用户名: 密码: 验证码:
膨胀阻燃和硅烷接枝交联聚丙烯及其三元乙丙橡胶材料的制备和性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚丙烯(PP)、聚丙烯/三元乙丙橡胶(PP/EPDM)橡塑共混材料由于其综合性能良好,而广泛应用于生产生活的很多方面。但是其自身易燃且热稳定性不高,从而限制其使用范围。膨胀阻燃技术和硅烷接枝交联技术分别在提高聚烯烃类和橡塑共混材料的阻燃性和热稳定性方面有着积极的应用。本文在综述了膨胀阻燃以及硅烷接枝交联PP、PP/EPDM最新研究进展的基础上,设计了一种新型高效的膨胀阻燃体系即MP/PEPA复配体系,研究了该体系在PP,PP/EPDM中的应用,并深入探讨了该膨胀体系的阻燃机理以及协效作用;此外,研究了硅烷接枝交联技术在PP/EPDM中的应用,初步探讨了接枝机理;讨论了硅烷接枝技术和膨胀阻燃技术之间的协效作用。主要研究工作如下:
     1.采用季戊四醇和氧氯化磷为原料,合成1-氧-4-羟甲基-2,6,7-三氧杂-1-磷杂双环[2.2.2]辛烷(PEPA),并将其与三聚氰铵磷酸盐(MP)复配组成一种新型高效的膨胀阻燃体系,研究了其在PP和PP/EPDM中的应用。研究发现,该MP/PEPA的比例为1:1时,在PP中具有最佳的阻燃效果,而在PP/EPDM中,最佳的MP/PEPA比例是3:1。极限氧指数(LOI)大大提高并且能够达到UL94 V-0级,锥型量热计(CONE)测试显示MP/PEPA膨胀阻燃PP、PP/EPDM材料具有更高的火灾安全性。此外,利用热失重(TG)、实时红外(Real time FTIR)研究了该膨胀体系的热氧化降解机理,发现MP和PEPA在热氧化降解过程中存在着一定的协效作用,能够提高材料的热稳定性。实时FTIR研究了材料的热降解机理,发现MP/PEPA体系在热降解过程中会释放以NH3为主的大量不可燃气体,生成焦磷酸盐和多磷酸盐等,大量不可燃气体的逸出和致密炭层的形成,起到了隔热隔氧作用,有效地提高了材料的阻燃性和热稳定性。对PP/MP/PEPA复合材料的CONE燃烧后膨胀炭层进行了全面的研究,利用SEM对炭层形貌进行了表征,结果显示,膨胀炭层比较致密。FTIR,XPS分析结果表明,根据成分的步同,膨胀炭层可以笼统分为三层,即上中下三层。Raman和XRD结果说明上中两炭层主要由类石墨结构的物质组成,而下部炭层主要是由未分解的材料组成。
     2.选取了镍铁双氢氧化物(Ni~(2+)-Fe~(3+)LDH),铁基蒙脱土(Fe-OMT),有机改性α-磷酸锆(OZrP)和异丁基笼型缺角倍半硅氧烷(POSS),作为协效剂与膨胀体系MP/PEPA体系复配,研究协效剂与该体系之间的协效阻燃作用。研究发现,当0.2wt%的Ni~(2+)-Fe~(3+)LDH,Fe-OMT,OZrP和POSS分别加入到MP/PEPA体系时,阻燃PP材料的阻燃性能有进一步的提高。其中以Ni~(2+)-Fe~(3+)LDH的协效效果最为明显,材料的LOI从32被提高至35,PHRR和THR分别从207 kW/m~2和84MJ/m~2降低至164 kW/m~2和52 MJ/m~2,从CONE和MCC测试结果来看,Ni~(2+)-Fe~(3+)LDH协效阻燃机理可能是由于其能够促进材料快速成炭。SEM结果显示协效阻燃材料(样品PMPN,PMPO和PMPP)的表面炭层中出现了一种“微米管”;拉曼光谱分析显示,协效剂的加入对于表面炭层结构有着明显的影响。DSC分析结果表明各种协效剂的加入限制了PP的结晶。TG研究发现,协效剂能够提高材料高温下的热稳定性。
     3.研究了硅烷接枝交联PP/EPDM中各种因素对接枝率,热稳定性和结晶行为等方面得影响,并提出了可能的接枝机理。同时,选取了苯乙烯(St)和三羟甲基丙烷三丙烯酸酯(TMPTA)作为共接枝单体,考察了其对硅烷接枝PP/EPDM的影响。研究发现,硅烷接枝PP/EPDM材料的凝胶含量随着引发剂DCP,EPDM和硅烷VTMS含量的增加而增加。DCP改性PP/EPDM和VTMS交联PP/EPDM材料的力学性能在较高浓度的DCP和VTMS情况下有所改善。DSC实验表明VTMS接枝反应大致从170℃左右开始,反应时间为2.5分钟左右。此外,和纯PP/EPDM材料相比,VTMS交联材料的结晶温度有所提高,但是结晶度变化不大。TG结果显示VTMS接枝交联PP/EPDM材料较纯PP/EPDM和DCP改性PP/EPDM的热稳定都要好。共单体TMPTA的加入能够显著地提高材料的凝胶含量,而共单体St则使GEL含量降低。根据DSC和广角X射线衍射(WAXD)测试结果可以发现,共单体的加入对于材料的晶型未见有明显影响,但不利于材料的结晶。此外,TG结果显示共单体的加入降低了硅烷交联材料的热稳定性。由于EPDM中第三单体的存在,使得硅烷接枝PP/EPDM的接枝点较为复杂,不同于硅烷接枝PP。
     4.将硅烷交联技术,膨胀阻燃技术和微胶囊包裹技术三者结合起来,制备出硅烷交联膨胀阻燃PP/EPDM复合材料,研究了该材料的阻燃性能,力学性能,并对其阻燃机理以及硅烷接枝交联与膨胀阻燃之间的协效作用进行了初步的探讨。首先研究了硅烷接枝交联技术与传统膨胀阻燃体系MP/DPER之间的相互作用。研究发现,硅烷接枝膨胀阻燃PP/EPDM复合材料的阻燃性能有较为明显的提高,比如降低PHRR,提高LOI,延长点燃时间等。此外,硅烷的加入对于力学性能也有所改善。但是,由于IFR自身较大的水溶性,在水中浸泡较长时间后,硅烷交联膨胀阻燃PP/EPDM材料无法保持较好的阻燃性能。另外,结合TG研究发现,硅烷交联形成的Si-O-Si网络结构能够能够减缓阻燃剂在水中的流失,保持材料的热稳定性和阻燃性能。通过XPS,红外等手段对材料的成炭机理进行了研究,发现硅元素在不同温度下均存在于炭层之中,且高温下的炭层对应的Si的结合能更高。通过原位聚合的方法将制备出聚氨脂微胶囊包裹APP(PUMAPP),研究了PUMAPP/DPER复配体系的阻燃效果和成炭机理,并将硅烷引入该体系之中。TG研究发现,PUMAPP较APP在高温下具有更好的热稳定性,PUMAPP/DPER阻燃材料比APP/DPER阻燃材料的热稳定性有显著改善。LOI和CONE测试发现,在相同的添加量下,PUMAPP较APP具有更好的阻燃性能。硅烷的引入显著地延长了材料的点燃时间,提高了材料的火灾安全性。耐水性实验结果表明,PUMAPP比APP具有更好的耐水性,硅烷交联技术能够进一步改善材料的耐水性。
