用户名: 密码: 验证码:
酿酒酵母甘露聚糖的制备、结构鉴定及免疫活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
酵母细胞壁占细胞干重的20-25%,甘露聚糖存在于酵母细胞壁外层,占细胞壁干重的40%左右,赋予细胞生物学活性和控制细胞壁孔径。甘露聚糖是免疫功能最强的酵母细胞壁多糖,它能增加动物体液免疫和细胞免疫能力,调节肠道菌群平衡,结合吸附外源性病原菌,并具有抗辐射、抗氧化、抗肿瘤等活性功能。
     本研究对不同酿酒酵母菌种的甘露聚糖含量进行了分析对比,结果表明酵母中甘露聚糖含量随其菌种不同而有明显差异(p<0.05)。原有从中科院微生物研究所购得菌株AKU 2.1424生物量最高,达905.02±9.91 mg/100ml;AS 2.0016甘露聚糖含量及其占细胞干重比率最高,分别为76.21±0.73 mg/100ml与12.92%。“实践8号”卫星搭载后的酿酒酵母样品,经过筛选得到的菌株AS 2.0016-M生物量增加46.69%,细胞壁占酵母干重比率增加3.81%,细胞壁厚度增加62.62%,甘露聚糖含量增加18.82%,β-葡聚糖含量增加146.87%,各指标均较原菌株增加达极显著水平(p<0.01)。
     对酿酒酵母AS 2.0016的发酵条件进行了优化。首先进行了单因素实验的研究,并在此基础上,以二次正交旋转组合设计试验,得到培养基模型方程为:
     经二次多项式逐步回归分析确定了最佳培养基:蔗糖4.98 g/100ml、大豆蛋白胨4.39 g/100ml、酵母膏3.10 g/100ml、甘油2.21 g/100ml。使用优化后培养基得到的甘露聚糖由优化前的85.72±3.38 mg/100ml增加到162.53±3.47 mg/100ml,提高了96.48%。应用正交优化方法对培养条件进行优化,得出各因素对酵母甘露聚糖量的影响因素依次为:装液量>温度>起始pH>接种量。酵母最适的培养条件为:pH值5、接种量5 ml、温度32℃、装液量40 ml。对最佳培养条件进行验证试验,酵母甘露聚糖产量达到268.30±1.94 mg/100ml,较发酵条件优化前的162.53±3.47 mg/100ml,提高了65.08%。对热水抽提与碱法制备酿酒酵母甘露聚糖的工艺进行了优化,确定水提法制备甘露聚糖的最佳条件为:浓度25%(w/w)的酵母菌体在pH值6.5,3% NaCl和50℃的条件下振荡自溶24 h;然后将自溶后的菌体洗净,120℃处理3 h。碱提法制备酵母甘露聚糖的最佳条件为:KOH浓度2%、温度100℃、反应时间2 h。使用TCA去除酵母甘露聚糖中蛋白,蛋白脱除率可达70.94%。去蛋白后经两次醇沉,第一次乙醇浓度50%,复溶离心后使用体积分数为70%的乙醇进行二次醇沉。通过工艺条件优化,WSMP与ASMP粗品得率分别为6.42%与5.93%,纯度分别为81.32%与88.24%。通过凝胶过滤色谱纯化WSMP与ASMP,产品最终纯度达92.61%与93.31%。
     用HPLC测定WSMP与ASMP的平均分子量分别为1.81127×10~5 Da与6.5098×10~4 Da。采用GPC-LLS测定酵母甘露聚糖WSMP和ASMP的绝对分子质量,得到WSMP的重均分子质量(Mw)为1.667×10~5 Da,ASMP的重均分子质量为6.620×10~4 Da。WSMP的多分散系数为1.350,ASMP的多分散系数为1.17,二者均在1.5以下,说明两个样品的分子质量分布较为集中。单糖组成测定表明,酵母甘露聚糖主要由甘露糖组成,氨基酸分析表明,酵母甘露聚糖WSMP含有17种常见氨基酸,其中能够构成O-糖肽键的苏氨酸和丝氨酸有较高的比例,分别占总量的20.08%和11.46%,天冬氨酸(Asp)含量较高,占氨基酸总量的14.96%。通过β-消除反应、紫外光谱分析、氨基酸组成分析、气相色谱分析等手段,得出酵母甘露聚糖有N-糖肽键与O-糖肽键两种连接方式,且以N-糖肽键为主要连接方式。通过高碘酸氧化与Smith降解分析,采用FTIR和NMR测定,得出酵母甘露聚糖以α-(1,6)为主链,此外还含有大量α-(1,2)糖苷键。推测酵母甘露聚糖糖链结构为:通过原子力显微镜观察酵母甘露聚糖的立体形貌特征,看出WSMP是由许多小的圆形颗粒形成紧密的网络状结构,存在不同程度的聚集,ASMP聚集成近棒状。扫描电镜观察看出,甘露聚表面呈特征性胶联、聚集态的无定形结构。
     通过动物免疫增强试验,检测了WSMP、WSM和ASMP对脾淋巴细胞增殖反应、绵羊红细胞诱导小鼠迟发型变态反应(DTH)、小鼠腹腔巨噬细胞吞噬鸡红细胞等的影响。结果显示:WSMP高、中、低剂量组,WSM中、低剂量以及ASMP中剂量组可显著促进脾淋巴细胞增殖(p<0.05)。WSMP、WSM和ASMP均能增强绵羊红细胞诱导的小鼠迟发型变态反应,即可增强细胞免疫功能,其中以WSM的促进作用最为明显。低剂量的WSMP以及中、低剂量的WSM能显著增强小鼠腹腔巨噬细胞吞噬鸡红细胞的吞噬功能(p<0.05)。通过体外抗肿瘤实验,得出WSMP在1.666 mg/ml时能够抑制50%的HL-60肿瘤细胞,WSM也具有直接抑制HL-60生长的作用,但其活性略低于WSMP。体外抑制Eca-109与HepG2细胞生长实验结果显示,WSMP与WSM对这两种肿瘤细胞均有一定的抑制效果,WSMP作用效果优于WSM。ASMP体外无抗肿瘤作用。
Yeast is surrounded by a tough, rigid cell wall that represents 20-25% of the dry weight of the cell. Mannan is one of the major components (together with glucan, chitin and protein) of the yeast cell wall, occupying about 35-45% of it deposited in the outside of the cell wall. The present of mannan not only provide the cells with rigidity that protects them from osmotic pressure but also helps to maintain their shapes during the cell cycle stage. It has been reported that most of the immunological effects observed within the intact yeast cells are reproduced with cell wall components and have been shown to be potent inducers of cellular and humoral immunity. Among them, mannan and mannoprotein are found to be the ones with significant activities. Besides, they could also balance the enterobacteria, combine with the extrinsic pathogen, resist tumour, acted as an anti-oxidant agent.
