用户名: 密码: 验证码:
多孔介质中重金属反应性运移的数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为充分研究不同理化因素对重金属在土壤中运移的影响,降低不同因素之间的相互干扰,本文选取低反应性多孔介质石英砂为介质,在条件可控的情况下进行多种重金属反应性运移实验和数值模拟研究,进而为分析重金属污染土壤中多组分反应性运移行为及重金属污染修复提供科学依据。
     本研究分别开展了Cu~(2+)、pb~(2+)、Zn~(2+)和Cd~(2+)单组分和多组分溶液的室内石英砂柱出流实验,并对每种重金属进行了改变pH值、改变脉冲溶液流速和改变离子强度的出流实验。
     采用梯度正则化方法对一维溶质运移方程中源(汇)项的敏感性、实验数据误差影响和弥散系数敏感性进行了分析。
     实验数据误差对数值模拟影响的分析表明,误差小于5%时数值解和精确解之间的误差比较小,不同正则化参数对数值解影响比较小,但对迭代收敛速度影响比较大;误差大于10%时,不同正则化参数对数值解影响比较大。数值模拟中最终实测数据的获得需要在石英砂柱的不同切面处采集溶液,难以实现,本文采用出流端拟合曲线得到的数据,这可能也是数值模拟过程中拟合精度有所降低的原因。
     本研究利用CXTFIT软件(只考虑对流弥散作用)进行常规溶质运移的模拟,利用PHREEQC软件(考虑离子交换和吸附作用)进行耦合化学反应的溶质运移模拟,实验和模拟结果表明:
     随孔隙水流速增加,重金属离子出流、到达峰值结束的时间逐渐提前;随着pH值从7减小到4,重金属离子峰值逐渐增大,pH越低,重金属的出流提前,峰值变高;增加离子强度,重金属离子的穿透曲线具有相似特征,均为随着溶液背景离子强度的增大,出流峰值增大;重金属离子混合溶液中离子强度大于单一组分溶液离子强度,出流液中出流峰值与单一组分溶液出流峰值相比也有明显增加,这与增加溶液背景离子强度的结果一致,说明增加离子强度可以加快重金属在多孔介质中的运移,降低石英砂对重金属离子的吸附。
     对于单一重金属离子运移的模拟,CXTFIT软件和PHREEQC软件拟合精确度均较高,决定系数及MSE相差不大,这主要是单一重金属离子在多孔介质中的吸附、离子交换等反应相对简单,而对于多组分重金属离子在多孔介质中运移的模拟,PHREEQC软件模拟结果要优于CXTFIT软件的模拟结果,这与PHREEQC软件模拟过程中考虑了吸附、离子交换等反应有关。
     对于不同理化条件下重金属离子的运移,从拟合的决定系数平均值来看,Cu~(2+)、Zn~(2+)和Cd~(2+)的拟合度要优于Pb~(2+)的拟合度,这主要是因为Pb~(2+)的吸附强度较高,而且Pb~(2+)在石英砂柱中发生的反应较Cu~(2+)、Zn~(2+)、Cd~(2+)复杂,模拟难度加大,模拟精度有所降低,对比吸附解吸两个阶段的模拟精度,吸附阶段模拟精度较高,在解吸阶段精度下降很大。
     石英砂柱出流液中随着重金属组分的增加,出流液峰值随之增加,并且出现输出浓度大于输入浓度(C/C_0大于1)的情况,主要原因是受层析原理的影响,对Cd~(2+)的影响要大于其它三种重金属,Cu~(2+)、Pb~(2+)、Zn~(2+)、Cd~(2+)多组分溶液中Cd~(2+)出流峰值C/C_0最大值为1.526,这说明多组分在多孔介质中运移的过程中,层析现象对Cd~(2+)的影响要大于其它三种重金属,这主要是受重金属水解能力强弱的主导,水解常数pK:Pb~(2+)(7.8)>Cu~(2+)(8.0)>Zn~(2+)(9.0)>Cd~(2+)(10.1)。多组分重金属出流输出浓度大于输入浓度(C/C_0大于1)情况对于数值模拟的影响也较为明显,模拟精确度有所降低。
     为预测极端情况下多组分重金属离子在高盐或高pH值溶液中的运移规律,利用前面已经调试的PHREEQC软件对高盐(0.25mol/l)和高pH值(pH=7.5)进行模拟,模拟情况与已知实验结果较为吻合。
     本文顾及到了组分之间的相互作用,并在水动力弥散过程中耦合了吸附、离子交换等化学反应,能够较好的反映实际情况,为重金属污染多孔介质的评估、修复提供科学依据。
In order to fully study the effect of different physical and chemical factors on the transport of heavy metals in soil,this dissertation studies on four heavy metals which were conducted in small columns full with low-reactive quartz sand under control conditions to obtain precise data and exclude the effect of unknown aspects.