Polypropylene(PP) and PP/ethylene propylene diene rubber(EPDM) have been widely used in many fields due to its outstanding comprehensive properties.However, their applications are restricted because of their flammable properties and less thermally stability.Intumescent flame retardant(IFR) and silane-grafted-crosslinking (SGC) technologies have played an important role in improving the flame retardancy and thermal stability of polyolefin and plastic/rubber materials.On the basis of summarizing the applications of IFR and SGC technologies in PP and PP/EPDM,in this dissertation,we designed a new IFR system and studied its use in PP and PP/EPDM.Moreover,we also studied the flame retardant,char formation and synergy mechanism of the IFR system.In addition,we applied SGC technology into PP/EPDM and discussed the grafting mechanism.At last,the synergy effect between IFR and SGC was also studied in this dissertation.This dissertation is composed of four parts.
     1.Pentaerythritol phosphate(PEPA) synthesized by the reaction between pentaerythritol(PER) and POCl_3 combined with melamine phosphate(MP) was used to prepare flame retarded PP and PP/EPDM composites.It was found that the combination of MP and PEPA show more effective flame retardation than the individual component.All composites containing both MP and PEPA had a high LOI value and reached the UL-94 V-O rating.Cone calorimeter results demonstrated that MP in combination with PEPA can help to reduce the HRR and smoke emission.TG studies proved that the MP/PEPA flame retarded PP and PP/EPDM composites were more thermal stable than the untreated PP and PP/EPDM.It was observed from the RTFTIR study that many complicated reactions would take place during the thermal degradation process of the PP/EPDM/PEPA/MP composites.FTIR,XPS,SEM,XRD and Raman experiments testify that the char formed after cone calorimeter testing could be divided into three parts,i.e.outer,middle and inner char layer,according to their different components and structures.In terms of the testing results,the outer and middle char mainly consists of pyrophosphate and polyphosphate,whereas the inner char is mostly composed of the undegraded PP/MP/PEPA composite.During the combustion process of the PP/MP/PEPA,the formation of a good intumesent char could protect the underlying materials form the heat and flame and thus enhance the flame retardancy of the material.
     2.Ni~(2+)-Fe~(3+) LDH,Fe-OMT,OZrP and POSS,as synergist,were added into MP/PEPA IFR system to prepare the synergistic intumescent flame retardant PP composites.The flame retardancy,thermal stability,char formation mechanism and crystallization behavior of the composites were studied compared with the PP/MP/PEPA composite without synergist.According to the study,it had been found that Ni~(2+)-Fe~(3+) LDH was the most effective synergist among the four kinds of synergists.The Ni~(2+)-Fe~(3+) LDH synergistic composite increased the LOI value from 32 to 35 and decreased the PHRR value from 207 to 164 kW/m3,respectively.It also had been found that a kind of "microtube" existed in the outer char layer of Ni~(2+)-Fe~(3+) LDH,OZrP and POSS synergistic composites after CONE testing.
