用户名: 密码: 验证码:
铁(氢)氧化物的制备、负载及对HIOCs类污染物的吸附研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铁是自然界中少数常见的变价元素,铁(氢)氧化物矿物在土壤颗粒和岩石、水体沉积物中广泛存在。它们有较大的比表面积和较高的反应活性,环境相容性好,价格低廉,对重金属和有机污染物质有良好的吸附性能。
     五氯苯酚(pentachlorophenol,PCP)是憎水性可离解有机化合物(hydrophobicionizable organic compounds,HIOCs)的典型代表,PCP在水体中存在形态为PCP分子和PCP离子,随pH不同其存在形态不同。PCP广泛地存在于土壤、地表水和地下水,理化性质受环境pH影响存在较大的差异,环境行为复杂。目前对其环境效应及处理工艺的研究尚不深入。
     为深入了解土壤和水体中广泛存在的铁(氢)氧化物矿物与PCP的相互作用机理,利用铁(氢)氧化物矿物的界面作用治理土壤与水体的憎水性可离解有机化合物污染,实现廉价、安全的土壤修复和水体净化,研发铁(氢)氧化物矿物单元反应器处理有机污染物,论文在前人的研究基础上进行了α-FeOOH、α-Fe_2O_3、Fe_3O_4三种铁的(氢)氧化物制备、负载、表征及对HIOCs类污染物中代表物PCP的吸附性能研究。
     采用FeCl_3·6H_2O与NaOH在水溶液中的化学沉淀、40℃恒温陈化4天制备得到了α-FeOOH,通过X射线衍射、FTIR、TEM、激光粒度仪、比表面积测定、表面酸碱滴定等对制备样品进行了分析表征,并对比了天然与合成α-FeOOH的相关性能。结果表明,合成α-FeOOH的FTIR特征吸收峰为893cm~(-1)和796cm~(-1),平均粒径为364.9nm,比表面积52m~2/g,零电荷原点pH_(ppzc)=7.82;天然针铁矿主要成分为Fe_2O_3,其次为Al_2O_3和SiO_2,烧失量较高,除含有结晶水外还含有多糖类有机挥发份。FTIR特征吸收峰为976cm~(-1)和464cm~(-1),微观形貌为螺旋状和管状,管径小于2μm,比表面积179.8m~2/g为合成α-FeOOH的3.458倍;天然α-FeOOH零电荷原点pH_(ppzc)=7.18。
     合成与天然α-FeOOH对PCP的静态吸附性能研究表明,天然α-FeOOH吸附速率略快于合成α-FeOOH,两种FeOOH在2.5h都达到了吸附-解吸动态平衡,起始浓度为10mg/L的PCP溶液经合成与天然α-FeOOH吸附处理后,去除率分别为53.4%和61.3%。处理后PCP溶液浓度分别从(GB8978-1996)污水综合排放标准中的三级排放标准(10mg/L)达到了一级排放标准(5mg/L)。合成α-FeOOH最大吸附容量发生在pH5.5,达到0.534mg/g,天然α-FeOOH最大吸附容量发生在pH 6.0,达到0.613mg/g。造成吸附容量差异的原因在于天然α-FeOOH的比表面积比合成FeOOH的比表面积大、表面位密度高。天然与合成α-FeOOH对PCP的吸附动力学符合一级动力学,拟合的动力学方程分别为lgC=1-0.1645t和lgC=1-O.1325t;天然α-FeOOH对PCP的吸附符合Freundlich等温式;合成α-FeOOH对PCP的吸附符合Langmuir等温式;α-FeOOH吸附PCP主要作用机理为>FeOH_2~+和C_6Cl_5O~-两者之间形成电荷-偶极以氢键形式的吸附;天然、合成α-FeOOH吸附PCP后采用500℃热再生后均相变为α-Fe_2O_3,α-Fe_2O_3对PCP吸附能力大于合成α-FeOOH,同时多次500℃热再生效果良好。
     天然α-FeOOH对造纸废水中有机污染物的吸附性能研究表明,天然α-FeOOH对造纸废水中的COD的吸附速度较快,60min后达到吸附平衡,当废水的COD为394mg/L时,68.89%的COD会从水相转移入固相中,当造纸废水和受纳水体混合后COD在150mg/L以下时,处理后废水的COD达到了GB3883-2002中的地表水Ⅰ类水质;吸附等温线为Langmuir型,饱和吸附量Γm为8.006mgCOD/g,吸附常数k为10.26;天然针铁矿吸附有机物后经过500℃煅烧后发生了相变,转化成α-Fe_2O_3,再生后的一次解吸率为87%,多次吸附解吸后仍然具有很高的吸附能力。
     采用均匀沉淀法合成了α-Fe_2O_3,经X射线衍射、FTIR、HRTEM分析证明为α-Fe_2O_3,生成的α-Fe_2O_3结晶良好,没有其他杂质,属于六方晶体结构,粒径小于300nm,比表面积37.24m~2/g,零电荷原点pH_(ppzc)=7.65。
     合成α-Fe_2O_3对PCP的吸附机理研究表明,合成α-Fe_2O_3对PCP的吸附在2.5h达到吸附和解吸动力学平衡,吸附动力学符合一级动力学:适合于采用Langmuir等温方程式拟合,α-Fe_2O_3单位面积上的活性基团数量大于α-FeOOH,α-Fe_2O_3吸附PCP后在500℃灼烧60min后的再次吸附PCP效果良好,六次再生后的吸附容量保持为98.8%。最大吸附容量在pH6.0处达到6.5mg/g,吸附机理以静电吸附为主,氢键作用为辅,在零电荷原点pH7.65时,两者之间主要以氢键作用产生吸附。
     采用共沉淀法制备了磁铁矿,经过X-射线衍射分析合成的样品为纯度高的Fe_3O_4,按照Debye-Scherrer公式计算出平均晶粒大小为25nm,激光粒度分析结果平均粉体粒径277.2nm。Fe_3O_4对五氯苯酚吸附速率慢于针铁矿和赤铁矿,pH=5时,吸附容量达到最大为0.35mg/g,最大吸附容量小于针铁矿和赤铁矿,吸附等温线适合用Freundlich等温式拟合。
     α-Fe_2O_3对PCP具有良好的吸附性能,但由于它是一种松散的、易水解的、无定形的粉状物质,用做固定床、移动床反应器时透水性能极差,而用做间歇工艺流程时脱水困难,吸附剂损失大同时产生大量的污泥和额外处理费用。论文在前人将α-Fe_2O_3负载在石英砂制备滤料的基础上,首次采用共沉淀法将α-Fe_2O_3负载在比表面积大、孔隙率高、密度小的陶瓷滤球上,采用扫描电镜(SEM)、比表面积(BET)测定、X射线衍射(XRD)及高分辨透射电镜分析(HRTEM)等检测技术对负载型进行分析表征,从负载铁量、附着性能、抗酸碱能力等方面考察负载型α-Fe_2O_3的性能。
     以Fe(NO_3)_3.9H_2O为原料,采用尿素作为均匀沉淀剂,采用共沉淀法辅助α-Fe_2O_3负载于陶瓷滤球上。当CO(NH_2)_2与Fe(NO_3)_3.9H_2O摩尔比为1.0,Fe(NO_3)_3.9H_2O与陶瓷滤球重量比为0.2时,经600℃加热1小时,比表面积由陶瓷滤料原来的0.973m~2/g增加到5.639m~2/g增加了5.8倍,陶瓷滤料在零电荷原点时的pH值为5.8,负载α-Fe_2O_3后增加到7.8,负载型吸附剂α-Fe_2O_3的机械稳定性、耐酸及耐碱性能良好,机械稳定性失重率0.352%,耐酸性失重率2.387%,耐碱性失重率0.568%。
     负载型α-Fe_2O_3对PCP的静态吸附和粉末状α-Fe_2O_3吸附动力学过程相似,达到平衡时吸附容量为O.19mg/g,只有粉末状α-Fe_2O_3吸附容量(0.65mg/g)的29.23%;PCP去除率与负载型α-Fe_2O_3的比表面积呈现出较好的相关性,明显表现出随着比表面积增加,PCP去除率增加;负载型α-Fe_2O_3对PCP的去除随pH变化规律、吸附机理与粉末α-Fe_2O_3相似;负载型α-Fe_2O_3对PCP吸附分配比与热力学温度回归方程为lnD=2.0577/T-1.8869,吸附反应的吸附热△H=-17.1kJ/mol,为放热反应。负载型α-Fe_2O_3对PCP的动态吸附实验表明,当吸附柱装填高度30cm,EBCT(空床接触时间)分别为8min、12min、16min时,出水符合GB8978-1996一级标准的处理时间分别为271min、516min、805min,累积达标产水量12810.5ml、16211ml、18955.6ml,床积比分别为50.28BV、43BV、34BV,穿透时的吸附容量分别为静态吸附容量的83%、71%、56%。负载型α-Fe_2O_3吸附PCP后的热再生效果良好,600℃三次再生后其吸附PCP的穿透曲线几乎没有变化。