     On controllable condition in lab,each column was added single or multicomponents of heavy metal ions and the influences of different pH,flow velocity and ionic strength on these ions transport were studied.
     The source and sinks term,sensitivity,data error and dispersion coefficient sensitivity for one-dimensional advection-dispersion equation(CDE)were analyzed through gradient-regularization algorithm.
     The analysis indicated that if the data error of experiment was less than 5%the numerical solution accorded with the true solution very well,if the data error was more than 10%,it would affect the simulation.Also,the data of BTCs affected the precision of the simulation.
     To each experiment,traditional solute transport without chemical reaction was simulated by computer program CXTFIT and coupled chemical reaction solute transport was simulated by the hydrologic geochemical software PHREEQC.The results revealed:
     Breakthrough time and arrival of peak concentration became earler with the flow velocity increased from 0.05 m/h to 0.3 m/h.The capacity of heavy metals adsorbed on quartz sand decreased in low pH conditions with high peak concentration.There was also earlier breakthrough with the similar BTCs with the ions strength increased.
     It was well accorded between CXTFIT and PHREEQC in simulation of single heavy metal because the simplification of chemical reaction.The simulation coupled adsorption (with PHREEQC)was better than non-coupled one(with CXTFIT)and it could describe experimental results successfully because the PHREEQC software took into account the reactions of adsorption and ion exchanging.
     The simulation of the heavy metal Cu~(2+),Zn~(2+),Cd~(2+) was better than the simulation of the heavy metal Pb~(2+)because of the difference of the adsorption.
     The peak concentration significantly increased in multicomponents condition compared with single component condition,which also indicated that the increased ions strength could facilitate heavy metals transport and decrease retention in columns.It had a peak concentration that exceeded the input concentration(C/C_0>1.0),especially in Cd solution.It indicated that the hydrolysis constant was the important effactor for the chromatographic or snow-plow effect.The chromatographic effect also affected the simulation for the experimental data.
     The simulation in the high salt(0.25mol/l)and high pH(pH=7.5)condition accorded well with the experimental data.
     The simulation of solute transport was coupled with chemical reactive such as adsorption and ions exchange,which could reflect the real conditions and provid references for the evaluation and remediation of contaminated soils by heavy metals.
引文
[1]李健,郑春江.环境背景值数据手册[M].北京:中国环境科学出版社,1989
    [2]张国印,王丽英.孙世友土壤的重金属污染及其防治[J].河北农业科学,2003,9(7):19
    [3]曹尧东,孙波,宗良纲,汤勇辉.丘陵红壤重金属复合污染的空间变异分析.土壤,2005,37(2):140-146
    [4]陈怀满,郑春荣.中国土壤重金属污染现状与防治对策.AMBIO:人类环境杂志,1999,28(2):130-134
    [5]钟晓兰,周生路,李江涛等.长江三角洲地区土壤重金属污染的空间变异特征—以江苏省太仓市为例[J].土壤学报,2007,44(1):33-40
    [6]Gomes P C,Fontes M P F,da Silva A G,Mendonca E de S,Netto R A.Selectivity sequence and competitive adsorption of heavy metals by Brazilian soils.Soil Sci.Soc.Am.J.,2001,65:1115-1121.
