用户名: 密码: 验证码:
深埋长隧洞TBM掘进围岩开挖扰动与损伤区研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为研究TBM掘进下,隧洞围岩开挖扰动与损伤及其破坏机理,本文以南水北调西线工程为工程背景,对隧洞围岩TBM掘进后扰动和损伤区及其变形特征、应力演化规律和工程岩体的力学特性进行了系统研究与分析,主要研究工作与特点表现在以下几个方面:
     (1)在充分调研南水北调西线工程复杂的附存环境的基础上,研究了其地层岩性、地质构造、地应力场分布规律和复杂的隧洞施工方案。提出TBM掘进下影响围岩稳定的关键因素:隧洞埋深大、TBM掘进长度大、地应力分布规律复杂、节理裂隙发育。
     (2)开展了板岩室内单轴压缩实验、三轴压缩实验以及不同围岩在不同卸荷速率下的三轴加卸载实验,并通过Hoek-Brown经验强度准则拟合板岩的岩体力学参数。研究了板岩在三轴压缩实验下和三轴加卸载实验下的力学特性和破坏特征,指出板岩在破坏时表现为脆性破坏,并具有峰后残余强度等特征;其破坏强度亦与卸围压的速率有关,即卸荷速率越快,板岩的强度越高,破坏时的围压越小。
     (3)总结了圆形洞室开挖后围岩变形、应力及塑性区等理论解的求解过程,并编制了相应的计算机求解程序。对传统开挖方法(钻爆法)进行了数值模拟分析,研究了洞室开挖后围岩的变形量、主应力和主应力方向的变化规律及塑性区大小。针对TBM掘进开挖的特点,即TBM刀盘的顶推作用使刀头嵌入岩体中,刀盘的旋转使刀头切割岩体,提出相应的数值模拟方法,即在刀头作用的区域内施加三个方向的速度来模拟掘进过程,轴向速度模拟刀盘的顶推作用,切向速度和径向速度的合成来模拟刀头的切割作用,并假定岩体在达到塑性剪切状态时认为岩体被开挖掉。在相同条件下,对理论解,钻爆法和TBM法的数值模拟结果进行了对比分析,发现TBM法的位移值仅为理论解和钻爆法的65%左右,塑性区仅为理论解的58%,为钻爆法的70%,而变形的整体趋势,三种结果较为接近。
     (4)在不同卸荷速率下三轴加卸载室内实验成果的基础上,以Hoek-Brown经验强度准则为依据,拟合出在不同卸荷速率下岩体的力学参数(粘聚力和摩擦角)。在FLAC3D程序中植入加卸载准则,研究了在不同掘进速率下隧洞围岩的开挖扰动区特征和围岩稳定特征。结果显示:掘进速率越快,围岩开挖扰动区越小,围岩越稳定;隧洞围岩在开挖后变形较为均匀;在隧洞的径向,位移和应力变化较为明显的呈现为三个区域,即强变化区、弱变化区和平稳区;最大主应力随着洞径方向逐渐由单向应力状态向二向应力状态和三向应力状态转变,第二偏应力不变量在隧洞轴向方向形成了一闭合的应力集中区域,称为“应力墙”,该区域在TBM掘进过程中对刀头切割岩体达到破岩的效果极为有利;隧洞围岩开挖扰动区随TBM掘进速率变化较大,当掘进速率增加一倍后,其扰动区由1.1m降低到0.4m,减小了64%。
     (5)根据板岩在室内实验中表现出来的脆性和屈服后强度特性,提出了以CWFS脆性模型为基础,考虑岩体屈服后损伤的本构模型,通过VC++编译dll动态链接库,并将其植入FLAC3D程序中。应用神经网络和遗传方法等优化算法对本构模型中的参数进行了反演分析,并以室内三轴压缩实验为依据,对该本构模型进行了验证,结果表明本文提出的考虑损伤的CWFS模型可以较好的反映板岩的弹性特征、屈服后的强化特征、脆性破坏特征和破坏后残余强度特征。以该模型为基础,模拟了南水北调西线隧洞在TBM掘进条件下隧洞围岩的损伤特征,并与基于Mohr-Coulomb本构关系的计算结果进行了对比分析。本文提出的考虑损伤的CWFS模型能更好的反映隧洞掘进后围岩损伤特征,即损伤沿着弱势区域发展的规律。
     (6)以UDEC2D程序为手段,研究了在不同埋深、不同节理倾角和不同节理间距情况下,TBM掘进过程中,刀头对岩体的破裂过程。指出岩体内部裂隙的形成分为三个阶段,即裂隙的产生、裂隙的发展和裂隙的贯通;岩体内部损伤时产生两条主要的裂隙,一条平行于节理方向发展,一条与节理相交形成闭合裂隙;综合评价了刀头贯入量与刀头数量之间的关系。基于南水北调西线工程岩石节理的统计规律,假设其分布满足一定的正态分布规律,编制二维随机节理生成器,生成了随机节理分布的隧洞开挖模型,模拟分析了在随机节理结构下,隧洞围岩的开挖损伤特征。结果表明洞室围岩在局部发生块体脱落现象,在洞室底部有整体突起现象;隧洞围岩在洞室附近表现为拉破坏,而沿着洞室径向方向转换为剪切破坏。
The South to North Water Transfer Project is taken as the engineering background of this thesis and the excavation disturbed zone and damage zone,deformation characteristics, stress evolution law and rock mechanical behaviors in surrounding rock of tunnel by TBM driving are studied.The Major works of this thesis are summarized as follows:
     (1) Base on the comprehensive investigation of the complicated existing environment of the South to North Water Transfer Project,the formation lithology,geological structure, distribution of in-situ stress field and complicated construction scheme are studied,and it is indicated that the key influence factors on stability of surrounding rock of tunnel are deeply buried,big length,complicated distribution of in-situ stress field and developing of joint fissures.