     The mannan contents in different S. cerevisiae strains were compared in this study, results showed that the mannan content to each strain was different. The biomass of AKU 2.1424 was 905.02±9.91 mg/100ml, it was higher than other strains, and the mannan conent of AS 2.0016 was the highest. Freeze-dried samples of four S. cescerevisiae strains were subjected to spaceflight. After the satellite’s landing on Earth, the samples were recovered and changes in yeast cell wall were analyzed. Spaceflight strains of all S. cerevisiae strains showed significant changes in cell wall thickness (p<0.05). One mutant of S. cerevisiae 2.0016 with increased biomass, cell wall thickness, and cell wall glucan was isolated (p <0.05). The spaceflight mutant of AS 2.0016 showed 46.69%, 62.62%, 18.82% and 146.87% increment in biomass, cell wall thickness, mannan andβ-glucan content, respectively, when compared to the ground strain.
     The mannan content of yeast must be influenced by culture medium and condition, so we optimized the fermentation condition. On the basis of the single factor experiment, the carbon and nitrogen sources and enzyme activator were determined, and then the mathematical model was established by the quadratic rotary combination design, through response surface analysis. The regression equation obtained for the mannan production is as follows:
     The optimized concentrations of culture medium were determined as 4.98 g/100 ml sucrose, 4.39 g/100 ml soybean peptone, 3.10 g/100 ml yeast extract and 2.21 g/100 ml glycerol. The optimized culture medium allowed mannan production to be increased from 85.72±3.38 mg/100 ml to 162.53±3.47 mg/100 ml. The influence of culture condition on mannan production was evaluated and confirmed by orthogonale experimental design, the optimized culture condition was: pH-5, inoculum size-5 ml, temperature-32oC and media volume-40 ml. The maximum mannan production enhanced 65.08% at the optimum culture condition.
     The processing conditions of hot water extraction and alkali extraction of mannan were optimized. The optimum condition for hot water extraction was composed of induced autolysis at pH 5.0, 3% NaCl, 55oC, 120 r/min and hot water treatment.at 120oC for 3 h. Besides that, the The optimum condition for alkali extraction was determined as: KOH 2%, 100 oC and treated for 2 h. TCA was selected to remove the freeprotein, after that, ethanol was used to precipitate the mannan. Finally, WSMP and ASMP were obtained at a yield of 6.42% and 5.93%, purity of 81.32% and 88.24% respectively.
     The physicochemical properties of WSMP an ASMP were studied. The average Mw of WSMP and ASMP were 1.81127×105 Da and 6.5098×104 Da, the weight-average molecular of WSMP and ASMP were 1.667×105 Da and 6.620×104 Da respectively. Both the polydispersity to each mannan were less than 1.5, that meaned the molecular mass with narrow distribution. HPLC analysis showed that mannan mainly consist of mannose. WSMP included 17 amino acid and the ratio of Ser, Thr and Asp were higher.β-elimination reaction, UV, amino acid analysis and GC analysis showed that the mannoprotein linked to oligosaccharides by O-linked and N-link oligosaccharides. The structure of mannan was analysed by FTIR and NMR specturm and determined as follows:
     By AFM, it was observed the netted texture of WSMP consisted by little round particles and existed as a aggregation, ASMP aggregated to rod-shaped. By SEM, the mannan appearance also showed glue-link and aggregation state.
     Effects of WSMP, WSM and ASMP on splenic lymphocyte transformation assay, delayed type hypersensitivity reaction and peritoneal macrophage phagocytizing chicken red blood cell assay were investigated in mice by immune-enhancing assay of animals. Results indicated that the WSMP, WSM and ASMP affected on on splenic lymphocyte transformation assay significantly (p<0.05). Delayed type hypersensitivity reaction was significantly enhanced when the mice were administered with WSMP, WSM and ASMP. Therefore, both WSMP, WSM and ASMP have immunization regulating function which could be judged, and overall evaluation was that the immune function of WSM and WSMP was stronger than that of ASMP. The WSMP and WSM had different degrees of inhibitory effects on HL-60, Eca-109 and HepG2 tumor cells in vitro.
