用户名: 密码: 验证码:
中国黄土高原土—红粘土纳米矿物研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中国黄土高原的风尘序列包括第四纪黄土-古土壤序列和晚第三纪红粘土序列,该套沉积是全球气候变化最好的陆相记录之一。从上个世纪五十年代开始,中国黄土就吸引了大批中外第四纪地质学家和气候学家。他们对黄土的成因、形成时代和蕴含的古气候信息进行广泛深入的研究,从而将中国的黄土推向了全球古气候研究的前沿。本文以高分辨电镜为主要研究手段,结合粉晶x射线衍射、土壤化学分析等方法,从纳米尺度对黄土高原风尘序列中成土强磁性矿物种类、磁性矿物粒径、磁性矿物存在形式和演化以及成壤过程中新生的纳米非磁性矿物种类及其古气候意义进行了深入系统的研究,并探讨了黄土磁化率的古气候本质以及在红粘土中的适用性。论文在以下方面取得了新的进展和认识:
     磁铁矿、磁赤铁矿和赤铁矿是黄土-红粘土的磁信号载体,成土强磁性矿物主要为磁赤铁矿而不完全为磁铁矿,这些成土磁赤铁矿是由成土磁铁矿低温氧化而来;亚微米的强磁性颗粒为具有纳米多孔超微观结构的复合磁性颗粒,主要由纳米磁赤铁矿和磁铁矿构成。
     黄土和古土壤中磁性矿物的粒径和磁化率载体是显著不同的,黄土以粉尘粗颗粒磁性矿物为主,50%左右的磁化率由风尘磁性矿物携带,而古土壤磁性颗粒以成壤新生亚微米-纳米颗粒为主,70%左右的磁化率由成土纳米磁性矿物携带;实验同时表明,CBD实验不仅能完全溶解成土磁性颗粒,而且能够部分溶解风尘磁性颗粒。
     黄土高原黄土、古土壤和红粘土的磁性矿物种类没有差别,但其中的磁性矿物相对含量差别显著。黄土磁性矿物以风尘磁铁矿和赤铁矿为主,少量成土磁赤铁矿和针铁矿。古土壤磁性矿物以成土磁赤铁矿和磁铁矿为主,风尘磁铁矿、成土赤铁矿、针铁矿次之。红粘土磁性矿物以风尘磁铁矿和成土赤铁矿为主,成土磁赤铁矿次之。
     黄土、古土壤和红粘土中磁性矿物以包裹磁性颗粒、黏附磁性颗粒和独立磁性颗粒三种主要方式存在,独立磁性颗粒为磁性矿物最主要的赋存形式。根据磁性矿物种类和微观结构,独立磁性颗粒可以分为单一物相和复合颗粒两大组合形式,以及磁铁矿核-赤铁矿边、磁赤铁矿核-赤铁矿边的不同微结构。黄土、古土壤和红粘土磁性矿物存在形式和微结构的差别,是磁铁矿粒径以及粉尘沉积后成壤阶段古气候性质的差异所致。
     黄土-红粘土序列磁化率与生物、生物活动密切相关。黄土磁化率古气候意义在红粘土中同样适用,其古气候意义不仅仅是成壤强度指标,更确切地说是成壤强度控制因素,即生物地球化学强度的指标。风尘序列磁化率与古气候密切联系的媒介是生物,二者通过下列途径联系:古气候影响生物产率和生物活动强度,生物产率、生物活动强度和古气候影响黄土磁性矿物的形成和转化速率,磁性矿物的形成和转化速率决定黄土-古土壤磁化率的变化。
     第四纪黄土中存在大量的新生纳米方解石,这种纳米方解石一维延长,呈棒状,长度不定,从几纳米到几微米,少见弯曲形态,直径均一,一般在40nm左右,有的两根棒共生在一起形成“T”字形态。纳米棒状方解石在黄土层中的含量高于古土壤中的含量。纳米棒状方解石是黄土成壤过程中赖干冷环境生物活动产物,是干冷环境指示矿物。利用新生的纳米棒状方解石碳氧同位素可以反演古气候。
     与第四纪黄土不同的是,晚第三纪粘土中大量出现的新生矿物为一维纳米凹凸棒石,这种纳米矿物主要以面型和在粒间间隙中以束状、交织缠绕状分布,舒展形态显示其良好的柔韧性和弯曲度,典型的自生成因,是干旱-半干旱环境的指示矿物。系统的高分辨电镜调查研究发现,凹凸棒石在灵台红粘土中不是均匀分布的,但重要的是凹凸棒石含量的突变点与红粘土演化史上的古气候突变点或转折点相一致。中国黄土高原红粘土中凹凸棒石的大量出现标志了西北内陆干旱化的开始,凹凸棒石含量的降低显示了干旱化的进一步加剧。
The eolian sequence in Chinese Loess Plateau, including the Quaternary loess-paleosol sequence and Tertiary red-clay sequence, is an excellent continent paleoclimate proxy. Since 1950’s, the genesis, dating and paleoclimate significance of the loess depositions have been lucubrated by oversea and inland geologists, climatologists. Now the Chinese loess deposits have become an important part of world paleoclimate agents. In the paper, magnetic mineralogical types, grain size distribution, assemblages, concentration, microcharacteristic, evolution and paleoclimate implying were examed at nano scale by applying high resolution electron microscopy, X-ray powder diffraction, and CBD method, as well nanometer fibroid minerals (main calcite and palygorskite ) resulting from pedogensis. The major findings and conclusions are listed as the following:
     The principal carriers of magnetic properties in the loess-red clay deposits are magnetite, maghemtite and hematite. The ferromagnetic mineral formed during pedogenesis is mainly maghemite resulting from pedogenic magnetite lower- temperature oxidation, next to magnetite. The sub-micrometer ferromagnetic particles mainly consist of nanometer maghemtite and magnetite, and have pecial morphological characteristics and microstructures of nanoporous textures.