    [7]Covelo E F,Andrade M L,Vega F A.Simultaneous adsorption of Cd,Cr,Cu,Ni,Pb and Zn by different soils.J.Food Agric.Environ.,2004,2:244-250
    [8]Ashworth D J,Alloway B J.Soil mobility of sewage sludge-derived dissolved organic matter,copper,nickel and zinc[J].Environ.Pollution,2004,127(1):137-144
    [9]Richards B K,Steenhuis T S,Peverly J H,McBride M B.Effect of sludge-processing mode,soil texture and soil pH on metal mobility in undisturbed soil columns under accelerated loading.Environ.Pollution,2000,109(2):327-346
    [10]常学秀,施晓东.土壤重金属污染与食品安全[J].云南环境科学,2001,12(20):21-24
    [11]黄昌勇.土壤学[M].北京,中国农业出版社,2000
    [12]McBride M B.Toxic metal accumulation from agricultural use of sludge:are USEPA regulations protective.J.Environ.Qual.,1995,24:5-18
    [13]Nikonov V,Goryainova V and Lukina N.Ni and Cu migration and accumulation in forest ecosystems Kola Peninsula.Chemosphere,2001,42:93-100.
    [14]Ettler V,Mihaljevic M and Komarek M.ICP-MS measurements of lead isotopes in soils heavily contaminated by lead smelting:Tracing the sources of pollution.Anal.Bioanal.Chem.2004,378:311-317
    [15]Gasc(?) G,Lobo M C and Guerrero F.Land application of sewage sludge:A soil columns study.Water SA,2005,31:309-318
    [16]Garcia G,Pe(?)as J M,Manteca J I.Zn mobility and geochemistry in surface sulfide mining soils from SE Spain.Environmental Research,2008,106:333-339
    [17]陈怀满.土壤-植物系统中的重金属污染.科学出版社,1996,344p
    [18]Hesterberg D.1998.Biogeochemical cycles and processes leading to changes in mobility of chemicals in soils.Agriculture,Ecosystems and Environment.1998,67:121-133.
    [19]Kookana R S,Naidu R.Effect of soil solution composition on cadmium transport through variable charge soils.Geoderma,1998,84:235-248
    [20]Guisquiani P L,Concezzi L,Businelli M and Maochioni A.Fate of pig sludges liquid fraction in calcareous soil:Agricultural environmental implications.J.Environ.Qual.,1998,27,364-371
    [21]Lindsey G,Cindy M C,Fiona A,et al.Movement of water and heavy metals(Zn,Cu,Pb and Ni)though sand and sandy loam amended with biosolid under steady-state hydrological conditions.Bioresour.Techn.,2001,78:171-179
    [22]刘兆昌,聂永丰,张兰生等.重金属污染物在下包气带饱水条件下迁移转化的研究.环境科学学报,1990,10(2):160-172
    [23]蒋建清,吴燕玉.模拟酸雨对草甸棕壤中重金属迁移的影响.中国科学院研究生院学报,1995,12(2):185-190
    [24]吴燕玉,王新,梁仁禄,陈怀满,谢玉英.Cd,Pb,Cu,Zn,As 复合污染在农田生态系统的迁移动态研究.环境科学学报,1998,18(4):407-414
    [25]RUAN Xin-Ling,ZHANG Gan-Lin,NI Liu-Jian and HE Yue.Distribution and Migration of Heavy Metals in Undisturbed Forest Soils:A High Resolution Sampling Method.Pedosphere,2008,18(3):386-393
    [26]南忠仁,李吉均.干旱区耕作土壤中重金属镉铅镍剖面分布及行为研究—以白银市区灰钙土为例.干旱区研究,2000,17(4):39-45
    [27]肖广全,温华,魏世强.三峡水库消落区土壤胶体对 Cd 在土壤中迁移的影响[J].水土保持学报,2007,21(4):16-20
    [28]吕兴,朱英存,戴燕棠.模拟酸雨对土壤中的铜释放与缓冲作用研究[J].污染防治技术,2007,20,(3):20-21,96
    [29]Flogeac K,Guillon E,Aplincourt M.Competitive sorption of metal ions onto a north-eastern France soil:Isotherms and XAFS studies.Geoderma,2007,139:180-189
    [30]王新,梁仁禄,周启星.Cd-Pb 复合污染在土壤-水稻系统中生态效应的研究.农村生态环境.2001,17:41-44
    [31]Saha U K,Taniguchi S,Sakurai K.Simultaneous adsorption of cadmium,zinc,and lead on hydroxyalumium-and hydroxyaluminosilicate-montmorillonite complexes.Soil Sci.Soc.Am.J,2002,66:117-128
    [32]Benjamin M M,Leckie J O.Competitive adsorption of Cd,Cu,Zn,and Pb on amorphous iron oxyhydroxide.J.Colloid Interf.Sci.,1991,83:410-419
    [33]Evans L J.Chemistry of metal retention by soils.Environ.Sci.Technol.,1989,23:1046-1056
    [34]Rieuwerts J S,Thornton I,Farago,M E,Ashmore,M R.Factors influencing metal bioavailability in soils:preliminary investigations for the development of a critical loads approach for metals.Chem. Speciat.Bioavailab.,1998,10:61-75
    [35]Silveira M L A,Alleoni LRF,Guilherme L R G.Review:biosolids and heavy metals in soils.Sci.Agric,2003,60:793-806
    [36]Saha U K,Taniguchi S,Sakurai K.Simultaneous adsorption of cadmium,zinc,and lead on hydroxyalumium-and hydroxyaluminosilicate-rnontmorillonite complexes.Soil Sci.Soc.Am.J,2002,66:117-128
    [37]McBride M B.Environmental Chemistry of Soils,Oxford Univ.Press,New York,1994.