引文
1.蔡俊.啤酒废酵母细胞壁破壁研究[J].酿酒,2001,28(4):104-105
    2.曹蔚,李小强,侯颖,樊慧婷,梅其炳.当归多糖APS-3c的结构特征及体外抗肿瘤作用的研究.天然产物研究与开发,2008, 20: 217-22
    3.陈和生,李汉东,王晓林.黑木耳酸性多糖的分离、纯化及相对分子质量测定[J].中国医院药学杂志,2002(22):348-349
    4.陈亮,郭梁,王钊.蛞蝓粗提物对Hela细胞的抑制作用及其活性成分的研究中国药材2004,27(2):125-127
    5.陈奇,邓文龙,张世玮.中药药理研究方法[M].北京:人民卫生出版社,2000, 1(4):757-759
    6.杜丹,赵春燕.啤酒酵母残渣提取甘露聚糖的研究[J].食品工业,2006(4):6-8
    7.段金友,方积年.圆二色谱在糖类化合物结构研究中的应用.天然产物研究与开发[J],2004(1):71-75
    8.杜景卫,侯晓青.中药多糖抗肿瘤作用机制及其影响因素[J].中国药师,2006,9(9):852-854
    9.戈苏国.红曲霉葡萄糖淀粉酶中糖肽结合方式研究[J].微生物学报,1983,23(3):265-8
    10.方一苇糖结构与质谱分析质谱学报[J] 1994(1):1-8
    11.方积年.用HPLC测定多糖的纯度及分子量的研究[J].药学学报,1990,24:532-6
    12.黄汝多,李振华,曹文广.生物大分子功能的研究—酵母甘露聚糖对8.2Gy(60)Coγ-射线辐照小鼠的辐射防护作用[J].激光生物学报,1999(3):171-177
    13.黄纯,马驰,宋慧智,李甜甜.亮菌多糖提取中脱蛋白和脱色方法比较[J].药学与临床研究,2007,15(1):45-46
    14.黄卉,王弘,刘欣.多糖的构效关系研究进展[J].广州食品工业科技,2004(3):59-060
    15.胡晓忠,,甄宝贵,冯万祥.酵母葡聚糖的制备及理化性质[J].华东理工大学学报, 1999(5):477-479
    16.黄磊,吕淑霞,张利,邵立东,张忠泽.航天生物技术研究进展[J].安徽农业科学,2005,33(9):1727-1729
    17.贾建航,王斌.空间诱变育种研究进展[J].核农学报,1999,13(3):187-192
    18.阚久方,张华.啤酒废酵母的综合利用[J].江苏环境科技,2001,9(3):9-10
    19.李卫旗,皇甫宏,吴雪昌等.啤酒酵母中β-(1-3)葡聚糖的提取及其性能分析[J].浙江大学学报(理学版),1999,26(2):75-79
    20.李峰,刘延吉,宗绪岩,于瑞洪,祝寰宇.草本刺嫩芽根多糖脱蛋白方法研究[J].安徽农业科学,2006(1):9-10
    21.李金国空间条件对棘孢小单孢菌的诱变效应[J]航天医学与医学工程1995,6(2):113-116
    22.刘晓永,王强,刘红芝.酵母β-葡聚糖测定方法的研究[J],浙江大学学报(农业与生命科学版), 2007(2):150-157
    23.刘晓永.酿酒酵母β-D-葡聚糖制备、构象及免疫功效研究[D].江南大学博士学位论文,2007,6
    24.刘志恒,蔡妙英,孙增美,石彦林,阮继生.利用我国“90105”科学返回卫星搭载微生物材料的试验观察[J].航天医学与医学工程, 1994(7):16-21
    25.刘海艳,张艳英,苏延友,魏然.桑黄粗多糖抗肿瘤及对荷瘤小鼠免疫功能影响的研究.泰山医学院学报,2006,27(3):211-213
    26.梁忠岩,倪秀珍,张丽萍.酵母甘露聚糖硫酸酯化前后结构与生物活性比较研究[J].分子科学学报,2002(3):41-44
    27.陆德培,黄克武,李荣春.糖的高效液相色谱分析研究[J].生物化学与生物物理学报,1982,9(5):501-506
    28.骆传环.蒸汽压渗透计测定多糖分子量[J].现代科学仪器,1994,(4):41-42
    29.罗丽萍.甘薯叶柄藤中试综合提取的活性多糖、类黄酮构成及生理活性研究[D].南昌大学博士学位论文, 2006,6.
    30.丘泰球,宋武明,陈树功.超声波在花粉细胞破璧技术上的应用[J].声波技术,1992, 10(1):12-14
    31.沈同,王镜岩.生物化学[M].北京:高等教育出版社,1999,255
    32.孙东方,张宝森.啤酒酵母核苷酸的生产及利用[J].酿酒,2003,5(3):15-16
    33.孙海翔,尹卓容,马美范.高压均质破碎啤酒酵母细胞壁的研究[J].食品工业科技,2002,
    23(2):66-67
    34.孙建义,李卫芬.啤酒酵母甘露聚糖的提取及其对鸡肠道微生物区系的影响[J].浙江大学学报(农业与生命科学版),2001,27(4):447-450
    35.孙册,莫汉庆.糖蛋白与蛋白聚糖的结构、功能和代谢[M].北京:科学出版社,1988,13
    36.孙晶,李玉林,李一雷.体内实验研究神经节苷脂对小鼠迟发型变态反应的影响[J].中国实验诊断学,2003,10(6):658-660
    37.田兴山,张玲华,郭勇,潘木水,周风珍,邝哲师,黄小光,李国立,孙晓刚.空间诱变在微生物菌种选育上的研究进展[J].生物技术通讯,2005(1):105-107
    38.魏亚杰.固点降低法测定摩尔质量实验改进[J].大学化学,2001,16:40-41
    39.谭海刚,李书巧,关凤梅,王瑞明.从啤酒废酵母中提取海藻糖工艺的研究[J].酿酒科技,2005(4):78-80
    40.万其兵,刘丽丽,杨秀英.真菌细胞破壁方法的研究[J].天津师范大学学报(自然科学版),2004,24(4):38-40
    41.王亚军.酵母培养制备(1→3)-β-D-葡聚糖方法及相关基础研究[D].浙江大学博士学位论文,2004,6
    42.王元凤.茶多糖的纯化、结构及构效关系研究[D].江南大学博士学位论文,2005,6
    43.王义华,徐梅珍,江萍等.酵母蛋白多糖的分离纯化及鉴定[J].微生物学报,2004(8):515-518
    44.王晓丽,郑飞云,李崎,顾国贤.啤酒废酵母核糖核酸提取过程中去除蛋白质的研究[J].中国酿造,2006(3):27-30
    45.王顺春,方积年.X-射线纤维衍射在多糖构型分析中应用的研究进展[J].天然产物研究与开发,1999(2):75-80
    46.王展,方积年.高场核磁共振波谱在多糖结构研究中的应用[J].分析化学评述与进展,2000,2(2):240-247
    47.王亚平,邓木秀.百福生胶囊免疫调节作用的实验研究[J].深圳中西医结合杂志,2002,12(5):269-274
    48.王红远,周红霞,戴剑漉,孙桂芝,王以光.必特霉素基因工程菌航天育种的研究[J].药物生物技术,2007,14(1):10-11
    49.王楠,汤仲明.MTT方法测定培养细胞抗药水平的评价[J].中国药理学通报,1996,9(1):78-81
    50.王耀东,陈志和,宋未,刘志恒,石彦林.返回式科学卫星搭载食用菌的空间生物学效应[J].航天医学与医学工程,1998,8(4):249-254
    51.汪海波,谢笔钧,刘大川等.燕麦中β-葡聚糖的分离纯化及结构表征[J].食品科学,2005,26(12):90-93
    52.吴东儒主编.糖类的生物化学[M].北京:高等教育出版社,1987:701.