     为研究固定床蜂窝状α-Fe_2O_3吸附剂对PCP的吸附性能,首次利用吸氧腐蚀作用在金属铁的原位生成α-Fe_2O_3。纯铁板辅助氧气氧化的表层物x射线衍射分析表明,表层物中除了Fe_3O_4外,还出现了α-Fe_2O_3,对表层物顶层的拉曼光谱分析表明,表层物顶层的成分是单一α-Fe_2O_3;表层物中间层的主要成分是Fe_3O_4,同时含有少量γ-FeOOH和α-Fe_2O_3:SEM分析表明表面氧化物形状为树叶状,表面零电荷原点时的平均pH为7.22,铁基原位生成负载α-Fe_2O_3吸附剂对PCP的吸附平衡时间为2.5h,峰值出现在pH5.5左右,最大吸附容量为0.55mg/cm~2;吸附适合于用Langmuir等温方程拟合,经过600℃灼烧1h能够获得再生,四次再生后的吸附能力为首次的98.9%。α-Fe_2O_3作为吸附剂用作HIOCs类废水PCP的吸附处理有着潜在的应用前景。
Iron belongs to a common variable-valence element with a small number in thenature which widely exists in soil particles and rock, aquatic sediment. They have a larger surface area and high reactivity, environmental compatibility, low price that have a good adsorption property on heavy metals and organic contaminants.
     Pentachlorophenol (PCP) is a typical representative of hydrophobic ionizable organic compound (HIOCs) which widely exists in soil, surface water and groundwater, in liquid, its existing form is PCP molecule and PCP ion, and different forms by pH values. Physical and chemical properties are extremely determined by environment pH value, complex environmental behavior. At present, its environmental effects and treatment process are not in-depth yet.
     To better understand the interaction mechanism on PCP of iron oxide (or hydroxide) minerals which widely exist in soil and liquid, the method that use interface interaction of iron oxide (or hydroxide) mineral to treat the hydrophobic ionizable organic compound contaminants in the soil and liquid is performed, so as to realize economical and safety soil remediation and liquid purification, and develop iron oxide (or hydroxide) mineral unit reactor to treat organic contaminants. Based on the previous researches, this essay presented researches on preparations, loads and characterizations of three kinds of iron oxide,α-FeOOH,α-Fe_2O_3, Fe_3O_4, as well as the property of adsorption on PCP which is a typical representative in HIOCs contaminants.
     Preparedα-FeOOH by aging chemical precipitation from the solution of FeCl_3-6H_2O and NaOH for 4 days under the constant temperature 40℃, and then carried out analysis and characterization in the preparation sample through X-ray diffraction, RTIR, TEM, laser particle sizer, BET surface area, acid-base titration and so on, as well as the related compared performances between natural and syntheticα-FeOOH. The result indicated that the FTIR characteristic absorption peak for syntheticα-FeOOH were 893cm~(-1) and 796cm~(-1), average particle radius was 364.9nm, BET surface area was 52m~2/g, point of zero charge pH_(ppzc) =7.82; natural goethite be mainly divided into Fe_2O_3, followed by A1_2O_3 and SiO_2, with a high loss on ignition, and besides the crystal water, it also contained polysaccharide organic volatile. The FTIR characteristic absorption peak for syntheticα-FeOOH were 976cm~(-1) and 464cm~(-1), the micro-morphology was presented as helical and solid tube form, the tube radius is less than 2μm, BET surface area was 179.8m~2/g which was 3.458 times of syntheticα-FeOOH's;point of zero charge of natural a-FeOOH pH_(ppzc)=7.18.