    [38]Bradl H B.Adsorption of heavy metals on soils and soils constituents.J.Colloid Interf.Sci.,2004,277:1-18
    [39]Brusseau M L,Rao P S C.Modeling solute transport in structured soils:A review.Geoderma,1990,46(2):169-192
    [40]章明奎.污染土壤中重金属的优势流迁移.环境科学学报,2005,25(2):192.197
    [41]Richards B K,Steenhuis T S,Deverly J H,et al.Metal mobility at an old,heavily loaded sludge application site.J.Environ.Pollution,1998,99(3):365-377
    [42]Frink C R,Sawhney B L.Leaching of Metals and Nitrate from Composted Sewage Sludge[R].Bulletin 923,Connecticut Agricultural Experiment Station,New Haven,Connecticut,1994:1-25
    [43]Camobreco V J,Richard B K,Steenhuis T S,et al.Movement of heavy metals through undisturbed and homogenized soil columns.Soil Sci.,1996,161(6):740-750
    [44]Miller C W,Benson L V.Simulation of solute transport in a chemically reactive heterogeneous system:model development and application[J].Water Resour.Res.1993,19(2):381~391
    [45]Cederberg G A,Street R L.A groundwater mass transport and equilibrium chemistry model for multicompent systems[J].Water Resour.Res.1995,21(8):1095~1104
    [46]Liu C W,Narasimhan T N.Redox-controlled multiplespecies reactive chemical transport,1,Model development[J].Water Resour.Res.1989,25:869-882
    [47]Yeh G T,Tripathi V S.A critical evaluation of recent development in hydrogeochemical transport model of reactive multichemical components.Water Resour.Res.1989,25(1):93~108
    [48]Rubin J.Solutes transport with multisegment,equilibrium-controlled reactions:Afeed-forward simulation method[J].Water Resour.Res.1990,26(9):2029-2056
    [49]Yeh G T,Tripathi V S.A model for simulating transport of reactive multispecies components:model development and demonstration[J].Water Resour.Res.1991,27(12):3075~3094
    [50]Athanasis Kalatzis,Rafael A.Two dimensional groundwater transport of reactive solute with competive adsorption[J].Water Resour.Res.1993,29(7):2241-2248
    [51]Walter A L,Frind E O,.Blowes D W.Modeling of multicomponent reactive transport in groundwater,1.Model development and evaluation[J].Water Resour.Res.1994,30(11):3137~3148
    [52]Wilfried Pfingsten.Efficient modeling of reactive transport phenomena by a multispecies random walk coupled to chemical equilibrium[J].Radioactive Waste Management.1996,116
    [53]Huiying Shen,Nikolaos P,Nikolaidis.A direct substitution method for muticomponent solute transport in ground water[J].Ground Water.1997,35(1):67-79
    [54]Andreas Z,Fritz S,The mistocles Dracos.Modeling of chemically reactive groundwater transport[J].Water Resour.Res.1998,30(7):2217-2228
    [55]Lan Smith S,Peter R Jaffe.Modeling the transport and reaction of trace metals in water-saturated soils and sediments[J].Water Resour.Res.1998,34(11):3135-3147
