用户名: 密码: 验证码:
西太平洋特定海域沉积物的地磁场相对强度研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
沉积物可以提供连续的地磁场相对强度(RPI)记录,这些记录在全球范围内的对比具有一致性。目前RPI记录越来越多地在布容极性期内作为千年尺度高精度的地层对比手段,但由于构建RPI所需的岩石磁学标准较高,总体来说,RPI数据还相对缺乏,尤其是太平洋地区连续的RPI记录更是相对较少。本文以西太平洋特定海域沉积物为研究对象,进行了古地磁和岩石磁学方面等多个参数的综合测量,通过归一化天然剩磁得到了地磁场相对强度变化曲线,为RPI研究提供了新的记录,为研究区测年提供了新的手段。
     西菲律宾海的Ph05孔沉积物的岩石磁学和古地磁研究表明,岩芯中的载磁矿物比较单一,以低矫顽力的磁铁矿为主,χ、ARM及SIRM等参数指示的磁性矿物的含量变化不大。磁性矿物的颗粒以准单畴为主,粒度指示参数χARM/χ具有冰期-间冰期旋回变化。通过交变退磁可得到稳定的特征剩磁,32-38 cm及108-110 cm处发现负倾角,并伴随着RPI的低值。谱分析检验后选择ARM作为归一化参数,通过ARM归一化天然剩磁获得了200 ka以来的地磁场相对强度记录。重建的RPI记录与综合曲线Sint-200有良好对比,可以反映全球性的信号。基于RPI建立的年代模型与氧碳同位素年代模型相似,可以作为独立的定年手段。
     对东菲律宾海帕里西维拉海盆西侧F090102孔柱样沉积物进行了系统的古地磁和岩石磁学分析,结果表明样品适合进行相对强度研究。根据功率谱分析结果,选择非磁滞剩磁作为归一化的参数,得到约2 Ma以来的地球磁场相对强度变化曲线。该曲线与SINT-2000曲线可详细对比,比如呈比较典型的锯齿状特征,布容期内的记录与800 ka以来的SINT-800曲线相符。布容/松山极性转换期呈单强度降低的特征,在极性转换期和极性漂移期,相对强度曲线表现为显著低值。
     对东海内陆架泥质区沉积物EC2005孔的磁学研究表明,岩芯在110 cm即受到还原成岩作用的影响;110-600 cm经历了铁氧化物还原阶段,样品中磁性矿物以PSD磁铁矿为主,随深度增加,其含量快速减少,其间随着硬磁矿物含量的波动,磁学参数也呈现出峰谷变化;600 cm向下岩芯经历硫酸盐还原阶段,各磁学参数都维持在很低的水平,顺磁性颗粒增加,并出现黄铁矿。早期成岩作用及重磁化作用使得古地磁信号被削弱和改造。
The possibility of retrieving relative intensity variations of the Earth’s magnetic field from sediments allows the documentation of continuous geomagnetic paleointensity variations back in time, and these records show a mutual good agreement to the global scale field. At present, RPI curves have been increasingly used as global, millennial-scale correlation and stratigraphic tool. Despite such importance, data constraining the past intensity of the planetary body remain relatively scarce, especially in the Pacific Ocean. In this study, we present the details of a paleomagnetic and rock magnetic study carried out on the sediments from the West Pacific Ocean. The aim of this study is to document the relative paleointensity data by normalizing the natural remanent magnetization, which would provide a new approach for regional stratigraphic division and correlation.
     A detailed rock magnetic analysis has been conducted on core Ph05 from the West Philippine Sea. Rock magnetic results demonstrate that the core preserve a strong, stable remanent magnetization and meet the magnetic mineral criteria for relative paleointensity (RPI) analyses. The magnetic minerals in the sequence are dominated by pseudosingle-domain magnetite, and the concentration of magnetic minerals are at the same scale. Both the conventional normalizing method as well as the pseudo-Thellier method were used in conjunction with the examination of the rock magnetic properties and natural remanent magnetization. Susceptibility (χ), anhysteretic remnant magnetization (ARM) and saturation isothermal remnant magnetization (SIRM) were used as the natural remanent magnetization normalizer. However, coherence analysis results indicate that only ARM is more suitable for paleointensity construction .The age model of core is established based on oxygen isotope data and AMS14C data, which is consistent with the age model estimated from RPI records. The relative paleointensity data provide a continuous record of the intensity variation during the last 200 ka, which correlates well with the global references RPI stacks. Several prominent low paleointensity values are identified and correlate to the main RPI minima in the SINT-200 record, it suggests that the sediments have recorded the real changes of geomagnetic field.
     The rock magnetic measurements of core F090102 suggested that the cores preserve a strong, stable remanent magnetization and meet the magnetic mineral criteria for reliable paleointensity analyses.χ, ARM and SIRM were used as the natural remanent magnetization normalizer. The relative paleomagnetic intensity record over the past about 2 Ma was obtained and was further compared to previously published stack records, SINT-800 and SINT-2000. Our new RPI record exhibits asymmetrical saw-tooth pattern of the geomagnetic field intensity and some major declines in paleointensity (DIP) at reversal boundaries as well as geomagnetic excursions. The Brunhes/Matuyama polarity transition was characterized by a single-DIP but not a double-DIP, it may be due to the low sedimentation accumulation rates. The record can be used to refine the chronological framework of the sediment in this region.
     The results of core EC2005, located in the mud area in the inner shelf of the East China Sea, demonstrate that the upper 110 cm sediments are little affected by reductive diagenesis; The 110-600 cm sediments are within the stage of iron oxide reduction, PSD magnetite mainly contributes to sediments of this section, with less abundant and coarser grains downcore. The magnetic parameters vary along with the fluctuation of the content of hard magnetic phases; The 600-2800 cm sediments are within the stage of sulphate reduction. Values of magnetic parameters, such as x, SIRM, and HIRM, drop sharply in this section, with little fluctuation. Paramagnetic minerals contribute to sediments of this section, including pyrites. The reductive diagenesis and post-depositonal alteration have weaken and destroyed the original magnetic signals.
引文
Banerjee S K, King J W and Marvin P, A rapid method of magnetic granulometry with applications to enviromental studies[J]. Geophys Res Lett, 1981. 8: 333-336.
    Bard E, M Arnold, B Hamelin, et al., Radiocarbon calibration by means of mass spectrometric 230Th/234U and 14C ages of corals: An updated database including samples from Barbados, Mururoa, and Tahiti[J]. Radiocarbon, 1998. 40: 1085-1092.
    Bard E., Hamelin B. and Rairbanks R.G., Calibration of the 14C Timescale over the Past 30 000 Years Using Mass Spectrometric U-Th Ages from Barbados Corals[J]. Nature, 1990. 345: 405-410.
