用户名: 密码: 验证码:
基于物质点方法饱和多孔介质动力学模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在实际工程中,如边坡失稳相联的土壤面破坏、石油开采中油层破裂诱发的地质沉降以及地下结构与土体间的相互作用等,均大量涉及了多孔介质力学问题,关于多孔多相材料(如土壤)力学行为的研究已经成为近年来科学与工程界的热点研究问题,相关研究工作具有广阔的工程应用背景。饱和多孔介质作为一种典型的多孔多相介质,本文将其作为研究对象。由于饱和多孔介质由固体骨架与孔隙流体组成,相对单相介质其固—液耦合响应更为复杂。有限元方法的成功提出使得饱和多孔介质的数值模拟成为可能;但是有限元方法存在着许多弱点,如:在处理大变形等问题时出现网格畸变,计算精度随之下降等。为了弥补这些不足,随着计算力学研究工作的深入,一些新的计算方法被提出,如离散元方法、流形元方法以及无网格方法等。本文所研究的物质点方法(Material Point Method,MPM)是具有代表性的一种无网格方法。
     本文发展了用于饱和多孔介质动力学模拟的新的物质点方法,并将其应用到饱和多孔介质同固体间动态接触分析以及饱和多孔介质应变局部化分析中。本文各章节内容安排如下:
     第一章,首先阐述了课题的研究背景与工程意义;并简要回顾了土力学的发展历史,介绍了几种具有代表性的无网格方法;最后概述了本文的研究工作。
     第二章介绍了饱和多孔介质的经典控制方程。在细观上,饱和多孔介质由固、液两相组成,具有非均匀的结构。在宏观数值分析中假定饱和多孔介质是均匀、连续的;并且假定各相同时充满饱和多孔介质全域。在这些假设的基础上,应用连续介质力学理论框架,可以建立饱和多孔介质耦合数学模型,其由一组偏微分方程组成:饱和多孔介质混合物动量守恒方程、饱和多孔介质中孔隙流体传输方程——Darcy方程与孔隙流体质量守恒方程。
     第三章详细介绍了传统物质点方法。物质点方法作为一种无网格方法,已经在固体力学领域成功地解决了很多问题,特别是在处理接触/碰撞、穿透/穿孔等问题时具有先天的优势,其可在不调用任何主从关系的基础上,模拟时间相关问题。本章显式地给出传统物质点方法的空间离散方程,详细描述了其算法实施过程;并介绍了物质点方法的优势与弱点。
     第四章,基于饱和多孔介质u-p形式控制方程,提出了饱和多孔介质耦合物质点方法(coupling MPM),并显式地给出了其空间离散方程与相应的算法实施过程。耦合物质点方法通过一套物质点代表饱和多孔介质混合体。在耦合物质点方法中,本文首次提出了基于物质点方法的孔隙流体Darcy方程求解办法;并详细阐述了压强场边界条件的处理方式,通过引入边界压强层近似描述指定压强边界。最后通过数值算例,表明了所发展的耦合物质点方法的正确与有效性。
     第五章,应用饱和多孔介质u-U形式控制方程,提出了饱和多孔介质两相物质点方法(two-phase MPM),并详细阐述了其算法流程。两相物质点方法通过引入两套物质点分别描述固体骨架变形与孔隙流体流动;并且针对固相和液相位移分别求解。应用显式时间积分算法,通过数值算例验证了两相物质点方法的正确与有效性。
     第六章,在物质点方法算法框架下,提出了饱和多孔介质与固体介质间动力接触问题的数值模拟方案,其中饱和多孔介质与固体介质的力学响应分别通过耦合物质点方法与传统物质点方法模拟,二者通过本章提出的接触算法相结合,在保证饱和多孔介质与固体间不存在相互穿透(特别是孔隙流体不能通过接触面流动)的前提下,允许二者间的相互滑动。通过数值算例验证了所提出的接触数值模拟方案的有效性。
     第七章,饱和多孔介质作为多相多孔材料,其应变局部化问题不仅与固体骨架变形有关,而且受到孔隙流体的影响。为了考虑饱和多孔介质中的流—固耦合特性,本章在破坏本构描述中引入了孔隙压强的影响,提出了改进的strong decohesion模型,并发展了相应的返回映射算法。在两相物质点方法算法框架下,通过应力应变场分岔分析,改进的strong decohesion模型与弹塑性本构关系相连接,模拟了饱和多孔介质的应变局部化现象,并对多孔介质混合物的承载力分析获得了客观的、非网格依赖的计算结果。
     第八章总结全文内容,并展望下一步的研究工作。
     在附录A中,具体介绍了二维饱和多孔介质物质点方法动力学分析程序Geo-MPM。Geo-MPM具有一定的通用性,在同一程序框架下实现了传统单相物质点方法、两相物质点方法与耦合物质点方法;并且Geo-MPM能够完成单相介质与饱和多孔介质的弹塑性与应变局部化分析、单相介质间以及饱和多孔介质与固体间的动力接触分析等。
In the recent years,more and more attention has been paid on the research ofmultiphase porous media,like geomaterials,which play important role in landslide related to the failure of soil foundation,land subsidence in petroleum extraction and the interaction between soil and underground structure in the geotechnical engineering.Saturated porous medium,as a kind of soils,is considered particularly in the dissertation.Because saturated porous medium is composed of solid skeleton and pore fluid,its simulation is more difficult than that of single-phase materials.A variety of the Finite Element Methods(FEMs) have been developed for such problem in the past decades;but they may have some disadvantages in some special cases,like mesh distortion in large strain or strain localization.To overcome the disadvantages of the FEM,some new numerical techniques,like meshless method,have been developed.The Material Point Method(MPM) is the representative one of meshless methods, which is proposed to predict the time-dependent problems of single-phase material in the previous works.
     The MPM is extended in the dissertation to predict the coupling responses of saturated porous media.The new MPMs are applied to simulate the strain localization of saturated porous media and the dynamic contact between saturated porous media and solid bodies.The chapters of the dissertation are organized as follows.
     The first chapter introduces the background of the research,and reviews the development of geomechanics.Several meshless methods,like SPH and EFG,are also surveyed briefly.At the end of the chapter,the contents of the dissertation are outlined.
     Chapter 2 provides the physical description of saturated porous media,which is modeled as the solid-fluid mixture.Saturated porous medium has heterogeneous structures in space in the mireo-scale.To model the heterogeneous two-phase material as a continuum in the macro-scale,a fundamental assumption of every phase filling the entire domain is made, which means that all the phases are superposed at any material point.Under the assumption, the mathematical model of saturated porous media is obtained,which consists of a set of coupled partial differential equations:the momentum balance of the whole system,the transportation equation of pore fluid,Darcy's equation,and the mass balance of pore fluid.
     In Chapter 3,the original MPM is reviewed,which has been used to solve some history-dependent problems,like contact/impact and penetration/perforation,in the solid mechanics without invoking any master/slave relationship as required in the conventional FEM.The discrete formula and the numerical algorithm of the MPM are provided explicitly.