     3.The melt grafting of vinyltrimethoxysilane(VTMS) onto PP/EPDM blends was studied.The effect of VTMS,EPDM and initiator concentrations on mechanical properties,melt flow index(MFI) and gel content of the modified PP/EPDM samples were investigated.The influence of coagents,i.e.styrene and trimethyloipropane trimethacrylate was also studied.Scanning electron microscopy(SEM) was used to observe the fractured surface of PP/EPDM and the modified PP/EPDM blends.The VTMS grafting reaction was in situ monitored using differential scanning calorimetry (DSC).Moreover,the thermal and crystallization behavior of VTMS-crosslinked PP/EPDM blends were studied by thermogravimetric analysis(TG) and DSC, respectively.It had been found that the thermal stability of VTMS-crosslinked PP/EPDM was improved.DSC measurements showed that the grafting reaction occurs from 170 to 220℃and the crystallization temperatures increased compared with those of the untreated PP/EPDM.
     4.The influence of SGC technologies on IFR system was studied.First,It was found that the incorporation of vinyl trimethoxysilane(VTMS) into the PP/EPDM composites containing MP and DPER as intumescent flame retardants leaded to an increase in LOI.However,after the silane crosslinking,the flame retardancy of the PP/EPDM composites decreased,which may be caused by the leakage of some flame retardants during the immersion of the composites in the hot water.Both the tensile strength and the elongation at break of the PP/EPDM composites containing VTMS (without silane crossinking) increased in comparison with the composite without the silane,whereas the silane crosslinking resulted in an increase in the tensile strength and a decreased in the elongation at break of the PP/EPDM composite.Moreover,the thermal behavior of the PP/EPDM composites was affected by the crosslinking.Both XPS and real time FTIR results revealed that the residue left from the PP/EPDM composites decomposed at higher temperatures are mainly composed of phosphorus and oxygen-containing compounds.
     Second,APP is microencapsulated with PU resin by in situ polymerization method. TG results show that the initial decomposition temperature of PUMAPP is advanced, while it possesses a relatively higher thermal stability when temperature is up to 618℃.According to LOI values,UL-94 test and cone calorimeter results,it has been found that the PP/EPDM/PUMAPP/DPER composites possesses a better flame retardancy compared with the PP/EPDM/APP/DPER composite at the same loading. The testing results of mechanical properties show that the microencapsulation of APP is beneficial to improve the compatibility of APP in the polymer resin.The interest of the use of VTMS as synergistic agent in the formulations is also investigated.The addition of a small quantity of VTMS results in an improvement of the fire retardant effect It has also been demonstrated that,under hydrolytic conditions,the crosslinking of VTMS allows reducing the migration of flame retardants and keeping good fire retardant properties.
引文
[1]欧育湘等 阻燃高分子材料,国防工业出版社,2001版
    [2]Wang ZZ.,Wu G.S,Hu Y,Ding Y,Hu KL,Fan WC.Polymer,2002;77:427
    [3]Hong C.H.,Lee Y.B.,Bae J.W.,Jho J.Y.,Nam B.U.,Chang D.H.,Lee K.J.J.Appl.Polym.Sci.,2005;97:2311
    [4]Lv JP,Qiu LZ,Qu B.J.,Nanotechnology,2004;15:1576
    [5]Cross MS,Cusack PA,Hornsby PR,Polym.Degrad.Stabil.,2003;79:309
    [6]Wang DG.,Guo F,Chen JF,Shao L,Liu H,Zhang ZT,Colloid.Surface.A,2007;293:201
    [7]Wang ZZ,Qu BJ,Fan WC,Huang P,J.Appl.Polym.Sci.,2001;81:206
    [8]Li Z.Z.,Qu B.J.,Polym.Degrad.Stabil.,2003;81:401
    [9]Su Z.P.,Jiang P.K.,Li Q.,Wei P,Zhang Y.,Polym.Compos.,2005;13(2):139
    [10]Gui H.,Zhang X.H.,Liu Y.Q.,Dong W.F.,Wang Q.G.,Gao J.M.,Song Z.H.,Lai J.M.,Qiao J.L.,Compos.Sci.Technol.2007;67:974
    [11]Huang H.H.,Tian M.,Liu L.,Liang W.L.,zhang L.Q.,J.Appl.Polym.Sci.,2006;100:4461
    [12]B.Kandola.A.Horrocks.Nanocomposites in Fire retardant materials.Woodhead pub.Combridge 2001
    [13]Herr U,Gleiter H,Ceramic forum,International Jahrgang 1990;67:70
    [14]徐伟平,黄锐,蔡碧华,范五一,中国塑料,1998;12(6):30
    [15]Haworth B,Raymond C L,Sutherland I.Polym Engng Sci,2000,40:1953-1968.
    [16]李玉华,路傲,齐炜等.电线电缆,1997;3:25-28.
    [17]王正洲,瞿保钧,范维澄等.功能高分子学报 2001,14:45-48.
    [18]罗士平,李锦春,孙惠等.江苏石油化工学院学报 1998,10:4-7
    [19]Imahashi,Takeshi.USP5 777018,1998.
    [20]Chiang WY,Hu CH.Composites:Part A 2001,32:517-524.