     The research on the adsorption property of synthetic and naturalα-FeOOH static on PCP indicated that, the adsorption rate of naturalα-FeOOH is slightly higher than the syntheticα-FeOOH's, both kinds of FeOOH reach the adsorption-desorption dynamic equilibrium in 2.5 hours, after the adsorption treatment on PCP solution with the initial concentration of 10mg/L, it found that the removal rates of synthetic and naturalα-FeOOH were 53.4% and 61.3% respectively. The concentration of treated PCP solution reduced to less than 5mg/L from 10mg/L that upgraded from third class to first class by (GB8978-1996) integrated wastewater discharge standard. The maximum adsorption capacity of synthetic ofα-FeOOH, 0.534mg/g, took place as the pH=6.0, for naturalα-FeOOH, it is 0.613mg/g at 6.0. The causal factor was that, comparing with syntheticα-FeOOH, naturalα-FeOOH had a larger BET surface area and higher surface site density. The adsorptions dynamics of natural and syntheticα-FeOOH on PCP in line with the first-order kinetics, the fitting kinetic equations were lgC = 1-0.1645t and lgC = 1-0.1325t respectively; the adsorption of naturalα-FeOOH on PCP accorded with the Freundlich isothermal equation; and with Langmuir isothermal equation for naturalα-FeOOH; the major adsorption mechanism forα-FeOOH on PCP was that adsorb PCP as hydrogen bond pattern by forming charge-dipole between >FeOH_2~+ and C_6Cl_5O~-; after adsorption on PCP, natural and syntheticα-FeOOH could change toα-Fe_2O_3 by 500℃thermal regeneration, which with the adsorption capacity was better thanα-FeOOH's, and good effect remained after times of 500℃thermal regenerations.
     The research on adsorption performance of naturalα-FeOOH on organic pollutants in papermaking wastewater indicated that, naturalα-FeOOH had a higher adsorption rate on COD in papermaking wastewater, and adsorption equilibrium took place in 60 minutes, when the concentration of COD in the wastewater was 394mg/L, 68.89% of COD changed to solid from liquid phase, when the concentration of COD below 150mg/L after mix papermaking wastewater and receiving water, the COD level in the treated wastewater met the demand of surface water quality I in GB3883-2002; the type of adsorption isotherm belonged to Langmuir, saturated adsorption rm=8.006mgCOD/g, adsorption constant k=10.26; phase change was carried out from natural goethite adsorption organic compound toα-Fe_2O_3 by 500℃calcinations, desorption rate was 87% after one time regeneration, good effect for adsorption capacity remained after times of adsorption-desorption.
     Preparedα-Fe_2O_3 by using homogeneous precipitation, and then testified the composition through X-ray diffract, FTIR and HRTEM, the crystallization of generatedα-Fe_2O_3 was good with no other impurities which belonged to hexagonal crystal, particle radius was less than 300nm, specific surface area was 37.24m~2/g, point of zero charge of natural pH_(ppzc) =7.65.
     The research of adsorption performance for syntheticα-Fe_2O_3 on PCP indicated that, the adsorption on PCP of syntheticα-Fe_2O_3 reached adsorption-desorption dynamic equilibrium in 2.5 hours, the adsorptions dynamics accorded with the first order kinetics; fitting by Langmuir equation was preferred, the active group number in unit area ofα-Fe_2O_3 was larger thanα-FeOOH's, better effect on PCP ofα-Fe_2O_3 by searing under 500℃for 60 minutes after the first time of adsorption, the adsorption performance could still remain 99.8% after 6 times of regenerations. The maximum adsorption capacity 6.5 mg/g occurred at the time when the pH value was 6.0, adsorption mechanism mainly belonged to electrostatic adsorption and with hydrogen bond as assistant, when the pH value at point of zero discharge reached7.65, the main adsorption method depended on hydrogen bond.
     Prepared magnetite by using coprecipitation, the synthetic sample was approved to be high purity Fe_3O_4 by X-ray diffraction, and then calculated the average particle radius to be 25nm by formula Debye-Scherrer, the laser particle analysis showed that average radius was 27.2nm. The adsorption rate of Fe_3O_4 on PCP was lower than goethite and hematite's, when the pH value was 5, the adsorption capacity was the highest, 0.35mg/g, and the minimum adsorption capacity was lower than goethite and hematite's, Freundlich for adsorption isotherm was preferred.
     Theα-Fe_2O_3 has a effected adsorption on the PCP, however, it is a powder material which is loose, easy hydrolysis and amorphous, and it has a poor permeability performance when used in fixed bed, moving bed reactor during intermittent process, difficult to dehydrate and big loss of adsorbent are its disadvantages, at the same time, it also produces a large amount of sludge and need additional treatment cost, based on previous which loadedα-Fe_2O_3 on quartz sand to prepare filter, this essay firstly, loadedα-Fe_2O_3 on the ceramic filtration ball which has a lager surface area, high porosity and low density through coprecipitation, and used detection technologies such as scanning electron microscope (SEM), BET surface area(BET), X-ray diffraction(XRD), and high-resolution transmission electron microscopy (HRTEM) and so on to take analysis and characterization on loadα-Fe_2O_3, and load iron amount, adhesive performance, anti-acid and anti-base capacity is tested to show the performance of loadα-Fe_2O_3.
     Took Fe(NO_3)_3.9H_2O as raw materials and urea for homogeneous precipitant, loadedα-Fe_2O_3 on the ceramic filtration ball by coprecipitation. When molar ratio of CO(NH_2)_2 and Fe(NO_3)_3.9H_2O was 1.0 and the weight ratio of Fe(NO_3)_3.9H_2O and ceramic filtration ball was 0.2, heated ceramic filtration at 600℃for 1 hour, after this, the BET surface area increased from 0.973m~2/g to 5.639m~2/g which was 5.8 times than before, the pH value at point of zero charge increased from 5.8 to 7.8, load absorbentα-Fe_2O_3 had good performances on mechanical stability, anti-acid and anti-base, the weight loss rates were 0.352%, 2.387% and 0.568% respectively.