     For loess samples, coarse grains (≥2μm) carry more than 50% of the magnetic signal. A different pattern is found for paleosol samples, in which the≤0.3μm fraction contributes > 60% (before magnetic extraction) or 70% (after extraction) to the bulk MS. In addition, the CBD technique is absolutely able to extract pedogenic superfine-grained magnetic particles and some part of coarse dust magnetic particles.
     The Chinese loess sequences have some identical magnetic minerals. However, the content of ferromagnetic minerals is varied with pedogenesis intensity and paleoclimatic properties. In the loess deposits, eolian magnetite and hematite are main magnetic minerals, low content of maghemite and goethite. For the paleosol, the concentration of pedogenic maghemite and magnetite is higher than that of eolian magnetite and pedogenic hematite. And the paleosol maybe have few eolian hematite and goethite. To the red clay, eolian magnetite and pedogenic hematite are the most important magnetic minerals, next to pedogenic maghemite.
     There are three types of magnetic mineral formation including inclusive magnetic particles, coating magneitc particles and single magnetic particles, a key formation. According to magnetic mineral species and microstructures, the third formation is divided into only one species of magnetic mineral (either magnetite or maghemite) and magnetic minerals complexes. The first type of complex, comprising magnetite and maghemite, developed as follows. Sub-micrometer eolian magnetite was partially oxidized to form nanoporous texture consisting of nano-crystalline maghemite in the case that oxidation was incomplete; alternatively, nanometer-scale pedogenic magnetite was oxidized to maghemite. The former types of grains have been identified in the present study, but not the latter, perhaps due to complete oxidation resulting from their fine grain size. The second type of complex comprises magnetite and hematite, resulting from partial LTO of micrometer-scale eolian magnetite. The third type is a maghemite–hematite complex that mainly originated from the oxidation of pedogenic maghemite. The loess, paleosol and red clay have different magnetic minerals formation and microstructures resulting from difference of magnetite grain size and paleoclimatic property during pedogenesis.
     The loess-red clay magnetic susceptibility has a consanguineous relationship with biology and its action. The loess susceptibility has been regarded as a good proxy of pedogenesis intensity. However more exact expression should be an index of biogeochemistry process intensity. Biology correlates magnetic susceptibility to paleoclimate, and accomplished by following processes: firstly, the paleoclimate affects biology production and its action intensity, then in turn controls magnetic minerals formation and minerals phase transition, at last production and transformation rate of magnetic mineral restricts magnetic susceptibility value of the loess-red clay sequences. So biology is a key bridge to the eolian susceptibility and paleoclimate.