     (2) The uniaxial compression test of slate,the triaxial compression test of slate and the loading and unloading triaxial tests of different surrounding rock in varied unloading rate have been finished,and the Hoek-Brown empirical strength criterion is used to fit the rock mechanics parameters of slate.The mechanical properties and failure characteristics of slate indicate that the slate presents as brittle failure and has post-peak residual.The failure strength of slate is related to the unloading rate,the unloading rate is faster,the strength is higher,and the failure confining pressure is less.
     (3) The computing program is compiled to reach the theoretical solutions of surrounding rock deformation,stress and plastic zone after circular tunnel excavation.The numerical simulation method is applied to analyze the deformation,principal stress, variation law of principal stress orientation and size of plastic zone of surrounding rock in the traditional excavation.The work theory of TBM driving is that the incremental launching action makes the cutter head embedded in rock,and the rotation of cutter head makes the rock excavated.So in the numerical simulation,three direction velocities are used to simulate the TBM driving process,the axial velocity is to simulate the incremental launching action of the cutter head,the tangential and radial velocity are used to simulate the cutting action of the cutter head,and the plastic zone is assumed to be excavated.In the same conditions,the three results of theoretical solutions,traditional excavation and TBM driving are compared and show that the displacements value in TBM driving are about 65% of theoretical solution and traditional excavation method,and the plastic zone is only 58% of the theoretical solution,70%of the traditional excavation method.However the general deformation tendency is close for the three methods.
     (4) On the basis of the results of the loading and unloading triaxial tests in varied unloading rate,Hoek-Brown empirical strength criterion is used to fit the slate mechanical parameters including cohesion and friction angle.The FLAC3D program which contains the loading and unloading criterion is adopted to analyze the excavation disturbed zone and stability in surrounding rock of tunnel in varied TBM driving speed.The results show that the driving speed is faster,the excavation disturbed zone in surrounding rock is smaller,and the stability of surrounding rock is better;the deformations of surrounding rock are uniformly distributed after excavation;in the radial direction of tunnel,three zones are obviously shown for the displacement and stress variation:strongly varied zone,weakly varied zone and stable zone;along the tunnel radial direction,the maximum principal stress gradually vary from uniaxial to biaxial and triaxial,and the second deviatoric stress invariant forms a closed stress concentration zone which is called "stress dike" and is great helpful to rock breaking;the excavation disturbed zone of tunnel varies with TBM driving speed,when the speed increases 100%,the excavation disturbed zone decreases 64%,from 1.1 meter to 0.4 meter.
     (5) Considering the rock post-yield damage,a new constitutive model based on the CWFS brittle model is proposed in this thesis and is implanted to FLAC3D program by debugging dll in VC++.Based on the results of triaxial compression tests,this constitutive model is verified through parameter back analyzing by optimization algorithm such as neural network and genetic algorithm.The results show that the model can reflect the elastic characteristic,post-yield characteristic,brittle failure and post-failure residual strength characteristic of slate.Based on this model,the surrounding rock damage characteristic of TBM driving of the South to North Water Transfer Project are studied and also compared with the results by Mohr-Coulomb constitutive model.And the conclusion is drawn that the constitutive model in this thesis can better reflect the damage rule of the surrounding rock in TBM driving,that damage develops along the weak zone.