     The dynamic process of static adsorption of loadα-Fe_2O_3 on PCP was similar withα-Fe_2O_3's, but the equilibrium adsorption capacity, 0.19 mg/g, was only 29.23% ofα-Fe_2O_3's, 0.65mg/g; PCP removal rate presented a good relativity with the BET surface area of loadα-Fe_2O_3, it was clear that, as the incensement of BET surface area, the removal rate increased; the removal rate changed by the different pH values and adsorption mechanism of loadα-Fe_2O_3 on PCP were similar withα-Fe_2O_3 powder's; distributive ratio and thermodynamics temperature regression equation of loadα-Fe_2O_3 on PCP, lnD=2.0577/T-1.8869, adsorption heat of adsorption reaction,△H =-17.1kJ/mol. The dynamic adsorption experiment of loadα-Fe_2O_3 on PCP showed that, when the loading height of absorption column was 30cm, empty bed contact time(EBCT) were 8 min, 12min, 16min respectively, the level of out water accorded to GB8978-1996 level 1 treatment time, which were 271min, 516min, 805min, the cumulative water production were 12810.5ml, 16211ml, 18955.6ml, bed rate were 50.28BV, 43BV, 34BV, the absorption capacity were 83%, 71% and 56% of static absorption capacity. Regeneration effect of adsorption of loadα-Fe_2O_3 on PCP was good, and the penetrated curve of PCP almost had no change after three times of regnerations at 600℃.
     In order to study on the performance of fixed bed honeycomb sorbentα-Fe_2O_3 on PCP, first time used oxygen-consuming corrosion on iron to productα-Fe_2O_3. The X-ray diffraction analysis on the pure iron assisted by oxygen showed that, besides Fe_3O_4, the surface does also includedα-Fe_2O_3, but the Raman Spectraon analysis on surface does indicted that, there was only one component,α-Fe_2O_3; the component in the middle layer of the samples was mainly divided into Fe_3O_4, followed with slight amount ofγ-FeOOH andα-Fe_2O_3; SEM analysis found that the surface oxide presented as dendrite, the pH value on the surface averagely was 7.22, the adsorption equilibrium time of loadα-Fe_2O_3 on PCP generated in-situ was 2.5 hours, peak occurred when the pH value was about 5.5, the maximum adsorption capacity was 0.55mg/cm~2; Langmuir isothermal equation was preferred for fitting, it could regenerate by searing under 500℃for 1 hour, and the adsorption performance could still remain 99.9% after 4 times regenerations.
     As an absorbent on PCP in HIOCs wasterwater for adsorption treatment use,α-Fe_2O_3 will have a potential application prospect.
引文
[1] 武汉大学.无机化学.北京:人民教育出版社.1978,300-302.
    [2] 戴树桂.环境化学.北京:高等教育出版社.1997,138-148.
    [3] R.A.贝利,H.M.克拉克,J.P费里斯等著,柳大志,陈唤章,扬麒译,吴熙载,吴成泰校.环境化学.武汉:武汉大学出版社.1987,407-408.
    [4] Stumm W, Sulzberger B. The cycling in natural environments:Considerations based on laboratory studies of heterogeneousRedox processes.Geochim Cosmochim Acta,1992,56(8):3233-3257.
    [5] 吴大清,刁桂仪.含铁(氢)氧化物的表面催化氧化作用及其环境意义[J].矿物岩石,2003,23(4):11-14.
    [6] 贾国东,钟佐.铁的环境地球化学综述[J].环境科学进展,1998,7(5):74-84.
    [7] Stumm w,Morgan J J.水化学-天然水体化学平衡导论.汤鸿霄,薛含斌,毛美洲.等译.北京:科学出版社,1987.
    [8] Nealson KH,et al. Iron and manganese in anaerobic respiration: Environmental significance,physiology and regulation [J].An-nu.Rev.Microbial, 1994,48:311-343.
    [9] Banfield J F, Nealson KH. GEOMICROBIOLOGY: Interactions Between Microbes and Minerals. The Mineralogical Society of America, Washington DC, U.S.A. 1997.
    [10] Sverjensky D A.physical surface complexation models for sorption at the mineral -water interface.Nature,1993,346(6440):776-770
    [11] Vasudevan D,Cooper E M,Van Exem O L.Sorption-desorption of ionogenic Compounds at mineral-water interface.Study of metal oxide-rich soils and Pure-phase minerals.Environ Sci Technol,2002,36(3):501-511.
    [12] Faust , B.C.;ZePP , R.G Photochemistry of aqueous iron(Ⅲ)-Polycarboxy- late complexes:Roles in the chemistry of atmosphere and surface water, Environ.Sci.TechnoL,1993, 27:2517-2522.
    [13] Kostka JE.The impact of structural Fe reduction by bacteria on the Surface chemistry of smectite clay minerals.Geochim et Cosmochim Acta,1999,163:3705-3713.
    [14] Sivan O, Erel Y, Mandler D,et al.The dynamic redox chemistry of iron in the epilimnion of Lake Kinneret (Sea of Galilee).Geochem Cosmochim Acta,1998,62(4):565-576.
    [15] 孙光闻.重金属污染及治理研究进展.南方农业,2007,1(2):41-52.
    [16] Smock L A, Kuenzler E J. Seasonal changes in the forms and speciesof iron and manganese in a seasonally-inundated floodplain swamp.Water Res, 1983, 17(10): 1287-1294.
    [17] Carador I, Vale C, Catarino F. Accumulation of Zn, Pb, Cu, Cr andNi in sediments between roots of the Tagus estuary salts marshes,Portugal. Estuar, Coast and Shelf Sci, 1996, 42:393-403.
    [18] Otte N L, Kearns C C, Doyle M O. Accumulation of arsenic and zincin the rhizosphere of wetland plants.Bull Environ Contam Toxicol, 1995, 55:154-161.
    [19] Bernd U N, Nowack G F, Rainer S. Heavy metal sorption on clay minerals affected by the siderophore Desferrioxamine B.Environ Sci Technol, 2000, 34(13):2749-2755.
    [20] Stumm W,huang C P,Jenkins S R.Specific chemical Interaction Affecting the Stability of Dispersed Systems. Croat Chem. Acta,1970,42:223.
    [21] 袁可能,我国土壤化学研究工作的回顾(1949-1989).土壤学报,1989,26(3):249-254.
    [22] Benjamin M.M., Heyes K.F., Journal of WPCF,54(11): 1472(1982).