     The Quaternary loess sequences have plenty of nanometer calcite with nod morphology, in diameter of 40 nm and the crystal length of n. nm - n.μm. The calcite content in loess is usually higher than that in paleosol, and nanometer calcite in the paleosol suffers from more intensity eluviation than that in loess. These nano nod calcite may be origin from biology process during eolian dust pedogenesis, and these biology withstands aridity-cold climate condition. So the calcite content in the loess and paleosol is especially suitable for the studies of paleoclimatic changes. The higher-resolutionδ13C andδ18O values of nano nod calcite can elucidate the paleoclimatic fluctuation in the Chinese Loess Plateau during Pleistocene.
     Palygorskite is in rich Mg-Al silicate with chain-layer structure, in diameter range from 30nm to 50nm and the crystal length of n. nm - n.μm, a typical indicator mineral of arid and strong evaporation environment. The result of SEM images in suit show that palygorskite distributes in intergranular space of the red clay or shows laminar spreading, and arranges in bunch resulting from crystal parallel intergrowth, winding and twisting. Under high resolution SEM (nanoscale),
     palygorskite fiber crystal grows around the smectite edges, and sometimes the whole slice consists of palygorskite. Therefore, palygorskite is not only autogenic but also may be origin from illite-smectite transformation. The autogenic palygorskite extensively occurs in red clay deposition before about 3.6 Ma( a few during 3.2 Ma-3.6 Ma ) at Lingtai profile, which reveals that the late Tertiary climate during the red clay formation should be dominated by dry-warm climate condition characterized with strong evaporation, and indicates the important shift of the East Asian paleomonsoom system in this period. This research provides mineralogy evidence for paleoclimate evolution, which is in good agreement with previous researches. Meanwhile, the shift from dry-warm to dry-cold climate condition results in much colder and drier of the Asian interior since 3.6MaBp even if eolian deposits have accumulated on the Chinese Loess Plateau since ~7.0MaBp or much early.
引文
[1] Ai X C, Fei H S, Yang Y Q, et al., Polar enhancement of the nonlinear-optical properties of Fe2O3 microcrystallites. Journal of Luminescence, 1994, 60– 61: 364– 367.
    [2] An Z S, Kutzbach J E, Prell W L, et al., Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan Plateau since Late Miocene times. Nature, 2001, 411: 62– 66.
    [3] An Z S, Kukla G, Porter S C, et al., Late quaternary dust flow on the Chinese loess Plateau. Catena, 1991a, 18: 125– 132.
    [4] An Z S, Kukla G, Porter S C, et al., Magnetic susceptibility evidence of monsoon variation the loess plateau of central China druing the last 130 000 years. Quaternary Research, 1991b, 36: 29– 36.
    [5] An Z S, Wang S M, Wu X H, et al., Eolian evidence from the Chinese loess Plateau: the onset of the late Cenozoic great glaciation in the northern hemisphere and Qinghai-Xizang plateau uplift forcing. Science in China (Series D), 1999, 42(3): 258– 271.
    [6] An Z S, Liu T S, Lu Y C, et al., The long-term paleomonsoon variation recorded by the loess-paleosol sequence in central China. Quaternary International, 1990, 7/8: 91– 97.
    [7] An Z S, Porter S C. Millennial-scale climatic oscillations during the last interglaciation in Central China. Geology, 1997, 25: 603– 606.
    [8] An Z S, Porter S, Zhou W J. Episode of strengthened summer monsoon climate of Younger Dry adage on the loess Plateau of central China. Quaternary Research, 1993, 39: 45– 54.
    [9] Ayyub P, Multani M, Barma M, et al., Size-induced structural phase transitions and hyperfine properties and microcrystalline Fe2O3. J. Phys. C: Solid State Phys, 1988, 21: 2229– 2245.
    [10] Balsam W T, Brooks E, Ji J F. Direct correlation of the marine oxygen isotope record with the Chinese Loess Plateau iron oxide and magnetic susceptibility records. Palaeoge Palaeocl Palaeoeco, 2005, 221: 141– 152.
    [11] Balsam W, Ji J F, Chen J, et al., Climatic interpretation of the Luochuan and Lingtai loess sections, China, based on changing iron oxide mineralogy and magnetic susceptibility. Earth and Planetary Science Letters, 2004, 223: 335– 348.