     (6) The process of rock damage by cutting head in TBM driving is studied in condition of varied buried depth,joint inclination and spacing with the UDEC2D code.The conclusions are drawn that the formation of rock fracture goes through three stages, generation,development and transfixion;two main fractures are generated in the damage process,one parallels to the direction of joint,the other intersects to the joint and form a closed fracture.The relationship of cutting head penetration value and the number of cutting head is also evaluated.On the basis of joint statistical law of the South to North Water Transfer Project,it is assumed that joint distribution accords with the normal distribution,and the relative joint generation program is compiled to UDEC.Using random joint distribution model,the excavation damage characteristic in the surrounding rock of tunnel are studied.The results show that part block falling occurs around the tunnel and integral uplift occurs at the bottom of tunnel.The surrounding rock failure of tunnel presents as tension failure around the tunnel and converts to shear failure along the radial direction of tunnel.
引文
[1]M.Sapignia,M.Bertib,E.Bethazc,A.Busillod,G.Cardonee.TBM performance estimation using rock mass classifications[J].International Journal of Rock Mechanics & Mining Sciences,2002,39:771-788
    [2]Qiu-Ming Gong,Jian Zhao,Yu-Yong Jiao.Numerical modeling of the effects of joint orientation on rock fragmentation by TBM cutters[J].Tunnelling and Underground Space Technology,2005,20:183-191
    [3]Q.M.Gong,Y.Y.Jiao,J.Zhao.Numerical modeling of the effects of joint spacing on rock fragmentation by TBM cutters[J].Tunnelling and Underground Space Technology,2006,21:46-55
    [4]Q..M.Gong,J.Zhao,A.M.Hefny.Numerical simulation of rock fragmentation process induced by two TBM cutters and cutter spacing optimization[J].Tunnelling and Underground Space Technology,2006,21:263
    [5]R.Gertscha,L.Gertschb,J.Rostamic.Disc cutting tests in Colorado Red Granite:Implications for TBM performance prediction[J].International Journal of Rock Mechanics &Mining Sciences:2007,44:238-246
    [6]Z.T.Bieniawski von Preinl,B.Celada Tamames,J.M.Galera Fernandez b,etc.Rock mass excavability indicator:New way to selecting the optimum tunnel construction method[J].Tunnelling and Underground Space Technology,2006,21:237
    [7]钱七虎,李朝甫,傅德明。全断面掘进机在中国地下工程中的应用现状及前景展望[J]。建筑机械,2002(5):28-35
    [8]钱七虎,李朝甫,傅德明。隧道掘进机在中国地下工程中应用现状及前景展望[J]。地下空间,2002,22(1):1-12
    [9]Reilly John,Arrigoni Gianni,xu shulin,Grasso Piergiorgio。TBM及其在中国的应用(1)[J]。现代隧道技术,2002,39(1):1-5
    [10]Reilly John,Arrigoni Gianni,xu Shulin,Grasso Piergiorgio。TBM及其在中国的应用(2)[J]。现代隧道技术,2002,39(2):1-7
    [11]Reilly John,Arrigoni Gianni,xu Shulin,Grasso Piergiorgio。TBM及其在中国的应用(3)[J]。现代隧道技术,2002,39(3):1-6
    [12]Fu Bingjun,Grasso P,Xu Shulin.Construction of underground hydraulic structures and TBM technology in China[J].Chinese Journal of Rock Mechanics and Engineering,2003,22(9): 1521-1526
    [13]白洪海。TBM在长隧道施工中存在的问题及发展趋势[J]。工程技术,2006,2:32-33
    [14]隆威,尹俊涛,刘永正,吴煜宇。TBM掘进技术的发展应用及相关工程地质问题探讨[J]。采矿工程,2005(2):55-59
    [15]黄润秋,王贤能,唐胜传等。深埋长隧道工程开挖的主要地质灾害问题研究[J]。地质灾害与环境保护,1997,18(1):50-69
    [16]黄润秋,王贤能。深埋隧道工程主要灾害地质问题分析[J]。水文地质工程地,1998(4):21-24
    [17]王石春。隧道掘进机与地质因素关系综述[J]。世界隧道,1998(2):39-43.