    [23] Alloway B T. Heavy Metals in Soils. London: Blackie, Academic and Professional,1995.11-24.
    [24] 徐莉英,邢光熹.铁氧化物和层状硅铝酸盐矿物在土壤吸持重金属离子中的作用[J].土壤学报,1995,32(增刊):201-209.
    [25] 林玉锁.三种氧化铁样品吸持铜离子性能的研究[J].土壤学报,1996,33(1): 111-112.
    [27] Coston J A, Fuller C C, Davis J A. Pb~(2+)and Zn~(2+) adsorption by a natural aluminum and iron-bearing surface coating on an aquifer sand. Geochemica Cosmochemica Acta,1995,59:3535-3547.
    [28] Turner A, Olsen Y S. Chemical versus enzymatic digestion of contaminated estuarine sediments: relative importance of iron and manganese oxides in controlling trace metal bioavailability. Estuarine, Coastal Shelf Sci, 2000,51(6): 717-728.
    [29] R.J.Bowell.土壤中铁的氧化物和氢氧化物对砷的吸附,Applied Geochemistry,1994,9(3):279-286.
    [30] ParasTrivedi and Lisa Axe. Ni and Zn sorption to amorphous versus crystalline iron oxides:macroscopic studies. Journal of colloidal and inteface science. 2001, 244: 221-229
    [31] Yiwei Deng, Malin Stjernstr(?)m and Steven Banwart. Accumulation and remobilization of aqueous chromium(Ⅳ) at iron oxide surfaces: application of a thin-film continuous flow-through reactor. Journal of Contaminant Hydrology, 1996. 21:141-151
    [32] Darren P. Rodda, John D. Wells, and Bruce B. Johnson. Anomalous adsorption of copper(Ⅱ) on goethite. Journal of colloid and interface science, 1996. 184:564-569
    [33] ParfittRL, Russel JD, FamlerD V.J.Chem.Soc.Faraday, 1976,1(72): 1082.
    [34] 周代华,李学垣,徐凤琳.Cu~(2+)在针铁矿表面吸附的红外光谱研究.华中农业大学学报,1996,15(2):153-156.
    [35] Liu C. and Huang P.M.. Pressure-jump relaxation studies on kinetic of lead sorption by iron oxides formed under the influence of citric acid. Geoderma, 2001. 102:1-25
    [36] Bargar J.R., Brown G.E Jr., and Park G.A.. Surface complexation of Pb(Ⅱ) at oxide-water inteface:Ⅱ. XAFS and bond-valence determination of mononuclear Pb(Ⅱ) sorption products and surface functional groups on iron oxides. Geochim. Cosmichim. Acta,1997.61:2639-2652
    [37] Bargar J.R., Brown G.E Jr., and Park G.A.. Surface complexation of Pb(Ⅱ) at oxide-water inteface:Ⅲ. XAFS determination of Pb(Ⅱ) and Pb(Ⅱ)-chloro adsorption complexes on goethite and alumina. Geochim. Cosmichim. Acta,1998. 62:193-207
    [38] A. Garc(?)a-S(?)nchez, A.Alastuey, X. Querol. Heavy metal adsorption by different minerals:application to the remediation of polluted soils. The Science of the Environment, 1999. 242:179-188
    [39] M. Ding, B. H. W. S. De Jong, S. J. Roosendaal, and A. Vredenberg. XPS studies on the electronic structure of bonding between solid and solutes: adsorption of Arsenate, chromate,phosphate, Pb~(2+), and Zn~(2+) ions on amorphous black ferric oxyhydroxide. Geochimica et Cosmochimica Acta, 2000. 64(7): 1209-1219
    [40] 魏俊峰.重要沉积矿物界面反应研究及其环境意义:[博士学位论文]。广东:中国科学院研究生院(广州地球化学研究所),2000
    [41] Jens M(?)ller, Anna ledin, Peter Steen Mikkelsen. Removal of dissolved heavy metals from pre-settled storm water runoff by iron-oxide coated sand(IOCS).From:http://www.enpc.fr/cereve/HomePages/varrault/www-jes-2002/Moeller-Paper-2002.pdf
    [42] 祝春水,孙振亚,龚文琪.2003.生物矿化针铁矿吸附水溶液中铬的试验研究[J].环境科学研究,2004,16(6):15-18.
    [43] 孙振亚,祝春水,陈和生等.几种不同类型的FeOOH吸附水溶液中铬离子研究[J].岩石矿物学杂志,2003,23(4).
    [44] Sun Zhenya,Zhu Chunshui,Huang Jiangbo.Study of Chromium Adsorption on Natural Goethite Biomineralized with Iron Bacteria,ACTA GEOLOGICA SINICA,2006,80(3).
    [45] 方继敏.一种液膜乳液及其用途.中国专利,1631496,2007.05.23
    [46] Davis J A,Gloor R,Adsorption of dissolved organic in lake water by aluminum oxide:Effect of molecular weight.Environ Sci Tech, 1981,15:1223-1229.
    [47] Day G M, Hart B Y, McKelvie I D et al, Adsorption of natural organicmatter onto goethite.Colloids and Surfaces, 1994, 89:1-13.
    [48] Tipping E, Cooke D. The effects of adsorbed humic substances on the surface charge of goethite(a-FeOOH) in freshwaters.Geochim Cosmochim Acts, 1982,46:75-80.
    [49] Matis K A and Zouboulis A I. Sorption of as by goethite particles and study of their flocculation. Water Air and Soil Pollution, 1998, 8:33-45.
    [50] 王丹丽,王恩德.针铁矿及腐殖质对水体重金属离子的吸附作用[J].安全与环境学报,2001,1(4):1-4.
    [51] Kathy L, Godtfredsen and Stone A T. Solubilization of manganese dioxide-bound copper by naturally occurring organic compounds. Environ Sci Technol, 1994,28: 1450-1458.
    [52] 王江涛,赵卫红,张正斌.海水中天然溶解有机物在针铁矿上的吸附.海洋与湖沼,2000,31(3):309-312.
    [53] 梁树平,张秀丽,周平等.磁铁矿对膨润土吸附造纸黑液中有机物的影响.中国非金属矿工业导刊,2004,1:41-44.