    [21]M.Lewin,H.S.Lin,E.D.Weil.In Tenth annual BCC Conference on flame retardancy.Business Communications Co.2000.211-224
    [22]Carpentier F.,Bourbigot S.,Delobel R.,Foulon M.,Polym.Degrad.Stabil.,2000;69:83
    [23]Miyata S,Koresawa M,Kitano Y,et al.US 5891945,1999
    [24]JH Troitzsch.Overview of Flame Retardants.Chimica Oggi Chemistry Today,Volume 16,1998
    [25]S javiders,A Granzow,JF Cannelongo.J Appl.Polym.Sci.1979;23:2639-2652.
    [26]薛恩钰,曾敏修.阻燃科学及应用北京:国防工业出版社 1988;11:112-142.
    [27]J.W.Gilman,T.Kashiwagi.Recent Advances In Flame Retardant Polymer composites.Published by NIST
    [28]J.W.Gilman,T.Kashiwagi.New flame retardants consortium:final report.NISTIR6357
    [29]J.W.Gilman.The past and future of public flame retardancy research.Published by NIST
    [30]T.Kashiwagil,J.W.Gilmanl,K.M.Butlerl.Flame Retardant Mechanism of Silica Gel/Silicas.Fire and Materials.2000;24:277-289
    [31]李晓俊,刘小兰,刘宪增,王林,李静.工程塑料应用 2005;33:16-18.
    [32]Pin Lv,Zhengzhou Wang,Yuan Hu,Minggao Yu.J Polym Res 2009;16:81-89.
    [33]何继辉;叶华;罗明良;赵建青;张利萍.塑料工业 2005;33:84-87.
    [34]Marosi G,Anna P,Marton A,et al.Polym.Adv.Technol 2002;13:1103-1111.
    [35]Marosi G,Marton A,Anna P,et al.Polym.Degrad.Stab.2002;77:259-65.
    [36]Marosi G,Bertalan G,Balogh L,et al.Silicone containing intumescent flame retardant systems for polyolefins[A].London:Interscience Communications,1996.
    [37]Wu Qiang,Qu bao jun.Polym.Degrad.Stab.,2001;74:255-261.
    [38]吴金坤 化工新型材料 2001;9:11-14.
    [39]Fujiwara S,Sakamoto T.1976.Japan patent.JP51109998.
    [40]Gao F G,Beyer G,Yuan QC.Polym.Degrad Stabil.,2005;89:559-564.
    [41]Gilman J W.Appl.Clay.Sci.,1999;15:31-49.
    [42]Gilman J W,Jackson C L,Morgan A B,et al.Chem.Mater.2000;12:1866-1873.
    [43]Jiao C M,Wang Z Z,et al.J.Fire Sci.,2006;24:47-64.
    [44]Kashiwagi T,Grulke E,Hilding J,et al.Macromol.Rapid.Comm.,2002;23:761-765.
    [45]Kashiwagi T,Du F M,Douglas J F,et al.Nat.Mater.,2005;4:928-933.
    [46]Kashiwagi T.Polymer 2007;48:6086-6096.
    [47]Lemmon J P,Lerner M M,.Chem Mater 1994;6:207.
    [48]Li B G,Hu Y,Zhang R,et al.Mater Res Bull 2003;38:1567-1572.
    [49]Liu P G,Gong KC.Carbon 1999;37:706-714.
    [50]Li Y M,Hibino M,Miyayama M,et al.,Solid State Ionics 2000;134:271.
    [51]Liu Luqi,Wagner.H.D.Adv.Funct.Mater 2005;15:975-980.
    [52]Lu H D,Hu Y,Xiao J F,et al.J Mater Sci 2006;41;363-367.
    [53]Matsuo Y,Tahara K,Sugie Y.Carbon1997;35:113.
    [54]Matsuo Y,Hatase K,Sugie Y.Chem Mater 1998;10:2266.
    [55]Matsuo Y,Higashika S,Kimura K,et al.J Mater Chem 2002;12:1592.
    [56]Mermoux M,Chabre Y,Rousseau A.Carbon 1991;29:469.
    [57]Novak B M.Adv Mater 1993;5:422.
    [58]Ogoshi T,Kim K M,Chujo Y.J Mater Chem 2002;13:2202.
    [59]Okada A,Kawasuni M et al.Polym Prepr 1987;28:47.
    [60]Pang S P,Li G C.Macromol Rapid Comm 2005;26:1262-1265.
    [61]Posudievsky OY,Biskulova SA,Pokhodenko VD.J Mater Chem 2004;14:1419-1423.
    [62]Ruiz-Hitzky E.Adv Mater 1993;5:334.
    [63]Segawa K,Kurusu Y,Nakajima Y.J Catal 1985;94:491-500.
    [64]Shengpei Su,David D.Jiang,Charles A.Wilkie.Polym Degrad Stabil 2004;84:321.
    [65]Su H J,Gam K T.Chem Mater 2004;16:242.
    [66]Tanaka Y,Miyayama M,Hibino M,et al.Solid State Ionics 2004;171:33.
    [67]Tang Yong,Yuan Hu,Rui.et al.Macromol Mater Eng 2004;289:191.
    [68]Tang yong,Yuan Hu,Baoguang Li,Lei Liu et al.J Polym Sci:Part A:Polym Chem 2004;42:6163-6173.
    [69]Thomas S.Eillis,Joseph S.D Angelo.J Appl polym Sci 2003;90:1639.