    Bjorck S, Dearing J A and Jonsson A, Magnetic susceptibility of Late Weichselian deposits in southeastern Sweden[J]. Boreas, 1982. 11: 99-111.
    Bowles J, Tauxe L, Jeff Gee, et al., Source of tiny wiggles in Chron C5: A comparison of sedimentary relative intensity and marine magnetic anomalies[J]. Geochemistry Geophysics Geosystems, 2003. 4(6): 1049-1059.
    Brachfield S, Acton G D, Guyodo Y, et al., High-resolution paleomagnetic records from Holocene sediments from the Palmer Deep, Western Antartic Peninsula[J]. Earth and Planetary Science Letters, 2000. 181(3): 429-441.
    Brachfield S A and Banerjee S K, A new high-resolution geomagnetic relative paleointensity record for the North American Holocene: A comparison of sedimentary and absolute intensity data[J]. J Geophys Res-Sol Ea, 2000. 105(B1): 821-834.
    Carcaillet J, D. Bourles and M. Amold, A high resolution authigenic 10Be/9Be record of geomagnetic moment variations over the last 300ka from sedimentary cores of the Portuguese margin[J]. Earth and Planetary Science Letters, 2004. 219: 397-412.
    Cary L Mrozowski and Dennis E Hayes, The evolution of the Parece Vela Basin, eastern Philippine Sea[J]. Earth and Planetary Science Letters, 1979. 46(1): 49-67.
    Channell J E T, Hodell D A and Lehman B, Relative geomagnetic paleointensity andδ18O at ODP983(Gardar Drift, North Atlantic) since 350 ka[J]. Earth and Planetary Science Letters, 1997(153): 103-115.
    Channell J E T, D A Hodell and B Lehman, Orbital modulation of the Earth's magnetic field intensity[J]. Nature, 1998. 394(464-468).
    Channell J E T, Stoner J S,Hodell D A, et al., Geomagnetic paleointensity for the last 100 kyr from the sub-antarctic South Atlantic: a tool for inter-hemispheric correlation[J]. Earth and Planetary Science Letters, 2000(175): 145-160.
    Christopher J R, Andrew P R and Thomas B, Reductive diagenesis, magnetite dissolution, greigite growth and paleomagnetic smoothing in marine sediments: A new view[J]. Earth Planet Sci Lett, 2009. 277(223-235).
    Constable C G, Tauxe L and Parker R L, Analysis of 11 Myr of geomagnetic intensity variation[J]. J Geophys Res, 1998. 103: 17735-17748.
    D.W.Collinson, Methods in Rock Magnetism and Palaomagnetism Technigues and Instrumentation[M]. London New York: Chapman and Hall. 1983.
    Daniel E Karig, Basin Genesis In The Philippine Sea[J]. Initial reports of the deep sea drilling projects[POD], 1981. Leg 31: 857-878.
    P. Dankers, Relationship between median destructive field and remanent coercive force for dispersed natural magnetite, titanomagnetite and hematite[J]. Geophys J Res, 1981. 64:447-461.
    Day R, Fuller M and Schmidt V A, Hysteresis properties of titanomagnetites: Grain size and composition dependence[J]. Phys Earth Planet Inter, 1977. 13: 260-267.
    Dearing J A, Dann R J L,Hay K, et al., Frequency-dependent susceptibility measurements of environmental materials[J]. Geophys J Int, 1996. 124: 228-240.
    Dekkers M J, Environmental magnetism: an introduction.[J]. Geologie en Mijinbouw, 1997. 76: 163-182.
    Dekkers M J, Magnetic properties of natural pyrrhotite: High- and low-temperature behaviour of Jrs and TRMs as function of grain size[J]. Phys Earth Planet Inter, 1989. 57: 266-283.
    Deng C L, Zhu R X,Verosub K L, et al., Mineral magnetic properties of loess/paleosol couplets of the central Loess Plateau of China over the last 1.2 Myr[J]. J Geophys Res, 2004. 109(B01103): doi:10.1029/2003JB002532.
    Doris M Curtis, et al., Lithofacies of the Shikoku basin and the Parace Vela basin[J]. Initial reports of the deep sea drilling projects[POD], 1980(58): 701-709.
    Dunlop D J, Theory and application of the Day plot (Mrs/Ms versus Hcr/Hc)1. Theoretical curves and test using titanomagnetite data[J]. Journal of Geophysical Research, 2002. 107(B3): 10.1029/1200JB000486.
    Dunlop D J and Ozdemir O, Rock Magnetism: Fundamentals and Frontiers[M]. U K.: Cambridge University Press. 1997.
    Michael E.Evans and Friedrich Heller, Environmental Magnetism: Principles and Applications of Enviromagnetics[M]. New York: Academic Press. 2003.
    Ellwood B B, Magnetic properties of Argcntine Basin Project MUDWAVE samples[J]. Deep-sea Research, 1993. 40: 921-937.
    Evans M E and Heller F., Environmental Magnetism: Principles and Applications of Environmagnetics[M]. California: Academic Press. 2003.
    Frank M, Schwarz B, Baumann S, et al., A 200 kyr record of cosmogenic radionuclide production rate and geomagnetic field intensity from 10Be in globally stacked deep-sea sediments[J]. Earth and Planetary Science Letters, 1997(149): 121-129.
    Frank Oldfield and Lizhong Yu, The influence of particle size variations on the magnetic properties of sediments from the north-eastern Irish Sea[J]. Sedimentology, 1994. 41: 1093-1108.
    Gao S and M Canals, Analysis of grain size trends, for defining sediment transport pathways in marine environments[J]. Journal of Coastal Research, 1994. 10: 70-78.
    Gee J, D A Schneider and D V Kent, Marine magnetic anomalies as recorders of geomagnetic intensity variations[J]. Earth Planet Sci Lett, 1996. 144: 327-335.
    Geiss C E and Banerjee S K, A mutli-parameter rock magnetic record of the last glacial-interglacial paleoclimate from south-central Illinois, USA[J]. Earth Planet Sci Lett, 1997. 152(203-216).
    Gubbins D, The distinction between geomagnetic excursions and reversals[J]. Geophys J Int, 1999. 137: 11-13.
    Guyodo Y, P Gaillot and Channell J E T, Wavelet analysis of relative geomagnetic paleointensity at ODP Site 983[J]. Earth Planet Sci Lett, 2000. 184: 109-123.
    Guyodo Y and Valet J P, A comparison of relative paleointensity records of the Matuyama Chron for the period 0.75-1.25Ma[J]. Phys Earth Planet Inter, 2006. 156: 205-212.
    Guyodo Y and Valet J P, Global changes in intensity of the Earth's magnetic field during the past 800 kyr[J]. Nature, 1999(399): 249-252.
