用户名: 密码: 验证码:
基—覆盖亚紧空间、空间的秩和弱基
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文讨论了以下三个方面:(i)基?覆盖亚紧空间和基?集族亚紧空间的乘积性;(ii)开覆盖序列的秩和空间的秩以及(iii)弱基的基本性质.
     在第一章,我们介绍了本文的背景、相关知识和主要结果,并对本文所用的符号加以说明.
     在第二章中,我们讨论了基?覆盖亚紧空间和基?集族亚紧空间. Popvassilev在[47]中给出了这两类空间的定义,并研究了它们的遗传性和乘积性,得到一些结果,同时提出了许多问题.本文主要讨论了如下两个问题:
     (a)[46,问题3.4]若X是基?覆盖亚紧空间,Y是紧空间或度量空间,那么X×Y是否是基?覆盖亚紧空间?又设S是Sorgenfrey直线,那么S×(ω+1)是否是基?覆盖亚紧空间?
     (b)[47,问题3.7]设X是正则空间或Hausdor?空间,如果X×(ω+ 1)是基?集族亚紧空间,X应具有什么样的性质?通过对上述问题的研究我们得到如下结果:
     (2.1) Michael直线(或Sorgenfrey直线)与ω1 + 1(赋予ω1 + 1线性序拓扑)的乘积不是基?覆盖亚紧空间.这表明基?覆盖亚紧空间与紧空间的乘积不一定是基?覆盖亚紧空间.
     (2.2)基?覆盖亚紧的Lindel¨of空间与紧度量空间的乘积是基?覆盖亚紧空间.因为Sorgenfrey直线S是基?覆盖亚紧的Lindel¨of空间且ω+ 1是紧度量空间,所以S与ω+ 1的乘积是基?覆盖亚紧空间.
     (2.3)两个基?集族亚紧空间的乘积仍然是基?集族亚紧空间.因此,X×(ω+1)是基?集族亚紧空间当且仅当X是基?集族亚紧空间.(2.1)和(2.2)回答了上面的问题(a)中除了Y是度量空间的问题;(2.3)则完全回答了问题(b).同时,它们还推广了[47,定理2.4].
     在第三章中,我们讨论了开覆盖序列的秩和空间的秩.在[4]中, Arhangel’ski??和Buzyakova在Gδ对角线和次可度量的基础上给出了开覆盖序列的秩和空间的秩的定义,同时指出Mrowka空间φ(N)是秩?2不是秩?3的.随后他们又给出了一个可分的Tychono?Moore空间Z满足Z是秩?3不是秩?4的.在[4]中,他们还给出一个猜想.猜想:对每一个自然数n,都存在一个Tychono?空间Xn满足Xn是秩?n不是秩?(n + 1)的.基于上述,本章给出了一个非正规的Tychono? Moore空间Z4满足Z4是秩?4不是秩?5的.
     在第四章中,我们研究了位于网和拓扑基之间的一种特殊的网——弱基的遗传性和它在投影映射下的性质,并以Arens空间S2为例对一些不成立的命题给出了反例.Arhangel’ski??(1966年)引进了弱基的概念,揭开了对弱基的研究.由定义我们容易得到弱基是开遗传的;刘川证明弱基是闭遗传的[24,引理2.1.].然而后来的拓扑学家主要在广义度量空间内研究具有某些点可数性质弱基的空间,比如g?第一可数空间、g?第二可数空间、g?可度量空间等.对弱基本身的研究却很少,甚至对弱基最基本的遗传性,乘积性,是哪些映射的不变量和逆不变量等问题还没有很好的答案.
     这一章,我们对拓扑空间弱基的遗传性和它在投影映射下的性质进行了研究和探索,主要结果如下:
     (4.1)弱基对k?子空间是遗传的.
     (4.2)弱基B对X的任意一个子空间遗传当且仅当对于任意x∈X,P∈Bx,x∈intX(P).
     (4.3)设A是X的一个子空间,如果对于任意x∈A满足x∈intX(A)或者对于任意Px∈Bx,x∈intA(Px∩A),则弱基B对A遗传.
     (4.4)设B = {Bx,y : x∈X,y∈Y }是乘积空间X×Y的一个弱基,则P = {Px :x∈X}不一定是X的弱基,其中Px = y∈Y {p(B) : B∈Bx,y} .但是我们固定一个点y0∈Y ,则P = {Px : x∈X}是X的弱基,其中Px = {p(B) : B∈Bx,y0}.