    [54] 张桂银,董元彦,李学垣等.不同pH、电解质浓度条件下草酸对针铁矿吸附Cd(Ⅱ)的影响及机制植物营养与肥料学报2007,7(3):305-310.
    [55] 汤灿.表面活性剂对金属氧化物吸附与光解疏水性有机物的影响:[硕士学位论文].湖南:湖南农业大学,2005
    [56] 方继敏,孟雅文,杨红刚等.生物矿化针铁矿对造纸废水的吸附和热解吸研究.矿物学报,2006,26(4):365-372.
    [57] Li, P; SenGupta AK. Sorption of hydrophobic ionizable organic compounds (HIOCs) onto polymeric ion exchangers. REACTIVE & FUNCTIONAL POLYMERS, 2004, 60: 27-39.
    [58] Ocomell J E,Fox P F.Significance and applications of phenolic compounds in the production and quality of milk and dairy products: a review.International Dairy Journal, 2001,3(11):103-120.
    [59] 许宜铭,吕惠卿.光化学法降解水中氯代苯酚的研究进展.上海环境科学,2000.7:28-32.
    [60] Hileman B.Concerns broaden over chlorine and chlorinated hydrohydrocarbons. Chem .Eng. News, 1993, 71(16):11.
    [61] Lee C.C. , Huffman G.L. Innovativethermal destruction technologies. Environ.Prog, 1989,28:14-19.
    [62] Stuart S L, Woods S L, Lemmon T L.The effect of redox potential changes on reductive dechlorination of pentachlorophenol and degradation of acetate by a mixed. methanogenic culture.Biotechnology and Bioengineering,1999,63(1):69-78.
    [63] Tuomela M, Lyytikainen M,Oivanen P,etc. Mineralization and conversion of pentachlorophenol(PCP) in soil inoculated with the white-rot fungus trametes versicolor.soil Biology and Biochemistry, 1999,31(1):65-74.
    [64] Sung-Kil P,Angela,R.B.Aqueous Chenistry and interactive effects on non-ionic surfactant and pentachlorophenol sorption to soil.Water Research,2003,37:4663-4672.
    [65] Chen,YX,Chen HL,Xu YT etal.Irreversible sorption of pentachlorophenol Sediments:experimental observations.EnvironmentInternational.2004,30:31 -37.
    [66] YuLi, Ting Wang, Xiaoli Wang etal. Sorption characteristics of pentachlorophenol onto Fe oxides extracted from the surficial sediments.2008 2nd International Conference on Bioinformatics and Biomedical Engineering (ICBBE '08) Pages: 3035-8.
    [67] WuDaqing,DiaoGuiyi,YuanPengand,etal.Adsorption of Pentaehlorophenol onto Oxide and Clay Minerals:Surface Reaction Model and Environmental Implications[J]. SCTA GEOLOGICA SINACA,2006,80(2): 192-199.
    [68] Zhu BZ, Kitrossky N, Chevion M. Evidence for production of hydroxyl radicals by pentachlorophenol metabolites and hydrogen peroxide: A metal-independent organic Fenton reaction.BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS.2000,270(3):942-946.
    [69] Ho Te-Fu L, Bolton JR. Toxicity Changes During the UV Treatment of Pentachlorophenol in Dilute Aqueous Solution.WaterRes,1998,32(2):489-497.
    [70] Ross N C, Spackman R A, Hitechman M L. An investigation of eelectrochemical reduction of pentachlorophenol with analysis by HPLC.J Appl Electrochem,1997, 27: 51-57.
    [71] Dai, Youzhi, Li, Fenfang, Ge, Fei, et al. Mechanism of the enhanced degradation of pentachlorophenol by ultrasound in the presence of elemental iron.JOURNAL OF HAZARDOUS MATERIALS,2006,137(3):1424-1429.
    [72] Hu Z C, Korus R A, Levinson W E, etal. Adsorption and biodegradation of pentachlorophenol by polyurethane-inmobilized Flavobacterium. Environmental Science & Technology, 1994, 28(3): 491-496.
    [73] Amid P K, Julie A W, Akram T S, etal. Anaerobic treatment of PCP in fluidized-bed GAC bioreactors. Water Research, 1997, 31(7): 1776-1786.
    [74] Zhou Hongbo,Chen Jian.Start-up of EGSB reactor for treatment of wastewater containing pentachlorophenol.Journal of Chemical Engineering of Japan,2003,36(10):1152-1156.
    [75] 吴大清,刁桂仪,彭金莲.高岭石等粘土矿物对五氯苯酚的吸附及其与矿物表面化合态关系.地球化学,2003,32(5):501:505.
    [76] 李勇,张伯友,肖贤明等.氯酚化合物在活性炭上的吸附.水处理技术,2006,32(3) 19-22.
    [77] 胡睿.活性炭纤维对酚类污染物的吸附特性与应用研究:[硕士学位论文].湖北:华中科技大学,2004
    [78] 郑少奎,刘加刚,杨志峰.甲壳素与氯基苯酚的吸附性能研究.环境科学研究,2004,17(5):68-70.
    [79] Hochella Jr M F and White A F. Mineral-water interface geochemistry: an overview [A]. In:Hochella Jr M F and White A F ed. Mineral-water interface geochemistry. MSA, Washington DC, 1990. 1-16.
    [80] Vaughan D J. Mineral surfaces. An overview In: Vaughan D J and Pattrick R A D ed.Mineral surfaces. Chapman & Hall, London, 1995,1-16.
    [81] Koretsky C M, Svejensky D A and Sahai N. A model of surface site types on oxide and silicate minerals based on crystal chemistry. Implications for site types and densities,multi-site adsorption, surface infrared spectroscopy, and dissolution kinetics. Amer. J.Science, 1998, 298(5): 349-438.
    [82] Cappellen P V, Charlet L, Stumm W et al. A surface complexation model of the carbonate mineral-aqueous solution interface. Goechim. Cosmochim. Acta, 1993. 57(17): 3505-3518.
    [83] Davis J A and Kent D B. Surface complexation modeling in aqueous geochemistry [A]. In:Hochella Jr M F and White A F ed. Mineral-water interface geochemistry. MSA, Washington DC, 1990. 177-260.
    [84] Schindler P W. Co-adsorption of metal ions and organic ligands: Formation of ternary surface complexes [A].In: Hochella Jr M F and White A F ed. Mineral-water interface geochemistry, MSA, Washington DC, 1990. 281-307.