    [70]Wang G C,Wang L,Li XW.Polym Int 2005;54:1082-1087.
    [71]Wilkie C A.Polymer 2007;48:6532-6545.
    [72]Xie W,Cao MM,Pan WP Chem.Mater 2001;13:2979-2990.
    [73]Xu J Y,Hu Y,Song L,et al.Carbon 2002;40:2964.
    [74]Yang J,Lin YH.J Appl Polym Sci 2005;98:1087-1091.
    [75]Zammarano M,Franceschi M,Bellayer S,et al.Polymer 2005;46:9314-9328.
    [76]Zhang R,Hu Y,Xu J Y,et al.Macromol Mater Eng 2004;289:355-359.
    [77]Zhang R,Hu Y,Xu J Y,et al.Polym Degrad Stabil 2004;85:583-588.
    [78]Vandersall HL.J Fire & Flammability 1971;2:97-140.
    [79]Brady DG,Moberly CW,Norell JR.Fire Retard Proc Int Symp Flammability Fire Ratard.1977
    [80]Merry H.In:recent Advance in flame retardant polymer materials.New York:2000.
    [81]Lewin M,Endo M.Acs.symp.ser.Fire and polymers Ⅱ.1995;599:91-116.
    [82]Camino G,Lomakin S.Intumescent materials.In Fire retardant materials.Ed A.R.Horrocks,Cambridge English.2001.
    [83]Chiu SH,Wang WK.Polymer 1998;39:1951-1955.
    [84]Horacek H,Stefan P.Polymer Int.2000;49:1106-1114.
    [85]Reshetnikov I,Antonov A,Rudakova T,Aleksjuk G,Khalturinskij N.Polym Degrad Stabil 1996;54:137-141.
    [86]Camino G,Costa L,Martinaddo G.Polym Degrad Stabil 1989;23:359-376.
    [87]欧育湘,李昕.高分子材料科学与工程 2003;19:198-205
    [88]Bin L,Miaojun X.Polym Degrad Stabil 2006;91:1380-1386.
    [89]Xingyi W,Yuan L,Weiwei L,Jing G and Dao L.Polym Adv Technol 2008;19:1055-1061.
    [90]Lewin M,Endo M.Polym Adv Technol 2003;14:3-11.
    [91]田春明,谢吉星,石建兵,屈红强,徐建中.河北大学学报 2004;24:600-604.
    [92]Bourbigot S,Lesbras M,et al.Polym Degrad Stabil 1996;54:275-287.
    [93]杜建新,郝建薇,王建琪.高分子材料科学及工程 2004;20:165-167.
    [94]林晓丹,贾德民,陈广强,宋子明.塑料工业 2002;30:41-42.
    [95]郝建薇,王建琪,李斌.中国塑料 1998;12:75-81.
    [96]孔庆红.中国科技大学博士学位论文 2006.
    [97]唐勇.中国科学技术大学博士学位论文 2005.
    [98]杨丹丹.中国科学技术大学博士学位论文 2008.
    [99]Shibin N,Yuan H,Lei S,Shuqing H and Dandan Y.Polym Adv Technol 2008;19:489-495.
    [100]Shibin N,Lei S,Jing Z,Yuan H,Qilong T,Lijuan C.Journal of Macromolecular Science,Part A:Pure and Applied Chemistry(accepted)
    [101]Ping Z,Lei S Hongdian L,Yuan H,Weiyi X,Jianxiong N,Jian W.Polym Degrad Stabil 2009;94:201-207.
    [102]Samyn F,Bourbigot S,Duquesne S,Delobel R.Thermochimica Acta 2007;456:134-144.
    [103]Gaelle F,Bourbigot S,Duquesne S.Polym Degrad Stabil 2008;93:68-76.
    [104]Jing W,Lei S,Yuan H.J Fire Sci 2008;26:399-414.
    [105]Yantao L,Bin L,Jinfeng D,He J,Suliang G.Polym Degrad Stabil 2008;939-16.
    [106]Kun W,Zhengzhou W,Yuan H.Polym Adv Technol 2008;19:1118-1125.
    [107]Kun W,Zhengzhou W,Haojun L.Polym Compos 2008;29:854-860.
    [108]Kun W,Lei S,Zhengzhou W and Yuan H.Polym.Adv.Technol 2008;Accepted and Published online.DOI:10.1002/pat.1231.
    [109]Kun W and Zhengzhou W.Polymer-Plastics Technology & Engineering 2008;47:247-254.
    [110]Kun W,Lei S,Zhengzhou W,Yuan H.J Polym Res 2008;Accepted and Published online.DOI 10.1007/s10965-008-9228-9.
    [111]Zhengzhou W,Kun W,Yuan H.Polym Eng Sci 2008;Accepted.
    [112]王正洲,吴昆,胡源.高分子材料科学与工程.2008.已接收.
    [113]王正洲,吴昆.第四届阻燃技术与阻燃材料最新研究进展研讨会 2007.
    [114]Cartasegna S.Rubb Chem Tech 1986;59:722.
    [115]Liu NC,Lu HH,Huang H.Polymer 2000;78:1233.
    [116]Beltran M,Mijangos C.Polym Eng Sci 2000;40:1534.
    [117]Kalyanee S,Keskanok K.Macromol Mater Eng 2005;290:128-135.