     (4.5)设B = {Bx : x∈X}和P = {Px : x∈X}都是X的弱基,则:
     (i)如果X是序列空间,那么B∧P = {Bx∧Px : x∈X}是X的弱基;
     (ii)B∨P = {Bx∨Px : x∈X}是X的弱基.且(i)中X是序列空间的假设不能去掉.
This thesis consists of three parts: (i) base-cover metacompactness and base-familymetacompactness of products, (ii) the rank of the diagonal and the rank of the space and(iii) some properties on weak bases.
     In chapter 1, we introduce some notations and well known results about this thesis. Wealso list our work in this chapter.
     In chapter 2, we discuss base-cover metacompactness and base-family metacompactnessof products. Base-cover metacompact spaces and base-family metacompact spaces are insense of Popvassilev. In [46] and [47], Popvassilev posed:
     (a)[46, Question 3.4] If X is base-cover metacompact and Y is compact or metrizable,is X×Y base-cover metacompact? Is S×(ω+ 1) base-cover metacompact, where S is theSorgenfrey line?
     (b)[47, Question 3.7] What can we say a (regular) T2 space X if X×(ω+1) is base-familymetacompact?Answering these two questions, we prove:
     (2.1) The product of the Michael line (or the Sorgenfrey line) andω1+1 is not base-covermetacompact, whereω1 + 1 has the order topology.
     (2.2) The product of a base-cover metacompact Lindel¨of space and a compact metrizablespace is base-cover metacompact.
     (2.3) The product of two base-family metacompact spaces is base-family metacompact.Item (2.1) above shows that products of base-cover metacompact spaces and compactspaces need not be base-cover metacompact. It follows from (2.2) that the productS×(ω+1) of the Sorgenfrey line S andω+1 is base-cover metacompact. And (2.3) impliesthat X×(ω+ 1) is base-family metacompact if and only if X is base-family metacompact.In chapter 3, we investigate the rank of the diagonal and the rank of the space.
     Arhangel’ski?? and Buzyakova defined the rank of the diagonal and the rank of the spacewhich lie between Gδ-diagonal and submetrizability. They showed that Mrowka spaceφ(N)has a diagonal of the rank exactly 2. Then they constructed a Tychono? Moore space Zthat is separable, non-submetrizable, and has a diagonal of the rank exactly 3. In [4], theyalso gave the following conjecture.
     Conjecture: For each n∈ω, there is a Tychono? space Xn with a rank n-diagonal that isnot a rank (n + 1)-diagonal.
     In this chapter, we give an example of non-normal Tychono? Moore space that has adiagonal of the rank exactly 4.
     In chapter 4, we consider some properties of a special network called weak base, whichis between the network and the topological base. And we also give some counterexamplesusing Arens space S2. The concept of weak bases was proposed by Arhangel’skii, and thenmany topologists investigated in this realm and done much work such as weak bases arehereditary with respect to open subspaces. Liu proved weak bases are hereditary withrespect to closed subspaces [24, Lemma 2.1.] . But most of these topologists concentratedon generalized metric spaces with point countable weak bases, such as g-first countable, g-second countable, and g-metrizable. There are few results on the weak base itself, especiallythe properties of hereditary and the properties of the Cartesian products. In this chapter,we discuss these properties of weak bases and get the following results:
     (4.1)weak bases are hereditary with respect to k-subspaces.
     (4.2)the weak base B is hereditary to each subspace of X if and only if x∈intX(P),for each x∈X, and P∈Bx.
     (4.3)Let A be a subset of X. The weak base B is hereditary with respect to A, if foreach x∈A, either x∈intX(A), or x∈intA(Px∩A) for each Px∈Bx.
     (4.4)Let B = {Bx,y : x∈X,y∈Y } be a weak base of the product space X×Y .Then P = {Px : x∈X}, where Px = y∈Y {p(B) : B∈Bx,y}, is not a weak base of X ingeneral. But if we fix a point y0∈Y , then P = {Px : x∈X}, where Px = {p(B) : B∈Bx,y0} is a weak base of X.