    [18]徐则民,黄润秋,张倬元。TBM刀具设计中围岩力学参数的选择[J]。岩石力学与工程学报,2001,20(3):230-234
    [19]秦淞君。隧道掘进机(TBM)掘进时的岩石特征判定问题[J]。铁道建筑,1999(8):2-4
    [20]何文君,张兵。隧道掘进机施工条件下的隧洞围岩分类方法探讨[J]。贵州地质,2006,23(1):66-68
    [21]何发亮,谷明成,王石春。TBM施工隧道围岩分级方法研究[J]。岩石力学与工程学报,2002,21(9):1350-1354
    [22]杨媛媛,黄宏伟。围岩分类在TBM滚刀寿命预测中的应用[J]。地下空间与工程学报,2005,1(5):721-724
    [23]Shen Fengsheng,Liu Xin.Long and deep diversion tunnels of 1st stage project in west route of south-north water transfer project[J].Chinese Journal of Rock Mechanics and Engineering,2003,22(9):1527-1523
    [24]王学潮,马国彦。南水北调西线工程及其主要工程地质问题[J]。工程地质学报,2002,10(01):38-45
    [25]伍法权,黄志全,金维浚,柴建峰,陶波。南水北调西线一期工程区断层特征及其活动性[J]。南水北调西线工程岩石力学与工程地质探索.科学出版社,2007:41-54
    [26]冉勇康,李建彪,闵伟等。南水北调西线工程区及邻域的活动构造[J]。岩石力学与工程学报,2005,24(20):3664-3672
    [27]石守亮,于泳,冉勇康等.南水北调西线工程断裂位移随深度变化的数值模拟研究[J]。岩石力学与工程学报,2005,24(20):3646-3650
    [28]王媛,王学潮,王建平。南水北调西线一期工程区水文地质条件评价[J]。岩石力学与工程学报,2005,24(20):3614-3619
    [29]刘亚群,罗超文,李海波等。南水北调西线工程区地应力测量及地应力场特征分析[J]。岩石力学与工程学报,2005,24(20):3620-3624
    [30]周青春,李海波,杨春和。南水北调西线一期工程砂岩温度、围压和水压耦合试验研究 [J]。岩石力学与工程学报,2005,24(20):3639-3645
    [31]刘振红,王学潮,王泉伟等。南水北调西线工程隧洞围岩分类和变形分析[J]。岩石力学与工程学报,2005,24(20):3625-3628
    [32]侯放鸣,乔世珊。南水北调西线工程对TBM施工的特殊要求初探[J]。中国水利,2004,8:41-43
    [33]王学潮,杨维九,刘丰收。南水北调西线一期工程的工程地质和岩石力学问题[J]。岩石力学与工程学报,2005,24(20):3603-3613
    [34]Aliakbar Golshani,Yoshiaki Okui and etc.A micromechanical model for brittle failure of rock and its relation to crack growth observed in triaxial compression tests of granite[J].Mechanics of Materials 38(2006)287-30331.
    [35]Heping Xie,Feng Gao.The mechanics of cracks and a statistical strength theory forrocks[J].International Journal of Rock Mechanics and Mining Sciences 37(2000)477-488
    [36]谢和平。大理岩微观断裂的分形模型研究[J]。科学通报,1959,34(5)
    [37]谢和平。孔隙与破断岩体的宏细观力学研究[J]。岩土工程学报,1998,20(4):113-114
    [38]谢和平。岩石节理的分形描述[J]。岩土工程学报,1995,17(1):18-23
    [39]周宏伟,谢和平。岩石节理张开度的分形描述[J]。水文地质工程地质,1999(1):1-4
    [40]王金安,谢和平。剪切过程中岩石节理粗糙度分形演化及力学特征[J]。岩土工程学报,1997,19(4):2-8
    [41]周小平等。峰前围压卸荷条件下岩石的应力-应变全过程分析和变形局部化研究[J]。岩石力学与工程学报,2005,24(18):3236-3245
    [42]周小平,张永兴,哈秋聆。裂隙岩体加载和卸荷条件下应力强度因子[J]。地下空间,2003,23(3):277-282
    [43]周小平,哈秋聆,张永兴。考虑裂隙间相互作用情况下围岩卸荷过程应力应变关系[J]。力学季刊,2002,23(2):227-285
    [44]李建林,孙志宏。卸荷岩体损伤断裂力学分析及其参数研究[J]。武汉水利电力大学(宜昌)学报,1999,21(4):277-282
    [45]李建林,孟庆义。卸荷岩体的各向异性研究[J]。岩石力学与工程学报,2001,20(3):338-341.