    [85] Wu Daqing, Zhang Sibai and Peng Jinlian: The surface reaction of sulfides and its relation to gold enrichments[A]. In: Tu Guangzhi and Zhao Zhenhua ed. Progress in Geochemistry.Zhongshan Univ. press. 16-25.
    [86] SahaiN,Sverjensky DA.Evaluation of internally consistent parameters for the triple-layer model by the Systematic analysis of oxide surface titration data.Geochim Cosmoehim Acta,1997, 61(14):2801-2826.
    [87] Morrson S R.表面化学物理.赵璧英,刘英骏,卜乃瑜等译.北京:北京大学出版社,1984.
    [88] Gabalon C,Marzal P,Ferrer J,etal.Single and competitive adsorption of Cd and Zn onto a granular activated carbon.Wat Res,1996,30(12):3050-3060.
    [89] Hohl H,Stumm W.Interaction of Pb~(2+) with hydrous γ -Al_2O_3.J Colloid Interface Sci,1997,55(2):281-288.
    [90]方继敏,李山虎,龚文琪等.五氯苯酚在赤铁矿表面吸附的机理研究.武汉理工大学学报,2008,30(9): 57-60.
    [91] Davis JA,Kent D B.Surface complexation modeling in aqueous geochemistry. In:Hochella Jr M F,White A F,eds.Mineral-Water Interface Geochemistry:Reviews in Mineralogy, Vol23.Washington, D C:Miner Soc Am, 1990,177-259.
    [92] Sposito G.The Surface Chemistry of Soils.New York: Oxford University Press, 1984.
    [93] Wieland E,Srumm W.Dissolution kinetics of kaolinite in acidic aqueous solutions at 25℃.Geochim Comchim Acta, 1992,56 (9): 3339-3355.
    [94] Sverjensky D A.Zero-point-of-charge prediction from crystal chemistry and solvation theory.Geochim Cosmochim Acta,1994,58(14):3l23-3129.
    [95] Sverjensky D A,Sahai N.Theoretical prediction of single-site surface-protonation equilibrium constants for oxides and silicates in water,Geochim Cosmichim Acta, 1996,60(20):3773-3797.
    [96] 吴大清,彭金莲,陈国玺.硫化物吸附金属离子的实验研究-I类型.地球化学,1996a,25(2):
    [97] Allen H E, Chen Y, Li Y, et al. Soil partition coefficients for Cd by column desorption and comparison to batch adsorption measurements. Environ Sci Technol,1995,29(8):1887-1891.
    [98] Davis JA,Kent D B.Surface complexation modeling in aqucous geochemistry.In:Hochella Jr M F,White A F,eds.Mineral-Water Interface Geochemistry:Reviews in Mineralogy,Vol23.Washington,D C:Miner Soc Am, 1990,177-259.
    [99] Hayes K F,Redden G,Ela W,et al.Surface complexation models.An evaluation of model parameter esmation using FITEQL and oxide mineral titration data.J Colloid Interface Sci,1991.142(2):449-469.
    [100] Katz L E, Hayes K F.Surface complexation modeling I ,strategy for modeling monomer complex formation at moderate surface coverrage.J Colloid Interface Sci, 1995,170:477-490.
    [101] 黄仲涛.工业催化.北京:化学工业出版社,2001,6-11.
    [102] 常加忠,李敏,王振岭等.铝硅酸盐中间体对TiO_2纳米粒子团聚及相转变的抑制.无机材料学报,2005,20(6):1311-1316.
    [103] Baltpurvins K A,Burns R C,Lawrance. Effect of pH ad anion type on the aging of freshly precipitated iron hydroxide sludges. Environment Science and Technology.1996,30(3):939-944.
    [104] Lo S L,Shiu S H,Lin C F. Adsorption of metals on oxides formed from Fe(NO3)3,FeCl3 and Fe(C1O4)_3 solutions.Environment Geochem Health, 1994,16(5): 89-99.
    [105] Gao Y .A new hybrid inorganic sorbent for heavy metals removal.Water Research,1995,29(4): 2195-2205.
    [106] Edwards M A. Adsorptive filtration using coated sand:A new approach for treatment of metal-beraing wastes.water pollut control Fed, 1989,61: 1523-1533.
    [107] 许光眉.石英砂负载氧化铁(IOCS)吸附去除锑、磷研究:[博士学位论文].湖南:湖南大学市政工程系,2006.
    [108] 李炳.颗粒活性炭负载氧化铁(IOCGAC)吸附除Cr(Ⅵ)研究:[硕士学位论文] 湖南:湖南大学市政工程系,2007
    [109] Thesis by Jeff Noelte .Effercts of Surface Chemistry on Deposition Kinetics of Colloidal Hematite(α-Fe_2O_3) in Packed Beds of Silica Sand.In Partial Fulfillent of The Requirements for the Degree of Doctor of Philosophy,California Institute of Technology Pasadena,California.2002.
    [110] 高乃云,徐迪民,范瑾初等.氧化铁涂层砂改性滤料除氟性能研究[J].中国给水排水,2000,16(1):
    [111] 李方文,吴建锋,徐晓虹.成型压力对基体体积密度、吸水率和显气孔率影响的探讨.中国陶瓷,2007,43(4):25-27.
    [112] 吴建锋,杨学华,徐晓虹等.体积密度可控的多孔陶瓷滤料的研制.佛山陶瓷,2006,119(11):1-5.
    [113] 陈义春.陶瓷滤料表面改性及其预处理微污染水的试验研究:[硕士学位论文].湖北:武汉理工大学市政工程系,2007年11月.
    [114] 欧阳天贽,赵振华,顾小曼等.除草剂苄嘧磺隆在针铁矿表面吸附的红外光谱研究.光谱学与光谱分析,2003,6(23):1097-1100.
    [115] 孙振亚.生物矿化纳米FeOOH的特征与自组装合成及其环境意义:[博士学位论文]。湖北:武汉理工大学资源与环境工程学院矿物加工系,2006
    [116] 欧延,邱晓滨,许宗祥等.均匀沉淀法合成纳米氧化铁.厦门大学学报(自然科学版),2004,43(6):882-885.