    53.翁曼丽,李金国,高红玉,李沐阳,王培生,蒋兴村.大肠杆菌菌种空间变异的研究[J].航天医学与医学工程,1999,8(4):243-246
    54.夏朝红,戴奇,房韦,陈和生.几种多糖的红外光谱研究[J].武汉理工大学学报,2007(1):45-47
    55.徐顺清,刘衡川,黎明兰.免疫学检验[M].北京:人民卫生出版社,2006
    56.颜坤琰.啤酒废酵母回收利用前景广阔[J].生态经济,2006(8):148-150
    57.严衍禄.现代仪器分析[M].北京:北京农业大学出版社,2004
    58.姚滢,魏江洲,王俊.厚壳贻贝多糖的提取和免疫学活性研究[J].第二军医大学学报,2005,26(8):896-899.
    59.杨新萍.X射线衍射技术的发展和应用.山西师范大学学报(自然科学版),2007(1):72-80
    60.杨震,庞伯良,谭林.我国空间诱变育种研究进展[J].湖南农业科学,2006(6):19-21
    61.于世林.高效液相色谱方法及应用[M].北京:化学工业出版社,1999
    62.张运涛,谷文英.紫外分光光度法测定啤酒酵母中甘露糖[J].食品与发酵工业,1999(5):32-36
    63.张运涛,陶冠军,王林祥等.液-质联用技术分析甘露寡糖[J].色谱,2002(4):364-366
    64.张俐娜,张平泛,李翔.香菇多糖的成分及其分子量研究[J].高等学校化学学报,1998(19):1613-1517
    65.张达,王云秋,郝再彬,王豫颖.浅谈我国航天育种研究[J].东北农业大学学报,2006,6(3):416-422
    66.张玉香,尹卓容.甘露糖蛋白的提纯及分子量测定[J].酿酒科技,2005(4):72-74
    67.张赛金,李文权,邓永智,陈清花,陈祖峰.海洋微藻多糖的红外光谱分析初探[J].厦门大学学报(自然科学版),2005(6):212-214
    68.张维杰.糖复合物生化研究技术.杭州:浙江大学出版社,1999
    69.张春莉,刘照惠,王妍.胸腺五肽固相合成及免疫增强作用的研究[J].中国生物制品学杂志,2003,16(2):87-89
    70.湛孝东,王克霞,李朝品.蜗牛多糖的提取和免疫学活性研究[J].时珍国医国药,2006,17:(11):2191-2192
    71.赵立明,全哲山,金海善.壳聚糖粘均分子质量的测定[J].延边大学医学学报,2005(28):36-37
    72.赵宝华,齐志广,孙涛.介质Ca2+和La3+对酿酒酵母生长的影响[J].微生物学通报,2000(1): 33-36
    73.赵长家,何云庆.赤芝菌丝体活性多糖的分离纯化及结构研究[J].中药材,2002,25(4):252-254
    74.周红卫,江林.啤酒废酵母的回收利用[J].江苏调味副食品,2000,67:12-13
    75.周鹏,谢明勇,傅博强.多糖的结构研究[J].南昌大学学报,2001,6(2):197-204
    76.周义发,张翼伸,梁忠岩.酵母甘露聚糖的结构确定与核磁共振谱的解析[J],生物化学杂志,1991,2(1):74-78
    77.周义发,梁忠岩.酵母甘露聚糖的研究[J].东北师大学报自然科学版,1991(2):79-83
    78.诸葛建,王正祥.工业微生物试验手册[M].北京:中国轻工业出版社,1994,167-169
    79.詹玲.大豆糖蛋白的分离纯化、结构分析及免疫调节功能的研究.华中农业大学硕士学位论文,2006,6
    80.朱彩平.枸杞多糖的结构分析及生物活性评价.华中农业大学博士学位论文[D],2006
    81.食品中氨基酸的测定.中华人民共和国国家标准,GB/T 5009.124-2003
    82. http://www.chinafeed.org.cn/cms/code/business/include/php/151496.html
    83. http://www.cvmachine.com/detail/product/308260.html
    84. http://www.tiantianbio.com/gsjj.html
    85. Abramov SA , Kotenko ST, Ramazanov AS and Islamova FI. Dependence of Vitamin Content in Saccharomyces Yeasts on the Composition of Nutrient Media. Applied Biochemistry and Microbiology, 2003, 39(4): 385-387
    86. Aguilar UB, Francois JM. A study of the yeast cell wall composition and structure in response to growth conditions and mode of cultivation [J]. Letters in Applied Microbiology, 2003, 37:268-274
    87. AOAC. Official methods of analysis, methods 920.39, 942.05 (15th ed.). Arlington VA: Association of Official Analytical Chemists, 1990
    88. Artiwan S, Pranee K, Manop S, et al. Application of rotary microfiltration in debittering process of spent brewer`s yeast [J]. Bioresource Technology, 2005, 96: 1851-1859
    89. Baets SD, Vandamme EJ, Steinbüchel A. Biopolymers (vol. 6) Polysaccharides2 [M], Germany: Wiley-VCH Verlag Press, 2002: 179-213
    90. Ballou L, Cohen RE, Ballou CE. Saccharomyces cerevisiae mutants that make mannoproteins with a truncated carbohydrate outer chain [J]. J Biol Chem, 1980, 255: 5986-5991
    91. Ballou CE, Raschke WC. Polymorphism of the somatic antigen of yeast. Science, 1974,184:127-134
    92. Ballou CE. Isolation, characterization and properties of Saccharomyces cerevisiae mannan mutants with non-conditional protein glycosylation defects. Methods Enzymol, 1990, 185: 440-470
    93. Benoit MR, Klaus DM. Microgravity, bacteria, and the influence of motility. Adv Space Res, 2007, 39: 1225-1232
    94. Bermc V, Dale. Molecular weight determmahon of hyaluromc acid by gel filtration chromatography coupled to matrix-assisted laser desorption ionization mass spectrometry[J]. Journal of Chromatography A, 1999, 852: 573-581
    95. Boulton RB, Singletion VL, Bisson LF, et al. Principles and Practices of Winemaking [M]. USA NY: The Chaprnan& Hall Enology Library, 1996. 203
    96. Brul s, King A, Vander VJM, Chapman J, Klis F, Verrips CT. The incorporation of mannanproteins in the cell wall of S. cerevisiae and filamentous Ascomycetes. Antonie van Leeuwenhoek, 1997, 72:229-237
    97. Butzke C. Survey of yeast assimilable nitrogen status in musts from California, Oregon and Washington. Am J Enol Vitic, 1998, 49:220–224
    98. Chi ZM, Zhao SZ. Optimization of medium and cultivation conditions for pullulan production by a new pullulan-producing yeast strain. Enzyme and Microbial Technology. 2003, 33: 206-211
    99. Christine S, Franz O. Analytical teehnique for studying the strueture of glycoProtein N-glycans. Joumal of Chromatography, 1993, 646: 227-234
    100. Corbacho I, Olivero I, Hernández LM. A genome-wide screen for Saccharomyces cerevisiae nonessential genes involved in mannosyl phosphate transfer to mannoproteinilinked oligosaccharides. Fungal Genetics and Biology, 2005, 42:773-790