    [56]Tebes-Stevens C L,Valocchi A J.Calculation of reaction parameter sensitivity coefficients in multicomponent subsurface transport models[J].Advances in Water Res.2000(23):591-611
    [57]B.Merkel.地下水中铀的反应运移模拟[J].地球科学-中国地质大学学报.2000,25(5):451-455
    [58]Maarten W Saaltink,Jesus Carrera,Carlos Ayora.On the behavior of approaches to simulate reactive transport[J].J.contam.Hydrol.2001(48):213-235
    [59]Ray E.Ferrel,Per Aagaard,Johan Forsman,Lea Greenwood,Zuoping Zheng.Application of a geochemical transport model to predict heavy metal retention(Pb) by clay liners[J].Appl.Clay Sci.2002(21):59-66
    [60]Lauren Browning,William M.Murphy,Chandrika Manepally.Reactive transport model for the ambient unsaturated hydro geochemical system at Yucca Mountain,Nevada[J].Computers Geosci.2003(29):247-263
    [61]Kopittke P M,H B.So & N W Menzies.Effect of strength and clay and clay mineralogy on Na-Ca exchange and the SAR-ESP relationship.Euro.J.Soil Sci.2005
    [62]Ludwig B,Beese F,Michel K.Modelling cation transport and pH buffering during unsaturated flow through intact subsoils.Euro J Soil Sei.2005,56(5):635-645
    [63]Mingliang Xie,Sebastian B,Olaf K.,Thomas N,Hua Shao,2006.Numerical simulation of reactive processes in an experiment with partially saturated bentonite.J.Contain.Hydro.83:122-147
    [64]Daniel C W Tsang,Weihua Zhang,Irene M C Lo.Modeling Cadmium transport in soils using sequential extraction,batch,and miscible displacement experiments.Soil Physics,2007,71(3):674-681
    [65]Kookana R S,Naidu R,Tiller K G.1994.Sorption non-equilibrium during cadmium transport through soils.Aust.J.Soil Res.1994,32:635-651
    [66]Gerritse R G.Dispersion of cadmium in columns of saturated sandy soils.J.Environ.Qual.1996,25:1344-1349
    [67]冯绍元,齐志明,王亚平.排水条件下饱和土壤中镉运移实验及其数值模拟.水利学报,2004,10:89-94
    [68]Liping Pang,Murray Close,Daniela Schneider,Greg Stanton.Effect of pore-water velocity on chemical nonequilibrium transport of Cd,Zn,and Pb in alluvial gravel columns.Contaminant Hydrology,2002,57:241-258
    [69]王代长,蒋新,贺纪正,卞永荣,郜红建.酸性土壤中 Cd~(2+)的吸附与运移特性.环境化学,2007,26(3):307-313
    [70]Bajracharya K,Tran Y T,Barry D A.1996.Cadmium adsorption at different pore-water velocities.Geoderma,1996,73:197-216
    [71]郑西来,刘鸿俊.山东氧化铝厂渣场地地下水系统的环境地球化学反应模型.地球化学.1990.3:270-276
    [72]曹玉清,胡宽瑢,胡忠毅,张文兵.水文地球化学综合模型的数值模拟-以大同麻峪口地区为例.世界地质.2000,19(3):240-247
    [73]崔建国,李文红,李怀杰.最优化技术在地下水水质预测中的应用.太原工业大学学报.1995,26(4):22-27
    [74]吴吉春,薛禹群,黄海,等.王玉海山西柳林泉裂隙发育区溶质运移三维数值模拟.南京大学学报(自然科学).2000,36(6):728-734
    [75]曾溅辉,刘文生.浅层地下水氟的溶解/沉淀作用的定量研究.地球科学—中国地质大学学报.1996,21(3):337-340
    [76]张文兵,胡宽瑢,吕斯濠.地下水中络合物计算机模拟.世界地质.1998,17(3):79-82
    [77]周祖权,宋汉周.水一岩作用模拟中地下水质组分存在形式的研究.水利水电科技进展.2001,21(6):16-19
    [78]程先军,许迪.地下滴灌土壤水运动和溶质运移的数学模型及验证.农业工程学报.2001,17(6):1-4
    [79]Zhou Shiwei,Zhang Gangya,Zhang Xiaonian.Exchange Reaction Between Selenite and Hydroxyl Ion of Variable Charge soil Surfaces:Ⅰ.Electrolyte Species and pH Effects[J].Pedosphere.2003,13(3):227-232
