用户名: 密码: 验证码:
中国东海、黄海DMS和DMSP的生物地球化学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
二甲基硫(DMS)是海洋中最重要的挥发性生源硫化物,其在大气中的氧化产物对全球气候变化和酸雨的形成产生重要的影响。近岸、陆架海区虽然只占全球海洋的一小部分,但对全球DMS释放的贡献较大。因此对典型的近海海洋环境中DMS及其前体物质-二甲巯基丙酸内盐(DMSP)的生物地球化学进行研究,有助于深入了解DMS、DMSP和生物圈、大气环境之间复杂的相互作用,对在区域和全球尺度上准确估算DMS的海-气通量及其对环境气候的影响具有重要的意义。
     本论文以受人类活动影响较大的中国东海和黄海为研究目标,从海水和大气两方面入手,对海水中DMS和DMSP的浓度分布、时空变化、海-气通量、影响因素以及与海区内生物特征、生态环境的关系进行了较为系统的研究,同时对近海污染大气中DMS浓度水平及其氧化产物对气溶胶中非海盐硫酸盐(nss-SO_4~(2-))的贡献情况进行了考察。主要研究结果如下:
     (1)参考国内外文献,在实验室原有海水DMS分析测试系统的基础上,整合建立了一套海水DMS/DMSP、大气DMS及气溶胶中MSA、nss-SO_4~(2-)等一系列含硫化合物的分析检测方法,方法的精密度和准确度与国内外同类方法相当,为中国东、黄海海水及大气中各种硫化物的分析测定工作打下了坚实的基础。
     (2)于2006年6-7月、2007年1-2月和11月对东海、南黄海海域DMS、DMSP的浓度分布和DMS海-气通量的时空变化进行了研究。夏季东海、南黄海表层海水中DMS、DMSPd和DMSPp浓度分别为5.64(1.70-12.24)、8.59(2.37-14.77)和18.97(9.44-36.15)nmol L-1;冬季浓度分别为1.78(1.02-3.51)、3.92(2.12-6.25)和7.09(3.80-13.34)nmol L-1;秋季浓度分别为3.38(1.83-7.26)、5.40(2.26-10.51)和9.35(3.25-26.64)nmol L-1。由此看出,东海、南黄海DMS和DMSP浓度呈现明显的季节变化,夏季最高,冬季最低,与监测到的Chl-a浓度的季节变化规律相一致。东海、南黄海DMS和DMSP的空间分布明显受到长江冲淡水和贫营养的黑潮水系及其分支的影响。各季节DMS和DMSP的水平分布特征大致相似,即从近岸向外海呈逐渐降低的趋势,但各季节又呈现出各自一定的特点。另外,各季节DMS和DMSP周日变化的总体趋势是白天高夜晚低,表明DMS/DMSP的生物生产过程与日光辐射有关。
     尽管东海、南黄海水文条件比较复杂,导致DMS、DMSP和Chl-a浓度变化范围较大,但各季节DMS、DMSPp和Chl-a之间存在较好的相关性,说明浮游植物生物量在控制东海、南黄海DMS/DMSP的生产与分布方面发挥重要的作用。东海、南黄海DMS/Chl-a与DMSPp/Chl-a比值表现出明显的季节变化,其中夏季浓度比值是秋冬季比值的2倍,这与不同季节浮游植物的种群组成及生物量存在差异有关。同航次浮游植物鉴定结果表明,与夏季相比,秋季和冬季浮游植物组成中甲藻和金藻(DMSP高产种)的种类和数量明显减少,可能是导致DMS/Chl-a和DMSPp/Chl-a比值存在季节差异的主要原因。根据现场风速和表层海水DMS浓度,利用Liss & Merlivat公式(LM86)和Wanninkhof公式(W92)分别计算了DMS海-气交换通量。东海、南黄海DMS海-气通量具有明显的季节差异,夏季较高的DMS浓度和秋季较大的风速都贡献出较大的DMS通量。根据夏、冬、秋三季DMS的年平均通量和东海、南黄海海域面积,初步估算出东海、南黄海DMS年释放量为8.47×10~(-2) -19.11×10~(-2) Tg S a~(-1)。虽然东海、南黄海面积只占全球海洋的0.27%,而其向大气释放的DMS却占到全球海洋年释放量的0.58%,表明陆架海区虽然只占全球海洋的一小部分,但对全球海洋释放DMS的贡献较大。
     (3)于2006年7月-2007年10月期间对北黄海海水DMS、DMSP,大气DMS及其氧化产物MSA、nss-SO_4~(2-)的时空分布及季节变化特征进行了研究。研究结果表明:北黄海表层海水中DMS和DMSP浓度的季节变化非常明显,夏季最高、春秋季次之、冬季最低,其中夏季DMS、DMSPd和DMSPp浓度分别是冬季浓度的3.2、2.5和2.9倍。北黄海四个季节DMS、DMSPd和DMSPp的年平均浓度分别为4.05±1.78、6.94±2.75和11.82±5.46 nmol L~(-1)。尽管不同季节DMS和DMSP的浓度变化范围较大,但它们的水平分布特征基本相同,即从辽东半岛、山东半岛近岸向外海海域逐渐降低的趋势,显示出近岸人为活动对浮游植物DMS生产的影响。从单一季节来看,北黄海表层海水中DMS、DMSPp与Chl-a浓度存在显著的相关性;但从四个季节整体综合考虑,DMS、DMSPp与Chl-a之间并不存在相关关系,这与不同季节浮游植物的组成及生物量存在差异有关,因为不同种类的浮游植物生产Chl-a和DMSP的能力存在较大差异。
     北黄海DMS海-气通量的季节差异较大,利用LM86和W92方法计算得到的DMS年平均通量分别为4.92±2.10和10.97±4.58μmol m~(-2) d~(-1)。结合北黄海海域面积,初步估算出北黄海DMS年释放量为0.41×10~(-2) - 0.91×10~(-2) Tg S a~(-1)。北黄海只占到全球海洋的0.017%,而其向大气释放的DMS量占全球海洋DMS年释放量的0.029%,此结果也表明近海海域是全球DMS排放通量的重要来源。与DMS海-气通量的季节变化相对应,北黄海大气中DMS浓度夏季最高,冬季最低。然而线性回归结果表明,各季节大气中DMS浓度与DMS海-气通量的相关性很弱或没有相关性,说明海-气扩散并不是影响大气DMS浓度的唯一因素。北黄海大气气溶胶中MSA和nss-SO_4~(2-)浓度同样存在明显的季节差异,然而由于人为释放SO_2对nss-SO_4~(2-)的贡献导致二者的季节变化规律并不一致。利用nss-SO_4~(2-)bio/MSA比值估算了北黄海生源硫释放对nss-SO_4~(2-)的贡献比例,其中春、夏、秋、冬四季的贡献率分别为11.0%、10.4%、2.0%和2.8%。这些研究结果表明,人为输入是北黄海大气气溶胶中nss-SO_4~(2-)的主要来源,但是在春夏季节来源于海洋DMS释放的贡献也是不容忽视的。
     (4)于2006年4月对黄海微表层与次表层中DMS的生物生产、浓度分布、迁移转化等生物地球化学过程进行了研究。次表层海水中DMS、DMSPd和DMSPp浓度分别为5.42(1.78-12.75)、9.22(2.85-19.73)和17.50(4.33-36.09) nmol L~(-1);微表层中的浓度分别为4.92(1.69-10.66)、17.08(3.13-38.82)和22.54 (4.85-47.24)nmol L~(-1)。对微表层的富集行为研究表明,DMS未得到富集,而DMSPd和DMSPp得到不同程度的富集,富集因子分别为1.98和1.39。DMS、DMSP和Chl-a在微表层中的浓度分别与其在次表层中的浓度显著相关,表明微表层与次表层水体间存在着强烈的交换作用。微表层与次表层中DMS、DMSPp浓度分别与Chl-a浓度存在明显的相关性。DMS/Chl-a和DMSPp/Chl-a比值在微表层与次表层中分别为4.57(1.11-9.36)、21.11(8.02-57.98)mmol g~(-1)和5.92(1.70-12.90)、18.54(6.84-41.39)mmol g~(-1)。较低的DMS/Chl-a和DMSPp/Chl-a比值反映出春季黄海海域浮游植物群落结构中硅藻的优势地位,与同航次网采浮游植物的鉴定结果相一致。
     微表层与次表层中DMS的生物生产速率分别为7.31(2.41-10.35)和5.39(2.96-13.53)nmol L~(-1)d~(-1),微生物消费速率分别为5.56(2.59-9.67)和4.09(1.89-7.13)nmol L~(-1)d~(-1)。DMS生物生产速率大于其微生物消耗速率,导致DMS的净生物生产作用。微表层DMS的生物生产与消费速率均大于次表层,这与微表层具有独特的化学、生物环境有关。微表层与次表层中DMS的生物周转时间τbio分别为1.12(0.73-2.39)d和1.93(1.06-3.44)d,而DMS海-气周转时间τsea-air分别为3.53(0.10-26.28)min和3.32(0.08-24.45)d。由此可以看出,本体海水中微生物消耗相对于海-气扩散在DMS迁移转化中的作用更加明显,而在微表层中海-气扩散是DMS最主要的去除途径。
Dimethylsulfide (DMS) is the dominant volatile biogenic sulfur compound emanating from the ocean, which plays an important role in the global climate change and acid precipitation due to its oxidation products in the atmosphere. Although coastal and shelf regions only occupy a small part of the world ocean, they appear to be responsible for a large part of the oceanic DMS emission. Therefore studies on the biogeochemistry of DMS and its precursor DMSP in representative coastal waters offer a unique opportunity to link atmospheric chemistry and climate to the ecology and evolution of marine community, which will be helpful to accurately estimate the sea-to-air fluxes of DMS on a local and global scale and to predict the influence of oceanic emissions to the environmental and climate changes.