     Based on the u-p form governing equations of saturated porous media,the coupling MPM is proposed to predict dynamic responses of saturated porous media in Chapter 4.The material point refers to the mixture of saturated porous media in the coupling MPM.In the coupling MPM,the solving scheme is proposed for the Darcy's equation for the first time, and the treatments on the boundary conditions in the pore pressure field are described.The prescribed pressure boundary is imposed approximately with the use of the pressure boundary layer.The validity of the approach developed here is demonstrated in the comparison with the results of the FEM.It can be found that the interaction between solid skeleton and pore fluid in saturated porous media is successfully simulated.
     In chapter 5,the two-phase MPM is developed to simulate the solid-fluid coupling in saturated porous media with the use of the u-U form governing eqatuions of saturated porous media.In the two-phase MPM,two sets of material points are invoked to represent the deformation of solid skeleton and the pore fluid flow.In this chapter,the numerical implementation of the two-hase MPM is provided explicitly,and the vadility of the two-phase is shown in the numerical examples.
     The strategy for the dynamic contact between saturated porous media and solid bodies is proposed in the frame work of the MPM in chapter 6,in which the responses of saturated porous media and solids are predicted by the coupling MPM and the original MPM respectively.The link between these two kinds of MPMs is the contact algorithm proposed in the current chapter,in which the slip between saturated porous media and solid bodies is allowed following Coulomb friction law,and the inter-penetration between saturated porous media and solid bodies is forbidden.The results of numerical calculations demonstrate the validity of the proposed strategy which shines a light of modeling the problems of soil-structure interaction in a new and effective way.
     Stain localization is one of the most frequently found mechanisms leading to progressive failure of materials.To simulate the strain localization of saturated porous media,a modified strong decohesion model is developed in Chapter 7,in which the solid-fluid coupling in saturated porous media is considered with bringing the effect of pore pressure into the traction on the decohesion surface.In the frame scheme of the two-phase MPM,the modified strong decohesion model is coupled with the bifurcation analysis of the stress-strain field,whose stress state is updated with the corresponding return mapping algorithm developed here. Objective and mesh-independent results are obtained in the representative examples.
     The main contributions of the dissertation are summarized and the further works are suggested in chapter 8.
     Appendix A introduces the code of Geo-MPM which is developed to predict the dynamic responses of saturated porous media.In Geo-MPM,three kinds of MPMs,the original MPM,the two-phase MPM and the coupling MPM,are implemented.Geo-MPM can simulate the ealstoplastic behaviour and strain localization of both saturated porous media and solids,and contact among solid bodies and between saturated porous media and solid bodies.
引文
[1]张克恭,刘松玉.土力学[M].北京:中国建筑工业出版社,2001.
    [2]刘成宇.土力学[M].北京:中国铁道出版社,2000.
    [3]Terzaghi K.Die berechnung der durchleessigkeitszifter des tones aus dem verlauf der hydro dynamishen spannungeserscheinungen[J].Sitsber.Akad.Wiss.Vienna,Abt.1923.Ⅱ:132.
    [4]Coulomb CAL.Application des regles maximis et minimis a quelques problems de statique[C].Paris:Relatifs a l' architecture.Mem.de l' Acad.des,Sc.,1773.
    [5]Darcy H.D(?)termination des lois d'ecoulement de l'eau(?) travers le sable[C]//Les Fontaines Publiques de la Ville de Dijon.Paris:Victor Dalmont.1856:590- 594.
    [6]Rankine WJM.On the stability of loose earth[M].London:Tran.Royal Soc,1857.
    [7]Terzaghi K.Principles of soil mechanics[J].Eng.Naws Record,1925,17.
    [8]Biot MA.General theory of three-dimensional consolidation[J].Journal of Applied Physics,1941,12:155-164.
    [9]Biot MA.Theory of propagation of elastic waves in fluid saturated porous solid[J].J.Acoust.Soc.America.,1956,28:168-191.
    [10]Turesdell C.Sulle basi della termomeccanica[J].Rend,1957,22:33-38.
    [11]Turesdell C.The classical field theories.Handbuch derphysic bd;Ⅲ/Ⅰ[M].Verlag:Springer,1960.
    [12]Bowen RM.Theory of mixtures in Eringen.Continuum Physics Vol Ⅲ[M].NY:Academic Press,1976.
    [13]Bowen RM.Compressible Porous media models by use of the theory of mixtures[J].Int.J.Eng.Sci.,1982,20:697-735.
    [14]Derski W.Thermomechanique Lineaire des Milieux Poreux[M].Nantes:ENSM,1982.
    [15]Zienkiewicz OC,Humpheson C,Lewis RW.A unified approach to soil mechanics problems (including plasticity and viscoplasticity)[M]//Finite Elements in Geomechanics.Wiley,1977:Ch.4,151-178.
    [16]Zienkiewicz OC.Basic formulation of static and dynamic behaviour of soil and other porous media[J].Numerical Methods in Geomechanics,1982.
    [17]Zienkiewicz OC,Bettess P.soil and other porous media under transient dynamic conditions[J].Scientific paoers Inst.Geotechnical Eng.,1980,32:243-254.
    [18]Prevost JH.Mechanics of continuous porous media[J].Int.J.Eng.Sci.,1980,18:787-800.
    [19]Zienkiewicz OC,Shorni T.Dynamic behaviour of saturated porous media:the generalized Biot formulation and its numerical solution [J].Int.J.Numer.Anal.Meth.Geo.,1984,8:71-96.
    [20]Zienkiewicz OC,Chan AHC,Pastor M et al.Static and dynamic behaviour of soils:a rational approach to quantitative solutions.I:fully saturated Problems [C]//Proc Roy Soe Lond A.1990,429:285-309.
    [21]Zienkiewicz OC,Xie YM,Sehrefler BA et al.Static and dynamic behaviour of soils:a rational approach to quantitative solutions.II:semi-saturated Problems [C]//Proc Roy Soc Lond A.1990,429:311-321.
    [22]FredlundDG,RahardjoH.soil mechanics for unsaturated soils [M].NewYork:John Wiley,1993.
    [23]Li Xikui.Finite element analysis for immiscible two-phase fluid flow in deforming porous media and unconditionally stable staggered solution [J].Communications in Applied Numerical Methods,1990,6(2):125-135.
    [24]Li Xikui,Zienkiewiez 0C,Xie YM.A numerical model for immiscible two-phase fluid flow in a porous medium and its time domain solution [J].Int.J.Numer.Methods Eng.,1990,30(6):1195-1212.
    [25]Li Xikui,Zienkiowicz 0C.Multiphase flow in deforming porous media and finite element solutions [J].Comput.Struct.,1992,45(2):211-227.
    [26]Alonao EE,Gens A,Josa A.A constitutive model for partially saturated soils [J].Geotechnique,1990,40:405-430.
    [27]Sehrefler BA,Zhan X.Multiphase flow in deforming for water flow and air flow in deformable porous media [J].Water Resources Research,1993,29:155-167.