    [12] Banerjee S K, Hunt C P, Liu X M. Separation of local Signals from the regional paleomonsoon record of the Chinese Loess Plateau: a rock magnetic approach. Geophysical Research Letters, 1993, 20: 843– 846.
    [13] Banfield J F, Barker W W, Welch S A, et al., Biological impact on minerals dissolution: Application of the lichen model to understanding mineral weathering in the rhizosphere.Progress National Academic Science USA, 1999, 96: 3404– 3422.
    [14] Banfield J F, Wasilewski P J, Veblen D R. TEM study of relationships between the microstructures and magnetic properties of strongly magnetized magnetite and maghemite. American Mineralogist, 1994, 79: 654– 667.
    [15] Banfield J F, Welch S A, Zhang H Z, et al., Aggregation-based crystal growth and microstructure development in natural iron oxyhydroxide biomineralization products. Science, 2000, 289: 751– 753.
    [16] Banfield J F and Navrotsky A, editors. Nanoparticles and the environment. Review in mineralogy, Volume 44, Mineral. Soc. Am., Washington D C., 2001, 1– 349.
    [17] Barro’n V and Torrent J. Evidence for a simple pathway to maghemite in Earth and Mars soils. Geochimica et Cosmochimica Acta, 2002, 66(15): 2801– 2806.
    [18] Beget J E, Stone D B, Hawkins D B. Paleoclimatic forcing of magnetic susceptibility variations in Alaskan loess during the late Quaternary. Geology, 1990, 18: 40– 43.
    [19] Bloemendal J, Liu X M. Rock magnetism and geochmisty of two plio-pleistocene Chinese loess-palaeosol sequences-implications for quantitative palaeoprcipitation recontrction. Palaeoge Palaeocl Palaeoeco, 2005, 226: 149– 166.
    [20] Boquet E, Bordonat A, et al., Production of calcite crystals by soil bacteria is a general phenomenon. Nature, 1973, 246: 527– 528.
    [21] Bouza P J, Simón M, Aguila J, et al., Fibrous-clay mineral formation and soil evolution in Aridisols of northeastern Patagonia, Argentina. Geoderma, 2007, 139: 38– 50.
    [22] Brown A P, O’Reilly W. The magnetism and microstructure of pulverized titanomagnetite, Fe2.4Ti0.6O4: the effect of annealing, maghemitization and inversion. Physics of the Earth and Planetary Interiors, 1999, 116: 19– 30.
    [23] Buczynski C, Chafetz H S. Habit of bacterially induced precipitates of calcium carbonate and the influence of medium viscosity on mineralogy. Journal of Sedimentary Petrology, 1991, 61(1): 226– 233.
    [24] Chafetz H S. Marine peloids: a product of bacterially induced precipitation of calcite. Journal of Sedimentary Petrology, 1986, 56(4): 812– 817.
    [25] Chamley H. Clay sedimentology. Springer, Berlin, 1989.
    [26] Chen F H, Bloemandel J, Feng Z D. East Asian monsoon variation during oxygen isotope stage 5: Evidence from the Northwestern margin of the Chinese Loess Plateau. Quaternary Science Reviews, 1999, 18: 1127– 1135.
    [27] Chen F H, Bloemandel J, Wang J M, et al., High-resoultion multi-proxy climate records from Chinese Loess: Evidence for rapid climatic changes between 10 and 70 Kyr. Palaeoge PalaeoclPalaeoeco, 1997a, 130: 323– 335.
    [28] Chen J, Li G J, Yang J D, et al., Nd and Sr isotopic characteristic of Chinese deserts: Implications for the provenances of Asian dust. Geochimica et Cosmochimica Acta, 2007, 71: 3904– 3914.
    [29] Chen J, Ji J F, Balsam W, et al., Characterization of the Chinese loess~paleosol stratigraphy by whiteness measurement. Palaeoge Palaeocl Palaeoeco, 2002, 183: 287– 297.
    [30] Chen J, Qiu G, Yang J D. Sr isotopic composition of loes carbonate and identification of primary and secondary carbonates. Progress in Natural Sciences, 1997b, 7(5): 590– 593.