    Guyodo Y and Valet J P, Relative variations in geomagnetic intensity from sedimentary records: The past 200,000 years[J]. Earth and Planetary Science Letters, 1996(143): 23-36.
    Yohan Guyodo, Gary D. Acton,Stefanie Brachfeld, et al., A sedimentary paleomagnetic record of the Matuyama chron from the Western Antarctic margin (ODP Site 1101)[J]. Earth and Planetary Science Letters, 2001(191): 61-74.
    Hall R, Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: Changing patterns of land and sea[J]. in Faunal and Floral Migrations and Evolution in SE Asia-Australia, 2001. edited by I. Matcalfe et al.: 35-56.
    Harland W B, Cox A V , et al., A geologic time scale[M]. Cambridge Earth science series, Cambridge University Press. 1982.
    Hasselmann K, Stochastic climatic models: Part 1. Theory[J]. Tellus, 1976. 28(6): 473-485.
    Hayashida Akira, Hattori So and Oda Hirokuni, Diagenetic modification of magnetic properties observed in a piston core (MD01-2407) from the Oki Ridge, Japan Sea[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007. 247(1-2): 65-73.
    Hilde T W C and Lee C S, Origin and evolution of the West Philippine Basin: A New interpretation[J]. Tectonophysics, 1984. 102: 85-104.
    Horng C S, Roberts A P and Liang W T., A 2.14Myr astronomically tuned record of relative geomagnetic paleointensity from the western Pillippine Sea[J]. Journal of Geophysical Research, 2003. 108(B1): 1-15.
    Hovan S A, Rea D K and Pisias N G, Late Pleistocene continental climate and oceanic variability recorded in northwest Pacific sediments[J]. Paleoceanography, 1991. 6: 349-370.
    Hroude F., Magnetic anisotropy of rocks and its application in geology and geophysics[J]. Geophys Survey, 1982. 5: 37-82.
    Hughen K A, Baillie M G, Bard E, et al., Marine04 Marine radiocarbon age calibration, 0-26 cal kyr[J]. Radiocarbon, 2004. 46(3): 1059-1086.
    Hunt C P, Banerjee S K, Han J, et al., Rock-magnetic proxies of climate changes in the loess-paleosol sequence of the western Loess Plateau of China[J]. Geophys Res 1995. 123: 232-244.
    Irving E, Paleomagnetism and its application to geological and geophysical problems[M]. New York: Wiley. 1964.
    J A Funk, T von Dobeneck and A Reitz, Integrated rock magnetic and geochemical quantification of redoxomorphic iron mineral diagenesis in Late Quaternary sediments from the equatorial Atlantic, In: G. Wefer, S. Mulitza, V. Ratmeyer (Eds.), The South Atlantic in the Late Quaternary: Reconstruction of Material Budgets and Current Systems, Springer-Verlag, Berlin, pp. 237-260[J]. 2004.
    Jaume Dinares-Turell, Leonardo Sagnotti and Andrew P. Roberts, Relative geomagnetic paleointensity from the Jaramillo Subchron to the Matuyama/Brunhes boundary as recorded in a Mediterranean piston core[J]. Earth and Planetary Science Letters, 2002(194): 327-341.
    Liu Jingpu, Xu Kehui and Li Anchun, Flux and fate of Yangtze River sediment delivered to the East China Sea[J]. Geomorphology, 2007. 85: 208-224.
    Jolivet L,Huchon P and Rangin C, Tectonic setting of Western Pacific marginal basins[J]. Tectonophysics, 1989. 160: 23-47.
    Katari K and Bloxham J, Effects of sediment aggregate size on DRM intensity: a new theory[J]. Earth Planet Sci Lett, 2001. 186(1): 113-122.
    Kaushik Katari and Lisa Tauxe, Effects of pH and salinity on the intensity of magnetization in redeposited sediments[J]. Earth and Planetary Science Letters, 2000(181): 489-496.
    Kent D V and Opdyke N D, Palaeomagnetic field intensity variation record in a Brunhes epoch deep-sea sediment core[J]. Nature, 1977. 266: 156-159.
    King J W,Banerjee S K and Marvin J, A comparison of different magnetic methods for determining the relative grain size of magnetite in natural materials: some results from lakesediments[J]. Earth and Planetary Science Letters, 1982(59): 404-419.
    King J W, Banerjee S K and Marvin J, A new rock-magnetic approach to selecting sediments for geomagnetic paleointensity studies: application to paleointensity for the last 4000 years[J]. Journal of Geophysical Research, 1983(88): 5911-5921.
    King J W and Channell J E T, Sedimentary magnetism, environmental magnetism, and magnetostratigraphy, in: U.S. National Report to International Union Geodesy and Geophysics[J]. Rev.Geophys suppl., 1991. 29: 358-370.
    Kirschvink J L, The least-squares line and planed analysis of paleomagnetic data[J]. Geophys J R Astr Soc, 1980(62): 699-718.
    Kok Y S, Climatic influence in NRM and 10Be-derived geomagnetic paleointensity data[J]. Earth Planet Sci Lett, 1999. 166: 105-119.
    Kok Y S, Sawtoothed pattern of sedimentary paleointensity records and cumulative viscous remanence[J]. Earth and Planetary Science Letters, 1996(144): 95.
    Laj C, Kissel C,Alain Mazaud, et al., North Atlantic paleointensity stack since 75 ka (NAPIS-75) and the duration of the Laschamp event[J]. Phil. Trans. R. Soc. Lond., 2000. A 358: 1009-1025.
    Leduc G, Thouveny N, Bourles D L, et al., Authigenic 10Be/9Be signature of the Laschamp excursion: A tool for global synchronisation of paleoclimatic archives[J]. Earth and Planetary Science Letters, 2006. 245: 19-28.
    Lee T Y and Lawver L A, Cenozoic plate reconstruction of Southeast Asia[J]. Tectonophysics, 1995. 251(85-138).
    Lehman B, Laj C,Kissel C, et al., Relative changes in the geomagnetic field intensity during the last 280,000 years obtained from piston cores in the Acores area[J]. Phys. Earth Planet. Inter., 1996(93): 269-284.
    Leonardo Sagnotti, Patrizia Macri, Angelo Camerlenghi, et al., Environmental magnetism of Antarctic Late Pleistocene sediments and interhemispheric correlation of climatic events[J]. Earth and Planetary Science Letters, 2001(192): 65-80.
    Levi S and Banerjee S K, On the possibility of obtaining relative paleointensities from lake sediments[J]. Earth Planet Sci Lett, 1976. 29: 219-226.
    Lewis S D, Hayes D E and Mrozowski C L, The origin of the west Philippine basin by inter-arc spreading[J]. Geology and tectonics of Luzon and Marianas region, in Proceedings of CCOP-IOC-SEATAR Workshop, Manila, Philippine, Spec. Publ., 1982. edited by G.R. Blace and F. Zanoria(vol. 1): 31-51.