    [80]石辉,郑纪勇,邵明安.土壤溶质运移 CDE 模型参数估计的一种新方法-截距法[J].土壤学报.2003,40(1):136-139
    [81]杨玉建,杨劲松.土壤水盐运动的时空模式化研究[J].土壤.2004,36(3):283-288
    [82]Chun-Ping LIU,Ming-An SHAO,Dian-Qing LU,XIA Wei-Sheng and CAI Song-Bai.An Analytical Solution for Advance of solute Front In Soils[J].Pedosphere.2004,14(3):339-346
    [83]李韵珠,胡克林.蒸发条件下粘土层对土壤水和溶质运移影响的模拟[J].土壤学报.2004.41(4):493-502
    [84]王金生,王国华,李书绅,王丽.不流动水对黄土包气带溶质运移影响的实验研究.水利学报.2004(6):52-55
    [85]吴夏懿,束龙仓.开采条件下的地下水溶质运移规律的研究——以山东济宁漏斗区为例.工程勘察.2006(2):27-30
    [86]钱云平.Pb(Ⅱ)在地下水环境中迁移的机理及模型研究[J].水资源保护.1997,(4):16-19
    [87]王玉,张一平.蝼土水分入渗、再分布过程反应性溶质(NH_4~+)运移特征研究.土壤学报.2002,39(4):529-535
    [88]钱天伟,陈繁荣,等.一种耦合表面络合吸附作用的地下水溶质迁移模型初探[J].辐射防护通讯.2003,23(3):14-18
    [89]张展适,周文斌,钱天伟,武贵斌,李满根.镎、钚、锶在黄土地下水中地球化学行为的模拟研究.辐射防护.2003,23(6):355-361
    [90]张德生,常安定,沈冰,等.土壤中吸附性溶质运移对流—弥散模型的准解析解及其数值模拟.水动力学研究与进展.2005,20(2):226-232
    [91]武桐,刘翔.UNSATCHEM 在土壤溶质反应-运移模拟中的应用[J].福建农业学报.2004,19(1):45-49
    [92]Ferrell R E,Aagaard P J,Forsman L,Greenwood,Zheng Z.Application of a geochemical transport model to predict heavy metal retention(pb) by clay liners.Appl.Clay Sci.2002(21):59-66
    [93]C(?)cile Delolme,C(?)line H(?)brard-Labit,Lorenzo Spadini,Jean-Paul Gaudet.Experimental study and modeling of the transfer of zinc in a low reactive sand column in the presence of acetate.Journal of Contaminant Hydrology.70(2004):205-224
    [94]Laurent Lassabatere,Lorenzo Spadini,C(?)cile Delolme,Laureline F(?)vrier,Rosa Galvez Cloutier,Thierry Winiarski.Concomitant Zn-Cd and Pb retention in a arbonated fluvio-glacial deposit under both static and dynamic conditions.Chemosphere.69(2007):1499-1508
    [95]#12
    [96]Vojt(?)ch Ettler,Martin Mihaljevi(?),Ond(?)ej(?)ebek,Ladislav Strnad.Leaching of APC residues from secondary Pb metallurgy using single extraction tests:the mineralogical and the geochemical approach.Journal of Hazardous Materials.B 121(2005):149-157
    [97]Cheryl E.Halim,Stephen A.Short,Jason A.Scott,Rose Amal,Gary Low.Modelling the leaching of Pb,Cd,As,and Cr from cementitious waste using PHREEQC.Journal of Hazardous Materials.A125(2005):45-61
    [98]St(?)phanie Szenknect,Christophe Ardois,Jean-Paul Gaudet,V(?)ronique Barth(?)s.Reactive transport of ~(85)Sr in a chernobyl sand column:static and dynamic experiments and modeling.Journal of Contaminant Hydrology.76(2005):139-165
    [99]Javier G(?)mez del R(?)o,Paula Sanchez,Pedro J.Morando,Daniel S.Cicerone.Retention of Cd,Zn and Co on hydroxyapatite filters.Chemosphere.64(2006):1015-1020
    [100]X.Mao,H.Prommer,D.A.Barry,CD.Langevin,B.Panteleitd,L.Lie.Three-dimensional model for multi-component reactive transport with variable density groundwater flow.Environmental Modelling & Software.21(2006):615-628