    [28]Yang DQ,Shen ZJ.Two-dimensional numerical simulation of generalized consolidation problem of unsaturated soils [C]//7th Int.Conf.computer methods and advances in geomech.Cairns.1992:11,1261-1266.
    [29]Thomas HR,King SD.Coupled temperature/capillary potential variations in unsaturated soil [J],Engneering Mechanics,ASCE.1991,11:2475-2491.
    [30]Thomas HR,He Y,Sansom MR et al.On the development of a model of the thermo-mechanical-hydraulic behaviour of unsaturated soils [J].Engineering Geology,1996,41:197-218.
    [31]Thomas HR,He Y,Onofrei C.An examination of the validation of a model of the hydro/thermo/meehanical behaviour of engineered clay barriers [J].Int.J.Numer.Ana.Meth.Geomech.,1998,22:49-71.
    [32]Thomas HR,Li CLW.Modelling transient heat and moisture transfer in unsaturated soils using a Parallel computing approach [J].Int.J.Numer.analy.Meth.Geomech.,1995,19:345-366.
    [33]Dakshanamurthy V,Fredlund DG.A mathematical model for predicting moisture flow in an unsaturated soil under hydraulic and temperature gradients[J].Water Resources Research,1981,17:714-722.
    [34]Simoni L,Schrefler BA.A staggered finite-element solution for water and gas flow in deforming porous media[J].Communications in Applied Numerical Methods,1991,7:213-223.
    [35]Schrefler BA,Zhan X.A fully coupled model for water flow and air flow in deformable porous media[J].Water Resource Research,1993.
    [36]Meroi EA,Schrefler BA.Large strain static and dynamic semi saturated soil behaviour [J].Int.J.Numer.Analy.Meth.Geomech.,1996,19:81-106.
    [37]Schrefler BA,Seotta R.A fully coupled dynamic model for two-phase fluid flow in deformable porous media[J].Comput.Methods Appl.Mech.Engrg.,2001,190:3223-3246.
    [38]Thomas HR,Sansomr R.Fully coupled analysis of heat moisture and air transfer in unsaturated soil[J].J.Engng.Mech.ASCE.,1995,121(3):382-405.
    [39]Schrefler BA.FE in environmental engineering:Coupled thermo-hydro-mechanical processes in porous media including pollutant transport[J].Archives of Computational Methods in Engineering,1995,2&3:1-54.
    [40]Fries TP,Matthies HG.Classification and overview of mesh-free methods[M].Institute of Scientific Computing Technical University.Braunschweig Brunswick.Germany,2003.
    [41]Belytschko T,Krongauz Y,Organ D et al.Meshless methods:An overview and recent developments[J].Comput.Mech.Appl.Engrg..1996.139:3-47.
    [42]张雄,刘岩.无网格法[M].北京:清华大学出版社,2004.
    [43]刘更,刘天祥,谢琴.无网格法及其应用[M].西安:西北工业大学出版社,2005.
    [44]Li S,Liu WK.Meshfree and particle methods and their applications[J].Appl.Mech.Rev.,2002,55(1):1-34.
    [45]Lucy LB.A numerical approach to the testing of the fission hypothesis[J].The Astron.J.1977,8(12):1013-1024.
    [46]Gingold RA,Monaghan JJ.Smoothed particle hydrodynamics:theory and applications to non-spherical stars[J].Mpn.Not.Roy.Astron.Soc.,1977,18:375-389.
    [47]Benz W.Smooth particle hydrodynamics:a review[C]//In:Buchler JR ed.The Numerical Modeling of Stellar Pulsation.Dordrecht:Kluwer,1990:269.
    [48]Johnson GR,Beissel SR.Normalized smoothing functions for SPH impact computations [J].Int.J.Num.Meth.Engrg.,1996,39:2725-2741.
    [49]Swegle JW,Hicks DL,Attaway SW.Smoothed particle hydrodynamics stability analysis [J].J.Comput.Phys.,1995,116:123-134.
    [50]Chen JK,Beraun JE,Jih CJ.An improvement for tensile instability in smoothed particle hydrodynamic[J].Comput.Mech.,1999,23:279-287.
    [51]Vignjevic R,Campbell J,Libersky L.A treatment of zero-energy modes in the smoothed particle hydrodynamics method [J].Comput.Methods Appl.Mech.Engrg.,2000,184:67-85.
    [52]Monaghan JJ,Gingold GA.Shock simulation by the Particle Method SPH [J].J.Comput.Phys.,1983,52:374-389.
    [53]Monaghan JJ.Particle method for hydrodynamics [J].Comput.phys.Rep.,1985,3:71-124.
    [54]Gingold RA,Monaghan JJ.Kernel estimates as a basis for general particle methods in hydrodynamics [J].J.Comput.Phys.,1982,46:429-453.
    [55]Swegle Jf,Attaway SW.On the feasibility of using smoothed particle hydrodynamics for underwater explosion calculations [J].Comput.Mech.,1995,17:151-168.
    [56]Johnson GR,Stryk RA,Beissel SR.SPH for high velocity impact computations [J].Comput.Methods Appl.Mech.Engrg.,1996,139:347-373.
    [57]Johnson GR,Beissel SR,Stryk RA.A generalized particle algorithm for high velocity impact computation [J].Comput.Mech.,2000,25:245-256.
    [58]BelytschkoT,LuYY,GuL Element free Galerkin methods [J].Int.J.Num.Meth.Engrg.,1994,37:229-256.
    [59]Nayroles B,Touzot G,Villon P.Generalizing the finite element method:diffuse approximation and diffuse elements [J].Comput.Mech.,1992,10:307-318.
    [60]Chung HJ,Belytschko T.An error estimate in the EFG method [J].Comput.Mech.,1998,21:91-100.
    [61]Dolbow J,Belytschko T.Numerical integration of the Galerkin weak form in mesh free methods [J].Comput.Mech.,1999,23:219-230.
    [62]Belytschko T,Krongauz Y,Organ D.Smoothing and accelerated computations in the element free Galerkin method [J].J.Comput.Appl.Math.,1996,74:111-126.
    [63]Krongauz Y,BelytschkoT.EFG approximation with discontinuous derivatives [J].Int.J.Num.Meth.Engrg.,1998,41:1215-1233.
    [64]Liu GR,Gu YT.Coupling of element free Galerkin and hybrid boundary element methods using modified variational formulation [J].Comput.Mech.,2000,26:166-173.
    [65]Belytschko T,Organ D,Krongauz Y.A Coupled finite element-element free Galerkin method [J].Comput.Mech.,1995,17:186-195.
    [66]Hegen D.Element-free Galerkin methods in combination with finite element approaches [J].Comput.Methods Appl.Mech.Engrg.,1996,136:143-166.
    [67]Lu YY,Belytschko T,Tabbara M.Element-free Galerkin methods for wave propagation and dynamic fracture [J].Comput.Methods Appl.Mech.Engrg.,1995,126:131-153.
    [68]Belytschko T,Tabbara M.Dynamic fracture using element-free Galerkin methods [J].Int.J.Num.Meth.Engrg.,1996,39:923-938.