    Li Z X, Powell C McA, Thrupp G A, et al., Australia palaeozoic palaeomagnetism and tectonics-2. A revised apparent polar wander path and palaeogeography[J]. J Struct Geol, 1990. 12: 567-575.
    Liu Jian, Zhu Rixiang, Li Guangxue, et al., Rock magnetic properties of the fine-grained sediment on the outer shelf of the East China Sea: implication for provenance[J]. Marine Geology, 2003. 193: 195-206.
    Liu Jian,Zhu Rixiang,Andrew P Roberts, et al., High-resolution analysis of early diagenetic effects on magnetic minerals in post-middle-Holocene continental shelf sediments from the Korea Strait[J]. Journal of Geophysical Research, 2004. 109: 1-15.
    Liu Jingpu, Li Anchun, Xu Kehui, et al., Sedimentary features of the Yangtze River-derived along-shelf clinoform deposit in the East China Sea[J]. Continental Shelf Research, 2006. 26: 2141-2156.
    Liu Z X, XIa D X, Berne S, et al., Tidal deposition systems of China's continental shelf, with special reference to the eastern Bohai Sea[J]. Marine Geology, 1998. 145: 225-253.
    Loren Kroenke, Robert Scott , et al., West side of the Parece Vela Basin[J].Initial Reports of theDeep Sea Drilling Projects, Volume LIX,1981,320-335.
    Lund S P, Schwartz M, Keigwin L, et al., Deep-sea sediment records of the Laschamp geomagnetic field excursion (~41,000 calendar years before present)[J]. J Geophys Res, 2005. 110(B04101): doi: 10.1029/2003JB002943.
    M A Williams, D L Dunkerley, P De Deckker, et al., Quaternary Environments[M]. Edward Arnold Ltd. 1993.
    M E Evans, Heller F, Bloemendal J, et al., Natural magnetic archives of past global change[J]. Surveys in Geophysics, 1997(18): 183-196.
    S Mallat, A theory for multiresolution signal decomposition: the wavelet representation[J]. IEEE Transactions on Pattern Analysis and Machine, 1989. 11(7): 674-693.
    Mark W, Hounslow M W and Mather B A, Source of the climate signal recorded by magnetic susceptibility variations in Indian Ocean sediments[J]. Journal of Geophysical Research, 1999. 104: 5047-5061.
    Mark W Hounslow and Barbara A Maher, Quantitative extraction and analysis of carriers of magnetization in sediments[J]. Geophys J Int, 1996. 124(57-74).
    Martinson D G , et al, Age dating and the theory of the Ice Ages: Development of a high-resolution 0 to 300000-year chronostratigraphy[J]. Quaternary Research, 1987. 27: 1-29.
    Marz C, Hoffmann J, Bleil U, et al., Diagenetic changes of magnetic and geochemical signals by anaerobic methane oxidation in sediments of the Zambezi deep-sea fan (SW Indian Ocean)[J]. Marine Geology, 2008. 255(3-4): 118-130.
    McElhinny M W, Palaeomagnetism and plate tectonics[M]. Cambridge: Cambridge Univ Press. 1973.
    McElhinny M W and Lock J, Global paleomagnetic database supplement number one: update to 1992[J]. Surveys in Geophysics, 1993. 14: 303-329.
    McLaren P, An interpretation of trends in grain-size measurements[J]. Sed. Petrology, 1981. 51: 611-624.
    Merrill R T and McFadden P L, Geomagnetic polarity transitions[J]. Rev.Geophys, 1999. 37: 201-226.
    Merrill R T and McFadden P L, Paleomagnetism and the nature of the geodynamo[J]. Science, 1990. 248: 345-350.
    Meynadier L, Valet J P, Weeks R, et al., Relative geomagnetic intensity of the field during the last 140ka[J]. Earth and Planetary Science Letters, 1992(114): 39-57. Meynadier L, Valet J P, Bassinot F C, et al., Asymmetrical saw-tooth pattern of the geomagnetic field intensity from equatorial sediments in the Pacific and Indian Oceans[J]. Earth and Planetary Science Letters, 1994(126): 109-127.
    Michael Schulz and Karl Stattegger, Spectrum: Spectral analysis of unevenly spaced paleoclimatic time series[J]. Computers & Geosciences, 1997. 23(9): 929-945.
    Muxworthy A R, King J G and Heslop D, Assessing the ability of first-order reversal curve (FORC) diagrams to unravel complex magnetic signals[J]. J Geophys Res, 2005. 110(B01105): doi: 10.1029/2004JB003195.
    Nicolas Thouveny, Julien Carcaillet, Eva Moreno, et al., Geomagnetic moment variation and paleomagnetic excursions since 400kyr BP: a stacked record from sedimentary sequences of the Portuguese margin[J]. Earth and Planetary Science Letters, 2004. 219: 377-396.
    Pan Yongxin, Zhu Rixiang, John Shaw, et al., Can relative paleointensities be determined from the normalized magnetization of the wind-blown loess of China?[J]. Journal of Geophysical Research, 2001. 106(B9): 19221-19232.
    Patrizia Macri, Leonardo Sagnotti, Renata Giulia Lucchi, et al., A stacked record of relativegeomagnetic paleointensity for the past 270 kyr from the western continental rise of the Antarctic Peninsula [J]. Earth and Planetary Science Letters, 2006(252): 162-179.
    Paul D H, High Resolution Magnetic Records in Pelagic Sediments: The Oligocene Geomagnetic Field, the Brunhes/Matuyama Geomagnetic Reversal, and Rock Magnetic Changes at the Eocene/Oligocene Boundary[M]. San Diego: University of California. 1996.
    Paul Hartl and Lisa Tauxe, A Precursor to the Matuyama/Brunhes Transition Field Instability as Recorded in Pelagic Sediments[J]. Earth and Planetary Science Letters, 1996. 138: 121-135.
    Paul Hartl, Lisa Tauxe and Catherine Constable, Early Oligocene Geomagnetic Field Behavior From Deep Sea Drilling Project Site 522[J]. Journal of Geophysical Research, 1993. 98(B11): 649-665.
    Peters C and Dekkers M J, Selected room temperature magnetic parameters as a function of mineralogy, concentration and grain size[J]. Physics and Chemistry of the Earth, 2003. 28: 659-667.
    Petit J R, Jouzel J, Raynaud D, et al., Climate and atmospheric history of the past 420000 years from the Vostok ice core, Antarctica[J]. Nature, 1999. 399: 429-436.
    Pike C R, Roberts A P and Verosub K L, First-order reversal curve diagrams and thermal relaxation effects in magnetic particles[J]. Geophys J Int, 2001. 145: 721-730.