    101. Cortat M, Matile P, Kopp F. Intracellular localization of mannan synthetase activity in budding baker's yeast. Biochem. biophys. Res. Commun. 1973, 58: 482-489
    102. Crouzier D, Perrin A, Torres G, Dabouis V, Debouzy JC. Pulsed electromagnetic field at 9.71 GHz increase free radical production in yeast (Saccharomyces cerevisiae). Pathol Biol (in press) 2008
    103. Dallies N, Fran?ois J, Paquet V. A new method for quantitative determination of polysaccharides in the yeast cell wall. Application to the cell wall defective mutants of Saccharomyces cerevisiae [J]. Yeast, 1998, 14: 1297-1306
    104. Daniele P. Castro, Caroline S. Moraes, Eloi S. Garcia, et al. Azambuja Inhibitory effects of D-mannose on trypanosomatidlysis induced by Serratia marcescens [J]. Experimental Parasitology, 2007, 115: 200-204
    105. Dedsousa SR, Laluce C, Miguel J. Effects of organic and inorganic additives on flotation recovery ofwashed cells of Saccharomyces cerevisiae resuspended in water [J]. Colloids and Surfaces B: Biointerfaces, 2006, 48: 77-83.
    106. De Groot PWJ, Ruiz C, Vazquez de Aldana CR, Duenas E, Cid VJ, Del Rey F, Rodriquez-Pena JM, Pérez P, Andel A, Caubin J, Arroyo J, García JC, Gil C, Molina M, Garcia LJ, Nombela C, Klis FM. A genomic approach for the identification and classification of genes involved in cell wall formation and its regulation in Saccharomyces cerevisiae. Compar Funct Genom 2001, 2:124–142
    107. Domer J. Candida cell wall mannan: a polysaccharide with diverse immunologic properties. Critical Review of Microbiology, 1989, 17, 33–51.
    108. Duffus JH, Levi C, Manners DJ. Advances in microbial physiology. Yeast cell-wall glucans [M]. London: Academic Press, 1982, 23: 151-181
    109. Dubois M, Gilles KA, Hamilton JK, et al. Colorimetric method for determination of sugars and related substances [J]. Analytical Chemistry, 1956, 28: 350-356
    110. Dufresne R, Thibanlt J, Leduy A, Lencki R. The effects of pressure on the growth of Aureobasidium pullulans and the synthesis of pullulan. Appl Microbiol Biotechnol. 1990, 32: 526–32
    111. Dynesen J, Smits HP, Olsson L, Nielsen J. Carbon catabolite repression of invertase during batch cultivations of Saccharomyces cerevisiae: the role of glucose, fructose, and mannose. Appl Microbiol Biotechnol, 1998, 50: 579-582.
    112. Ema Paulovicova, Slavomir Bystricky, Jana Masarova, et al. Immune response to Saccharomyces cerevisiae mannan conjugate in mice.International Immunopharmacology, 2005(5): 1693-1698
    113. Ermolenko ZM. Effect of space flight conditions on properties of hydrocarbon-oxidizing bacteria. Prikl Biokhim Mikrobiol, 2000, 36(6): 647-651
    114. Feng Y, He ZM, Ong SL, et al. Optimization of agitation, aeration, and temperature conditions for maximumβ-mannanase production [J]. Enzyme and Microbial Techonology, 2003, 32: 282-289
    115. Ferreira C, Silva SV Voorst F, Aguiar C, Kelland-Brandt MC, Brandt A, Lucas C. Absence of Guplp in Saccharomyces cerevisiae results in defective cell wall composition, assembly, stability and morphology. FEMS Yeast Research, 2006, 6: 1027-1038
    116. Franziskus K, Werner MK. Mild enzyme isolation of mannan and glucan from yeast Saccharomyces cerevisiae [J]. Die Angewandte Makromolekulare Chemie, 1999, 268: 59-68
    117. Franziskus K, Werner MK. Polymer analytical characterization of glucan and mannan from yeast Saccharomyces cerevisiae. Die Angewandte Makromolekulare Chemie, 1999, 268: 69-80
    118. Freimund S, Sauter M, K?ppeli O, et al. A new non-degrading isolation process for
    1,3-β-D-glucans of high purity from baker’s yeast Saccharomyces cerevisiae [J]. Carbohydrate Polymers, 2003, 54: 159-171
    119. Fukuda T, Fukuda K, Takahashi A, Ohnishi T, Nakano T, Sato M, Gunge N. Analysis of deletion mutations of the rpsL gene in the yeast Saccharomyces cerevisiae detected afterlong-term flight on the Russian space station Mir. Mutat Res, 2000, 470: 125-132
    120. Gockowiak H, Henschke PA. Nitrogen composition of grape juice and implications for fermentation: results of a survey made in N-E Victoria. Aust Grapegrow Winemak, 1992, 340: 133–138
    121. Harding LP, Marshall VM, Hernandez Y, Gu Y, Maqsood M, Mclay N and Laws AP. Structure characterisation of a highly branched exopelysaccharide Preduced by Lactobacillus delbrueckiisubsp. Bulsaricus NCFB2074[J]. Cabohydr. Res., 2005, 340: 1107-1111.