    [69]Belytschko T,Lu YY,Gu L.Crack propagation by element-free Galerkin methods[J].Engrg.Frac.Mech.,1995,51:295-315.
    [70]Xu Y,Saigal S.Element free Galerkin study of steady quasi-static crack growth in plane strain tension in elastic-plastic materials[J].Comput.Mech.,1998,22:255-265.
    [71]Krysl P,Belytschko T.Analysis of thin shells by element free Galerkin method[J].Comput.Mech.,1995,17:26-35.
    [72]Belytschko T,Kyrsl P,Krongauz Y.A Three-Dimensional Explicit Element-Free Galerkin Method[J].Int.Numer.Mech.Fluids,1997,24:1253-1270.
    [73]Ponthot JP,Belytschko T.Arbitrary Lagrangian Eulerian formulation for element free Galerkin method[J].Comput.Methods Appl.Mech.Engrg.,1998,152:19-46.
    [74]Liu WK,Jun S,Zhang YF.Reproducing Kernel Particle methods[J].Int.J.Numer.Meth.Fluids,1995,20:1081-1106.
    [75]Liu WK,Chen Y,Jun S.Overview and applications of the reproducing kernel particle methods[J].Archives of Computational Methods inEngineering:State of the art review,1996,3(1):3-80.
    [76]Liu WK,Chen Y,Aziz UR.Generalized multiple scale reproducing kernel particle methods[J].Comput.Methods.Appli.Mech.Engrg.,1996,139:91-157.
    [77]Chen JS,Wu CT,Yoon S.A stabilized conforming nodal integration for Galerkin mesh-free methods[J].Int.J.Num.Meth.Engrg.,2001,50:435-466.
    [78]Han WM,Meng XP.Error analysis of the reproducing kernel particle method[J].Comput.Methods Appl.Mech.Engrg.,2001,190:6157-6181.
    [79]Uras RA,Chang CT,Chen Y.Multi-resolution reproducing kernel particle methods in acoustic[J].J.Comput.Acoust.,1997,5:71-94.
    [80]Liu WK,Jun S,Li SF.Reproducing kernel particlemethods for structural dynamics.Int.J.Num.Meth.Engrg.,1995,38:1655-1679.
    [81]Liu WK,Jun S.Multi-resolution reproducing kernel particle method for computational fluid dynamic[J].Int.J.Num.Meth.Engrg.,1997,24:1391-1415.
    [82]Gunther F,Liu WK,Diachin D.Multi-scale meshfree parallel computations for viscous,compressible flows[J].Comput.Methods Appl.Mech.Engrg.,2000,190:279-303.
    [83]Liu WK,Hao S,Belytschko T.Multiple scale meshfree methods for damage fracture and Localization[J].Comput.Mater.Sci.,1999,16:197-205.
    [84]Jun S,Im S.Multiple-Scale meshfree adaptivity for the simulation of adiabatic shear band for formulation[J].Comput.Mech.,2000,25:257-266.
    [85]Lee SH,Kim HJ,Jun S.Two Scale meshfree method for the adapticity of 3-D stress concentration problems[J].Comput.Mech.,2000,26:376-387.
    [86]Chen JS,Pau C,Wu CT.Reproducing kernel particle methods for large deformation analysis of nonlinear structure [J].Comput.Methods Appl.Mech.Engrg.,1996,139:195-227.
    [87]Jun S,Liu WK,Belytschko T.Explicit reproducing kernel particle methods for large deformation problems [J].Int.J.Num.Meth.Engrg.,1998,41:137-166.
    [88]Chen JS,Yoon S,Wang HP.An improved reproducing kernel particle method for nearly incompressible finite elasticity [J],Comput.Methods Appl.Mech.Engrg.,2000,181:117-145.
    [89]Chen JS,Pan C,Roqne CMOL.A Lagrangian reproducing kernel particle method for metal forming analysis [J].Comput.Mech.,1998,22:289-307.
    [90]Chen JS,Roque CMOL,Pan C.Analysis of metal forming process based on meshless method [J].Journal of Materials Processing Technology,1998,80-81:642-646.
    [91]Donning BM,Liu WK.Meshless methods for shear-deformable beams and plates [J].Comput.Methods Appl.Mech.Engrg.,1998,152:47-71.
    [92]Alum NR.A reproducing kernel particle method for meshless analysis of micro-electromechanical systems [J].Comput.Mech.,1999,23:324-338.
    [93]Zhu T,Zhang J,Atluri SN.A local boundary integral equation (LBIE) method in computational mechanics and a meshless discretization approach [J].Comput.Mech.,1998,21:223-235.
    [94]Zhu T,Zhang J,Atluri SN.A meshless local boundary integral equation (LBIE) method for solving nonlinear problems [J].Comput.Mech.,1998,22:174-186.
    [95]Atluri SN,Sladek J,Sladek V.The Load boundary integral equation (LBIE) and it' s meshless implementation for linear elasticity [J].Comput.Mech.,2000,25:180-198.
    [96]Atluri SN,Zhu T.A new meshless local Petrov-Galerkin (MLPG) approach in computational mechanics [J].Comput.Mech.,1998,22:117-127.
    [97]Atluri SN,Zhu T.The meshless local Petrov-Galerkin (MLPG) approach for solving problems in elasto-statics [J].Comput.Mech.,2000,25:169-179.
    [98]Atluri SN,Cho JY,Kim HG.Analysis of thin beams,using the meshless local Petrov-Galerkin method,with generalized moving least squares interpolations [J].Comput.Mech.,1999,24:334-347.
    [99]Atluri SN,Cho JY,Kim HG.Analysis of thin beam,using the meshless local Petrov-Galerkin method,with generalized moving least squares interpolations [J].Comput.Mech.,1999,24(5):334-347.
    [100]Long SY,Atluri SN.A meshless local Petrov-Galerkin method for solving the bending Problem of a thin plate [J].CMES.,2002,3(1):53-63.
    [101]Sladek J,Sladek M,Wen PH.Meshless local Petrov-Galerkin (MLPG) method for shear deformable shells analysis [J].CMES.,2006,13(2):103-117.
    [102]Liu KY,Long SY,Li GY.A simple and less-costly meshless local Petrov-Galerkin(MLPG)method for the dynamic fracture problem[J].Eng.Anal.Bound.Elem.,2006,30(1):72-76.
    [103]Han ZD,Liu HT,Rajendran AM.The applications of meshless local Petrov-Galerkin(MLPG)approaches in high-speed impact,penetration and perforation problems[J].CMES.,2006,14(2):119-128.
    [104]Han ZD,Rajendran AM,Atluri SN.Meshless Local Petrov-Galerkin(MLPG) approaehes for solving nonlinear problems with large deformations and rotations[J].CMES.,2005,10(1):1-12.
    [105]Viana SA,Rodger D,Lai BC.Meshless local Petrov-Galerkin method with radial basis functions applied to electromagnetics[J].IEEE-proc.Sci.Meas.Technol.,2004,151(6):449-451.
