粒有机物的摄食压力。水产学报,2006(30): 277-280.
    254.张学雷,朱明远,汤庭耀,王英,刘岗,Jean-Louis M. Martin.桑沟湾和胶州湾夏季的沉积物-水界面营养盐通量研究。海洋环境科学,2004(23): 1-4。
    255.郑成兴,黄宗国等。汕头港码头、浮标污损生物。海洋学报,1996,18(1):115-124.
    256.周毅,杨红生,何义朝,张福绥。四十里湾几种双壳贝类及污损动物的氮、磷排泄及其生态效应。海洋与湖沼,2002(33): 424-431.
    257.周毅,杨红生,毛玉泽,袁秀堂,张涛,刘鹰,张福绥。桑沟湾栉孔扇贝生物沉积的现场测定。动物学杂志,2003(38): 40-44。
    258.周毅。滤食性贝类筏式养殖对浅海生态环境影响的基础研究。2000。中国科学院海洋研究所,博士学位论文。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700