    [101]K.Komnitsas,GBartzas,I.Paspaliaris.Efficiency of limestone and red mud barriers:laboratory column studies.Minerals Engineering.17(2004):183-194
    [102]Samira Ibrahim Korfali,Brian E.Davies.Speciation of metals in sediment and water in a river underlain by limestone:role of carbonate species for purification capacity of rivers.Advances in Environmental Research.8(2004):599-612
    [103]W.M.Gitari,L.F.Petrik,O.Etchebers,D.L.Key,C.Okujeni.Utilization of fly ash for treatment of coal mines wastewater: Solubility controls on major inorganic contaminants. Fuel.87(2008):2450-2462
    [104]Aparajita Bhattacharya,Joyanto Routh,Gunnar Jacks,Prosun Bhattacharya,Magnus Morth.Environmental assessment of abandoned mine tailings in Adak,Vasterbotten district(northern Sweden).Applied Geochemistry.21(2006):1760-1780
    [105]Franco Frau,Carla Ardau,Luca Fanfani.Environmental geochemistry and mineralogy of lead at the old mine area of Baccu Locci(south-east Sardinia,Italy).Journal of Geochemical Exploration.21(2008):1-11
    [106]Laurent S.Balistrieri,Robert R.Seal Ⅱ,Nadine M.Piatak,Barbara Paul.Assessing the concentration,speciation,and toxicity of dissolved metals during mixing of acid-mine drainageand ambient river water downstream of the Elizabeth Copper Mine,Vermont,USA.Applied Geochemistry.22(2007):930-952
    [107]Maria E.Malmstrom,Sten Berglund,Jerker Jarsjo.Combined effects of spatially variable flow and mineralogy on the attenuation of acid mine drainage in groundwater.Applied Geochemistry.23(2008):1419-1436
    [108]D.Jacques,J.(?)m(?)inek,D.Mallants,M.Th.van Genuchten.Modelling coupled water flow,solute transport and geochemical reactions affecting heavy metal migration in a podzol soil.Geoderma.2(2008):1-13
    [109]Navarro Flores Andres,Martinez Sola Francisco.Effects of sewage sludge pplication on heavy metal leaching from mine tailings impoundments.Bioresource Technology 4(2008)1-10
    [110]Laurie S.Balistrieri,David M.Borrok,Richard B.Wanty,W.Ian Ridley.Fractionation of Cu and Zn isotopes during adsorption onto amorphous Fe(Ⅲ)oxyhydroxide:Experimental mixing of acid rock drainage and ambient river water.Geochimica et Cosmochimica Acta.72(2008):311-328
    [111]Andrcs Navarro,Esterve Cardellach,Jos(?)L.Mendoza,Mercc Corbella,Luis M.Dom(?)nech.. Metal mobilization fom base-metal smelting slag dumps in Sierra Almagrera(Almer(?)a,Spain).Applied Geochemistry.23(2008):895-913
    [112]毛晓敏,刘翔,Barry D A.PHREEQC 在地下水溶质反应-运移模拟中的应用[J].水文地质工程地质.2004(2):20-24
    [113]Mingliang Xie,Sebastian B,Olaf K.,Thomas N,Hua Shao,2006.Numerical simulation of reactive processes in an experiment with partially saturated bentonite.J.Contam.Hydro.83:122-147
    [114]Yaoguo WU,Zhaoli SHEN,Zuoshen ZHONG.Chemical origin of acid mine drainage and its computer simulation with Phreeqc-A case study of Zibo coal mining district.CHINESE JOURNAL OF GEOCHEMISTR.Vol.25(2006):26-28