    [106]Sulsky D,Chen Z,Schreyer HL.A particle method for history-dependent materials[J].Comput.Methods Appl.Mech.Engrg.,1994,118:179-196.
    [107]Sulsky D,Zhou SJ,Schreyer HL.Application of a particle-in-cell method to solid mechanics[J].Comp.Phys.Comm.,1995,87:236-252.
    [108]Zhang X,Lu MW,Wegner JL.A 2-D meshless model for jointed rock structures[J].Int.J.Num.Meth.Engrg.,2000,47(10):1649-1661.
    [109]Modaressi H,Aubert P.Element-free galerkin method for deformation multiphase porous media[J].Int.J.Numer.Meth.Engng.,1998,42:313-340.
    [110]Modaressi H,Aubert P.A diffuse element-finite element technique for transient coupled analysis[J].Int.J.Numer.Meth.Engng.,1996,39:3809-3838.
    [111]Wang JG,Liu GR,Lin P.Numerical analysis of Blot's consolidation process by radial point interpolation method[J].Int.J.Solids Struct.,2002,39(6):1557-1573.
    [112]Wang JG,Liu GR,Wu YG.A point interpolation method for simulating dissipation process of consolidation[J].Comput.Methods Appl.Mech.Engrg.,2001,190(15):5907-5922.
    [113]Liu GR,Gu YT.无网格法理论及程序设计[M].山东:山东大学出版社,2007.
    [1]Collins RE.Flow of Fluids through Porous Materials[M].New York:Reinhold Publishing Corporation,1961.
    [2]Terzaghi K.Die berechnung der durchleessigkeitszifter des tones aus dem verlauf der hydro dynamishen spannungeserscheinungen[J].Sitsber.Akad.Wiss.Vienna,Abt.1923Ⅱ:132.
    [3]Terzaghi K.Principles of soil mechanics[J].Eng.Naws Record,1925,17.
    [4]Coulomb CAL.Application des regles des maximis er minimis a quelques problems de statique,Relatifs a l' architecture.Mem[J].De l' Acad.des,Sc.Paris:1773.
    [5]Drucker DC,Prager W.Soil mechanics and plastic analysis or limit design[J].Quarterly of Applied Mathematics,1952,10(2):157-165.
    [6]Roscoe KH,Schofield AN,Wroth CP.On the yielding of soils[J].Geotechnique,1958,8:22-52.
    [7]Roscoe KH,Schofield AN.Yielding of clays in states wetter than critical[J].Geotechnique,1963,13:211-240.
    [8]Roscoe KH,Burland JB.On the generalized stress strain behaviour of wet clay[C].Hoyman J,Leekie FA.Ed.Engineering Plasticity.CamBridge University Press,1968.
    [9]沈珠江.土体结构性数学模型-21世纪土力学的核心问题[J].岩土工程学报。1996,18(1):95-97.
    [10]谢定义,齐吉琳.土结构性及其定量化参数研究的新途径[J].岩土工程学报,1999,21(6):651-656.
    [11]Darcy H.D(?)termination des lois d'(?)coulement de l' eau(?) travers le sable[C]//Les Fontaines Publiques de la Ville de Dijon.Paris:Victor Dalmont,1856:590 - 594.
    [12]Hough BK.Basic soils engineering[M].New York:Ronald Press,1969.
    [13]Ward JC.Turbulent flow in porous media[C]//Proceedings of the American Society of Civil Engineers.1964:1 - 12.
    [14]Prevost JH.A simple plasticity theory for frictional cohesionless soils[J].Soil Dynamics and Earthquake Engineering,1985,4(1):9-17.
    [15]Mroz Z,Norris VA,Zienkiewicz OC.Application of an anisotropic hardening model in the analysis of elastoplastic deformation of soils[J].Geotechnique,1979,29(1):1-34.
    [16]Pastor M,Zienkiewicz OC,Chan AHC.Generalized plasticity and the modeling of soil behaviour[J].Int.J.Numer.Anal.Meth.Geomech.,1990,14(3):151-190.
    [17]谢定义.土的结构性参数及其变形-强度的关系[J].水利学报,1999,10:1-6.
    [18]武文华.非饱和土中热-水力-力学-传质耦合过程模拟及土壤环境工程中的应用[D].大连:大连理工大学,2002.
    [19]邱大洪,孙昭晨.波浪渗流力学[M].北京:国防工业出版社,2006.
    [1]Brackbill JU,Ruppel HM.FLIP:a method for adoptively zoned,particle-in-cell calculations in two dimensions[J].J.Comput.Phys.,1986,65:314-343.
    [2]Brackbill JU,Kothe DB,Ruppel HM.FLIP:a low-dissipation,particle-in-cell method for fluid flow[J].Comput.Phys.Commun.,1988,48:25-38.
    [3]Harlow FH.The particle-in-cell computing method in fluid dynamics[J].Methods Comput.Phys.,1964,3:319-343.
    [4]Sulsky D,Chen Z,Schreyer HL.A particle method for history- dependent materials [J].Comput.Methods Appl.Mech.Engrg.,1994,118:179-196.
    [5]Sulsky D,Zhou SJ,Schreyer HL.Application of a particle - in- cell method to solid mechanics[J].Comp.Phys.Comm.,1995,87:236-252.
    [6]Cummins SJ,Brackbill JU.An implicit particle-in-cell method for granular materials [J].J.Comput.Phys.,2002,180:506-548.
    [7]Guilkey JE,Weiss JA.Implicit time integration for the material point method:Quantitative and algorithmic comparisons with the finite element method[J].Int.J.Numer.Meth.Engng.,2003,57:1323-1338.
    [8]Sulsky D,Kaul A.Implicit dynamics in the material-point method[J].Comput.Methods Appl.Mech.Engrg.,2004,193:1137-1170.
    [9]Bardenhagen SG,Kober EM.The Generalized Interpolation Material Point Method[J].CMES.,2004,5(6):477-495.
    [10]Bardenhagen SG,Guilkey JE.An improved contact algorithm for the material point method and application to stress propagation in granular material[J].CMES.,2001,2(4):509-522.
    [11]Bardenhagen SG,Brackbill JU,Sulsky D.The material-point method for granular materials[J].Comput.Methods Appl.Mech.Engrg.,2000,187:529-541.
    [12]Wieckowski Z,Youn S,Yeon J.A particle-in-cell solution to the silo discharging problem[J].Int.J.Numer.Meth.Engng.,1999,45:1203-1225.
    [13]Wieckowski Z.The material point method in large strain engineering problems[J].Comput.Methods Appl.Mech.Engrg.,2004,193:4417-4438.
    [14]Tan H,Nairn JA Hierarehieal,adaptive,material point method for dynamic Energy release rate calculations[J].Comput.Methods Appl.Mech.Engrg.,2002,191:2095-2109.
    [15]Gilmanov A,Acharya S.A hybrid immersed boundary and material point method for simulating 3D fluid-structure interaction problems[J].Int.J.Numer.Meth.Fluids,2007,56(12):2151-2177.