    [46]李建林,袁大祥,岩体卸荷分析的基本方法[J]。三峡大学学报(自然科学版),2001,23(1):1-6
    [47]李建林,熊俊华,杨学堂。岩体卸荷力学特性的试验研究[J]。水利水电技术,2001,23(5):48-51
    [48]刘杰,李建林,黄宜胜等。卸荷岩体本构关系研究[J]。地球与环境,2005,33(3):112-117
    [49]周济芳,杨学堂,李建林等。卸荷岩体宏观力学参数的分析方法再研究[J]。三峡大学学 报,2005,27(1):37-39
    [50]凌建明,刘尧军。卸荷条件下地下洞室围岩稳定性的损伤力学分析方法[J]。石家庄铁道学院学报,1998,12(4):10-16
    [51]李天斌,王兰生。卸荷应力状态下玄武岩变性破坏特征的试验研究[J]。岩石力学与工程学报,1993,2(4):321-327
    [52]王在泉,张黎明,贺俊征。岩石卸荷本构关系的BP神经网络模型[J]。岩土力学,2004,25(增):119-121
    [53]赵明阶,许锡宾,徐蓉。岩石在三轴加卸荷过程中的一种本构模型研究[J]。岩石力学与工程学报,2002,21(5):626-631
    [54]刘庭金,朱合华,唐春安。围岩卸载损伤演化及应力场调整有限元分析[J]。地下空间,2002,22(4):310-315.
    [55]林鹏,唐春安,陈忠辉,黄润秋。二岩体系统破坏全过程的数值模拟和实验研究[J]。地震,1999,19(4):413-418.
    [56]Fairhurst,C.and Damjanac,B.1999.The Excavation Damage Zone—An International Perspective[J].In Distinct Element Modeling in Geomechanics,Edit by Sharma,V.M.,A.A.Balkema,Rotterdam,Brookfield,pp:1-25
    [57]Falls,S.D.and Young,P.R.1996.Examination of the excavation-disturbed zone in the Swedish ZEDEX tunnel using acoustic emission and ultrasonic velocity measurements[J].In Proceeding of EUROCK'96 Prediction and Performance in Rock Mechanics and Rock Engineering,Vol,2,Torino,Italy,A.A.Balkema,Rotterdam,pp:1337-1344
    [58]Bauer,C,Homand-Etienne,F.,and Hinzen,K.G.1996.Damage zone characterization in near field in the Swedish ZEDEX tunnel using in situ an laboratory measurements[J].In Proceedings of EUROCK'96 Prediction and Performance in Rock Mechanics and Rock Engineering,Vol.2,Torino,Italy,A.A.Balkema,Rotterdam,pp:1345-1352
    [59]Davies,N.and Mellor,D.1996.Review of excavation disturbance measurements undertaken within the ZEDEX project[J].In Procedings of EUROCK'96 Prediction and Performance in Rock Mechanics and Rock Engineering,Vol.2,Torino,Italy,A.A.Balkema,Rotterdam,pp:1315-1322
    [60]Emsley,S.J.,Olsson,O.,Stanfors,R.,Stenberg,L.,Cosma,C,and Tunbridge,L.1996.Intergrated characterization of a rock volume at the Aspo HRL utilized for an EDZ experiment[J].In Proceedings of EUROCK'96 Prediction and Performance in Rock Mechanics and Rock Engineering,Vol.2,Torino,Italy,A.A.Balkema,Rotterdam,pp:1329-1336
    [61]Olsson,O.,B(?)ckblom.G.,et.al.1996.Planning,organization and execution of an EDZ experiment while excavating two test drifts by TBM boring and blasting respectively[J].In Proceedings of EUROCK'96 Prediction and Performance in Rock Mechanics and Rock Engineering,Vol.2,Torino,Italy,A.A.Balkema,Rotterdam,pp:1323-1327
    [62]Stephen D.Falls,R.Paul Young.1998,Acoustic emission and ultrasonic-velocity methods used to characterize the excavation disturbance associated with deep tunnels in hard rock[J].Tectonophysics,vol,289,pp:1-15
    [63]Paul Bossart,Thomas Trick,Peter M.Meier,Juan-Carlos Mayor.2004.Structural and hydrogeological characterisation of the excavation-disturbed zone in the Opalinus Clay(Mont Terri Project,Switzerland)[J].Applied Clay Science,pp:1-20
    [64]Zhengmeng Hou,Mechanical and hydraulic behavior of rock salt in the excavation disturbed zone around underground facilities[J].International Journal of Rock Mechanics & Mining Sciences,2003,vol,40,pp:725-738.