    [118]杨元龙等.合成树脂及塑料 2000;17:6.
    [119]谢刚等.黑龙江大学自然科学学报 2002;19:99.
    [120]胡淼.中国科学技术大学硕士学位论文 2005年。
    [121]焦传梅,王正洲.中国塑料 2008;18:34-39.
    [122]焦传梅.合成树脂及塑料 2005;22:14.
    [123]段群丰,何和智.塑料加工 2003;38:28.
    [124]武德珍,毛立新,谭新华等.北京化工大学学报,1999;26:27-29.
    [125]张祥福,张隐西,谢鹤波等.化学世界,1995,36:542-545.
    [126]Kresge EN,Paul DR Polymer blends,Vol.2.Acadamic Press,New York 1978.
    [127]Sen AK,Mukherjee B,Bhattacharyya AS,De PP,Bhowmick AK.J Therm Anal 1993;39:887.
    [128]Sen AK,Mukherjee B,Bhattacharyya AS,De PP,Bhowmick AK.J Appl Polym Sci 1992;44:1153.
    [129]Suresh Chandra Kumar M,Alagar M,Anand Prabu A.Euro Polym J 2003;39:805
    [1]Sen AK,Mukheriee B,Bhattacharya AS,Sanghi LK,De PP,Bhowmick K.J Appl Polym Sci 1991;43:1674.
    [2]Hornsby PR.Fire Mater 1994;18:269
    [3]Wang J,Tung MY,Ahmad F,Hornsby PR.J Appl Polym Sci 1996;60:1425.
    [4]Wang ZZ,Qu BJ,Fan WC,Huang P.J Appl Polym Sci 2001;81:206.
    [5]Halpem Y,Mott DM,Niswarder RH.Ind Eng Chem Prod Res Dev 1984;23:233.
    [6]Hendrickson L,Connole KB.Polym Eng Sci 1995;35:211.
    [7]Bertelli G,Camino G,Marchetti E,Costa L,Locatelli R.Angew Makromol Chem 1989;169:137.
    [8]Riva A,Camino G,Fomperie L,Amiqou(e|¨)t P.Polym Degrad Stab 2003;82:341.
    [9]Bourbigot S,Le Bras M.Carbon 1995;33,283.
    [10]Le Bras.M,Bourbigot S,Christelle D.Fire Mater 1996;20,191.
    [11]Almeras X,Le Bras M,Hornsby P,Bourbigot S.Polym Degrad Stab 2003;82:325.
    [12]Almeras X,Le Bras M,Poutch F,Bourbigot S,Marosi G,Anna P.Macromolecular Symposia 2003;198:435.
    [13]Bourbigot S,Le Bras M,Sophie D,Maryline R.Macromolecular Materials and Engineering 2004;289:499.
    [14]Levchik SV,Balabanovich AI,Levchik GF,Costa L.Fire Mater 1997;21:75.
    [15]Jahromi S,Gabri(e|¨)lse W,Braam A.Polymer 2003;44:25
    [16]Weil ED,Levchik S.J Fire Sci 2004;22:251
    [17]Chen YH,Liu Y,Wang Q,Yin H,Aelmans N,Kierkels R.Polym Degrad Stab 2003;81,215
    [18]Wang Q,Chen YH,Liu Y,Yin H,Aelmans N,Kierkels R.Polym Int 2004;53:439
    [19]Hills WA.US Patent 1975;3873496.
    [20]Tamura Y,Tanaka R.US Patent 1983;4584331.
    [21]Li X,Ou Y,Shi Y.Polym Degrad Stab 2002;77:383-390.
    [22]Balabanovich AI.Thermochimica Acta 2005;435:188-196.
    [23]Price D,Liu Y,Hull TR,Milnes GJ,Kandola BK,Horrocks AR.Polym Degrad Stab 2002;77:227
    [24]Babrauskas V,SFPE Technology Report 84-10,Society of Fire Protection Engineers,Boston;1984
    [25]Hirschler MM.Heat release from plastic materials in heat release in fires.In:Babrauskas V,Grayson S,editors.Heat release in fires.London:Elsevier,1992.p.375
    [26]A.Marshal,R.Delobel,M.Le Bras,J.-M.Leroy,D.Price.Polym Degrad Stab.1994;44:263.
    [27]Michel LB,Duquesne S,Magali F,Grisel M,Poutch F.Polym Degrad Stab 2005;88:80-84.
    [28]Camino G,Costa L.Polym Degrad Stab 1989;23:359-376.
    [29]Michel LB,Bourbigot S.Fire and Materials 1996;20:191-203.
    [30]Costa L,Camino G.Fire and Polymers,in:G.Nelson(Ed.),ACS Symposium Ser.,vol.425,ACS,Washington,DC,1990:211-238
    [31]Camino G,Martinasso G,Costa L,Gobetto R.Polym Degrad Stab 1990;28:17-38.
    [32]Camino G,Costa L.Polym Degrad Stab 1991;28:131-151.
    [33]Weil ED,Zhu W.,Patel N,Mukhopadhyay S.M.Polym Degrad Stab 1996;54:125-136.
    [34]Levchik SV,Camino G,Costa L,Levchik GF.Fire and Materials 1995;19:1-10.
    [35]Balabanovich AI.Polym Int 2003;52:1309-1314.