    122. Hartland RP, Vermeulen CA, Klis FM, et al. The linkage of (1,3)-β-glucan to chitin during cell wall assembly in Saccharomyces cerevisiae [J]. Yeast, 1994, 10: 1591-1599
    123. Harvey DJ, Wing DR,Kuster B, etal. Compesition of N-linked carbohydrates from ovalbumin and co-purified glyprotein. J. Am. Soc. Mass. Spectrum, 2000, 11: 564-571.
    124. Hattiwauger RS, Kelly WG, Roquemore ED, et al. Glycosylation of nuclear and cytoplasmic proteins ubiquitous dynamic. Biochem. Soc. Tran., 1992, 20(2): 264-269
    125. Ibrahim HM, Wan M Y, Hamid A A, et al. Optimization of medium for the production ofβ-cyclodextrin glucanotransferase using Central Composite Design (CCD) [J]. Process Biochemistry, 2005(40): 753-758
    126. Inoue SB, Takewaki N, Takasuka T, Mio T, Adachi M, Fujii Y, Miyamoto C, Arisawa M, Furuichi Y, Watanabe T. Characterization and gene cloning of 1, 3-β-D-glucan synthase from saccharomyces cerevisiae. European Journal of Biochemistry. 1995, 231: 845-854.
    127. Ismail A, Soultani S, Ghoul M. Optimization of the enzymatic synthesis of butyl glucoside using response surface methodology [J]. Biotechnology Program , 1998, 14: 874-878
    128. Izabela L, Mária M, Peter C, Eva M, Nakajima T, Ballou CE. Structure of the linkage region between the polysaccharide and protein parts of Saccharomyces cerevisiae mannan. Journal of Biological Chemistry. 1974, 249: 7685-7694.
    129. Jigami Y, Odani T. Mannosylphosphate transfer to yeast mannan. Biochim. Biophys. Acta 1999, 1426: 335–345.
    130. Johanna VR, Frans MK, Herman VDE. Cell wall glucomannoproteins of Saccharomyces cerevisiae. Yeast, 1991(7): 717-726
    131. Johanson K, Allen P, Lewis F, Cubano LA, Hyman LE, Hammond TG. Saccharomyces cerevisiae gene expression changes during rotating wall vessel suspension culture. J Appl Physiol 2002, 93: 2171–2180
    132. Johanson K, Allen PL, Gonzalez RA, Nesbit J. Haploid deletion strains of Saccharomyces cerevisiae that determine survival during space flight. Acta Astronaut 2007, 60: 460–471
    133. Kacena MA, Merrell GA, Manfredi B, Smith EE, Klaus DM, Todd P. Bacterial growth in space flight: logistic growth curve parameters for Escherichia coli and Bacillus subtilis. Appl Microbiol Biotechnol, 1999, 51:229–234
    134. Kanbe T, Han Y, Redgrave B, Riesselman M, Cutler J. Evidence that mannans of Candida albicans are responsible for adherence of yeast forms to spleen and lymp node tissue.Infection and Immunity, 1993, 61, 2578-2584
    135. Kiran M, Desai K, Vaidya RS, et al. Use of an artificial neural network in modeling yeast biomass and yield ofβ-glucan [J]. Process Biochemistry, 2005, 40: 1617-1626
    136. Klaus DM. Microgravity and its implication for fermentation technology. Trends Biotechnol 1998, 16: 369–373
    137. Klaus D, Simske S, Todd P, Stodieck L. Investigation of spaceflight effects on E. coli and a proposed model of under-lying physical mechanisms. Microbiology 1997, 143: 449-455
    138. Klis FM, Mol P, Hellingwerf K, Brul S. Dynamics of cell wall structure in Saccharomyces cerevisiae FEMS. Microbiol Rev 2002, 26: 239-256
    139. Kloostermaniv J, Enfors S O. An integrated approach to the recovery of intracellular products from yeasts by bead milling and precoat filtration [J]. The Chemical Engineering Journal, 1988, 37:47-54
    140. Kollar R, Petrakova E, Ashwell G, et al. Architecture of the yeast cell wall. The linkage between chitin andβ-(1,3)-glucan [J]. Journal of Biological Chemistry, 1995, 270: 1170–1178
    141. Kollar R, Reinolds BB, Petrakova E, et al. Architecture of the yeast cell wall.β-(1,.6)-glucan interconnects mannoprotein,β-(1-.3)-glucan, and chitin [J]. Journal of Biological Chemistry, 1997, 272: 17762-17775
    142. Konrr D, Shetty KJ, Hood LF, et al. An enzymatic method for yeast autolysis [J]. Journal of Food Science, 1979, 44 (5): 1362-1365
    143. Ko?inováA, Farka? V, Machala S, and Bauer S. Site of Mannan Synthesis in Yeast An Autoradiographic Study. Arch. Mierobiol, 1974, 99: 255-263
    144. Kurmar CG, Tagaki H. Microbial alkaline protease: from bioindustrial viewpoint. Biotechnol. Adv. 1999, 17: 561–594
    145. Lipke PN, Ovalle R. Cell wall architecture in yeast: New structure and new challenges [J]. Journal of Bacteriology, 1998, 180(15):3735-3740
    146. Li?i?árováI, MatulováM, Capek P, et al. Human pathogen Candida dubliniensis: A cell wall mannan with a high content ofβ-1,2-linked mannose residues. Carbohydrate Polymers, 2007, 10: 1016
    147. Liu YY, Han WS, BAO Q. The antioxidative and immunostimulating properties of D-glucosamine[J]. International Immunopharmacology, 2007(7): 29-35
    148. Hong-Zhi Liu, Qiang Wang, Xiao-yong Liu, Sze-Sze Tan. Effects of space flight on polysaccharides of Saccharomyces cerevisiae cell wall. Applied Microbiology and Biotechnology, 2008, 81: 543-550
    149. Maia MMD, Heasley A, Camargo MM. Effect of culture on lipase production by Fusarium solani in batch fermentation [J]. Bioresource technology, 2001, 76: 23-27