     In the present dissertation, we choose the East China Sea (ECS) and the Yellow Sea (YS) as the study areas that are affected seriously by human activities. The spatial and temporal variations of distributions of DMS and DMSP, sea-to-air fluxes of DMS and factors influencing them are systematically studied. Another objective of this study is to examine the seasonal variations of atmospheric DMS concentrations and their contributions to non-sea-salt sulfate (nss-SO_4~(2-)) in aerosols. The main conclusions are drawn as follows:
     (1) On the ground of gas-stripping chromatographic systems of seawater DMS in our lab, we integrate and develop a series of sampling and analysis methods of sulfur containing compounds including seawater DMS and DMSP, atmospheric DMS and methanesulfonic acid (MSA), non-sea-salt sulfate (nss-SO_4~(2-)) in aerosol with strict quality assurance and quality control, which lay a solid foundation for the following research work.
     (2) The distributions of DMS and DMSP and sea-to-air fluxes of DMS are determined in the East China Sea (ECS) and the South Yellow Sea (SYS) during Jun-Jul, 2006, Jan-Feb and Nov, 2007. The surface water concentrations of DMS, DMSPd and DMSPp in summer are 5.64 (1.70-12.24), 8.59 (2.37-14.77) and 18.97 (9.44-36.15) nmol L~(-1), respectively. Winter concentrations are 1.78 (1.02-3.51), 3.92 (2.12-6.25) and 7.09 (3.80-13.34) nmol L~(-1), and autumn concentrations are 3.38 (1.83-7.26), 5.40 (2.26-10.51) and 9.35 (3.25-26.64) nmol L~(-1), respectively. DMS and DMSP concentrations show a notable seasonal variation with highest values in summer and lowest ones in winter, which corresponds well with the seasonal change of Chl-a observed in the study area. The spatial distributions of DMS and DMSP in the ECS and the SYS are obviously influenced by the Yangtze River effluent and the oligotrophic Kuroshio waters. When the distribution patterns are compared with each other in different seasons, they are nearly synoptic and decreased from inshore to offshore sites, without being strongly biased by temporal change. In addition, DMS and DMSP exhibit a consistent diurnal variation in different seasons, with higher levels in day and lower ones at night, indicating that the production processes of DMS and DMSP may be related to the sunshine radiation.
     Despite the highly variable physical environment of the ECS and the SYS and resultant large ranges in algal biomass, we observe two consistent correlations between DMS, DMSPp and Chl-a concentrations in different seasons, respectively. These results indicate that phytoplankton biomass might play an important role in controlling the distributions of biogenic sulfurs in the study area. The ratios of DMS/Chl-a and DMSPp/Chl-a exhibit obvious seasonal variations, with summer values being 2-fold higher than winter and autumn values, which could be attributed to the seasonal change in phytoplankton community structure. Data observed in the same cruises show that the species and biomass of dinoflagellates (high-DMSP-producers) decrease sharply from summer to autumn and winter, which consolidate the dominant status of diatoms in the phytoplankton community. The lost proportion of dinoflagellates may be responsible for the lower ratios of DMS/Chl-a and DMSPp/Chl-a in winter and autumn. Liss and Merlivat relationship (LM86) and Wanninkhof relationship (W92) are employed to calculate the sea-to-air fluxes of DMS based on the in-situ wind speeds and the measured DMS concentrations in the surface waters. As a result, the higher DMS concentrations in summer and large wind speeds in autumn contribute to the large fluxes of DMS in summer and autumn, respectively. Based on the average fluxes of DMS and the area of the ECS and the SYS, the annual DMS emission is estimated to be 8.47×10~(-2) -19.11×10~(-2) Tg S a~(-1). Although the ECS and the SYS only occupies 0.27% of the total ocean in area, the contribution of ECS and the SYS to the global sea-to-air fluxes of DMS is estimated to be 0.58%, which means that shelf regions contribute significant amount to the total oceanic DMS flux compared to the open sea.
     (3) Seasonal variations of seawater, atmospheric DMS and aerosol compounds, potentially linked with DMS oxidation, such as MSA and nss-SO_4~(2-) are examined in the North Yellow Sea (NYS) from Jul, 2006 to Oct, 2007. The concentrations of DMS and DMSP exhibit pronounced seasonal variations, with the highest values in summer and the lowest in winter. As a mean, the surface waters concentrations of DMS, DMSPd and DMSPp in summer are 3.2, 2.5 and 2.9 times higher than those in winter, respectively. The annual averages of DMS, DMSPd and DMSPp in the NYS are 4.05±1.78, 6.94±2.75 and 11.82±5.46 nmol L~(-1), respectively. Both DMS and DMSP display a similar distribution pattern in different seasons, decreasing gradually from the shore waters of Liaodong Peninsula and Shandong Peninsula to the open sea. These results reveal the influence of anthropogenic activities on the coastal environment, for example, enhancing the nutrient levels and consequently resulting in high primary production. Two significant correlations are found between DMS, DMSPp and Chl-a concentrations in the surface waters in one separate season, respectively. However, no correlation is found between integrated DMS or DMSPp and Chl-a concentrations at all stations in four seasons, which could be attributed to the different phytoplankton species as well as biomass in different seasons. Not only do different phytoplankton species produce different amounts of Chl-a, they also differ in their ability to form DMSP.
     The sea-to-air fluxes of DMS in the NYS vary widely in different seasons, and the mean annual fluxes obtained by the arithmetic of LM86 and W92 are 4.92±2.10μmol m~(-2) d~(-1) and 10.97±4.58μmol m~(-2) d~(-1), respectively. In connection with the area of the NYS, the preliminary DMS emission from the NYS is estimated to be 8.47×10~(-2) -19.11×10~(-2) Tg S a~(-1). Although the NYS only occupies 0.017% of the global ocean in area, the contribution of the NYS to the total sea-to-air fluxes of DMS is estimated to be 0.029%, which also indicates that the coastal waters is an very important source of atmospheric DMS. Similar to the case of seawater DMS, atmospheric DMS concentrations also show an obvious seasonal variation, with the highest values in summer and the lowest ones in winter. However, no significant correlation appeared between atmospheric DMS concentrations and sea-to-air fluxes of DMS. The concentrations of MSA and nss-SO_4~(2-) in aerosols also show pronounced seasonal changes, however, their seasonal trends are different, due to the contribution of anthropogenic SO_2 to the nss-SO_4~(2-). According to the observed MSA and nss-SO_4~(2-) concentrations as well as their ratios, the relative biogenic sulfur contribution to the total nss-SO_4~(2-) are estimated to be 11.0%, 10.4%, 2.0% and 2.8% in spring, summer, autumn and winter, respectively, implying that anthropogenic source is the major contribution to sulfur budget in the study area.
     (4) The distribution and cycling of DMS and DMSP are studied in the surface microlayer and corresponding subsurface waters of the YS in April, 2006. The average concentrations of DMS, DMSPd and DMSPp are 5.42 (1.78-12.75), 9.22 (2.85-19.73) and 17.50 (4.33-36.09) nmol L~(-1) in the subsurface water, and those in the microlayer are 4.92 (1.69-10.66), 17.08 (3.13-38.82) and 22.54 (4.85-47.24) nmol L~(-1), respectively. As a whole, no microlayer DMS enrichment is found due to the loss from the thin film during sampling. In contrast, DMSPd and DMSPp appear to be enriched in the microlayer with average enrichment factors of 1.39 and 1.98, respectively. The concentrations of DMS, DMSP and Chl-a in the microlayer are closely correlated with those in the subsurface water, suggesting that the materials in the microlayer could be related to and transported from the underlying water. The ratios of DMS/Chl-a and DMSPp/Chl-a are 4.57 (1.11-9.36), 21.11 (8.02-57.98) mmol g-1 in the microlayer, and 5.92 (1.70-12.90), 18.54 (6.84-41.39) mmol g~(-1) in the subsurface water. These relative low ratios reflect the fact that diatoms dominate the phytoplankton array in the YS, which is in good agreement with the phytoplankton data obtained in the same cruise.
     The biological production rates of DMS in the microlayer and subsurface water are 7.31 (2.41-10.35) and 5.39 (2.96-13.53) nmol L~(-1)d~(-1). By contrast, the microbial consumption rates of DMS are 5.56 (2.59-9.67) and 4.09 (1.89-7.13) nmol L~(-1)d~(-1), respectively. Overall, the production and consumption rates of DMS in the microlayer are mostly higher than those in the subsurface water, demonstrating that the microlayer is biologically active relative to the underlying water. The biological turnover times of DMS in the microlayer and subsurface water are 1.12 (0.73-2.39) d and 1.93 (1.06-3.44) d, respectively, and the sea-to-air turnover time of DMS are 3.53 (0.10-26.28) min and 3.32 (0.08-24.45) d。Thus the above observations lead to a clear conclusion that the major sink of DMS in the microlayer is escape into the atmosphere, which greatly exceeds its bacterial consumption.
引文
[1] Moller D. On the global natural sulfur emission. Atmospheric Environment, 1984, 18: 29-39.