     (4.5)Let B = x∈X Bx and P = x∈X Px be weak bases on X, then:
     (i) B∧P = x∈X Bx∧Px is a weak base if X is a sequential space;
     (ii) B∨P = x∈X Bx∨Px is a weak base.And the assumption that X is a sequential space is necessary in (i).
引文
[1] R. Arens and J. Dugundji, Remark on the concept of compactness, Portug Math., 9 (1950),141-143.
    [2] A. V. Arhangel’ski??, Mappings and spaces (in Russian), Uspechi Math. Nauk., 21 (1966),133-184.
    [3] A. V. Arhangel’ski?? and D. K. Burke, Spaces with a regular Gδ-diagonal, Topology and itsAppl., 153 (2006), 1917-1929.
    [4] A. V. Arhangel’ski?? and R. Z. Buzyakova, The rank of the diagonal and submetrizability,Comment. Math. Univ. Carolin., 47 (2006), 585-597.
    [5] H. R. Bennett, R. Byerly and D. J. Lutzer, Compact Gδset, Topology and its Appl., 153(2006), 2169-2181.
    [6] R. H. Bing, Metrization of topological spaces, Canad. J. Math., 3 (1951), 175-186.
    [7] D. K. Burke, Covering properties, in: Handbook of Set-theoretic Topology, K. Kunen and J.Vaughan, eds., North-Holland, Amsterdam, 1984, 347-422.
    [8] J. G. Ceder, Some generalizations of metric spaces, Pacific J. Math., 11 (1961), 105-125.
    [9] J. Dieudonn′e, Une g′en′eralisation des espaces compacts, Journ. de Math. Pures et Appl., 23(1944), 65-67.
    [10] C. H. Dowker, On countably paracompact spaces, Canad. J. Math., 3 (1951), 219–224.
    [11] R. Engelking, General Topology, Warszawa, Polish, 1977.
    [12] G. Gruenhage, Generalized metric spaces, in: Handbook of Set-theoretic Topology, K. Kunenand J. Vaughan, eds., North-Holland, Amsterdam, 1984, 423-501.
    [13] G. Gruenhage, Generalized metric spaces and metrizability, in: Recent Progress in GeneralTopology, M. Huˇsek, J. van Mill, eds., North-Holland, Amsterdam, 1992, 239-274.
    [14] G. Gruenhage, Base-paracompactness and base-normality of GO-spaces, Q and A Gen. Top.,23 (2005), 137-141.
    [15] G. Gruenhange, E. Michael and Y. Tanaka, Space determined by point-countable covers, PacificJ. Math., 113 (1984), 303-332.
    [16] S. P. Gul’ko, On the properties of subsets ofΣ-products, Soviet Math. Dokl., 18 (1977),1438–1442.
    [17] K. P. Hard, J. Nagata and J. E. Vaughan, Encyclopedia of General Topology North-Holland:Elsevier Science Publisher, 2003.
    [18] T. Jech, Set Theory The third Millennium Edition, Revised and Expanded, Springer-Verlag,Berlin Heidelberg New York, 2003. (北京:世界图书出版公司,2007年重印)
    [19] K. Kunen, Set Theory: An Introduction to Independence Proofs, North-Holland, Amsterdam,1980.
    [20]林寿,广义度量空间与映射,北京,科学出版社,1995.
    [21] S. Lin, A note on the Arens’space and sequential fan, Topology and its Appl., 81 (1997),185-196.
    [22]林寿,点可数覆盖与序列覆盖映射,北京,科学出版社,2002.
    [23]林寿,90年代的广义度量空间理论,数学进展,31 (2002),503-509.
    [24] C. Liu, On weak bases, Topology and its Appl., 150 (2005), 91-99.
    [25] C. Liu, Notes on g-metrizable spaces, Topology Proceedings, 29 (2005), 1-8.
    [26] C. Liu, Notes on weak bases, Q and A Gen. Top., 22 (2004), 39–42.
    [27] C. Liu and M. Dai, g-metrizability and sωfan, Topology and its Appl., 60 (1994), 185-189.
    [28] H. W. Martin, Contractibility of topological spaces onto metic spaces, Pacific J. Math., 61(1975), 209-217.
    [29] E. Micheal, Point-finite and locally finite coverings, Canad. J. Math., 7 (1955), 275-297.
    [30] Van Mill and G. M. Reed, Open Problems in Topology, Amsterdam: North-Holland, 1990.