    150. Mennigmann HD, Lange M. Growth and differentiation of Bacillus subtilis under microgravity conditions. Naturwissenschaften, 1986, 73:415–417
    151. Martin JF, Demain AL. Organization and expression of genes involved in the biosynthesis of antibiotics and other secondary metabolites [J]. Annual Review of Microbiology, 1989, 43: 173-206
    152. Martine P, Andreas C. Biosynthesis and function of GPI proteins in the yeast Saccharomyces cerevisiae. Biochimica et Biophysica Acta. 2006
    153. Masihi KN, Madaj K, Hintelmann H, et al. Down-regulation of tumor necrosis factor-α, moderate reduction of interleukin-1β, but not interleukin-6 or interleukin-10 immunomodulators by glucan curdlan sulfate and lentinan [J]. Int. J. Immunopharmac, 1997, 19: 463-468
    154. McNeil B, Kristiansen B. Temperature effects on polysaccharide formation by Aureobasidium pullulans in stirred tanks. Enzyme Microb Technol. 1990, 12: 521-526
    155. Mennigmann HD, Lange M. Growth and differentiation of Bacillus subtilis under microgravity conditions. Naturwissenschaften, 1986, 73:415-417
    156. Mia Y, Michael JD, David B, et al. Characterization of oligosaccharides from an antigenic mannan of Saccharomyces cerevisiae. Glycoconjugate Journal, 1998, 15: 815-822
    157. Mishra SK, Pierson DL. Space flight: effects on microorganisms.In: Lederberg J (ed) Encyclopedia of microbiology. Academic, San Diego, 1992, 4: 53-60
    158. Mirelman, Altman DG, Eshdat Y. Screening bacterial isolates for mannose specific lectia activity by agglutination of Yeast [J]. J.Clin. Microbiol., 1980(11): 328-331
    159. Mol PC, Wessels JGH. Linkages between glucosaminoglycan and glucan determine alkali-insolubility of the glucan in walls of Saccharomyces cerevisiae [J]. FEMS Microbiology Letters, 1987, 41(1): 95-99
    160. Nakanishishindo Y, Nakayama K, Tanaka A, et al . Structure of the N-linked oligosaccharides that show the complete loss of alpha-1, 6-polymannose outer chain from och1, och1 mnn1, and och1 mnn1alg3 mutants of Saccharomyces cerevisiae. J Biol Chem, 1993, 268: 26338-26345
    161. Nakayama K, Feng Y, Tanaka A, Jigami Y. The involvement of mnn4 and mnn6 mutations in mannosylphosphorylation of O-linked oligosaccharide in yeast Saccharomyces cerevisiae. Biochim.Biophys. Acta, 1998, 1425: 255–262.
    162. Nathan S, Halina L. Carbohy rates in cell recognition[J]. Sci. Ameri, 1993(1):74-81 Neeraja S, Jean MD, Anne PS, Andrew. Much more Evidence that specific high mannose structures directly regulate multiple cellular activities. Molecular and Cellular Biochemistry, 1991, 102: 139-147
    163. Nguyen TH, Fleet GH, Rogers PL. Composition of the cell walls of several yeast species [J]. Applied Microbiology and Biotechnology, 1998, 50: 206-212
    164. Oka T, Hamaguchi T, Sameshima Y, Goto M, Furukawa K. Molecular characterization of protein O-mannosyltransferase and its involvement in cell-wall synthesis in Aspergillus nidulans. Microbiology 2004, 150: 1973-1982
    165. Ough CS, Amerine MA. Nitrogen compounds. In: Methods for analysis ofmusts and wines, 2nd edn.Wiley, NewYork, 1988, pp 172-195
    166. Pilar P, Juan CR. Cell wall analysis [J]. Methods, 2004, 33: 245-251
    167. Paula M, John FC, Claudia A. A refined method for the determination of Saccharomyces cerevisiae cell wall composition andβ-1,6-glucan fine structure [J]. Analytical Biochemistry, 2002, 301: 136-150
    168. Pejin D and Razmovsgd R. Continuous Cultivation of the Yeast Saccharomyces cerevisiae at Different Dilution Rates and Glucose Concentrations in Nutrient Media. Folia Microbiol, 1993, 38 (2): 141 - 146
    169. Peterson GL. A simplification of the protein assay method of Lowry et al. which is more generally applicable [J] . Analytical Biochemistry, 1977, 83: 346-356
    170. Piet WJ. De G, Arthur F. Ram, Frans MK. Features and functions of covalently linked proteins in fungal cell walls Fungal Genetics and Biology, 2005, 42: 657-675
    171. Pontón J., Omaetxebarría MJ, Elguezabal N, et al. Immunoreactivity of the fungal cell wall [J]. Medical Mycology, 2001(39): 101-110
    172. Qi JJ, Ma RC, Chen XD, Lan J (2003) Analysis of genetic variation in Ganoderma lucidum after space flight. Adv Space Res 31: 1617-1622
    173. Reitz G, Bucker H, Facius R, Horneck G, Graul EH. Influence of cosmic radiation and/or microgravity on development of Carausius morosus. Adv Space Res, 1989, 9:161-173
    174. Reitz G, Bücker H, Lindberg C, Hiendl OC, Graul EH, Beaujean R, Alpatov AM, Ushakov IA, Zachvatkin YH. Radiation and microgravity effects observed in the insect system Carausius morosus. Int J Radiat Appl Instrum Part D Nucl Tracks Radiat Meas, 1992, 20:233–239
    175. Rho D, Mulchandani A, Luong JHT, LeDuy A. Oxygen requirement in pullulan fermentation. Appl Microbiol Biotechnol, 1988, 28: 361-366
    176. Roukas T, Biliaderis CG. Evaluation of carob pod as a substrate for pullulan production by Aureobasidium pullulans. Appl Biochem Biotechnol, 1995, 55: 27–44.