    [2] Kettle A J, Andreae M O. Flux of dimethylsulfide from the oceans: A comparison of updated data sets and flux models. Journal of Geophysical Research, 2000, 105: 26793-26808
    [3] Lomans B P, van der Drift C, et al. Microbial cycling of volatile organic sulfur compounds, CMLS cellular and molecular life. Science, 2002, 59: 575-588
    [4] Lovelock J E, Maggs R J, Rasmussen R A. Atmospheric dimethylsulphide and the natural sulphur cycle. Nature, 1972, 237: 452-453
    [5] Andreae M O. Ocean-atmosphere interactions in the global biogeochemical sulfur cycle. Marine Chemistry, 1990, 30: 1-29
    [6] Charlson R J, Lovelock J E, Andreae M O, et al. Oceanic phytoplankton, atmospheric sulfur, cloud albedo and climate. Nature, 1987, 326: 655-661
    [7] Andreae M O, Jones C D, Cox P M. Strong present-day aerosol cooling implies a hot future. Nature, 2005, 435: 1187-1190
    [8] SimóR. Production of atmospheric sulfur by oceanic plankton: biogeochemical, ecological and evolutionary links. Trends in Ecology & Evolution, 2001, 16 (6): 287-294
    [9] Rabouille C, Mackenzie F T, Ver L M. Influence of the human perturbation on carbon, nitrogen and oxygen biogeochemical cycles in the global coastal ocean. Geochimica et Cosmochimica Acta, 2001, 65: 3615-3641
    [10] Kettle A J, Andreae M O, Amouroux D, et al. A global database of sea surface dimethylsulfide (DMS) measurements and a procedure to predict sea surface DMS as a function of latitude, longitude and month. Global Biogeochemical Cycles, 1999, 12: 399-444
    [11] Yang G-P, Zhang Z-B, Liu L-S, et al. Study on the analysis and distribution of dimethylsulfide in the East China Sea. Chinese Journal of Oceanology and Limnology, 1996, 14(2): 141-147
    [12] Yang G-P, Liu X-T, Li L, et al. Biogeochemistry of dimethylsulfide in the South China Sea. Journal of Marine Research, 1999, 57 (1): 189-211
    [13] Yang G-P, Zhang J-W, Li L, et al. Dimethylsulfide in the surface water of the East China Sea. Continental Shelf Research, 2000, 20: 69-82
    [14] Yang G-P. Dimethylsulfide enrichment in the surface microlayer of the South China Sea. Marine Chemistry, 1999, 66: 215-224
    [15] Yang G-P. Spatial distribution of dimethylsulfide in the South China Sea. Deep-Sea Research I, 2000, 47: 177-192
    [16] Hu M, Tang X-Y, Li J-L, et al. Distributions of dimethylsulfide in the Bohai Sea and Yellow Sea of China. Journal of Environmental Sciences, 2003, 15: 762-767
    [17] Jiao N-Z, Liu C-Z, Hong H-S, et al. Dynamics of dimethylsulfide and dimethylsulfoniopropionate produced by phytoplankton in the Chinese Seas: Distribution patterns and affecting factors. Acta Botanica Sinica, 2003, 45(7): 774-786
    [18] Ma Q-J, Hu M, Zhu T, et al. Seawater, atmospheric dimethylsulfide and aerosol ions in the Pearl River Estuary and the adjacent northern South China Sea. Journal of Sea Research, 2005, 53: 131-145
    [19]焦念志,柳承璋,陈念红.东海二甲基硫丙酸的分布及其制约因素的初步研究.海洋与湖沼, 1999, 30: 525-531
    [20] Yang G-P, Jing W-W, Li L, et al. Distribution of dimethylsulfide and dimethylsulfoniopropionate in the surface microlayer and subsurface water of the Yellow Sea, China during spring. Journal of Marine Systems, 2006, 62: 22-34
    [21] Hass P. The liberation of methylsulfide in seaweed. Biochemistry 1935, 29: 1297-1299
    [22] Challenger F, Simpson M I. Studies on biological methylation. PartⅫ: A precursor of the dimethyl sulphide evolved by Polysiphonia fastigiata, Dimethyl-2–carboxyethyl -sulphonium hydroxide and its salts. Journal of the Chemical Society, 1948, 3: 1591-1597
    [23] Wakeham S G, Howes B L, Dacey J W H, et al. Biogeochemistry of dimethylsulfide in a seasonally stratified coastal salt pond. Geochimica et Cosmochimica Acta, 1987, 51: 1675-1684
    [24] Stefels J. Physiological aspects of the production and conversion of DMSP in marine algae and higher plants. Journal of Sea Research, 2000, 43: 183-197
    [25] Gage D A, Rhodes D, Nolte K D, et al. A new route for synthesis of dimethylsulphoniopropionate in marine algae. Nature, 1997, 387: 891-894
    [26] Kirst G O. Osmotic adjustment in phytoplankton and macroalgae: The use of dimethylsulfoniopropionate (DMSP). In: Kiene R P, Visscher P T, Keller M D, et al., eds. Biological and environmental Chemistry of DMSP and related sulfonium Compounds. New York: Plenum Press, 1996, 121-130
    [27] Kiene R P, Linn L J, Bruton J A. New and important roles for DMSP in marine microbial communities. Journal of Sea Research, 2000, 43: 209-224
    [28] Vairavamurthy A, Andreae M O, Iverson R L. Biosynthesis of dimethylsulfide and dimthylopropiothetin by Hymenomonas carterae in relation to sulfur source and salinity variations. Limnology & Oceanography, 1985, 30 (1): 59-70
    [29] Nishigchi M K, Somero G N. Temperature and concentration dependence of compatibility ofthe organic osmolyteβ-dimethylsulphoniopropionate. Cryobiology, 1992, 29: 1-7
    [30] Karsten U, Kuck K, Vogt C. Dimethylsulphoniopropionate (DMSP) production in phototrophic organisms and its physiological function as a cryoprotectant. In: Kiene R P, Visscher P T, Keller M D, et al., eds. Biological and environmental Chemistry of DMSP and related sulfonium Compounds. New York: Plenum Press, 1996, 109-119
    [31] Lesser M P, Shick J M. Effects of irradiance and ultraviolet radiation on photo-adaptation in the zooxanthellae of Aiptasia pallida: primary production, photoinhibition and enzymatic defenses agaist oxygen toxicity. Marine biology, 1989, 102: 243-255
    [32] Butow B, Wynne D, Sukenik A, et al. Synergistic effect of carbon concentration and high temperature on lipid peroxidation in peridinium gatunense. Journal of Plankton Research, 1998, 20: 355-369
    [33] Stefels J, Van L M. Effects of iron and light stress on the biochemical compound of Anarctica Phaeocystis sp. (Prymnesiophyceae). I: Intracellular DMSP concentrations. Journal of Phycology, 1998, 34: 486-495
    [34] Okamoto O K, Pinto E, Latorre L R, et al. Antioxidant modulation in response to metal-induced oxidative stress in algal chloroplasts. Archives of Environmental Contamination and Toxicology, 2000, 40: 18-24
    [35] Sunda W, Kieber D J, Kiene R P, et al. An antioxidant function for DMSP and DMS in marine algae. Nature, 2002, 418: 317-320
    [36] Hill R W, White B, Cottrell M, et al. Virus-mediated release of dimethylsulfoniopropionate from marine phytoplankton. Aquatic Microbial Ecology, 1998, 14: 1-6
    [37] Matrai P A, Keller M D. Dimethylsulphide in a large scale coccolithophore bloom in the Gulf of Maine. Continental Shelf Research, 1993, 13: 831-843
    [38] Matrai P A, Keller M D. Total organic sulfur and dimetylsulfoniopropionate in marine phytoplankton: intracellular variations. Marine Biology, 1994, 119: 61-68
    [39] Matrai P A, Vernet M. Dynamics of the vernal bloom in the marginal ice-zone of the Barents Sea: Dimethylsulfide and dimethylsulfoniopropionate budgets. Journal of Geophysical Research 1997, 102: 22965-22979
    [40] Ackman R G, Tocker C S, Mclachlan J M. Occurrance of dimethyl-β-propiothetin in marine phytoplankton. Journal of Fisheries Research Board of Canada, 1996, 23: 357-364
    [41]陈葵,沈颂东. DMSP对大气环境的影响及其对水产动物营养的促进作用.海洋湖沼通报, 2002, 3: 36-45
    [42] Karsten U, Wiencke C, Kirst G O. The effect of light intensity and day-length on theβ-dimethylphoniopropionate (DMSP) content of marine macroalgae from Antarctica. Plant, Cell & Environment, 1990, 13: 989-993
    [43] Van Rijssel M, Gieskes W W C. Temperature, light and the dimethylsulfoniopropionate (DMSP) content of Emiliania huxleyi (Prymnesiophyceae). Journal of Sea Research, 2002, 48: 17-27
    [44] Sheets E B, Rhodes D. Determination of DMSP and other onium compounds in Tetraselmis subcordiformis by plasma desorption mass spectronmetry. In: Kiene R P, Visscher P T, Keller M D, et al., eds. Biological and environmental Chemistry of DMSP and related sulfonium Compounds. New York: Plenum Press, 1996, 55-63
    [45] Variamuthy A, Andreae M A, Iverson R L. Biosynthesis of dimethylsulfide and dimethyl -propionthetin by Hymenomonas carterae in relation to sulfur source and salinity variations. Limnology & Oceanography, 1985, 30: 59-70