    Pouliquen G, Y Gallet, J Dyment, et al., A geomagnetic record over the last 4 million years from deep-tow magnetic profiles across the Central Indian Ridge[J]. J Geophys Res, 2001. 106: 10941-10960.
    Proust D, Eymery J and Bearfort D, Supergene vermiculitization of magnetism chlorite: iron and magnesium removal processes[J]. Clays and Clay Minerals, 1986. 34(5): 572-580.
    Rolph T C, Viscous remanent magnetigation: a tool for orientation of drill cores[J]. Geological Society Special Publication, 1995. 98: 239-243.
    Rosenbaum J, King J W. Reynolds R L,Smoot J, et al., Anisotropy of magnetic susceptibility as a tool for recognizing core deformation: reevaluation of the paleomagnetic record of Pleistocene sediments from drill holl OL-92, Owens Lake, California[J]. Earth Planet Sci Lett, 2000. 178: 415-424.
    Ross Baker, David McMillan, Ian Lumb, et al., Chronology errors and their effects on the recovery of characteristic time scales of the geodynamo from relative paleointensity[J]. Physics of the Earth and Planetary Interiors, 2006(159): 267-275.
    S Jevrejeva, J C Moore and A Grinsted, Influence of the Arctic Oscillation and El Nino-Southern Oscillation (ENSO) on ice conditions in the Baltic Sea: The wavelet approach[J]. J Geophys Res, 2003. 108(D21): 4677-4687.
    Satio Y and Yang Z S, Historical change of the Huanghe (Yellow River) and its impact on the sediment budget of the East China Sea. In: Iseki K, Koike I, Tsunogai, et al., eds. Proceedings of International Symposium on Global Fluxes of Carbon and its Related Substances in the Coastal-Ocean --Atmosphere System[J]. Sapporo: Hokkaido University, 1994(7-12).
    Schieber L and Ellwood B B, Determination of basinwide paleocurrent patterns in a shale succession from AMS: a case study of the mid-Proterozoic Newland Formation, Montana[J]. J Sediment Petrol, 1993. 63: 874-880.
    Schneider D A, An estimate of late Pleistocene geomagnetic intensity variation from Sulu Sea sediments[J]. Earth and Planetary Science Letters, 1993(120): 301-310.
    Schulz M and Mudelsee M, REDFIT: Estimating red-noise spectra directly from unevenly spaced paleoclimatic time serie[J]. Computers & Geosciences, 2002. 28(3): 421-426.
    Scott M R and Bolger G W, Metallogenesis in the Parece Vela marginal basin complex of the Philippine Sea, Deep Sea Drilling Project Leg 59.[J]. In: Kroenke L, Scott R B, Balshaw K,et al., eds. Initial Reports of the Deep Sea Drilling Project, 59. Washington: U.S. Govt. Printing Office, 1981(649-651).
    Scottt R B, Kroenke L, Zakariadze G, et al., Evolution of the south Philippine Sea: Deep Sea Drilling Project Leg 59 results. In: Kroenke L, Scott R B, Balshaw K, et al., eds. Initial Reports of the Deep Sea Drilling Project, 59. Washington: U.S. Govt. Pringting Office[J]. 1981. 803-815.
    Seno T, Was there a North New Guinea Plate?[J]. Geol. Surv. Jpn. Rep, 1984. 263: 29-42.
    Shubei Okubo and Hitoshi Takenchi, Time series analysis of natural remanent magnetisation in deep-sea sediments[J]. Geophys J Int, 1979. 56(2): 309-312.
    St-Onge G, Stoner J S and C. Hillaire-Marcel, Holocene paleomagnetic records from the St. Lawrence Estuary, eastern Canada: centennial- to millennial-scale geomagnetic modulation of cosmogenic isotopes[J]. Earth and Planetary Science Letters, 2003. 209(1-2): 113-130.
    Stern D P, A millennium of geomagnetism[J]. Rewviews of Geophysics, 2002. 40(3): 1007, doi: 1010.1029/2000RG000097.
    Steve Lund, Joseph S S, Channell J E T, et al., A Summary of Brunhes paleomagnetic field variability recorded in Ocean Drilling Program cores[J]. Physics of the Earth and Planetary Interiors, 2006. 2006(156): 194-204.
    Stoner J S, Laj C, Channell J E T, et al., South Atlantic and North Atlantic geomagnetic paleointensity stacks(0-80ka): implications for inter-hemispheric correlation[J]. Quaternary Science Research, 2002(21): 1141-1151.
    Stoner J S, Channell J E T, Hodell D A, et al., A 580 kyr paleomagnetic record from the sub-Antarctic South Atlantic (Ocean Drilling Program site 1089)[J]. J Geophys Res, 2003. 108(B5): 22-44.
    Tauxe L, Sedimentary records of relative paleointensity of the geomagnetic field: Theory and Practice[J]. Rev.Geophys, 1993(31): 319-354.
    Tauxe L and Wu G, Normalize remanence in sediments of the western equatorial Pacific: relative paleointensity of the geomagnetic field[J]. J Geophys Res, 1990. 95: 12337-12350.
    Tauxe L, Jason L S and Andrew Harris, Depositional remanent magnetization: Toward an improved theoretical and experimental foundation[J]. Earth Planet Sci Lett, 2006. 244: 515-529.
    Tauxe L and N J Shackleton, Relative paleointensity records from the Ontong-Java Plateau[J]. Geophys J Int, 1994. 117: 769-782.
    Tauxe L, et al, 11 million years of Oligocene geomagnetic field behaviour[J]. Geophys J Int, 1997(128): 217.
    Tauxe L, Lectures in Paleomagnetis.[J]. Available online http://earthref.org/MAGIC/Tauxe/2005/, 2005.
    Tauxe L, T Pick and Y S Kok, Relative paleointensity in sediments: A pseudo-Thellier approach[J]. Geophys. Res. Lett, 1995. 22: 2885-2888.
    Teanby N and Gubbins D, The effects of aliasing and locking-in processes on palaeosecular variation records from sediments[J]. Geophys J Int, 2000. 142(563-570).
    Thompson P R, Be W H A, Duplessy J C, et al., Dissappearence of pink-pigmented Globigerina ruber at 120000 yr BP. in the Indian and Pacific Oceans[J]. Nature, 1979. 280: 554-558.
    Thompson R and Oldfield F, Environmental Magnetism[M]. London: Allen & Unwin. 1986.
    Thompson R, Bloemendal J, Dearing J A, et al., Environmental applications of magnetic measurements[J]. Science, 1980. 207: 481-486.
    Torrence C and Compo G, A practical guide to Wavelet Analysis[J]. Bull Amer Meteor Soc, 1998. 79: 61-78.