    [117] Elva C,Sullivan R,Anthony J I W.The use of associated surfactant media for the synthesis of fine particles:preparation of iron oxides.J.Colloid and Interface Sci.,1991,146(2):582-585.
    [118] Massart R. IEEE Trans. Magn. Mag,1981,17: 1247-1248.
    [119] 孙中溪,郭淑云.纳米四氧化三铁表面酸碱性质研究.高等学校化学学报,2006,27(7):1351-1354.
    [120] Carrol-Webb S A, Walther J V. A surface complex reaction model for the pH-dependence of corundum and kaolinite dissolution rates. Geochim Cosmochim Acta, 1988,52(11):2609-2623.
    [121] Brady P V, Cygan R T, Nagy K L. Molecular controls on kaolinite surface charge. J Colloid Interface Sci, 1996,183(2): 356-364.
    [122] Westall J.C."FITEQL: a computer program for the determination of chemical equilibrium constants from experimental data."Rep. 82-01.Department of Chemistry, Oregon State University, Corvallis(1982)
    [123] Westall J.C."FITEQL: a computer program for the determination of chemical equilibrium constants from experimental data."Rep. 82-01.Department of Chemistry, Oregon State University, Corvallis(1982)
    [124] 何孟常 杨居荣.水质模型、生态模型及计算机模型软件.环境科学进展,1999,7(3):62-69.
    [125] William D. Schecher, Drew C. McAvoy. MINEQL+: A chemical equilibrium modeling system, version 4.0 for Windows, User's Manual.
    [126] 杨南如,岳文海.无机非金属材料图谱手册.武汉:武汉工业大学出版社,2000
    [127] 吴大清,刁桂仪,袁鹏等.氧化铁(氢)氧化物对五氯苯酚表面吸附实验及其反应模式.地球化学,2005,34(3):297-301.
    [128] 李东霞,张双全,刘平.SCAMP硫酸酯化多糖的制备及其光谱鉴定.光谱学与光谱分析,2002.22(1):59-62
    [129] 于红.分子自组装单层(SAMs)材料处理有机废水研究:[硕士学位论文].湖北:武汉理工大学资源与环境工程系,2007
    [130] Fang JiMin,Wang ZhiQuan,Gong WenQi, et al.Ceramic filter balls loaded with alpha-Fe_2O_3 and their application to NH_3-N wastewater treatment. CHINESE JOURNAL OF CHEMISTRY, 2008,26 (3): 459-462
    [131] 谢玲玲,周培疆,刘丽君,等.五氯苯酚在武汉东湖底质颗粒物上的吸附研究.武汉大学学报(理学版),2005,51(4):448-452.
    [132] Bruemmer W G Effects of Organic Pollutions on Soil Microbial Activity: The Influence of Sorption, Solubility and Speciation.Biotoxicology and Environ Safety, 1999,43(1): 83-90.
    [133] 刘兴明,刘瑞霞,汤鸿霄,等.不同染料化合物在河流底泥上的吸附规律.环境科学,2002,23(1):45-49.
    [134] 戴树桂,董亮,王臻.表面活性剂在土壤颗粒物上的吸附行为.中国环境科学,1999,19(5):392-396.
    [135] Kim I S, Park J S, Kim K W. Enhanced biodegradation of polycyclic atomatic hydrocarbons using nonionic surfactants in soil slurry.Applied Geochemistry, 2001,16: 1419-1428.
    [136] Lee J F, Liao P M, Kuo C C. Influence of a nonionic surfactant (Triton X-100) on contaminant distribution between water and several soil solids.Collod and Interface Sci. ,2000,229: 445-452.
    [137] Chiou C T. Encyclopedia of Environmental Analysis and Remediation.NewYork: Wiley,1998,4517.
    [138] 朱焱,杨红刚,方继敏.草浆造纸黑液资源化治理工艺初探.安全与环境工程2004(9):54-57.
    [139] G Elegir,. Daina , L. Zoia , G Bestetti, M. Orlandi.Laccase mediator system: Oxidation of recalcitrant lignin model structures present in residual kraft lignin Enzyme and Microbial Technology 2005,37: 340-346.
    [140] Shanshan Chou ,Chi-Chung Liao,Shwu-Huey Pemg.etal. Factors influencing the preparation of supported iron oxide influencing the preparation of supported iron oxide in fluidized-bedcrystallization.Chemosphere.2004, 54:859-866.
    [141] Ioannis A. Katsoyiannis, Anastasios I. Zouboulis. Removal of arsenic from contaminated water sources by sorption onto iron-oxide-coated polymeric materials. Water Research 2002, 36:5141-5155.
    [142] JiminFang, WenqiGong, HonggangYang,et al. Study on ceramic filter balls loaded with a-Fe_2O_3 and their application in NH_3-N wastewater treatment XXⅢIMPC international Congress Proceeding(ISBN975-7946-27-3).Istanbul,2006:2131-2135.
    [143] 吴建锋,张明雷,徐晓虹等.用烧结法赤泥制备多孔陶瓷滤球的研究.陶瓷学报,2007,28(4)276-281.
    [144] Benjamin M M,Sletten R S,Bailey R P . Sorption and filtration of metals using iron-oxide-coated sand. Water Research, 1996,30( 11): 2609-2620.
    [145] Jae-Young Lee,Sei J.Oh,JGSohn,etal.On the correlation between the Hyperfine field and the particle size of fine goethite synthesized in Chloride solution.Corrosion Science,2001,43:803-808.
    [146] J.J Santana Rodriguze,F.J.Santana Hernandez,J.E.Gonzalez Gonzalez XRD and SEM studies of the layers of corrosion products for carbon Steel in various different environments in the procince of Las Palmas(The Canary Islands,Spain), Corrosion Science,2002,44:2425-2438.
    [147] Sei J.Oh,D.C.Cook,H.E.Townsend.Atmospheric corrosion of different Steels in marine,rural and industrial environments. Corrosion Science,1999,41:1687-1702.
    [148] 邵曼君.环境扫描电镜原位研究纯Fe表面氧化过程.金属学报,2000,36(3):230-234.
    [149] 李铁藩.金属高温氧化和热腐蚀.北京:化学工业出版社,2003
    [150] 李光玉等.钢铁表面黑色转化膜处理技术.吉林大学学报(工学版),2003,32(3),30-34.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700