    [46] De Sonza M P, Chen Y P, Yoch D C. Dimethylsulfoniopropionate from the marine macroalga ulva curvata: purification and characterization of the enzyme. Planta, 1996, 199: 433-438
    [47] van Alstyne K L, Pelletreau K N, Rosario K. The effects of salinity on dimethylsulfoniopropionate production in the green alga Ulva fenestrate postels et ruprecht (chlorophyta). Bot. Mar. 2003, 49: 350-356
    [48] Iverson R L, Neaehoof F L, Andreae M O. Production of dimethylsulfoniumpropionate and dimethyl sulphide by phytoplankton in estuarine and coastal waters. Limnology & Oceanography, 1989, 34: 53-67
    [49] Cerqueira M A, Pio C A. Production and release of dimethylsulfide from an estuary in Portugal. Atmospheric Environment, 1999, 33: 3355-3366
    [50] Cuhel R L. Influence of light intensity, light quality, temperature and daylength on uptake and assimilation of carbon dioxide and sulfate by lake plankton. Canadian Journal of Fisheries and Aquatic Sciences, 1987, 44: 2118-2132
    [51] Bates T S. Determination of the physiological state of marine phytoplankton by use of radiosulfate incorporation. Journal of Experimental Marine Biology and Ecology, 1981, 51: 219-239
    [52] Karsten U, Wiencke C, Kirst G O. Growth pattern andβ-dimethylphoniopropionate (DMSP) content of green macroalgae at different irradiance. Marine Biology, 1991, 108: 151-155
    [53] Karsten U, Wiencke C, Kirst G O.β-dimethylphoniopropionate (DMSP) accumulation in green macroalgae from polar to temperate regions: interactive effects of light versus salinity and light versus temperature. Polar Biology, 1992, 12: 603-607
    [54]杨和福, Kirst G O, Baumann M,等.紫外辐射对南极棕囊藻细胞DMSP合成和DMS释放率的影响.海洋学报, 1998, 20(5): 101-108
    [55] Keller M D, Kiene R P, Matrai P A. Production of glycine betaine and dimethylphoniopropionate in marine phytoplankton.Ⅱ. N-limited chemostat cultures. Marine Biology, 1999, 135: 249-257
    [56] Michael J B, Anthony J B, Zbigniew S K, et al. Confirmation of iron limitation of phytoplankton photosynthesis in the equatorial Pacific Ocean. Nature, 1996, 383: 508-513
    [57] Martin J H, Coale K H, Johnson K S, et al. Testing the iron hypothesis in ecosystems of the equatorial Pacific Ocean. Nature, 1994, 371: 123-129
    [58] Turner S M, Nightingale P D, Spokes L J, et al. Increased dimethylsulfide concentrations insea water from in situ iron enrichment. Nature, 1996, 383: 513-517
    [59] Behrenfeld M J, Bale A J, Kolber Z S, et al. Confirmation of iron limitation of phytoplankton photosynthesis in the equatorial Pacific Ocean. Nature, 1996, 383: 508-513
    [60] Coale K H, Johnson K S, Fitzwater S E, et al. A massive phytoplankton bloom induced by an ecosystem-scale iron fertilization experiment in the Equatorial Pacific Ocean. Nature, 1996, 383: 495–501
    [61] Levasseur M, Scarratt G M, Michaud S, et al. DMSP and DMS dynamics during a mesoscale iron fertilization experiment in the Northeast Pacific Part I: Temporal and vertical distributions. Deep-Sea ResearchⅡ, 2006, 53: 2353-2369
    [62] Taylor B F. Bacterial transformation of organic sulfur compounds in marine environments. In: Oremland R S, ed. The biogeochemistry of global change: Radiatively active trace gases. New York: Chapman and Hall, 1993. 745-781
    [63] Ledyard K M, Dacey J W H. Microbial cycling of DMSP and DMS in coastal and oligotrophic seawater. Limnology and Oceanography, 1996, 41: 33-40
    [64] Kiene R P, Linn L J. Distribution and turnover of dissolved DMSP and its relationship with bacterial production and dimethylsulfide in the Gulf of Mexico. Limnology and Oceanography, 2000, 45: 849–861
    [65] Wakeham S G, Dacey J W H. Biogeochemical cycling of dimethylsulfide in marine environments. In: Saltzman S, Cooper W J, eds. Biogenic sulfur in the environment. Washington D C: American Chemical Society Symposium Series 393, 1989. 152-166
    [66]杨桂朋,戚佳琳.影响海水中二甲基硫分布的生物因素.海洋科学, 2000, 24(3): 37-40
    [67] Leck C, Larsson U, B?gander L E, et al. Dimethyl sulfide in the Baltic Sea: annual variability in relation to biological activity. Journal of Geophysical Research, 1990, 95: 3353-3363
    [68] Archer S D, Stelfox-Widdecomble C E, Malin G, et al. Is dimethylsulfide production related to microzooplankton herbivory in the southern North Sea? Journal of Plankton Research, 2003, 25: 235-242
    [69] Malin G, Turner S M, Liss P S. Sulfur: The plankton/climate connection. Journal of Phycolpgy, 1992, 28: 590-597
    [70] Malin G, Liss P S, Turner S M. Dimethylsulfide: production and atmospheric consequences. In: Green J C, Leadbeater B S C, eds. The bbaptophyte Algae. Oxford: Clarendon Press, 1994. 303-320
    [71] Nguyen B C, Belviso S, Mihalopoulos N. Dimethylsulfide production during natural phytoplanktonic blooms. Marine Chemistry, 1988, 24: 133-141
    [72]杨桂朋,景伟文,陆小兰.海洋中DMSP的研究进展.中国海洋大学学报, 2004, 34(5): 854-860
    [73] Kiene R P, Bates T S. Biological removal of dimethylsulphide from seawater. Nature, 1990, 345: 702-705
    [74] Zeyer J. Oxdation of dimethylsulfide (DMS) to dimethyl sulfoxide (DMSO) by phototrophic purple bacteria. Applied and Environmental Microbiology, 1987, 53: 2026- 2032
    [75] Wolfe G V, Bates T S. Biological consumption of dimethylsulfide in the marine euphotic Zone: result of radioisotope experiments. In: Oremland R S, ed. The biogeochemistry of global change: Radiatively active trace gases. New York: Chapman and Hall, 1993. 691-703
    [76] Kieber D J, Jiao J F, Kiene R P, et al. Impact of dimethylsulfide photochemistry on methyl sulphur cycling in the equatorial Pacific Ocean. Journal of Geophysical Research, 1996, 101: 3715-3722
    [77] Brimblecombe, P, Shooter D. Photo-oxidation of dimethylsulfide in aqueous solution. Marine Chemistry, 1986, 19: 343-353
    [78]德斯马E K,道森R.海洋有机化学(纪明侯,钱佐国等译).北京:海洋出版社, 1992. 382-414
    [79] Yang G-P, Li C-X, Qi J-L, et al. Photochemical oxidation of dimethylsulfide in seawater. Acta Oceanologica Sinica, 2007, 26 (5): 32-42
    [80] SimóR, Pedrós-AlióC. Role of vertical mixing in controlling the oceanic production of dimethyl sulphide. Nature, 1999, 402(25): 396-399
    [81] SimóR. From cells to globe: approaching the dynamics of DMS(P) in the ocean at multiple scales. Canadian Journal of Fisheries and Aquatic Sciences, 2004, 61: 673-684
    [82] Turner S M, Malin G, Liss P S, et al. The seasonal variation of dimethylsulfide and dimethylsulfoniopropionate concentrations in nearshore waters. Limnology & Oceanography, 1988, 33: 364-375
    [83] Bates T S, Cline J D. The role of the ocean in a regional sulfur cycle. Journal of Geophysical Research, 1985, 90: 9168-9172
    [84] Turner S M, Liss P S. Measurements of various sulphur gases in a coastal marine environment. Journal of Atmospheric Chemistry, 1985, 2: 223-232
    [85] Cline J D, Bates T S. Dimethylsulfide in the equatorial Pacific Ocean: A natural source to the atmosphere. Geophysical Research Letters, 1983, 10: 949-952
    [86] Andreae M O, Racmdonck H. Dimethylsulfide in the surface ocean and the marine atmosphere: A global view. Science, 1983, 221: 744-747
    [87] Liss P S, Malin G, Turner S, et al. Dimethylsulfide and phaeocystis: A review. Journal of Marine Systems, 1994, 5: 41-53
    [88] Turner S M, Malin G, Liss P S. Dimethylsulfide and dimethylsulfoniopropionate in European coastal and shelf waters. In: Saltzman E, Cooper W J, eds. Biogenic Sulfur in the Environment. Washington DC: American Chemical Society, 1989. 183-200
    [89] Dacey J W H, Howse F A, Michaels A F, et al. Temporal variability of dimethylsulfide and dimethylsulfoniopropionate in the Sargasso Sea. Deep-Sea Research I, 1998, 45: 2085-2104
    [90] Andreae M O, Barnard W R. The marine chemistry of dimethylsulfide. Marine Chemistry, 1984, 14: 267- 279
    [91] Locarnini S J P, Turner S M, Liss P S. The distribution of dimethylsulfide, DMS, and dimethylsulfoniopropionate, DSMP, in waters off the Western Coast of Ireland. Continental Shelf Research, 1998, 18(12): 1455-1473
    [92] Yang G-P, Tsunogai S. Biogeochemistry of dimethylsulfide (DMS) and dimethylsulfoniopropionate (DMSP) in the surface microlayer of the western North Pacific. Deep-Sea Research I, 2005, 52(4): 553-567