    [65]陈宗基。应力释放对开挖工程稳定性的重要影响[J]。岩石力学与工程学报,1983,12(1)
    [66]钱七虎。深部岩体工程响应的特征科学现象及“深部”的界定[J]。华东理工学院学报,2002,27(4):21-23
    [67]董方庭,宋宏伟,郭志宏等。巷道围岩松动圈支护理论[J]。1994,19(1):21-31
    [68]王夫亮。关于确定围岩松弛区半径及其相关问题的探讨[J]。铁道工程学报,1998(2),57-65
    [69]M.Cai,P.K.Kaiser,Assessment of excavation damaged zone using a micromechanics model[J].Tunneling and Underground Space Technology,2005,vol.20:301-310
    [70]吉小明。隧道开挖的围岩损伤扰动带分析[J]。岩石力学与工程学报,2002,vol.24(10):1697-1702
    [71]周希圣,陈明雄等。围岩松动圈灰色预测理论[J]。煤炭学报,1997,vol.6(2):15-16
    [72]高玮,郑颖人。围岩松动圈灰预测的进化神经网络法[J]。岩石力学与工程学报,2002,vol.21(5):658-661
    [73]王学潮。南水北调西线一期工程的地质条件和隧洞地质问题[C]。南水北调西线工程岩石力学与工程地质探索。科学出版社,2007:3-9
    [74]王学潮,张辉,刘振红等。南水北调西线工程地质灾害初步研究[J]。地球科学,2001,26(3):297-303
    [75]王学潮,陈书涛,张辉等。南水北调西线工程地质条件研究[C],郑州:黄河水利出版社,2005
    [76]谢启兴,何跃福,陈明,何文。南水北调西线一期工程区地层岩性特征[C]。南水北调西线工程岩石力学与工程地质探索.科学出版社,2007:10-18
    [77]四川省地质矿产局,《四川省岩石地层》[M]。1997,武汉:中国地质大学出版社
    [78]四川省地质矿产局,《四川省区域地质志》[M]。1997,北京:地质出版社
    [79]青海省地质矿产局,《青海省岩石地层》[M]。1997,武汉:中国地质大学出版社
    [80]张辉,王学潮,向宏发。南水北调西线一期工程区构造稳定分析[J]。岩石力学与工程学报,2005,24(20)
    [81]张辉,刘振红,张绍民。南水北调西线一期工程区主要断裂特征及其工程地质问题[C]。南水北调西线工程岩石力学与工程地质探索。科学出版社,2007:55-62
    [82]伍法权,黄志全,金维浚,柴建峰,陶波。南水北调西线一期工程区断层的工程效应分析[C]。南水北调西线工程岩石力学与工程地质探索。科学出版社,2007:73-81
    [83]文锦明,苏画,陈明,秦宇龙。南水北调西线一期工程区地质构造初步研究[C]。南水北调西线工程岩石力学与工程地质探索。科学出版社,2007:19-32
    [84]刘振红,张辉,石守亮。杜柯河断裂带工程地质特性分析[J]。华北水利水电学院学报,2005,26(4)
    [85]石守亮,王泉伟,刘振红等。色曲断层活动性评价及工程效应分析[J]。华北水利水电学院学报,2005,26(4)
    [86]林湘,吴子燕,邓子辰。基于子结构的非线性参数系统动力反演方法研究[J]。计算力学学报,2009,26(1):15-19
    [87]陈健云,王建有。部分输入未知条件下结构参数识别法研究[J]。计算力学学报,2005,22(2):149-154
    [88]罗润林,阮怀宁,黄亚哲,朱昌星。岩体初始地应力场的粒子群优化反演及在FLAC3D 中的实现[J]。长江科学院院报,2008,25(4):73-80
    [89]卓效明译。全断面隧道掘进机开挖与钻爆法开挖的比较[J]。世界隧道,1996(5):32-38
    [90]彭道富,李忠献。特长隧洞TBM掘进施工技术研究[J]。岩土工程学报,2003(3):21-23
    [91]莫耀升,张豫生。TBM在引大入秦30A隧洞中的应用[J]。世界隧道,1999(4):24-36
    [92]杨维九,李治明,郑春洲。南水北调西线第一期工程引水隧洞设计[C]。南水北调西线工程岩石力学与工程地质探索。科学出版社,2007:137-141
    [93]汪雪英,尹德文,陈友平。南水北调西线深埋长隧洞开挖方案研究[J]。南水北调西线工程岩石力学与工程地质探索。科学出版社,2007:142-152
    [94]王泉伟,王学潮,郭卫新,孙万里。南水北调西线工程区隧洞TBM施工可行性研究[J]。南水北调西线工程岩石力学与工程地质探索。科学出版社,2007:153-158
    [95]徐干成,白洪才,郑颖人,刘朝。地下工程支护结构[M]。中国水利水电出版社,2002
    [96]孙均,侯学渊。地下结构[M]。科学出版社,1987
    [97]王思敬,杨志法,刘竹华。地下工程岩体稳定分析[M]。科学出版社,1984
    [98]古兆祺,彭守拙,李忠奎。地下洞室工程[M]。清华大学出版社,1994
    [99]铁木辛柯,古地尔著,徐芝纶等译。弹性理论[M]。人民教育出版社,1964
    [100]陈惠发,A.F.萨里普著,余天庆,王勋文,刘再华译。弹性与塑性力学[M]。中国建筑工业出版社,2004