    Tric E, Valet J P, ATucholka P, et al., Paleointensity of the geomagnetic field during the last80,000 years[J]. Journal of Geophysical Research, 1992. 97(B6): 9337-9351.
    Ujiie H, Planktonic foraminiferal biostratigraphy in the Western Philippine Sea, Leg 31 of DSDP. In: Karig D E, Ingle J C, et al., eds. Initial Reports of the Deep Sea Drilling Project, 31. Washington: U.S.Govt. Printing Office[J]. 1975. 677-691.
    Uyeda S and Ben-Avraham Z, Origin and development of the Philippine Sea[J]. Nature, 1972. 240: 176-178. Valet J P, Time variations in geomagnetic intensity[J]. Rev Geophys, 2003. 41(1): 1-44.
    Valet J P and Meynadier L, Geomagnetic field intensity and reversals during the past four million years[J]. Nature, 1993(366): 91-95.
    Valet J P, Meynadier L and Guyodo Y, Geomagnetic dipole strength and reversal rate over the past two million years[J]. Nature, 2005. 435: 802-805.
    R. Van der Voo, Phanerozoic paleomagnetic poles from Europe and North America and comparisons with continental reconstructions[J]. Rev.Geophys, 1990. 28: 167-206.
    Verosub K L and Roberts A P, Environmental magnetism:past, present, and future[J]. Journal of Geophysical Research, 1995. 100(B2): 2175~2192.
    W W-S Yim, G Huang and L S Chan, Magnetic susceptibility study of Late Quaternary inner continental shelf sediments in the Hong Kong SAR, China[J]. Quaternary International, 2004. 117: 41-54.
    Mark W, Hounslow M W and Mather B A, Source of the climate signal recorded by magnetic susceptibility variations in Indian Ocean sediments[J]. Journal of Geophysical Research, 1999. 104: 5047-5061.
    Wang yong, Chi Zhenqing, Lee Tehquei, et al., Relative paleointensity of the geomagnetic field during the past 0.8Ma from Nihewan Basin, Hebei Province, China[J]. Chinese Science Bulletin, 2004. 49(9): 948-952.
    Willmott V, Domack E W, Canals M, et al., A high resolution relative paleointensity record from the Gerlache-Boyd paleo-ice stream region, northern Antarctic Peninsula[J]. Quaternary Research, 2006. 2006(66): 1-11.
    Wood D A, Mattey D P, Joron J L, et al., A geochemical study of 17 selected samples from basement cores recovered at sites 447, 448, 449, 450, and 451, Deep Sea Drilling Project Leg 59. In: Kroenke L, Scott R B, Brassell S, et al., eds. Initial Reports of the Deep Sea Drilling Project 59. U.S. Govt. Printing Office[J]. 1981. 743-752.
    Yamazaki T, Katsura I and Marumo K, Origin of stable remanent magnetization of siliceous sediments in the central equatorial Pacific[J]. Earth and Planetary Science Letters, 1991(105): 81-93.
    Yamazaki T and Ioka N, Long-term secular variation of the geomagnetic field during the last 200 kyr recorded in sediment cores from the western equatorial Pacific[J]. Earth and Planetary Science Letters, 1994(128): 527-544.
    Yamazaki T and Ioka N, Relative paleointensity of the geomagnetic field during Brunhes Chron recorded in North Pacific deep-sea sediment cores: Orbital influence?[J]. Earth and Planetary Science Letters, 1999(169): 23-34.
    Yamazaki T, Ioka N and Eguchi N., Relative paleointensity of the geomagnetic field during the Brunhes Chron[J]. Earth and Planetary Science Letters, 1995(136): 525-540.
    Yang S, Odah H and Shaw J, Variations in the geomagnetic dipole moment over the last 12,000 years[J]. Geophys J Int, 2000. 140: 158-162.
    Yongjae Yu, How accurately can NRM/SIRM determine the ancient planetary magnetic field intensity?[J]. Earth and Planetary Science Letters, 2006. 2006(250): 27-37.
    Yongjae Yu, David J Dunlop and Ozden Ozdemir, Are ARM and TRM analogs? Thellier analysis of ARM and pseudo-Thellier analysis of TRM[J]. Earth and Planetary Science Letters,2003(205): 325-336.
    Yoshida S and Katsura I, Charcaterization of fine magnetic grains in sediments by the suspension method[J]. Geophys J Int, 1985. 82(2): 301-317.
    Yu Lizhong et al, Palaeoenvironmental implications of magnetic measurements on sediment core form Kunming Basin Southwest China[J]. Journal of Paleolimnology, 1990(3): 95-111.
    Zhang X Y, Lu H Y, Arimoto R, et al., Atmospheric dust loadings and their relationship to rapid oscillations of the Asian winter monsoon climate: two 250-kyr loess records[J]. Earth and Planetary Science Letters, 2002. 2002: 637-643.
    Zhimin Jian, Pinxian Wang, Yoshiki Saito, et al., Holocene variability of the Kuroshio Current in the Okinawa Trough, northwestern Pacific Ocean[J]. Earth and Planetary Science Letters, 2000. 184: 305-319.
    Zhu R X, Shi C D, Suchy V, et al., Indentification and origins of iron sulfides in Czech loess[J]. Geophys Res Lett, 2001. 28(20): 3903-3906.
    Zhu R X and Tschu K K, Preliminery study on the relitionship between D'' layer and the geomagnetic polarity transition[J]. Chinese J Geophys, 1995. 38: 195-202.
    Zhu R X, Pan Y X and Coe R S, Paleointensity studies of a lava succession from Jilin Province, Northeastern China: Evidence for the Blake event[J]. J Geophys Res, 2000. 105(B4): 8305-8318.
    Zhu R X, Liu Q S and Jackson M J, Paleoenvironmental significance of the magnetic fabrics in Chinese loess-paleosols since the last interglacial[J]. Earth Planet Sci Lett, 2004. 221: 55-69.
    (苏)A.B.佩纬主编,刘昭蜀、于珏译,菲律宾海地质[M].北京:海洋出版社. 1989, 1-250.
    V.P.Nechaev,金康辰译,据碎屑沉积物记录的菲律宾海和日本海的演化[J]. Marine Geology, 1991. 97: 167-190.
    小山真人,沈耀龙译,据古地磁资料探讨菲律宾海板块构造发育史[J].地学杂志, 1991. 4.
    王心源,吴立,张广胜, et al.,安徽巢湖全新世湖泊沉积物磁化率与粒度组合的变化特征及其环境意义[J].地理科学, 2008. 28(4): 548-553.
    王建,刘泽纯,姜文英, et al.,磁化率与粒度、矿物的关系及其古环境意义[J].地理学报, 1996. 51(2): 155-163.