    [16]Zhang X,Sze KY,Ma S.An explicit material point finite element method for hyper-velocity impact [J].Int.J.Numer.Meth.Engng.,2006,66:689-706.
    [17]Sulsky D,Schreyer HL.Axisymmetric form of the material point method with applications to upsetting and Taylor impact problems [J].Comput.Methods Appl.Mech.Engrg.,1996,139:409-429.
    [18]York AR,Sulsky D,Schreyer HL.The material point method for simulation of thin membranes [J].Int.J.Numer.Meth.Engng.,1999,44:1429-1456.
    [19]York AR,Sulsky D.Fluid-membrane interaction based on the material point method [J].Int.J.Numer.Meth.Engng.,2000,48:901-924.
    [20]Schreyer HL,Sulsky DL.Modeling delamination as a strong discontinuity with the material point method [J].Comput.Methods Appl.Mech.Engrg.,2002,191:2483-2507.
    [21]Sulsky DL,Schreyer HL.MPM simulation of dynamic material failure with a decohesion constitutive model [J].Eur.J.Mech.A/Solid,2004,23:423-445.
    [22]Chen Z,Shen L,Mai YW.A bifurcation-based decohesion model for simulating the transition from localization to decohesion with the MPM [J].Z.angew.Math.Phys.,2005,56:908-930.
    [23]Shen L,Chen Z.A silent boundary scheme with the material point method for dynamic analyses [J].CMES.,2005,7(3):305-320.
    [24]Nairn JA.Material point method calculations with explicit cracks [J].CMES.,2003,4(6):649-663.
    [25]Guo Y,Nairn JA.Calculation of J-integral and stress intensity factors using the material point method [J].CMES.,2004,6(3):295-308.
    [26]Coetzee CJ,Vermeer PA.The modeling of anchors using the material point method [J].Int.J.Numer.Anal.Meth.Geomech.,2005,29:879-895.
    [27]Zhou SJ,Stormont J,Chen Z.Simulation of geomembrane response to settlement in landfills by using the material point method [J].Int.J.Numer.Anal.Meth.Geomech.,1999,23:1977-1994.
    [28]Hu W,Chen Z.A multi-mesh MPM for simulating the meshing process of spur gears [J].Comput.Struct.,2003,81:1991-2002.
    [29]Wallstedt PC,Guilkey JE.An evaluation of explicit time integration schemes for use with the generalized interpolation material point method [J].J.Comput.Phys.,2008,227(22):9628-9642.
    [30]Bardenhagen SG.Energy Conservation Error in the Material Point Method for Solid Mechanics [J].J.Comput.Phys.,2002,180:383-403.
    [31]Sulsky D,Schreyer H et al.Using the Material-Point Method to Model Sea Ice Dynamics [J].J.Geophys.Res.,2007,112:C02S90.
    [32]Steffen M,Kirby MR,Berzins M.Analysis and reduction of quadrature errors in the material point method(MPM)[J].Int.J.Numer.Meth.Engng.,2008,76:922-948.
    [33]Zhang DZ,Zou Q et al.Material point method applied to multiphase flows[J].J.Comput.Phys.,2008,227:3159-3173.
    [34]Steffen M,Wallstedt PC,et al.Examination and Analysis of Implementation Choices within the Material Point Method[J].CMES.,2008,31(2):107-128.
    [35]Ma J,Lu H,et al.Multiscale simulation using Generalized Interpolation Material Point(GIMP) method and Molecular Dynamics(MD)[J].CME5.,2006,14(2):101-117.
    [36]Ma J,Liu Y,et al.Multiscale simulation of nanoindentation using the Generalized Interpolation Material Point(GIMP) method,Dislocation Dynamics(DD) and Molecular Dynamics(MD)[J].CMES.,2006,16(1):1-55.
    [37]Guo Z,Yang W.MPM/MD handshaking method for multiscale simulation and its application to high energy cluster impacts[J].Int.J.Mech.Sci.,2006,48:145-159.
    [38]Ma S,Zhang X,Qiu XM.Comparison study of MPM and SPH in modeling hypervelocity impact problems[J].Int.J.Impact Engineering,2009,36:272-282.
    [39]Daphalapurkar NP,Lu HB,et al.Simulation of dynamic crack growth using the generalized interpolation material point(GIMP) method[J].Int.J.Fract.,2007,143:79 - 102.
    [40]Buzzi O,Pedroso DM,Giacomlnl A.Caveats on the implementation of the generalized material point method[J].CMES.,2008,31(2):85-106.
    [1]Biot MA.General theory of three-dimensional.consolidation [J].J.Appl.Phys.,1941,12:155-164.
    [2]Biot MA.Theory of propagation of elastic waves in fluid saturated porous solid [J].J.Acoust.Soc.America,1956,28:168-191.
    [3]Lewis RW,Schref ler BA.The Finite Element Method in the Static and Dynamic Deformation and Consolidation of Porous Media (2nd edn) [M].Wiley:New York,1998.
    [4]Zienkiewicz OC,Shiomi T.Dynamic behaviour of saturated porous media:the generalized Biot formulation and its numerical solution [J].Int.J.Numer.Anal.Meth.Geomech.,1984,8(1):71-96.
    [5]Prevost JH.Nonlinear transient phenomena in saturated porous media [J].Comput.Methods Appl.Mech.Engrg.,1982,20:3-8.
    [6]Sulsky D,Chen Z,Schreyer HL.A particle method for hi story-dependent materials [J].Comput.Methods Appl.Mech.Engrg.,1994,118:179-196.
    [7]Sulsky D,Zhou SJ,Schreyer HL.Application of a particle-in-cell method to solid mechanics [J].Comp.Phys.Comm.,1995,87:236-252.
    [8]Coetzee CJ,Vermeer PA.The modelling of anchors using the material point method [J].Int.J.Numer.Anal.Meth.Geomech.,2005,29:879-895.
    [9]Zhou SJ,Stormont J,Chen Z.Simulation of geomembrane response to settlement in landfills by using the material point method [J].Int.J.Numer.Anal.Meth.Geomech.,1999,23:1977-1994.
    [1]Biot MA.General theory of three-dimensional consolidation[J].J.Appl.Phys.,1941,12:155-164.
    [2]Biot MA.Theory of propagation of elastic waves in fluid saturated porous solid[J].J.Acoust.Soc.America,1956,28:168-191.
    [3]Sulsky D,Chen Z,Schreyer HL.A particle method for history- dependent materials [J].Comput.Methods Appl.Mech.Engrg.,1994,118:179-196.
    [4]Sulsky D,Zhou SJ,Schreyer HL.Application of a particle-in-cell method to solid mechanics[J].Comp.Phys.Comm.,1995,87:236-252.
    [5]Burgess D,Sulsky D,Brackbill JU.Mass matrix formulation of FLIP particle-in-cell methods[J].J.Comput.Phys.,1992,103:1-15.
    [1]林皋.土一结构动力相互作用[J].世界地震工程,1991,1:4-21.