    [93] Yang G-P, Tsunogai S, Watanabe S. Biogenic sulfur distribution and cycling in the surface microlayer and subsurface water of Funka Bay and its adjacent area. Continental Shelf Research, 2005, 25: 557-570
    [94] Watanabe S, Yamamoto H, Tsunogai S. Dimethylsulfide widely varying in surface water of the eastern North Pacific. Marine Chemistry, 1995, 51: 253–259
    [95] Holligan P M, Turner S M, Liss P S. Measurements of dimethylsulphide in frontal regions. Continental Shelf Research, 1987, 7: 213-224
    [96] Uher G G, Schebeske R G, Barlow D G, et al. Distribution and air-sea gas exchange of dimethylsulfide at the European western continental margin. Marine Chemistry, 2000, 69: 277-300
    [97] Liss P S, Hatton A D, Malin G, et al. Marine sulphur emissions. Philosophical Transactions of the Royal Society B: Biological Science, 1997, 352: 159-169
    [98] Barnard W R, Andreae M O, Iverson R L. Dimethylsulfide and Phaeocystis pouchetii in the southeastern Bering Sea. Continental Shelf Research, 1984, 3: 103-113
    [99] Liss P S, Slater P G. Flux of gases across the air-sea interface. Nature, 1974, 247: 181-184
    [100] Liss P S, Merlivat L. The ocean as a source of atmospheric sulphur compounds. In: Buat-Menard P, ed. The role of air-sea exchange in geochemical cycling. Reidel, Dordrecht, Holland, 1986. 113-127
    [101] Saltzman E S, King D B, Holmen K, et al. Experimental determination of the diffusion coefficient of dimethylsulfide in water. Journal of Geophysical Research 1993, 98(C9): 16481-16486
    [102] Wanninkhof R. Relationship between wind speed and gas exchange over the ocean. Journal of Geophysical Research 1992, 97: 7373-7382
    [103] Erickson D J. A stability dependent theory for air-sea gas exchange. Journal of Geophysical Research, 1993, 98: 8471-8488
    [104] Saltzman E S, Cooper W J. Dimethyl sulfide and hydrogen sulfide in marine air. In: Biogenic Sulfur in the Environment. Washington DC: American Chemistry Society, ACS Symposium Series, 1989. 393: 330-351
    [105] Chen G, Davis D, Kasibhatla P, et al. A photochemical assessment of DMS sea-to-air flux as inferred from PEM-West A and B observations. Journal of Geophysical Research, 1999, 104: 5471-5482
    [106] Davis D, Chen G, Bandy A, et al. Dimethyl sulfide oxidation in the equatorial Pacific:Comparison of model simulations with field observations for DMS, SO2, H2SO4(g), MSA(g), MS, and NSS. Journal of Geophysical Research, 1999, 104: 5765-5784
    [107] Wyngaard J C, Brost R A, Top-down and Bottom-Up diffusion in the convective boundary layer. Journal of the Atmospheric Sciences. 1984, 41: 102-112
    [108] Lenschow D H, Paluch I R, Bandy A R, et al. Use of a mixed-layer model to estimate dimethylsufide flux and application to other trace gas fluxes. Journal of Geophysical Research, 1999, 104(D13): 16275-16295
    [109] Zemmelink H J, Gieskes W W C, Klaassen W, et al. Simultaneous use of relaxed eddy accumulation and gradient flux techniques for the measurement of sea-to-air exchange of dimethyl sulphide. Atmospheric Environment, 2002, 36: 5709-5717
    [110] Kelly T, Kenny D V. Coutinous determination of dimethylsulfide at part-per-trillion concentration in air by atmospheric pressure chemical ionization mass spectrometry. Atmospheric Environment, 1991, 25: 2155-2160
    [111] Huebert B J, Blomquist B W, Hare J E, et al. Measurement of the sea-air DMS flux and transfer velocity using eddy correlation. Geophysical Research letters, 2004, 31: Art. No. L23113
    [112] Andreae M O. The ocean as a source of atmospheric sulfur compounds. In: Buat-Menard P, ed. The role of air-sea exchange in geochemical cycling. Reidel, Dordrecht, Holland, 1986. 331-362
    [113] Bates T S, Cline J D, Gammon R H, et al. Regional and seasonal variations in the flux of oceanic dimethylsulfide to the atmosphere. Journal of Geophysical Research, 1987, 92: 2930-2938
    [114] Staubes R, Georgii H W. Measurement of atmospheric and seawater DMS concentrations in the Atlantic, the Arctic, and the Antarctic region. In: Dimethylsulfide: Oceans, Atmosphere and Climate. Dordrecht: Kluwer Press, 1993. 95-102
    [115] Nguyen B C, Gaudry A, Bonsang B, et al. Reevaluation of the role of dimethyl sulfide in the sulphur budget. Nature. 1978, 275: 637-639
    [116] Bürgermeister S, Zimmermann R L, Georgii HW, et al. On the biogenic origin of dimethylsulfide: Relation between chlorophyll, ATP, organismic DMSP, phytoplankton species and DMS distribution in Atlantic surface water and atmosphere. Journal of Geophysical Research, 1990, 95(D12): 20607-20615
    [117] Erickson D J, Ghan S J, Penner J E. Global ocean-to-atmosphere dimethyl sulfide flux. Journal of Geophysical Research, 1990, 95(D6): 7543-7552
    [118] Tarrasón L, Turner S, Floisand I.. Estimation of seasonal dimethylsulphide fluxes over the North Atlantic Ocean and their contribution to European Pollution Levels. Journal of Geophysical Research, 1995, 100: 11623-1639
    [119] Putaud J P, Nguyen B C. Assessment of dimethylsulfide sea-air exchange rate. Journal of Geophysical Research, 1996, 101: 4403-4411
    [120] Levasseur M, Sharma S, Cantin G. et al. Biogenic sulfur emissions from the Gulf of Saint Lawrence and Assessment of its impact on the Canadian coast. Journal of Geophysical Research, 1997, 102: 28025-28039
    [121] Davison B M, Hewitt C N. Natural sulfur species from the North Atlantic and their contribution to the United Kingdoms sulfur budget. Journal of Geophysical Research, 1992, 97: 2475-2488
    [122] Kouvarakis G, Mihalopoulos N. Seasonal variation of dimethylsulfide in the gas phase and of methanesulfonate and non-sea-salt sulfate in the aerosols phase in the Eastern Mediterranean atmosphere. Atmospheric Environment, 2002, 36: 929-938
    [123] Campolongo F, Saltelli A, Jensen N R, et al. The role of multiphase chemistry in the oxidation of dimethylsulphide (DMS): A latitude dependent analysis. Journal of Atmospheric Chemistry, 1999, 32: 327-356
    [124] Yin F, Grosjean D, Seinfeld J H. Photooxidation of dimethyl sulfide and dimethyl disulfide I: Mechanism development. Journal of Atmospheric Chemistry, 1990, 11(4): 309- 364
    [125] Yin F, Grosjean D, Flagan R C, et al. Photooxidation of dimethyl sulfide and dimethyl disulfide II: Mechanism evaluation. Journal of Atmospheric Chemistry, 1990, 11(4): 365- 399
    [126] Koga S, Tanaka H. Simulation of seasonal variations of sulfur compounds in the remote marine atmosphere. Journal of Atmospheric Chemistry, 1996, 23: 163-192
    [127] Allan B J, Carslaw N, Coe H, et al. Observations of the nitrate radical in the marine boundary layer. Journal of Atmospheric Chemistry, 1999, 33(2): 129-154
    [128] Berresheim H, Eisele F L. Sulfur chemistry in the Antarctic tropospheric environment: An overview of project SCATE. Journal of Geophysical Research 1998, 103(D1): 1619-1627
    [129] Ayers G P, Cainey J M, Granek H, et al. Dimethylsulfide oxidation and the ratio of methanesulfonate to non-sea-salt sulfate in the marine aerosol. Journal of Atmospheric Chemistry, 1996, 25: 307-325
    [130] Barone S B, Turnipseed A A, Ravishankara A R. Role of adducts in the atmospheric oxidation of dimethylsulphide. Faraday Discussion, 1995, 100: 39-54
    [131] Shon Z-H, Davis D, Chen G, et al. Evaluation of the DMS flux and its conversion to SO2 over the southern ocean. Atmospheric Environment, 2001, 35: 159-172
    [132] Bandy A R, Scott D L, Blomquist B W, et al. Low yields of SO2 from dimethyl sulfide oxidation in the marine boundary layer. Geophysical Research Letters, 1992, 19: 1125-1127
    [133] Bandy A R, Thornton D C, Blomquist B W, et al. Chemistry of dimethyl sulfide in the equatorial Pacific atmosphere. Geophysical Research Letters, 1996, 23: 741-744
    [134] Huebert B J, Howell S G, Laj P, et al. Observations of the atmospheric sulfur cycle on SAGA-3. Journal of Geophysical Research, 1993, 98: 16985-16995
    [135] Putaud J P, Mihalopoulos N, Nguyen B C., et al. Seasonal variation of atmospheric sulfur dioxide and dimethylsulfide at Amsterdam Island in the Southern Indian Ocean. Journal ofAtmospheric Chemistry, 1992, 15: 117-131
    [136] Ayers G P, Cainey J M, Gillett R W, et al. Sulfur dioxide and dimethyl sulfide in marine air at Cape Grim, Tasmania. Tellus B, 1997, 49: 292-299