    王律江,上新世末~更新世初西太平洋变冷事件及其古气候意义[J].第四纪研究, 1996(4): 300-309.
    任建业and李思田,西太平洋边缘海盆地的扩张过程和动力学背景[J].地学前缘, 2000. 7(3): 203-213.
    吉云平and夏正楷,不同类型沉积物磁化率的比较研究和初步解释[J].地球学报, 2007. 28(6): 541-549.
    吉冈典哉,远藤昌宏and石崎广,西马里亚纳海盆深层海流的观测[J].南海研究与开发, 1990. 4(41-46).
    向荣,曹奇原and阎军,古黑潮演化研究评述[J].海洋科学, 2000. 24(7): 34-36.
    朱日祥,郭斌and丁仲礼, Gauss-Matuyama极性转换期间地球磁场方向和强度变化特征[J].地球物理学报, 2000. 43(5): 621-634.
    朱日祥,刘青松and郭斌,近12000年以来北京地区地球磁场变化机理探讨[J].地球物理学报, 2001. 44(2): 211-218.
    朱日祥,刘青松and潘永信,地磁极性倒转与全球性地质事件的相关性[J].科学通报, 1999.44(15): 1582-1589.
    朱日祥,赵希涛,魏新富, et al.,约12 000年前地球磁场极性漂移的一个证据[J].科学通报, 1992. 37(17): 1596-1598.
    朱岗崑,古地磁学:基础、原理、方法、成果与应用[M].北京:科学出版社. 2005.
    李海燕,还原成岩作用对海洋沉积物磁记录的影响及其环境学意义[M].北京:中国地质大学. 2006.
    李安春,陈丽蓉,申顺喜.南黄海H-106岩柱中自生黄铁矿的硫同位素研究[J].科学通报. 1991. 12: 928-930
    李海燕and张世红,黄铁矿加热过程中的矿相变化研究-基于磁化率随温度变化特征分析[J].地球物理学报, 2005. 48(6): 1384-1391.
    李海燕,张世红and方念乔,等,孟加拉湾MD77-181岩芯磁学记录及其古环境意义[J].科学通报, 2006. 51(18): 2166-2174.
    李常珍,李乃胜and林美华,菲律宾海的地势特征[J].海洋科学, 2000. 24(6): 47-52.
    李萍,李培英,张晓龙, et al.,冲绳海槽沉积物不同粒级的磁性特征及其与环境的关系[J].科学通报, 2005. 50(3): 262-269.
    李粹中,南海深海短柱样的磁性地层学特征[J].沉积学报, 1994. 12(3): 136-142.
    李华梅,地磁场倒转和古地磁年表[J].地质地球化学, 1974. 12: 1-7.
    李铁刚,江波,孙荣涛, et al.,末次冰消期以来东黄海暖流系统的演化[J].第四纪研究, 2007. 27(6): 945-954.
    汪品先,翦知湣and刘志飞,地球圈层相互作用中的深海过程和深海记录(1):气候变化的热带驱动与谈循环[J].地球科学进展, 2006. 21(4): 331-337.
    汪品先,翦知湣and刘志飞,地球圈层相互作用中的深海过程和深海记录(2):气候变化的热带驱动与谈循环[J].地球科学进展, 2006. 21(4): 338-345.
    肖尚斌,李安春,蒋富清, et al.,近2ka来东海内陆架的泥质沉积记录及其气候意义[J].科学通报, 2004. 49(21): 2233-2238.
    肖尚斌,李安春,陈木宏, et al.,全新世东亚季风变化的百年尺度周期[J].科技导报, 2005. 24(4): 40-43.
    辛春,菲律宾海海底的构造单元(沿北纬18°地学断面)[J].太平洋地质学, 1989. 6: 1-10.
    季峻峰,陈骏,刘连文, et al.,洛川黄土中绿泥石的化学分化与磁化率增强[J].自然科学进展, 1999. 9(7): 619-623.
    季军良,郑洪波,刘锐, et al.,邙山黄土地层再研究[J].海洋地质与第四纪地质, 2004. 24(4): 101-109.
    金性春,大洋钻探与西太平洋构造[J].地球科学进展, 1995. 10(3): 234-239.
    侯守信and田国荣,粘滞剩磁(VRM)岩芯定向的应用[J].岩石力学与工程学报, 2000. 19(增): 1128-1131.
    胡守云, Appel E, V. Hoffmann, et al.,湖泊沉积物中胶黄铁矿的鉴出及其磁学意义[J].中国科学(D辑), 2002. 32(3): 234-238.
    胡守云,王苏民, E.Appel, et al.,沉积剩磁的获得和变化[J].科学通报, 1998. 43(13): 1353-1362.
    胡守云,王苏民and E.A ppel,等,呼伦湖湖泊沉积物磁化率变化的环境磁学机制[J].中国科学(D辑), 1998. 28(4): 334-339.
    候红明,王保贵and汤贤赞,南极普里兹湾NP93-2柱样磁组构特征及其古气候意义[J].地球物理学报, 1996. 30(5): 625-630.
    徐方建,李安春,肖尚斌, et al.,末次冰消期以来东海内陆架古环境演化[J].沉积学报, 2009. 27(1): 118-127.
    秦华峰,刘青松and潘永信,一阶反转曲线(FORC)图的原理及应用实例[J].地球物理学报,2008.51(3):743-751.
    秦蕴珊,赵一阳,陈丽蓉,etal.,东海地质[M].北京:科学出版社.1987.
    秦蕴珊and郑铁民,中国科学院海洋研究所海洋地质研究室,东海大陆架沉积物分布特征的初步探讨.[J].黄、东海地质,1982,39-51.
    涂霞,郑范,王吉良,etal.,南海北部末次间冰期的突然降温事件[J].中国科学(D辑),2001.31:823-827.
    敖红,刘彩彩and邓成龙,泥河湾盆地大长梁剖面河湖相沉积序列的细腰磁滞回线性质及其环境意义[J].第四纪研究,2007.27(6):1072-1080.
    郭志刚,杨作升,张东奇,etal.,冬、夏季东海北部悬浮体分布及海流对悬浮体输运的阻隔[J].海洋学报,2002.24(5):71-80.
    葛宗诗,南黄海QC2孔磁化率研究[J].海洋地质与第四纪地质,1996.16(4):35-42.
    葛淑兰,石学法,朱日祥,etal.,南黄海EY02-2孔磁性地层及古环境意义[J].科学通报,2005.50(22):2531-2541.
    葛淑兰,石学法,吴永华,etal.,东海北部外陆架EY02-1孔磁性地层研究[J].海洋学报,2008.30(2):51-61.
    葛淑兰,石学法,吴永华,etal.,冲绳海槽北部CSH1孔岩石磁学特征及其早期成岩作用的影响[J].海洋学报,2005.27(6):56-64.