    [2]张楚汉.结构-地基动力相互作用问题[M]//张楚汉.结构与介质相互作用理论及其应用.南京:河海大学出版社,1993(6):243-266.
    [3]曹志远.相互作用分析数值方法的在若干新进展[M]//曹志远.结构与介质相互作用理论及其应用.南京:河海大学出版社,1993(6):66-72.
    [4]熊建国.土-结构动力相互作用问题的新进展(Ⅱ)[J].世界地震工程,1992,4:17-25.
    [5]梁青槐.土-结构动力相互作用数值分析方法的评述[J].北方交通大学学报,1997,21(6):690-694.
    [6]Fichera G.Problems Elastostatic Con Vincali Unilaterali;il Problema di Signorini Con Ambigue Conditiorial Contorno[J].Mem.Acc.Naz.Lincei.,1964,Ⅷ(7a).
    [7]Durant G,Lions JL.Un Problems d' slasticite avec frottement[J].J.Mec.,1970,10:409-420.
    [8]Chan SK,Tuba TS.A Finite Element Method for Contact Problems of Solid Bodies[J].Int.J.Mech.Sci.,1971,13.
    [9]Francavilla A,Zienkiewicz OC.A Note on Numerical Computation of Elastic Contact Problems[J].Int.J.Num.Meth.Eng.,1975,9:913-924.
    [10]Fredriksson B.Finite Element Solution of Surface Nonlinearities in Structural Mechanics with Special Emphasis to Contact and Fracture Mechanics Problems[J].Comput.Struct.,1976,6:281-290.
    [11]Qin QH,He XQ.Variational principals,FE and MPT for analysis of non-linear impact-contact Problems[J].Comput.Methods Appl.Mech.Engrg.,1995,122:205-222.
    [12]Okamoto N,Nakazawa M.Finite Element Incremental Contact Analysis with Various Frictional Conditions[J].Int.J.Num.Meth.Eng.,1979,14:337-359.
    [13]Ohtake K,Oden JT,Kikuchi N.Analysis of Certain Unilateral Problems in Von-Karman Plate Theory by a Penalty by a Penalty Method[J].Comp.Meth.Appl.Mech.Eng.,1980,24:187-213.
    [14]Conry TF,Seireg A.Mathematical Programming Method for Design of Elastic Bodies in Contact[J].J.Appl.Mech.ASME.,1971,2:387-392.
    [15]Chand T,Haug EJ,Rim K.Analysis of Unbounded Contact Problems by Means of Quadratic Programming[J].J.Opt.Theo.Appl.,1976,20.
    [16]Haug EJ,Chand R,Pau K.Multibody Elastic Contact Analysis by Quadratic Programming [J].J.Opt.Theo.Appl.,1977,21.
    [17]Haug DD,Saxce G.Frictionless Contact of ELASTIC Bodies by Finite Element Method and Mathematical Programming Technique[J].Comput.Struct.,1980,11:55-67.
    [18]Fischer U,Melosh RJ.Solving Discretized Contact Problems Using Linear Programming [J].Comput.Struct.,1987,25:661-664.
    [19]Panagiotopoulos PD.On the Unilateral Contact Problem of Structures with a Non Quadratic Strain Energy Density [J].Int.J.Solids Struct.,1977,13:253-261.
    [20]Panagiotopoulos PD.A Variational Inequality Approach to the Friction Problems of Structures with Convex Strain Energy Density and Application to the Frictional Contact Problem [J].J.Struct.Meth.,1978,6(3):303-318.
    [21]Panagiotopoulos PD.A Nonlinear Programming Approach to the Unilateral Contact and Friction Boundary Value Problem in the Theory of Elasticity [J].Ing.ARCH.,1975,44:421-432.
    [22]Zhong WX,Sun SM.A finite method for elastic-plastic structure and contact problem by parametric quadratic programming [J].Int.J.Numer.Methods Engrg.,1988,26(7):2723-2738.
    [23]Zhang HW,Zhong WX,Gu YX.A combined parametric quadratic programming and iteration method for 3D elastic-plastic frictional contact problem analysis [J].Compu.Methods Appl.Mech.Engrg.,1998,155:307-324.
    [24]Zhang HW,He SY,Li XS.Two aggregate-function-based algorithms for analysis of 3D frictional contact by linear complementarity problem formulation [J].Comput.Methods Appl.Mech.Engrg.,2005,194(50-52):5139-5158.
    [25]Hughes TJR et al.A Finite Element Method of a class of contact-impact Problems [J].Comput.Methdes Appl.Mech.Engrg.,1976,8:249-276.
    [26]Tyalor RL,Papadopoulos P.On A Finite element Method for dynamic Contact/Impact Problems [J].Int.Numer.Meth.Engrg.,1993,36:2123-2140.
    [27]ArmeroF,Petocz E.Formulation and Anaylsis of Consevring Algorithms for Frictionless Dynamic Contact/Impact Problems [J].Comp.Methods Appl.Mech.Engrg.,1998,185:269-300.
    [28]Belytschko T,Neal MO.Contact-Impact by the Pinball Algorithm with Penalty and Lagrangian methods [J].Int.Numer.Meth.Engrg.,1991,31:547-572.
    [29]Carpenter NJ,Taylor RL,Katona MG.Lagrangian Constraints for Transient Finite Element surface Contact [J].Int.Numer.Meth.Engrg.,1991,32:103-128.
    [30]Zhong ZH.Finite Element Procedures for Contact-Impact Problems [M].Oxford:Oxford Science Publications,1993.
    [31]Lewis RW,Tran DV.Application of soil-structure interaction to off-shore foundations with specific reference to consolidation analysis [J].Int.J.Numer.Methods Eng.,1989,27:195-213.
    [32]Zhang HW.Dynamic finite element analysis for interaction between a structure and two-phase saturated soil foundation [J].Comput.Struct.,1995,56(1):49-58.
    [33]Bardenhagen SG,Brackbill JU,Sulsky D.The material-point method for granular materials[J].Comput.Methods Appl.Mech.Engrg.,2000,187:529-541.
    [34]钟万勰,张洪武,吴承伟.参变量变分原理及其在工程中的应用[M].北京:科学出版社,1997.
    [1]Rudnicki JW,Rice JR.Condition for the localization of deformation in pressure-sensitive dilatant materials[J].J.Mech.Phys.Solids.,1975,23:371-394.
    [2]Mandel J.Conditions de stabilite et postulat de Drucker[C]//Kravtchenko J,Sirieys PM ed.Proc IUTAM Symposium on Rheology and Soil Mechanics,Berlin,1964:58-68.
    [3]Rice JR.On the stability of dilatant hardening for saturated rock mass[J].J.Geophys.Res.,1975,80:1531-1536.
    [4]Rice JR.The localization of plastic deformation[C]//Koiter,W.(Ed.),Theoretical and Applied Mechanics.14th IUTAM Congress.North-Holland,Amsterdam,1976:207-220.
    [5]Vardoulakis I.Equilibrium theory of shear bands in plastic bodies[J].Mechanics Research Communications,1976,3(3):209-214.