    [137] Berresheim H, Eisele F L, Tanner D J, et al. Atmospheric sulfur chemistry and CCN concentrations over the Northeastern Pacific coast. Journal of Geophysical Research, 1993, 98: 12701-12711
    [138] Putaud J P, Davison B M, Watts S F, et al. Dimethylsulfide and its oxidation products at two sites in Brittany (France). Atmospheric Environment, 1999, 33: 647-659
    [139] Andreae M O, Elbert W, Demora S J. Biogenic sulfur emissions and aerosols over the Tropical South AtlanticⅢ: Atmospheric dimethylsulfide, aerosols and cloud condensation nuclei. Journal of Geophysical Research, 1995, 100: 11336-11356
    [140] Covert D S, Kapustin V N, Bates T S, et al. Physical properties of marine boundary layer aerosol particles of the mid-Pacific in relation to sources and meteorological transport. Journal of Geophysical Research, 1996, 101: 6919-6930
    [141] Bates T S, Chlarson R J, Gammon R H. Evidence for the climatic role of marine biogenic sulphur. Nature, 1987, 329: 319-321
    [142] Ayers G P, Ivey J P, Gillett RW. Coherence between seasonal cycles of dimethylsulphide, methanesulphonate and sulfate in marine air. Nature, 1991, 349: 404-406
    [143] Ayers G P, Gillett R W. DMS and its oxidation products in the remote marine atmosphere: implications for climate and atmospheric chemistry. Journal of Sea Research, 2000, 43: 275-286
    [144] Sciare J, Baboukas E., Kanakidou M. Spatial and temporal variability of atmospheric sulfur-containing gases and particles during the Albatross campaign. Journal of Geophysical Research, 2000, 105(D11): 14433-14448
    [145] Baboukas E, Sciare J, Mihalopouslos N. Interannual variability of methanesulfonate in rainwater at Amsterdam Island (Southern Indian Ocean). Atmospheric Environment, 2002, 36: 5131-5139
    [146] Gondwe M, Krol M, Gieskes W, et al. The contribution of ocean-leaving DMS to the global atmosphere burdens of DMS, MSA, SO2 and nss-SO42-. Global Biogeochemical Cycles, 2003, 17: 1-18
    [147] Sherwood K, Craig I. Demise of "The CLAW" Greatly Exaggerated. CO2 Science Magzine, 2003, 6(1): 1
    [148] Bates T S, Quinn P K. Dimethylsulphide (DMS) in the equatorial Pacific Ocean (1982 to 1996): Evidence of a climate feedback? Geophysical Research Letters, 1997, 24(8): 861–864
    [149] Nguyen, B C, Mihalopoulos N, Putaud J P, et al. Covariations in oceanic dimethylsulfide, its oxidation products and rain acidity at Amsterdam Island in the southern Indian Ocean. Journal of Atmospheric Chemistry, 1992, 15: 39-53
    [150] Andreae M O, Crutzen P J. Atmospheric aerosols: biogeochemical sources and role in atmospheric chemistry. Science, 1997, 276: 1052-1058
    [151] Gabric A, Gregg W, Najjar R, et al. Modeling the biogeochemical cycle of dimethylsulfide in the upper ocean: A review. Chemosphere Global Change Science, 2001, 3(4): 377-392
    [152] Hu M, Tang X-Y, Li J-L. Measurement of dimethylsulfide in the Bo Sea and Gulf of Jiaozhou. Pure & Applied Chemistry, 1995, 67: 1481-1485
    [153]马奇菊,胡敏,田旭东,等.青岛近岸海域二甲基硫排放和大气中二甲基硫浓度变化.环境科学, 2004, 25(1): 21-24
    [154]马奇菊.中国近海二甲基硫排放及其对硫酸盐气溶胶的贡献: [博士学位论文].北京:北京大学, 2004
    [155]胡敏,唐孝炎,李金龙,等.胶州湾海水中二甲基硫的测定.环境科学学报, 1997, 17(1): 110-115
    [156]杜晓明,刘厚田,柳若安,等.厦门近海海域二甲基硫通量的研究.环境科学研究, 1998, 11: 34-36
    [157]金晓英,袁东星,陈猛,等.春季厦门海域表层海水中二甲基硫的含量分布.海洋环境科学, 2004, 23(2): 12-15
    [158] Uzuka N, Watanabe S, Tsunogai S. Dimethylsulfide in coastal zone of the East China Sea. Journal of Oceanography, 1996, 52: 313-321
    [159]胡敏,任久长,蒋林,等.前沟藻(Amphidiniumhoefleri)和角刺藻(Chaetocerosgracilis)二甲基硫生产的实验研究.环境科学, 1998, 7: 6-9
    [160]蒋林,胡敏,任久长,等. Cd对前沟藻(Amphidiniumhoefleri)生产二甲基硫(DMS)影响的实验研究.环境科学, 1999, 3: 18-20
    [161]李炜,焦念志.环境因子对三种常见微藻细胞中二甲基硫丙酸含量影响的初步研究.海域与湖沼, 1999, 30(6): 635-639
    [162]王艳,齐雨藻,沈萍萍,等.温度和盐度对球形棕囊藻细胞DMSP产量的影响.水生生物学报, 2003, 27(4): 367-371
    [163] Gao Y, Arimoto R, Duce R A, et al. Atmospheric non-sea-salt sulfate, nitrate and methanesulfonate over the China Sea. Journal of Geophysical Research, 1996, 101(D7): 12601-12611
    [164] 2007年中国海洋环境质量公报.北京:国家海洋局. 2008
    [165]周名江,朱明远,张经.中国赤潮的发展趋势和研究现状.生命科学, 2001, 13(2): 53-59
    [166]齐雨藻,钱宏丹,谢健,等.中国海洋富营养化与赤潮问题.见:中国有害赤潮发展趋势与对策.北京:香山科学第163次学术讨论会会议文集,2001
    [167]张远航,邵可声,唐孝炎,等.中国城市光化学烟雾污染研究.北京大学学报(自然科学版), 1998, 34(2): 392-400
    [168]环境保护部,国家统计局,国家发展和改革委员会. 2008年上半年各省区市主要污染物排放量指标公报. 2008年9月
    [169]孙湘平.中国近海区域海洋.北京:海洋出版社, 2006
    [170] SimóR, Grimalt J O, Albaigles J. Dissolved dimethylsulphide, dimethyl-sulphoniopropionate and dimethylsulfoxide in western Mediterranean waters. Deep-Sea Research II, 1997, 44: 929-950
    [171] Malin G, Turner S M, Liss P S, et al. Dimethylsulphide and dimethylsul- phoniopropionate in the northeast Atlantic during the summer coccolithophore bloom. Deep-Sea Research, 1993, 40: 1487-1508
    [172] Brown C W, Yoder J A. Coccolithophore bloom in the global ocean. Journal of Geophysical Research, 1994, 99: 7467-7482
    [173] Brody S S, Chaney J E. Flame photometry detector with improved specificity to sulfur and phosphorus. Journal of Gas Chromatography, 1966, 4: 42
    [174] Thornton D C, Bandy A R, Ridgeway R G, et al. Determination of part-per-trillion levels of atmospheric dimethyl sulfide by isotope dilution gas chromatography-mass spectrometry. Journal of Atmospheric Chemistry, 1990, 11(4): 299-308
    [175] Ridgeway J R G, Bandy A R, Thornton D C. Determination of aqueous dimethylsulfide using isotope dilution gas chromatography-mass spectrometry. Marine Chemistry, 1991, 33: 321-334
    [176] Rasmussen R A. Emission of biogenic hydrogen sulfide. Tellus, 1974, 1(2): 254-260
    [177] Przyjazny A, Janicki W, Chrzanowskl W. Headspace gas chromatographic determination of distribution coefficients of selected organosulpher compounds and their dependence on some parameters. Journal of Chromatography, 1983, 208: 249-260
    [178] Steinke M, Malin G , Turner S M, et al. Determinations of dimethylsulphoniopropionate (DMSP) lyase activity using headspace analysis of dimethylsulphide (DMS). Journal of Sea Research, 2000, 43: 233-244
    [179]王永华,焦念志.顶空气相色谱法测定海水二甲基硫和浮游植物细胞二甲基硫丙酸的研究.海洋与湖沼, 1996, 27(1): 46-49
    [180] Andreae M O, Barnard W R. Determination of trace quantities of dimethylsulfide in aqueous solutions. Analytical Chemistry, 1983, 55: 608-612
    [181] Leck C, Lars E, B?gander L E. Determination of reduced sulfur compounds in aqueous solutions using gas chromatography flame photometric detection. Analytical Chemistry, 1988, 60(17): 1680-1683
    [182]胡敏.二甲基硫测定方法及其海气通量的研究: [博士学位论文].北京:北京大学1993
    [183]杨桂朋,康志强,景伟文,等.海水中痕量DMS和DMSP的分析方法研究.海洋与湖沼, 2007, 38: 322-328
    [184] Steudler P A, Kijowski W. Determination of reduced sulfur gases in air by solid adsorbentpreconcentration and gas chromatography. Analytical Chemistry, 1984, 56: 1432-1433
    [185] Deprez P P, Franzmann P D, Burton H R. Determination of reduced sulfur gases in Antarctic lakes and seawater by gas chromatography after solid adsorbent preconcentration. Journal of Chromatography, 1986, 362: 9-21
    [186]陈猛,李和阳,袁东星,等.微波辅助-顶空固相微萃取-气相色谱-脉冲火焰光度法测定海水中二甲基硫和藻体中二甲基巯基丙酸.环境化学, 2002, 21(2): 183-188
    [187]金晓英,袁东星,陈猛.海水样品中二甲基硫的气相色谱测定.厦门大学学报(自然科学版), 2004, 43(2): 221-224
    [188] Yang G-P, Jing W-W, Kang Z-Q, et al. Spatial variations of dimethylsulfide and dimethylsulfoniopropionate in the surface microlayer and in the subsurface waters of the South China Sea during springtime. Marine Environmental Research, 2008, 65: 85-97
    [189] Smith G C, Clark T, Knutsen L, et al. Methodology for analyzing dimethylsulfide and dimethylsulfoniopropionate in seawater using deuterated internal standards. Analytical Chemistry, 1999, 71: 5563-5568
    [190] Zemmelink H J, Gieskes W W C, Holland P M, et al. Preservation of atmospheric dimethylsulphide samples on Tenax in sea-to-air flux measurements. Atmospheric Environment, 2002, 36: 911-916
    [191] Dacey J W H, Blough N V. Hydroxide decomposition of DMSP to form DMS. Geophysical Research Letters, 1987, 14: 1246-1249
    [192] Kiene R P. Dynamics of dimethylsulfide and dimethylsulfoniopropionate in oceanic water samples. Marine Chemistry, 1992, 37: 29-52