    [36]Kwiatkowski R,Wlochowicz A.Journal of Molecular Structure 2000;516:57-69.
    [37]Liang HB,Shi WF.Polym Degrad Stab 2005;90:1-8.
    [38]George G.A,Celina M,Vassallo AM,Cole-Clarke PA.Polym Degrad Stab 1995;48:199-210.
    [39]Camino G,Costa L,et al.Polym Degrad Stab 1991;33:131-154.
    [40]Bourbigot S,Michel LB,Delobel R.Carbon 1993;31:1219-1230.
    [41]Bourbigot S,Michel LB,Delobel R et al.Carbon 1993;33:283-294.
    [42]Camino G.,Martinasso G.,Costa L.Polym Degrad Stab 1990;27:285-296.
    [43]Camino G.,Martinasso G.,Costa L,Gobetto R.Polym Degrad Stab1990;28:17-38.
    [44]Singer ES,Lewis IC,Greinke RA.Mol Cryst Liq Cryst 1986;132:65-79.
    [45]Short MA,Walte PL.Carbon 1963;1:3-9.
    [46]Tamor MA,Vassell WC.J Appl Phys 1994;76:3823.
    [47]Lespade P,Al-Jishi R,Dresselhaus MS.Carbon 1982;20:427-31.
    [48]Wang JQ.Theory of X-ray photoelectron spectroscopy.Beijing:Industry of National Defence Press;1992.
    [49]Nakayama Y,Soeda F,Ishitani A.Carbon 1990;28(1):21-26.
    [50]Gonzalez-Elipe AR,Martinez-Alonso A,Tascon JMD.Surf interface anal.1988;12:565.
    [51]Delpeux S,Beguin F,Benoit R,Erre R,Manolova N,Rashkov I.Eur Polym J 1998;34:905-915.
    [52]Brown NMD,Hewitt JA,Meenan BJ.Surf interface anal 1992;18:187-198.
    [53]Shih PY,Yung SW,Chin TS.J Non-Cryst Solids 1998;224:143-152.
    [54]Beamson G,Briggs D.High resolution XPS of organic polymers.Chichester:Wiley;1992.
    [55]Costa L,Camino G.Journal of thermal analysis and calorimetry 1988;34:423-429.
    [56]Bourbigot S,Michel LB,Gengembre L,Delobel R.Appl surf sci 1994;81:299-307
    [57]S.Logothetidis,Kassavetis S,Charitidis C,Panayiotatos Y,Laskarakis A.Carbon 42(2004) 1133-1136
    [58]David T.Marx N,Laura R.Carbon 1999;37:1679-1684.
    [1]吴靖 三元乙丙橡胶复合材料阻燃协效机理与性能研究 中国科学技术大学硕士论文 2008年
    [2]张铱 含过渡金属离子蒙脱土制备及其聚合物复合材料阻燃性能研究 中国科学技术大学硕士论文 2008年
    [3]杨丹丹 聚合物/α-磷酸锆纳米复合材料的制备及阻燃与炭化机理研究 中国科学技术大学博士论文 2008年
    [4]Yinfeng H,Zong Huai L,Zupei Y,Zenling W,Xiuhua T,Tao W,Lihong F and Kenta O.Chem.Mater 2008,20:360-363.
    [5]Haiyun M,Lifang T,Zhongbin X,Zhengping.F.Applied Clay Science 2008;42:238-245
    [6]Yantao L,Bin L,Jinfeng D,He J,Suliang G Polymer Degradation and Stability 2008;93:9-16.
    [7]Ming Z,Peng D,Baojun Q,Aiguo G.Journal of materials processing technology 2008;208:342-347.
    [8]Chen XC,Ding YP,Tang T.Polymer international 2005;54:904.
    [9]Yong Tang,Menachem Lewin.Polymer Degradation and Stability 2008;93:1986-1995
    [10]Yong Tang,Menachem Lewin.Polymer for advanced technologies 2009;20:1-15
    [11]Yong Tang,Menachem Lewin.Macromolecular Rapid Communications 2006;27:1545.
    [12]Xie W,Gao ZM,Pan WP,Hunter D,Singh A,Vaia R.Chem Mater 2001;13:2979-90.
    [13]Allen NS,Harrison MJ,Ledward M,Fellows GW.Polymer Degradation and Stability 1989;23:165-74.
    [14]刘磊 几种倍半硅氧烷的合成及其聚苯乙烯复合材料燃烧性能的研究 中国科学技术大学博士论文 2007年
    [15]Lespade P,Al-Jishi R,Dresselhaus MS.Carbon 1982;20:427-31.
    [1]Kresge EN,Paul DR(1978) Polymer blends,Vol.2.Acadamic Press,New York
    [2]Sen AK,Mukherjee B,Bhattacharyya AS,De PP,Bhowmick AK J Therm Anal 1993;39:887
    [3]Sen AK,Mukherjee B,Bhattacharyya AS,De PP,Bhowmick AK J Appl Polym Sci 1992;44:1153.
    [4]Suresh Chandra Kumar M,Alagar M,Anand Prabu A Euro Polym J 2003;39:805
    [5]Wang ZZ,Hu Y,Gui Z,et al.Polym.Test.2003;22:533.