    葛淑兰,石学法and杨刚,西菲律宾海780ka以来气候变化的岩石磁学记录:基于地磁场相对强度指示的年龄框架[J].第四纪研究,2007.27(6):1040-1052.
    葛淑兰,石学法and韩贻兵,南黄海海底沉积物的磁化率特征[J].科学通报,2001.46:34-39.
    靳宁,李安春,刘海志,etal.,帕里西维拉海盆西北部表层沉积物中粘土矿物的分布特征及物源分析[J].海洋与湖沼,2007.38(6):504-511.
    潘永信and朱日祥,磁组构研究现状[J].地球物理学进展,1998.13(1):52-59.
    翦知湣,SaitoY,汪品先,etal.,黑潮主流轴近两万年来的位移[J].科学通报,1998.43(5):532-536.
    刘秀铭,刘东生,F.Heller,etal.,黄土频率磁化率与古气候冷暖变换[J].第四纪研究,1990.1:1-4.
    刘健,朱日祥,李绍全,etal.,南黄海东南部冰后期泥质沉积物中磁性矿物的成岩变化极其对环境变化的响应[J].中国科学(D辑),2003.33(6):583-592.
    刘健,李绍全,王圣洁,etal.,南黄海东北陆架YSDP105孔冰消期以来沉积层序的磁学特征研究[J].海洋地质与第四纪地质,1997.17(4):13-24.
    吴能友,段威武and刘坚,南极布兰斯菲尔德海峡晚第四纪沉积物磁组构特征及其古环境学意义[J].海洋地质与第四纪地质,1998.18(1):77-88.
    孙守勋and滕军,菲律宾海的气候特征[J].海洋预报,2003.20(3):31-39.
    孙湘平,苏玉芬and修树孟,东、南海陆架暖流的初步探讨[J].海洋通报,1996.15(2):1-10.
    孙继敏,丁仲礼,刘东生,etal.,黄土与古土壤磁组构测定在重建冬季风风向上的初步应用[J].科学通报,1995.40(21):1976-1978.
    孙继敏,张宏才and李本兆,东海DC-1,DC-2孔古地磁研究[J].海洋科学,1989(5):15-24.
    孙荣涛,黑潮流系与暖池区晚更新世以来的古环境研究[M].青岛:中国科学院海洋研究所.2006.
    张弦,俞慕耕,江伟,etal.,菲律宾海及其邻近海区的水文特征[J].海洋通报,2004.23(1):8-14.
    张卫国and俞立中,长江口潮滩沉积物的磁学性质及其与粒度的关系[J].中国科学(D辑), 2002. 32(9): 783-792.
    张卫国,俞立中and陆敏,长江口潮滩沉积物氧化铁与磁性特征的关系[J].地球物理学报, 2003. 46(1): 79-86.
    张卫国,戴雪荣,张福瑞, et al.,近7000年巢湖沉积物环境磁学特征及其指示的亚洲季风变化[J].第四纪研究, 2007. 27(6): 1053-1062.
    强小科,安芷生and常宏,佳县红粘土堆积序列频率磁化率的古气候意义[J].海洋地质与第四纪地质, 2003. 23(3): 62-69.
    杨小强, Rodney Grapes,周厚云, et al.,珠江三角洲沉积物的岩石磁学性质及其环境意义[J].中国科学(D辑), 2007. 37(11): 1493-1503.
    杨小强and李华梅,泥河湾盆地沉积物粒度组分与磁化率变化相关性研究[J].沉积学报, 2002. 20(4): 675-680.
    杨小强and李华梅,泥河湾盆地沉积物磁化率及粒度参数对沉积环境的响应[J].沉积学报, 1999. 17(增刊): 763-769.
    汤贤赞,王保贵,袁友仁, et al.,南沙海区沉积物剩余磁化强度与古气候旋回[J].热带海洋,1993. 12(3): 32~37.
    汤贤赞,陈忠,颜文, et al.,西太平洋暖池温区中心沉积物磁化率记录的YD和Heinrich冷事件[J].科学通报, 2003. 48(5): 491-496.
    罗攀,郑卓and杨小强,海南岛双池玛珥湖全新世磁化率及其环境意义[J].热带地理, 2006. 26(3): 2-7.
    苏朴and刘椿,布莱克(Blake)负向极性幕研究的新进展[J].地球物理学进展, 1995. 10(2): 99-106.
    蓝东兆,陈承惠and李超,冲绳海槽末次冰期以来黑潮流游移在沉积硅藻中的记录[J].古生物学报, 2003. 42(3): 466-472.
    许峰宇and王力波,磁化率各向异性测量在沉积学中的应用[J].沉积学报, 1994. 12(2): 94-100.
    谢红霞,张卫国,顾成军, et al.,巢湖沉积物磁性特征及其对沉积动力的响应[J].湖泊科学, 2006. 18(1): 43-48.
    贾海林,刘苍宇and张卫国,崇明岛CY孔沉积物的磁性特征及其环境意义[J].沉积学报, 2004. 22(1): 117-124.
    赵京涛,热带西太平洋边缘晚第四纪以来的古环境研究[M].青岛:中国科学院海洋研究所. 2007.
    赵松龄,孙维敏,黄庆福, et al.,东海DC1和DC2孔古地磁研究[J].海洋学报, 1983. 5(1): 1-8.
    赵松龄and张宏才,晚更新世末期的地磁短期反极性事件[J].海洋地质研究, 1981. 1(2): 61-68.
    陈一萌,冯兆东and宫辉力,对黄土磁化率、粒度年龄模型的检验[J].自然科学进展, 2007. 17(6): 4-9.
    陈天虎, Xu Huifang,季峻峰, et al.,黄土中强磁性矿物透射电子显微镜观察和成因分析[J].科学通报, 2003. 48(17): 1183-1189.
    陈建林,马维林and武光海,中太平洋海山铁锰结壳与基岩关系的研究[J].海洋学报, 2004. 26(4): 71-79.
    陈满荣,俞立中and韩晓非,环境磁学样品干燥过程中的磁性效应[J].沉积学报, 2001. 19(4): 30-37.
    韩家懋and姜文英,地磁场长期变化研究新动向:海洋沉积的相对古强度记录[J].自然科学通报, 2002. 12(1): 45-50.
    韩晓非,张卫国,陈满荣, et al.,长江口潮滩植物对沉积物铁的地球化学循环及磁性特征的影响[J].沉积学报, 2003. 21(3): 495-500.
    马醒华,孙知明and胡守云,哥德堡事件在湖泊沉积物中的记录[J].第四纪研究, 1994. 2: 175-182.
    黄宝春and谭承泽,古地磁多磁成分的分离技术[J].地球物理学进展, 1994. 9(1): 125-134.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700