    [101]谢明,赵晋友。双护盾隧道掘进机(TBM)技术浅谈[J]。现代隧道技术,2006(5):23-30
    [102]朱齐平,潘存治。全断面掘进机刀盘驱动转矩的确定[J]。煤矿机电,2006(4):33-37
    [103]宋天田,薛继洪。TBM与常规法隧道施工方案选择系统[J]。辽宁工程技术大学学报,2006(S1):19-21
    [104]王彦武,常晓刚。全断面岩石掘进机主要技术及前景展望[J]。山西水利,2005(3):65-66
    [105]曹催晨。TBM掘进机在引黄工程中的应用[J]。科技情报开发与经济,2003(11):232-233
    [106]S.Pelizza,P.Grasso,徐书林,翟进营。TBM法隧道掘进综述[J]。建筑机械,2002(5):21-27
    [107]陈志刚,鲍务均,肖石林。TBM盾构工程管片装配时的有限元分析[J]。机械设计与制造,2006(3):68-69
    [108]尚彦军,史永跃,曾庆利,尹俊涛,薛继洪。昆明上公山隧道复杂地质条件下TBM卡机及护盾变形问题分析和对策[J]。岩石力学与工程学报,2005(21):3858-3863
    [109]李文江,刘志春,高成雷。大伙房水库输水隧洞TBM安装洞室稳定性分析与施工动态模拟[J]。建井技术,2004(Z1):52-55
    [110]钟登华,梅传书,刘春冬。隧道TBM施工管片衬砌三维计算模型[J]。天津大学学报(自然科学与工程技术版),2001(4):472-476
    [111]Hoek E.Strength of rock,and rock masses[J].ISRM News Journal,1994,2(2):4-16
    [112]Hoek E.,Kaiser P.K.and Bawden W.F.Support of underground excavation in hard rock[M].Rotterdam:Balkema,1995
    [113]Hock E.Practical rock engineering[M].Rotterdam:Balkema,2000
    [114]H Sonmez and R Ulusay.Modifications to the geological strength index(GSI) and their applicability to stability of slopes[J].Int.J.Rock Mech.& Min.Sci.1999,36(5):743-760
    [115]E Hoek,E.T.Brown.Strength of jointed rock masses[J].Geotechnique,1983,Vol.33,No.3,187-223
    [116]MichaelAlber.Advance Rates ofHard Rock TBMs and Their Effects on ProjectEconomics[J].Tunnelling and Underground Space Technology,2000,15(1):55-64
    [117]Barton,N.Rockmass characterization and seismicmeasurements to assist in the design and execution ofTBM projects[C].Proc.ofl996 Taiwan Rock Engineering Symposium.Taiwan,1996,1-16
    [118]Dalton,F.E.,DiVita,L.R.&Macaitis,W.A.TARP tunnel boringmachine performance Chicago[C],Proc.RETC.MA,1993,445-451
    [119]肖世国,周德培。开挖边坡松动区的近似解析[J]。岩土力学,2007,28(8):1700-1704
    [120]李树忱,李术才,徐帮树。隧道围岩稳定分析的最小安全系数法[J]。岩土力学,2007,28(3),549-554
    [121]白郁宇,张瑞仁。TBM掘进速率预测模型的比较[J]。现代隧道技术,2005,42(5):7-16
    [122]王旭,李晓,李守定。关于用岩体分类预测TBM掘进速率AR的讨论[J]。工程地质学报,2008,16(4):470-475
    [123]黄书岭,冯夏庭,张传庆。脆性岩石广义多轴应变能强度准则及实验验证[J]。岩石力学与工程学报,2008,27(1):124-134
    [124]何江达,谢红强,范景伟,王启智。卸荷岩体脆弹塑性模型在高边坡开挖分析中的应用[J]。岩石力学与工程学报,2004,23(7):1082-1086
    [125]冯夏庭。智能岩石力学导论[M]。北京科学出版社,2000
    [126]冯夏庭。杨成祥.智能岩石力学(2)—参数与模型的智能辨识[M]。1999,18(3):350-353
    [127]Xia-Ting Feng,Bingrui Chen,Chengxiang Yang,Hui Zhou,and Xiuli Ding.Identification of viscoelastic models of rock materials using genetic programming coupled with the modified particle swarm optimization algorithm[J].Int.J.Rock Mech.Min.Sci.2006,43(5):789-801