    [193] SimóR, Grimalt J O, Albaigés J. Sequential method for the field determination of nanomolar concentrations of dimethylsulsulfoxide in natural waters. Analytical Chemistry, 1996, 68: 1493-1496
    [194] Wolfe G V, Kiene R P. Effects of methylated organic and inorganic substrates on microbial consumption of dimethylsulfide in eatuarine waters. Applied Environmental Microbiology, 1993, 59: 2723-2726
    [195] Wolfe G V, Kiene R P. Radioisotope and chemical inhibitor measurements of dimethylsulfide consumption rates and kinetics in estuarine waters. Marine Ecology Process Series, 1993, 99: 261-269
    [196] SimóR, Pedrós-AlióC, Malin G, et al. Biological turnover of DMS, DMSP and DMSO in controlling open-sea waters. Marine Ecology Progress Series, 2000, 203: 1-11
    [197] Kiene R P. Dimethyl sulfide production from dimethylsulfoniopropionate in coastal seawater and bacterial cultures. Applied Environmental Microbiology, 1990, 56: 3292-3297
    [198] SimóR, Grimalt J O, Albaiges J. Occurrence and transformation of dissolved dimethylsulfur species in stratified seawater (western Mediterranean Sea). Marine Ecology Progress Series, 1995, 127: 291-299
    [199]邹景忠,董丽萍,秦保平.富营养化和赤潮问题的初步研究.海洋环境科学, 1983, 2(2): 41-54
    [200]李宝华,傅克村,荒川久辛.南黄海叶绿素a与初级生产力之间的相关分析.黄渤海海洋, 1998, 16(2): 48-52
    [201] Parsons T R, Maita Y, Lalli C M. A Manual for Chemical and Biological Methods for Seawater Analysis. Oxford: Pergamon Press, 1984. 23-58
    [202] Cooper D J, Saltzman E S. Measurements of atmospheric dimethylsulfide and carbon disulfide in the western Atlantic boundary layer. Journal of Atmospheric Chemistry, 1991, 12: 153 -168
    [203]田旭东.中国近海大气和海水中挥发性硫化物的测定: [硕士学位论文].北京:北京大学, 2004
    [204] Wardencki W. Problems with the determination of environmental sulphur compounds by gas chromatography. Journal of Chromatography, 1998, 793: 1-19
    [205]姚波.黄海和南海二甲基硫海-气通量研究. [硕士学位论文].北京:北京大学, 2006
    [206] Johnson J E, Bates T S. Atmospheric measurements of carbonylsulfide, dimethylsulfide and carbondisulfide using electron capture sulfur dector. Journal of Geophysical Research, 1993, 98: 23411-23421
    [207] Bates T S, Jonhson J E, Quinn P K, et al. The biogeochemical sulfur cycle in the marine boundary layer over the northeast Pacific Ocean. Journal of Geophysical Research, 1990, 92: 13245-13262
    [208] Kittler P, Swan S, Ivey J. An indication oxidant scrubber for the measurement of atmospheric dimethylsulphide. Atmospheric Environment, 1992, 26(14): 2661-2664
    [209] Person C, Leck C. Determination of reduced sulfur compounds in the atmosphere using a cotton scrubber for oxidation removal and gas chromatography with flame photometric detection. Analytic Chemistry, 1994, 66: 983-987
    [210]田旭东,胡敏,马奇菊.青岛环境大气和海洋表层海水中挥发性硫化物的测定.环境科学学报, 2005, 25(1): 30-33
    [211] Inomata Y, Matsunaga K, Murai Y. Simultaneous measurement of volatile sulfur compounds using ascorbic acid for oxidant removal and gas chromatography-flame photometric detection. Journal of Chromatography A, 1999, 864: 111-119
    [212] Su J-L. Circulation dynamics of the China seas north of 18oN. In: Robinson A R, Brink K H, eds. the Sea. New York: John Wiley & Sons Inc., 1998. vol. 11, 483-505
    [213] Lee H-J, Jung K-T, Foreman, M G G, et al. A three-dimensional mixed finite-difference Galerkin function model for the oceanic circulation in the Yellow Sea and the East China Sea. Continental Shelf Research, 2000, 20(8): 863-895
    [214] Liu K-K, Peng T-H, Shaw F-K, et al. Circulation and biogeochemical processes in the East China Sea and the vicinity of Taiwan: An overview and a brief synthesis. Deep-Sea ResearchⅡ, 2003, 50: 1055-1064
    [215] Zhang J. Nutrient elements in large Chinese estuaries. Continental Shelf Research, 1996, 16: 1023-1045
    [216]王保栋.长江冲淡水的扩展及其营养盐的输送.黄渤海海洋, 1998, 16(2): 41-47
    [217]徐韧,洪君超,王桂兰,等.长江口及其邻近海域的赤潮现象.海洋通报, 1994, 13(5): 25-29
    [218]曹欣中.东海浙江沿岸上升流季节变化的初步研究.水产学报, 1986, 10(1): 51-56
    [219]许建平.冬季浙江沿岸上升流水团结构的初步分析.东海海洋. 1986, 4(3): 18-24
    [220]鲁北纬,王荣,王文琪.春季东海不同海域叶绿素a的分布特征.海洋科学, 1997, 5: 53-55
    [221] Michaud, S, Levasseur M, Cantin G. Seasonal variations in dimethylsulfoniopropionate and dimethylsulfide concentrations in relation to the plankton community in the St. Lawrence Estuary. Estuarine, Coastal and Shelf Science, 2007, 71: 741-750
    [222] Kumar S S, Chinchkar U, Nair S, et al. Seasonal dimethylsulfoniopropionate (DMSP) in Dona Paula bay. Estuarine, Coastal and Shelf Science, 2009, 81: 301-310
    [223] Shenoy D M, Patil J S. Temporal variations in dimethylsulfoniopropionate and dimethylsulfide in the Zuari estuary, Goa (India). Marine Environmental Research, 2003, 56: 387-402
    [224] Gong G-C, Wen Y-H, Wang B-W, et al. Seasonal variation of chlorophyll a concentration, primary production and environmental conditions in the subtropical East China Sea. Deep-Sea Research II , 2003, 50: 1219-1236n
    [225] Wang B-D, Wang X-L, Zhao R. Nutrient conditions in the Yellow Sea and the East China Sea. Estuarine, Coastal and Shelf Science, 2003, 58: 127-136
    [226] Hur H-B, Jacobs G A, Teague W J. Monthly variation of water masses in the Yellow and East China Seas, November 6, 1998. Journal of Oceanography, 1999, 55: 171-184
    [227] SimóR, Dachs J. Global ocean emission of dimethylsulfide predicted from the biogeophysical data. Global Biogeochemical Cycles, 2002, 16(4): 1078.
    [228] Yang G-P, Levasseur M, Michaud S, et al. Biogeochemistry of dimethylsulfide (DMS) and dimethylsulfoniopropionate (DMSP) in the surface microlayer and subsurface water of the western North Atlantic during spring. Marine Chemistry, 2005, 96 (3-4): 315-329
    [229] Keller M D, Bellows W K, Guillard R R L. Dimethyl sulfide production in marine phytoplankton. In: Saltzman S, Cooper W J, eds. Biogenic sulfur in the environment. Washington D C: American Chemical Society Symposium Series 393. 167-182
    [230] Yang G-P, Tsunogai S, Watanabe S. Biogeochemistry of dimethylsulfoniopropionate (DMSP) in the surface microlayer and subsurface seawater of Funka Bay, Japan. Journal of Oceanography, 2005, 61: 69-78
    [231] Jiao N-Z, Zhang Y, Zeng Y-H, et al. Distinct distribution pattern of abundance and diversity of aerobic anoxygenic phototrophic bacteria in the global ocean. Environmental Microbiology, 2007, 9(12): 3091-3099
    [232] Turner S M, Nightingale P D, Broadgate W, et al. The distribution of dimethylsulfide and dimethylsulphoniopropionate in Antarctic waters and sea ice. Deep-Sea Research I, 1995, 42: 1059-1080
    [233] Ditullio G R, Smith W O. Relationship between dimethylsulfide and phytoplankton pigment concentrations in the Ross Sea, Antarctica. Deep-Sea ResearchⅠ, 1995, 42(6): 873-892
    [234]谢文玲.东海典型海域浮游硅藻群落结构与动态研究, [博士学位论文].厦门:厦门大学, 2006
    [235]李云.李道季,唐静亮,等.长江口及毗邻海域浮游植物的分布与变化.环境科学, 2007, 28(4): 719-729
    [236]王保栋.黄海和东海营养盐分布及其对浮游植物的限制.应用生态学报, 2003, 14(7): 1122-1126
    [237] SimóR, Archer S D, Pedrós-AlióC, et al. Coupled dynamics of dimethylsulfoniopropionate and dimethylsulfide cycling and the microbial food web in surface waters of the North Atlantic. Limnology and Oceanography, 2002, 47: 53-61
    [238] Hu M, Liu L-L, Ma Q-J, et al. Spatial-temporal distribution of dimethylsulfide in the subtropical Pearl River Estuary and adjacent waters. Continental Shelf Research, 2005, 25: 1996-2007
    [239] Morell J M, Capella J, Mercado A, et al. Nitrousoxide fluxes in Caribbean and tropical Atlantic waters: Evidence for near surface production. Marine Chemistry, 2001, 74: 131-143
    [240] Hatakeyama S, Takami A, Wang W, Tang D-G. Aerial observation of air pollutants and aerosols over Bo Hai, China. Atmospheric Environment, 2005, 39: 5893-5898
    [241]苏育嵩,苏洁.渤、黄海夏季低温带及其形成机制初析.海洋学报, 1996, 18(1): 13-20
    [242]江蓓洁,鲍献文,吴德星,等.北黄海冷水团温、盐多年变化特征及影响因素.海洋学报, 2007, 29(4): 1-10
    [243]王保栋,刘峰,战闰.黄海生源要素的生物地球化学研究评述.黄渤海海洋, 2001, 19(2): 99-106
    [244]胡好国,万振文,袁立业.南黄海浮游植物季节性变化的数值模拟与影响因子分析.海洋学报, 2004, 26(6): 74-87
    [245]俞建銮,李瑞香.渤海、黄海浮游植物生态的研究.黄渤海海洋,1993, 11(3): 52-59
    [246]林金美,林加涵.南黄海浮游甲藻的生态研究.生态学报, 1997, 17(3): 251-257
    [247]董婧,刘海映,毕远溥,等.黄海北部近岸的浮游甲藻生态.海洋水产研究, 2002, 23(4): 46-50
    [248] Andreae M O, Barnard W R, Ammons J M. The biological production of dimethylsulfide in the ocean and its role in the global atmospheric sulphur budget. Ecological Bulletins, 1983, 35: 167-177