    [6]Rice JR,Rudnicki JW.A note on some features of theory of localization of deformation [J].Int.J.Solids Struct.,1980,16:597-605.
    [7]Rice JR et al.Some basic stress diffusion solutions for fluid saturated elastic porous media with compressible contents[J].Rev.Geophys.Space Phys.,1976,14:227-241.
    [8]Rudnicki JW.A formulation for studying coupled deformation pore fluid diffusion effects on localization of deformation[M]//Nemat-Nasser S ed.Geomechanics:AMD-Vol.57,ASME,1983:35-44.
    [9]Han C et al.Plane strain compression experiments on water-saturated fine grained sand[J].Geotechnique,1991,16:49-78.
    [10]Runesson K et al.Effect of pore fluid compressibility on localization in elastic-plastic porous solids under undrained conditions[J].Int.J.Solids Struct.,1996,33:1501-1518.
    [11]Loret B et al.Dynamic strain localization in fluid-saturated porous media[J].J.Eng.Mech.,1991,11:907-922.
    [12]Sanavia L et al.Strain localization modelling in saturated sand samples[J].Beitraege zur Mechanik,Forschungs-berichte aus dem Fachbereich Bauwesen,1995,66:357-366.
    [13]Vardoulakis Ⅰ.Deformation of water-saturated sand:Ⅰ:uniform undrained deformation and shear band[J].Geotechnique,1996,46:441-456.
    [14]Schrefler BA et al.A multiphase medium model for localization and post localization simulation in geomaterials[J].Mech.Cohesive-Frictional Mater.Struct.,1996,1:95-114.
    [15]Li XK,Liu Z et al.Mixed finite element method for saturated poroelastoplastic media at large strains[J].Int.J.Numer.Meth.Engng.,2003,57:875-898.
    [16]Li XK,Zhang JB,Zhang HW.Instability of wave propagation in saturated poroelastoplastic media[J].Int.J.Numer.Anal.Meth.Geomech.,2002,26:563-578.
    [17]Zhang HW,Sanavia L,Schref ler BA.Numerical analysis of dynamic strain localisation in initially water saturated dense sand with a modified generalised plasticity model[J].Comput.Struct.,2001,79:441-459.
    [18]Zhang HW,Schrefler BA.Gradient-dependent plasticity model and dynamic strain localisation analysis of saturated and partially saturated porous media:one dimensional model[J].Euro.J.Mech.A/Solids,2000,19(3):503-524.
    [19]Thomas TY.Plastic Flows and Fracture of Solids[M].New York:Academic Press,1961
    [20]Hill R.Acceleration waves in solids[J].J.Mech.Phys.Solids,1962,10:1-16
    [21]Needleman A.Material rate dependence and mesh sensitivity on localization problems[J].Comput.Methods Appl.Mech.Engrg.,1988,67:69-86.
    [22]Simo JC,Oliver J,Armero F.An analysis of strong discontinuities induced by strain-softening in rate-independent solids[J].Int.J.Comput.Mech.,1993,12:277-296.
    [23]Oliver J.Modelling strong discontinuities in solid mechanics via strain softening constitutive equations.Part I:Fundamentals[J].Int.J.Numer.Meths.Engng.,1996,39:3575-3600.
    [24]Sluys LJ,De Borst R,Muhlhaus HB.Wave propagation,localization and dispersion in a gradient-dependent medium[J].Int.J.Solids Struct.,1993,30:1153-1171.
    [25]Muhlhaus HB,Vardoulakis I.The thickness of shear band in granular materials[J].Geotechnique,1987,37:271-283.
    [26]Schref ler BA,Zhang HW,Pastor M,Zienkiewicz OC,Strain localization modelling and pore pressure in saturated sand samples[J].Comput.Mech.,1998,(3):266-280.
    [27]Zhang HW,Sanavia L,Schrefler BA.An internal length scale in strain localisation of multiphase porous media[J].Mech.Cohesive-Frictional Mater.Struct.,1999,4:443-460.
    [28]Zhang HW,Schrefler BA.Uniqueness and localization analysis of elastic-plastic saturated porous media[J].Int.J.Numer.Anal.Meth.Geomech.,2001,25:29-48.
    [29]Zhang HW,Schrefler BA.Analytical and numerical investigation of uniqueness and localization in saturated porous media[J].Int.J.Numer.Anal.Meth.Geomech.,2002,26(14):1429-1448.
    [30]Zhang HW,Schrefler BA,Wriggers P.Interaction between different internal length scales for strain localisation analysis of single phase materials[J].Comput.Mech.,2003,30:212-219.
    [31]Zhang HW,Schrefler BA.Particular aspects of internal length scales in strain localization analysis of multiphase porous materials[J].Comput.Methods Appl.Mech.Engrg.,2004,193:2867-2884.
    [32]Zhang HW,Zhou L,Schrefler BA.Material instabilities of anisotropic saturated multiphase porous media[J].Euro.J.Mech.A/Solids,2005,24(5):713-727.
    [33]Armero F,Callari C.An analysis of strong discontinuities in a saturated poro-plastic solid[J].Int.J.Numer.Meth.Engrg.,1999,46(10):1673-1698.
    [34]Callari C,Armero F.Finite element methods for the analysis of strong discontinuities in coupled poro-plastic media[J].Comput.Methods Appl.Mech.Engrg.,2002,191:4371-4400.
    [35]Larsson J,Larsson R.Localization analysis of a fluid-saturated elastoplastic porous medium using regularized discontinuities[J].Mech.Cohesive-Frictional Mater.Struct.,2000,5:565-582.
    [36]Sulsky DL,Schreyer HL.MPM simulation of dynamic material failure with a decohesion constitutive model[J].Euro.J.Mech.A/Solids,2004,23:423-445.
    [37]Schreyer HL,Sulsky DL.Modeling delamination as a strong discontinuity with the material point method[J].Comput.Methods Appl.Mech.Engrg.,2002,191:2483-2507.
    [38]Chen Z,Shen L,Mai YW.A bifurcation-based decohesion model for simulating the transition from localization to decohesion with theM MPM[J].Z.angew.Math.Phys.,2005,56:908-930.
    [39]Drucker DC,Prager W.Soil mechanics and plastic analysis or limit design[J].Quarterly of Applied mathematics,1952,10:157-165.
    [40]Simo JC,Hughes JR.Computational inelasticity[M],New York:Springer-Verlag,1998.
    [41]Andrade JE,Borja RI.Modeling deformation banding in dense and loose fluid-saturated sands[J].Finite Elements in Analysis and Design.2007,43(5):361-383.
    [42]Kodaka T,Higo Y et al.Effects of sample shape on the strain localization of water-saturated clay[J].Int.J.Numer.Anal.Meths.Geomech.,2007,31(3):483-521.
    [43]Andrade JE,Borja RI.Capturing strain localization in dense sands with random density [J].Int.J.Numer.Methods Eng.,2006,67:1531 - 1564.
    [44]唐洪祥.基于Cosserat连续体模型的应变局部化有限元模拟[D].大连:大连理工大学,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700