    [128]Pelli F,Kaiser PK,Morgenstern NR.An interpretation of ground movementsrecorded during construction of Donkin-Morien tunnel[J].Can Geotech,1991,28(2):239-54
    [129]Martin CD.Seventeenth Canadian geotechnical colloquium:the effect of cohesion loss and stress path on brittle rock strength[J].Can Geotech 1997,34(5):698-725
    [130]Hajiabdolmajid V,Martin CD,Kaiser PK.Modelling brittle failure of rock.Proceedings of the Fourth North American Rock Mechanics Symposium[J],Seattle,Washington.A.A.Balkema,Rotterdam,2000.p.991-998
    [131]Hajiabdolmajid VR.Mobilization of strength in brittle failure of rock,Ph.D.thesis[M],epartment of Mining Engineering,Queen's University,Kingston,Canada,2001.268
    [132]V.Hajiabdolmajid,P.K.Kaiser,C.D.Martin.Modelling brittle failure of rock[J].International Journal of Rock Mechanics&Mining Sciences,2002,39:731-741
    [133]V.Hajiabdolmajid,P.K.Kaiser.Brittleness of rock and stability assessment in hard rock tunneling[J].Tunnelling and Underground Space Technology,2003,18:35-48
    [134]刘洋,何沛田,赵明阶。基于损伤断裂理论的岩石破坏机理研究[J]。地下空间与工程学报,2006,2(6):1076-1080
    [135]潘一山,徐秉业。考虑损伤的圆形洞室岩爆分析[J]。岩石力学与工程学报,1999,18(2):152-156
    [136]陈忠辉,林忠明,谢和平等。三维应力状态下岩石损伤破坏的卸荷效应[J]。煤炭学报,2004,29(1):31-35
    [137]Itasca Consulting Group Inc.FLAC3D(Version 2.1) users manual[R].USA.Itasca Consulting Group Inc.,2003
    [138]冯夏庭,张志强,扬成祥等。位移反分析的进化神经网络方法研究[J]。岩石力学与工程学报,1999,18(5):497-502
    [139]邓建辉,李焯芬,葛修润。BP网络和遗传算法在岩石边坡位移反分析中的应用[J].岩石力学与工程学报,2001,20(1):15
    [140]高玮,郑颖人。岩土力学反分析及其集成智能研究[J]。岩土力学,2001,22(1):114-116
    [141]苏国韶。高地应力下大型地下洞室群的稳定性分析与智能优化研究[D]。2002,21(1):9-12.
    [142]高玮,冯夏庭。岩土本构模型智能识别的若干研究[J]。岩石力学与工程学报,2002,21(增2):2532-2538.
    [143]朱齐平,刘希太,潘存治。全断面掘进机(TBM)刀盘总推进力的分析计算[J]。矿山机械,2006(11):20-22
    [144]李亮,傅鹤林。TBM破岩机理及刀圈改形技术研究[J]。铁道学报,2000(S1):8-10
    [145]秦淞君。隧道掘进机(TBM)掘进时的岩石特征判定问题[J]。铁道建筑,1999(8):1-4
    [146]王思敬,温庆博。南水北调西线工程砂岩的可钻性评价。南水北调西线工程岩石力学与工程地质探索[C]。科学出版社,2007:129-136
    [147]岳永峰。岩石点荷载试验和TBM破岩机理的对比研究。南水北调西线工程岩石力学与工程地质探索[C].科学出版社,2007:195-198
    [148]陈剑平,石丙飞,王树林,周子源。单测线法估算随机节理迹长的数值技术[J]。岩石力学与工程学报,2004,23(10):1755-1759
    [149]汪远年,李世海。断续节理岩体随机模型三维离散元数值模拟[J]。岩石力学与工程学报,2004,23(21):3652-3658
    [150]张红亮,王水林,李春光。基于数值实验的节理岩体变形特性REV研究[J]。岩石力学与工程学报,2008,27(2):3643-3648

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700