    [115]谢水波,刘奇,张晓健,陈泽昂,李仕友.尾矿库区地下水中 U(Ⅵ)的反应-输运耦合模拟及其参数分析.水科学进展.2006,17(6):803-807
    [116]Hua Zhang,Shanggeng LUO.Modeling the leaching behavior of simulated HLW-glass using PHREEQC.NUCLEAR SCIENCE AND TECHN1QUES.Vol.18,No.3(2007):150-153
    [117]Jianguo LIU,Feng LIU,Peng ZHENG,Yongfeng NIE.Geochemical modeling of leaching behavior of heavy metals in municipal solid waste incinerator fly ashes.CHINESE JOURNAL OF GEOCHEMISTR.Vol.25(2006):25-26
    [118]马尧.地球化学模式 PHREEQC 在地浸工艺中的应用.铀矿冶.Vol.26(2007)No.2:67-71
    [119]高柏,史维浚,孙占学.PHREEQC 在研究地浸溶质迁移过程中的应用.华东地质学院学报.2002,25(2):132-135
    [120]张丛志,徐绍辉,张佳宝.一种耦合化学反应的溶质运移模型的应用.土壤学报.2006,43(6):905-910
    [121]张丛志,张佳宝,徐绍辉,张辉.反应性溶质在不同质地饱和土柱中运移的数值模拟.水科学进展.2008,19(4):552-558
    [122]Wunderly M D,Blowes D W,Frind E O,Ptacek C J.Sul-fide mineral oxidation and subsequent reactive transport of oxidation products in mine tailings impoundments:a numerical model.Water Resour.Res.1996,32(10):3173-3187Yanenko N.1971,The method of fractional steps:Springer,New York
    [123]Van der Lee J,L D Windt.Present state and future directions of geochemistry in hydrogeological systems.J.Contam.Hydrol.2001(47):265-282
    [124]Steefel C I,A C Lasage.A coupled model for transport of multiple chemical species and kinetic precipitation/dissolution reaction with application to reactive flow in single phase hydrothermal system.Am.J.Sci.1994,294:529-592
    [125]苏超伟.偏微分方程逆问题的数值方法及其应用[M].西安:西北工业大学出版社,1995
    [126]彭亚绵.偏微分方程反问题数值解法研究,硕士论文[D],西安理工大学,2005
    [127]王万斌.偏微分方程参数识别反问题正则化方法研究,硕士论文[D],西安理工大学,2003
    [128]Varah J M.Pitfalls in the numerical solution of linear ill-posed problems.SIAM J.Sci.Stat.Coput.,1983,4:164-176
    [129]李功胜,秦惠增,张瑞,范小平,刘进庆.地下水及其污染研究的反问题方法[J].山东理工大学学报(自然科学版),2005,19(3):1-4
    [130]宋新山,吴应玲,陈栋.基于 MATLAB 的对流弥散方程的不稳定源解.环境科学与技术[J],2008,31(11):31-34
    [131]彭芳麟.数学物理方程的 Matlab 解法与可视化[M].北京:清华大学出版社,2004
    [132]Indrek Porro.Comparison of batch and column methods for determining strontium distribution coefficients for unsaturat-ed transport in basalt[J].Environ.Sci.Technol.,2000,34
    [133]张宇峰,张雪英,徐炎华,等.土壤中水动力弥散系数的研究进展[J].环境污染治理技术与设备,2003,7(7):10-14
    [134]叶乐安.土壤水动力参数同步求解[J].温州师范学院学报,2002,12(6):79-83
    [135]刘进庆,李功胜,马昱.确定地下水污染强度的梯度正则化方法[J].山东理工大学学报(自然科学版),2007,21(2):17-20
    [136]刘进庆,李功胜.随机扰动条件下对流弥散方程源项系数反演的数值模拟[J].山东大学学报(工学版),2008,38(3):112-117
    [137]崔凯,李宝元,李兴斯,等.非饱和土中镉离子传输模型参数反演[J].水科学进展,2004,15(6):700-705
    [138]Yamamoto M.Stability reconstruction formula and regularization for an inverse source hyperbolic oroblem by a control method.Inverse Problems,1995,11:481-496
    [139]闵涛,周宏宇等.最佳摄动量法在一维波动方程参数反演中的应用[J].西安理工大学学报,2005,21(4):347-350
    [140]于天仁,季国亮,丁昌璞.可变电荷土壤的电化学[M].北京:科学出版社,1996
    [141]丁武泉,包兵,李航,宋仲客.三峡库区消落区紫色土对重金属的吸附特征[J].生态与农村环境学报,2007,23(1):40-42,62

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700