    [6]H.Mack,Proceedings of the 48th International Wire and Cable Symposium,1999,pp.410-408.
    [7]Y.Matsuda.Jpn.Kokai Tokkyo Koho JP 11181,188[99181,188],1999.
    [8]T.Marushige,K.Yagi.Jpn Kokai Tokkyo Koho JP2000327864,2000.
    [9]焦传梅;王正洲.中国塑料 2008;18:34-39.
    [10]焦传梅.合成树脂及塑料 2005;22:14.
    [11]徐伟,江平开等.工程塑料应用 2008;36:13.
    [12]Shieh YT,Tsai TH J Appl Polym Sci 1998;69:255.
    [13]Al-Malaika S,Kong W Polym Degrad Stab 2005;90:197
    [14]Kim BK,Kim BJ Adv Polym Tech 1993;12:263
    [15]Borsig E,Malcherova E,Lazar M Polym Int 1993;30:367.
    [16]Yu J,He J Polymer 2000;41:891
    [17].Xie XM,Chen NH,Li S.Acta Polym Sin 1999;3:351
    [18].Li Y,Xie XM,Guo BH.Polymer 2001;42:3419
    [19].Akira M,Hirofumi Y,Masahiro K,Hiroyuki A,Yoshihiro T,Akinori K,Tsuneo N.Euro Polym J 2000;36:1741
    [20].Al-Malaika S,Subarty N.Polym Degrad Stab 1995;49:77
    [21].Al-Malaika S.Reactive modifier for polymers,Chapman Hill,London 1996
    [22]Alfrey T Jr,Price CC.J Polym Sci,1947;2:101.
    [23]Brandrup J,Immergut E H.Polymer Handbook,3rd Edition.New York:John Wiley & Sons,Inc.,1989.267-274
    [24]Haddadi V,Bufrord RP,Gamett JL.Radiat Phys Chem 1995;45:191
    [25]Tikku VK,Biswas G,Despande RS.Radiat Phys Chem 1995;45:829
    [26]Keith HD,Padden FJ,Walter NM,Wickoff HW.J Appl Phys 1959;30:1485.
    [27]Jones AT,Aizlewood JM,Beckett DR.Die Makromol Chem 1964;75:134.
    [28]Mezghani K,Phillips PJ.Polymer 1995;36:2407.
    [29]Laihonen S,Gedde UW,Wemer PE,Martinez-Salazar J.Polymer 1997;38:361.
    [30]Gaan S,Sun G,Hutches K,Engelhard MH.Polym.Degrad.Stab.2008;93:99-108.
    [31]Nakayama Y,Soeda F,Ishitani A.Carbon 1990;28:21-26.
    [32]Bourbigot S,Le Bras M,Gengembre L,Delobel R.Appl.Surf.Sci.1994;81:299-307.
    [33]Delpeux S,Beguin F,Benoit R,Erre R,Manolova N,Rashkov I.Eur Polym J 1998;34:905-915.
    [34]Brown NMD,Hewitt JA,Meenan BJ.Surf.Interface Anal.1992;18:187-198.
    [35]Bourbigot S,Lebras M,Delobel R.Carbon 1993;31:1219-1230.
    [36]Camino G,Martinasso G,Costa L,Gobetto R.Polym Degrad Stab 1990;28:17-38.
    [1]Girauda,S.,Bourbigot,S.,Rocherya,M.,Vromana,I.,Tighzertb,L.,Delobelc,R.Polym Degrad Stab 2002;77:285-297.
    [2]Wu,Q,Lv,JP,Qu,BJ.Polym Int,2003;52:1326-1331.
    [3]Yuan,L,Liang,G,Xie,J,Li,L.,Guo,J.Polymer 2006;47:5338-5349.
    [4]Wu K,Wang ZZ,Liang HJ.Polym.Composite 2008;29:854-860.
    [5]Wu K,Wang,ZZ,Hu Y.Polym Advan Technol 2008;19:1118-1125.
    [6]Giraud S,Bourbigot S,Rochery M,Vroman I,Tighzert L,Delobel R.J Ind Text 2001;31:11.
    [7]Stephane Giraud,Serge Bourbigot,Maryline Rochery,Isabelle Vroman,Lan Tighzert,Rene Delobel,Franck Poutch.Polym Degrad Stab 2005;88:106-113
    [8]Felix AHO,Cardozo NSM,Nachtigall SMB.Macromol Mater Eng 2006;291:418-427.
    [9]Camino G,Grassie N,McNeill I.C.J Polym Sci Polym Chem 1978;16:95-106.
    [10]Grassie N,Perdomo Mendoza GA.Polym Degrad Stab 1985;10:43.
    [11]Grassie N,Perdomo Mendoza GA.Polym Degrad Stab 1985;11:145.
    [12]Girauda S,Bourbigot S,Rocherya M,Vromana I,Tighzertb L,Delobelc R.Polym Degrad Stab,2002;77:285-297.
    [13]Bugajny M,Le Bras M,Bourbigot S.J Fire Sci 2000;18:7-27.
    [14]Lv P,Wang Z.Z,Hu K.L,Fan W.C.Polym Degrad Stab 2005;90:523-534.
    [15]Bourbigot S,Le Bras M,Delobel R,Tr(?)millon J.M.J.Chem.Soc.Faraday Trans.1996;92:3435-3444.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700