    [31] K. Morita, Paracompactness and product spaces, Fund. Math., 50 (1962), 223–236.
    [32] K. Morita, Note on products of normal spaces with metric spaces, Math. Ann., 154, 365-382.
    [33] K. Morita and J. Nagata, Topics in General Topology, Amsterdam: North-Holland, 1989.
    [34] L. Mou, Compactness of certain bounded zero-sets in completely regular spaces, Topology andits Appl., 148 (2005), 153-163.
    [35] L. Mou, Special bounded zero-sets and their applications, RIMS Kokyuroku (日本京都大学数理解析研究所), 1419 (2005), 10-17.
    [36] L. Mou, Base-normality and total paracompactness of subspaces of products of two ordinals,Scientiae Mathematicae Japonicae, 63 (2006), 89-100.
    [37] L. Mou, On Buzyakova’s example; quotients of the Cantor trees, Topology and its Appl., 154(2007), 364-366.
    [38] L. Mou and H. Ohta, Sharp bases and mappings, Houston Journal of Mathematics, 31 (2005),227-238.
    [39]牟磊、王尚志,关于mosaic空间的性质,首都师范大学学报(自然科学版),22,No. 4(2001),10-13.
    [40] L. Mou, R. Wang and S. Wang Base-metacompact spaces, Preprinted.
    [41] L. Mou and Y. Yasui, On mosaical collection Memoirs of Osaka Kyoiku University, Ser. III,47, No.1 (1998), 1-10.
    [42] K. Nagami, Paracompactness and screenability, Nagoya Math. Journ., 8 (1955), 83-88.
    [43] K. Nagami, Countable paracompactness of inverse limit and products, Fund. Math., 73 (1972),261–270.
    [44] P. J. Nyikos, On the product of metacompact spaces I. Connections with hereditarily metacom-pactness, Amer. J. Math., 100 (1978), 829-835.
    [45] S. G. Popvassilev, Abstract of the talk On certain special bases of topological spaces, The2003 Summer Conference on Topology and its Applications,July 9-12, 2003 Howard Univ.,Washington, DC, Abstracts, 25.
    [46] S. G. Popvassilev, Base-cover paracompactness, Proc. Amer. Math. Soc., 132 (2004), 3121-3130.
    [47] S. G. Popvassilev, Base-family paracompactness, Houston Journal of Mathematics, 32 (2006),459-469.
    [48] J. E. Porter, Base-paracompact spaces, Topology and its Appl., 128 (2003), 145-156.
    [49] J. E. Porter, Strongly base-paracompact spaces, Comment. Math. Univ. Carolinae, 44 (2003),307-314.
    [50] S. Purisch, The orderability of nonarchimedean spaces, Topology and its Appl., 16 (1983),273-277.
    [51] M. E. Rudin and M. Starbird, Products with a metric factor, Gen. Topology Appl., 5 (1975),235–248.
    [52] R. H. Sorgenfrey, On the topological product of papacompact spaces, Bull. Amer. Math. Soc.,53 (1947), 631-632.
    [53] G. Takeuti and W. M. Zaring, Introduction to Axiomatic Set Theory (Second Edition) NewYork, Springer-Verlag, 1982.
    [54] H. Tamano, On papacompactness, Pacific J. Math., 10 (1960), 1043-1047.
    [55] A. Tychono?, U¨ber die topologische Erweiterung von Raumen , Math. Ann., 102 (1930), 544-561.
    [56] A. Tychono?, Ein Fixpunktsatz, Math. Ann., 111 (1935), 767-776.
    [57] Y. Yajima, A base property in paracompact products and its applications, Topology and itsAppl., 142 (2004), 19-30.
    [58] K. Yamazaki, Base-normality and product spaces, Topology and its Appl., 148 (2005), 123-142.
    [59] K. Yamazaki, Rudin’s Dower space, strong base-normality and base-strong-zero-dimensionality,Topology and its Appl., 153 (2006), 2805-2814.
    [60] K. Yamazaki, Some theorems on base-normality, Topology Proc., 29 (2005), 389-403.
    [61] P. Zenor, Countable paracompactness in product spaces, Proc. Amer. Math. Soc., 30 (1971),199–201.
    [62] P. Zenor, On spaces with regular Gδ-diagonals, Pacific J. Math., 40 (1972), 759-763.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700