    [249] Besiktepe S K W, Tang M V, SimóR. Dimethylated sulfur compounds in seawater, sestonand mesozooplankton in the seas around Turkey. Deep-Sea ResearchΙ, 2004, 51: 1179-1197
    [250]王俊.黄海秋、冬季浮游植物的调查研究.海洋水产研究, 2003, 24(1): 15-23
    [251] Andreae T W, Andreae M O, Schebeske G. Biogenic sulfur emissions and aerosols over the tropical South AtlanticⅠ: Dimethylsulfide in seawater and in the atmospheric boundary layer. Journal of Geophysical Research, 1994, 99: 22819- 22829
    [252] Sciare J, Baboukas E, Mihalopoulos N. Short-term variability of atmospheric DMS and its oxidation products at Amsterdam Island during summer time. Journal of Atmospheric Chemistry, 2001, 39(3): 281-302
    [253] Jensen N R, Hjorth J, Skov H, et al. Products and mechanism of the gas-phase reaction of NO3 with CH3SCH3, CD3SCD3, CH3SH, and CH3SSCH3. Journal of Atmospheric Chemistry, 1992, 14: 95-108
    [254] Kouvarakis G, Bardouki H, Mihalopoulos N. Sulfur budget above the Easteran Mediteranean: Relative contribution of anthropogenic and biogenic sources. Tellus B, 2002, 54: 201-212
    [255] Fitzgerald J W. Marine aerosol: A review. Atmospheric Environment, 1990, 25(3-4): 533-545
    [256] Mukai H, Yokouchi Y, Suzuki M. Seasonal variation of methanesulfonic acid in the atmosphere over the Oki Islands in the Sea of Japan. Atmospheric Environment, 1995, 29: 1637-1648
    [257] Nakamura T, Matsumoto K, Uematsu M. Chemical characteristics of aerosols transported from Asia to the East China: An evaluation of anthropogenic combined nitrogen deposition in autumn. Atmospheric Environment, 2005, 39: 1749-1758
    [258] Kim Y-P, Lee J-H, Baik N-J, et al. Summertime characteristics of aerosol composition at Cheju Island, Korea. Atmospheric Environment, 1998, 32: 3905-3915
    [259] Lee G-W, Kahng S-H, Oh J-R, et al. Biogenic emission of dimethylsulfide from a highly eutrophicated coastal region, Masan Bay, South Korea. Atmospheric Environment, 2004, 38: 2927-2937
    [260] Savoie D L, Prospero J M. Comparison of oceanic and continental sources of non-sea-salt sulfate over the Pacific Ocean. Nature, 1989, 39: 685-687
    [261] Savoie D L, Prospero J M, Saltzman E S. Nitrate, non-sea-salt sulfate, and methanesulfonate over the Pacific Ocean. In: Riley J P, Chester R, Duce R A, eds. Chemical Oceanography. San Diego: Academic Press, 1989. vol. 10, 220-250
    [262] Bates T S, Calhoun J A, Quinn P K. Variations in the methanesulfonate to sulfate molar ratio in submicrometer marine aerosol particles over the South Pacific Ocean. Journal of Geophysical Research, 1992, 97: 9859-9865
    [263] Savoie D L, Prospero J M, Arimoto R, et al. Non-sea-salt sulfate and methanesulfonate at American Samoa. Journal of Geophysical Research, 1994, 99: 3587-3596
    [264] Mihalopoulos N, Stephanou E, Kanakiou M, et al. Tropospheric aerosol ionic compositionabove the Eastern Mediterranean Area. Tellus B, 1997, 49: 314-326
    [265] Ganor E, Foner H A, Bingemer H G, Udisti R, et al. Biogenic sulphate generation in the Mediterranean Sea and its contribution to the sulphate anomaly in the aerosol over Israel and the Eastern Mediterranean. Atmospheric Environment, 2000, 34: 3453-3462
    [266] Kerminen V M, Hillamo R E, Wexler A S. Process controlling the methanesulfonate to non-sea-salt sulfate in the marine environment. Journal of Aerosol Science, 1998, 29: 247-248
    [267] Liss P S, Duce R A. The Sea Surface and Global Change. Cambridge: Cambridge University Press, 1997
    [268]霍恩R A,海洋化学(厦门大学海洋系海洋化学教研室译).北京:科学出版社, 1972. 200-229
    [269] Carlson D J. Surface microlayer phenolic enrichments indicate Sea Surface Slicks. Nature, 1982, 296: 426-429
    [270] Carlson D J. Dissolved organic materials in surface microlayers: Temporal and spatial variability and relation to sea state. Limnology & Oceanography, 1983, 28: 415-431
    [271] Carlson D J, Canter J L, Cullen J J. Description of and results from a new surface microlayer sampling device, Deep-Sea Research, 1988, 35: 1205-1213
    [272]于志刚,张正斌,刘莲生.海洋微表层化学研究进展.海洋环境科学, 2000, 19(3): 75-80
    [273] Liss P S. Chemistry of the sea-surface microlayer. In: Riley J P, Skirrow G, eds. Chemical Oceanography. New York: Academic Press, 1975. 193-243
    [274] Garrett W D. Collection of slick-forming materials from the sea surface. Limnology and Oceanography, 1965, 10: 602-605
    [275] Harvey G W. Microlayer collection from the sea surface: A new method and initial results. Limnology and Oceanography, 1966, 11: 608-613
    [276]丁海兵,刘效兰.海洋微表层取样方法研究.化工时刊, 1999, 4: 32-34
    [277]张正斌,杨桂朋,刘莲生.物质海-气通量计算的新建议.科学通报, 1997, 42: 943-947
    [278] Yang G-P, Watanabe S, Tsunogai S. Distribution and cycling of dimethylsulfide in surface microlayer and subsurface seawater. Marine Chemistry, 2001, 76: 137-153
    [279] Zhang J, Chen S-Z, Yu Z-G. Factors influencing changes in rain water composition from urban versus remote regions of the Yellow Sea. Journal of Geophysical Research, 1999, 104: 1631-1644
    [280]徐宗军.大气氮沉降对黄海和南海春季浮游植物群落和海洋初级生产力的影响, [博士学位论文].青岛:中国海洋大学, 2007
    [281] Moret I, Andrea G, Piazza R, et al. The seasonal variation of dimethyl sulphide and carbon disulphide in surface waters of the Venice lagoon. Marine Chemistry, 2000, 71: 283-295
    [282] Malin G, Turner S M, Liss P S, et al. Dimethylsuphide and dimethyl sulphoniopronate in the Northest Atlantic during the summer coccolithophore bloom. Deep-Sea Research I, 1993, 40:1487-1508
    [283] Zemmelink H J, Houghton L, Sievert S M, et al. Gradients in dimethylsulfide, dimethylsulfoniopropionate, dimethylsulfoxide and bacteria near the sea surface. Marine Ecology Process Series, 2005, 295: 33-42
    [284] Adamson A W. Physical Chemistry of Surfaces. New York: Wiley, 3rd, 1976. 698
    [285] Calace N, Catrambone T, Petronio B M, et al. Fulvic acid in microlayer waters of the Gerlache Inlet Sea (Antarctica): Their distribution in dissolved and particulate phases. Water Research, 2007, 41: 152-158
    [286] Walker C F, Harvey M J, Bury S J, et al. Biological and physical controls on dissolved dimethylsulfide over the north-eastern continental shelf of New Zealand. Journal of Sea Research, 2000, 43: 253-264
    [287] Shenoy D M, Paul J T, Gauns M, et al. Spatial variations of DMS, DMSP and phytoplankton in the Bay of Bengal during the summer monsoon 2001. Marine Environmental Research, 2006, 62: 83-97
    [288] Andreae M O, Andreae T W, Meyerdierks D, et al. Marine sulfur cycling and the atmospheric aerosol over the springtime North Atlantic. Chemosphere, 2003, 52: 1321-1343
    [289] Scarratt M G M, Levasseur S, Schultes S, et al. Production and consumption of dimethylsulfide(DMS) in North Atlantic waters. Marine Ecology Process Series, 2000, 204: 13-26
    [290] Kwint R L J, Quist P, Hansen T A, et al. Turnover of dimethylsulfoniopropionate and dimethylsulfide in the marine environment: A mesocosm experiment. Marine Ecology Process Series, 1996, 145: 223-232
    [291] Hardy J T, Apts C W. The sea surface microlayer: phytoneuston productivity and effects of atmospheric particulate matter. Marine Biology, 1984, 82: 293-300
    [292] Garabetian F, Romano J C, Paul R, et al. Organic matter composition and pollutant enrichment of sea surface microlayer inside and outside slicks. Marine Envitomental Research, 1993, 35: 323-339
    [293]景伟文.海水微表层和次表层中DMS和DMSP的生物地球化学研究, [博士学位论文].青岛:中国海洋大学, 2006
    [294] Stefels J, Van Boekel W H M. Production of DMS from dissolved DMSP in axenic cultures of the marine phytoplankton species Phaeocystis sp. Marine Ecology Process Series, 1995, 97: 11-18
    [295] Wolfe G V, Levasseur M, Cantin G, et al. Microbial consumption and production of dimethyl sulfide in the Labrador Sea. Aquatic Microbial Ecology, 1999, 18: 197-205
    [296] Hatton A D. Influence of photochemistry on the marine biogeochemical cycle of dimethylsulfide in the northern North Sea. Deep-Sea ResearchⅡ, 2002, 49: 3039-3052
    [297] Deal C J, Kieber D J, Toole D A, et al. Dimethylsulfide photolysis rates and apparent quantum yields in Bering Sea seawater. Continental Shelf Research, 2005, 25: 1825-1835

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700