    177. Sbrana C, Avio L, Giovannetti M. The occurrence of calcofluor and lectin binding polysaccharides in the outer wall of arbuscular mycorrhizal fungal spores [J]. Mycological Research, 1995, 99: 1249-1252
    178. Scort RW, Moore WE, Effland MJ, et al. Anal. Biochem., 1967, 21: 68
    179. Seda KY and Zekiye YO. Determination of growth and glycerol production kinetics of a wine yeast strain Saccharomyces cerevisiae Kalecik 1 in different substrate media. World Journal of Microbiology and Biotechnology, 2005, 21: 1303-1310
    180. Shaw BD, Momany M. Aspergillus nidulans polarity mutant swoA is complemented by protein O-mannosyltransferase pmtA. Fungal Genet. Biol. 2002, 37, 263-270
    181. Shahinian S, Bussey H.β-1, 6-Glucan synthesis in Saccharomyces cerevisiae. Mol Microbiol. 2000, 35(3):477–489
    182. Sharon N and Lis H. Carbohydrates in cell recognition. Scientific American, 1993, 268: 82-89
    183. Silvia D, Samuel Z, Jose RH. Alterations in the cell wall of Saccharomyces cerevisiae induced by the alpha sex factor or a mutation in the cell cycle. Antonie van Leeuwenhoek, 1992(61): 269-276
    184. Smirnova G, Korbelainen ES, Stukov AN, et al. Synthesis and biological activity of the periodate oxidation product of mannan. Pharmaceutical Chemistry Journal, 1991(25), 11: 825-828
    185. Spizizen J. Effects of solar ultraviolet radiations on Bacillus subtilis spores and T7 bacteriophage[J]. Life SciSpace Res, 1975, 13: 143-149
    186. Spring P. Understanding the development of the avian gastrointestinal microflora: an essential key for the developing competitive exclusion products. Biotechnology in the feed industry: Proc. Alltech’s 13th Ann. Symp. Nottingham University Press, 1998(2): 313-326
    187. Stanislaw B, Wanda DR, Malgorzata G, Piotr W. Impact of magnesium and mannose in the cultivation media on the magnesium biosorption, the biomass yield and on the cell wall structure of Candida utilis yeast. Eur Food Res Technol, 2008, 227: 695-700
    188. Stefan F, Martin S, Othmar K, et al. A new non-degrading isolation process for
    1,3-β-D-glucan of high purity from baker’s yeast Saccharomyces cerevisiae[J]. Carbohydrate Polymers, 2003, 54: 159-171
    189. Strahl BS, Gentzsch M, Tanner W. Protein O-mannosylation. Biochim. Biophys. Acta, 1999, 1426: 297-307
    190. SuZuki S, Honda S. Two dimensional mapping of N-glycosidcally linked oligosaccharides in glycoproteins by high-performance capillary electrophoresis. Trend in analytical chemistry, 1995, 14(6): 279-288
    191. Teresa R, Julio R. Villanueva and Luis R. Activation of yeast mannan synthetase by cy factor pheromone. Federation of European Biochemical Societies. 1983, 163(2): 335-338
    192. Tokcaer Z, Bayraktar E, Mehmetoglu U, et al. Response surface optimization of delta-endotoxin production by Bacillus thuringiensis subsp.israelensis HD500 [J]. Process Biochemistry, 2006(41): 350-355
    193. Tsutomu F, Hitoshi S, Yuzuru I, Structure of the glucan-binding sugar chain of Tip1p, a cell wall protein of Saccharomyces cerevisiae [J]. Biochemical et Biophysica Acta, 1999, 1427: 133-144
    194. NguyenáTH, Fleet GH, Rogers PL. Composition of the cell walls of several yeast species. Appl Microbiol Biotechnol, 1998(50): 206-212
    195. Vilanova M, Ugliano M, Varela C, Siebert T, Pretorius IS, Henschke PA. Assimilable nitrogen utilisation and production of volatile and non-volatile compounds in chemically defined medium by Saccharomyces cerevisiae wine yeasts. Appl Microbiol Biotechnol, 2007, 77: 145-157
    196. Wase DJ, Patel YR. Effect of Cell volume of disintegretion by ultrasonics [J]. Chemistry Technological Biotechnology, 1985, 35B:165-173
    197. Wang F, Li YH, Liu WG. Effects of space mutation on P (T) GMS-LINE PEIAI 64S of rice and SSR analysis of mutants. Acta Agriculturae Nucleatae Sinica 2006, 6: 449-453
    198. Walther I, Bechler B, Muller O, Hunzinger E, Cogoli A. Acultivation of Saccharomyces cerevisiae in a bioreactor in microgravity. J Biotechnol. 1996, 47:113-127
    199. Walther P, Müller M. Double-layer coating for field-emission cryo-scanning electron microscopy-Present state and applications [J]. Scanning, 1997, 19: 343-348
    200. Walton DE, Mumford CJ. Spray dried products-characterization of particle morphology[J]. Trans I chem E, 1999, 7: 8-16
    201. Yamada H and Kiyohara H. Complement-activating polysaccharides from medicinal herbs. Immunomodulatory Agent from Plants. H.Wagner Birkhauser,ed.Velag Basel: Swizerland. 1999, 161-202.
    202. Yajun W, Shanjing Y, Tianxing W. Combination of induced autolysis and sodium hypochlorite oxidation for the production of Saccharomyces cerevisiae (1→3)-β-D-glucan [J]. World Journal of Microbiology & Biotechnology, 2003, 19: 947-952
    203. Young M, Haavik S, Smestad PB, et al. Carbohydr Polymers, 1996 (30): 243-252
    204. Zakrzewska A, Migdalski A, Saloheimo M, Penttila ME, Palamarczyk G, Kruszewska JS. DNA encoding protein Omannosyltransferase from the Wlamentous fungus Trichoderma reesei; functional equivalence to Saccharomyces cerevisiae PMT 2. Curr. Genet, 2003, 43: 11-16.
    205. Zeng XB, Wang HY, He LY, Lin YC, Li ZT. Medium optimization of carbon and nitrogen sources for the production of eucalyptene A and xyloketal A from Xylaria sp. 2508 using response surface methodology. Process Biochemistry, 2006, 41: 293-298

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700