    [31] Chen J, Chen Y, Liu L W, et al., Zr/Rb ratio in the Chinese loess sequences and its implication for changes in the East Asian winter monsoon strength. Geochimica et Cosmochimca Acta, 2006, 70: 1471– 1482.
    [32] Chen T H, Xu H F, Lu A H, et al., Direct evidences of transformation from smectite to palygorskite: TEM investigation. Science in China (Series D), 2004, 47(11): 985– 994.
    [33] Chen T H, Xu H F, Xie Q Q, et al., Characteristics and genesis of maghemite in Chinese loess and paleosols: Mechanism for magnetic susceptibility enhancement in paleosols. Earth and Planetary Science Letters, 2005, 240: 790– 802.
    [34] Chen T H, Xu H F, Ji J F, et al., Formation mechanism of ferromagnetic minerals in loess of China: TEM investigation. Chinese Science Bulletin, 2003, 48(20): 2259– 2266.
    [35] Cisar J O, Xu D Q, Thompson J, et al., An alternative interpretation of nanobacteria-induce biomineralization. Proc.Natl. Acad. Sci. USA, 2000, 97(21): 1151– 1515.
    [36] Coudé-Gaussen C. Observation au MEB de fibres de palygorskite transportée en grains par le vent. In: Federoff, N., Bresson, L.M., Courty, M. A. (Eds.), Micromorphologie des Sols. Association Fran?aise pour l′étude du Sol, Paris, 1987, 199– 205.
    [37] Cui Y, Verosub K L, Roberts A P. The effect of low-temperature oxideation on large multi-domain magnetite. Geophysical Research Letters, 1994, 21: 757– 760.
    [38] Dancer S J, Shears P and Platt D J. Isolation and characterization of coliform from glacial ice and water in Canad’s high arctic. Journary of Applied Microbiology, 1997, 82: 597– 609.
    [39] Daniel R M, John P M, Jossh B, et al., Holocene loess deposition and soil formation as compting process, Matanuska Valley, Southern Alaska. Quaternary Research, 2004, 61: 265–275.
    [40] Daoudi L. Palygorskite in the uppermost Cretaceous- Eocene rocks from Marrakech High Atlas, Morocco. Journal of African Earth Sciences, 2004, 39: 353– 358.
    [41] Dearing J A, Dann R J, Hay K, et al., Frequency-dependent susceptibility measurements of environmental materials. Geophysical Journal International, 1996, 124: 228– 240.
    [42] Deng C L, Vidic Natasa J, Verosub K J, et al., Mineral magnetic variation of the Jiaodao Chinese loess/paleosol sequences and its bearing on long-term clilmatic variability. Journal of Geophysical Research, 2005, 110, Bo3103, doi: 10. 1029/2004JB003451.
    [43] Deng C L, Zhu R X, Verosub K L, et al., Mineral magnetic properties of loess/paleosol couplets of the central loess plateau of China over the last 1.2 Myr. Journal of Geophysical Research, 2004, 109, B01103, doi: 10.1029/2003JB002532.
    [44] Deng C L, Shaw J, Liu Q S, et al., Mineral magnetic variation of the Jingbian loess/paleosol sequence in the northern Loess Plateau of China: Implication for Quaternary development of Asian aridification and cooling. Earth and Planetary Science Letters, 2006, 241: 248– 259.
    [45] Deng C L, Zhu R X, Verosub K L, et al., Paleoclimatic significance of the temperature-dependent susceptibility of Holocene loess along a NW-SE transect in Chinese loess plateau. Geophysical Research Letters, 2000, 27(22): 3715– 3718.
    [46] Deng C, Zhu R, Jackson M J, et al., Variability of the temperature dependent susceptibility of Holocene eolian deposits in the Chinese loess plateau: A pedogensis indictor. Phys Chem Earth, 2001, 26(11-12): 873– 878.
    [47] Ding Z L, Derbyshire E, Yang S L, et al., Stacked 2.6-Ma grain size record from the Chinese loess based on five sections and correlation with the deep-seaδ18O record. Paleoceanography, 2002, 17: 1033, doi:10.1029/2001PA000725.
    [48] Ding Z L, Rutter N W, Sun J M, et al., Re-arrangement of atmospheric circulation at about 2.6Ma over northern China: evidence from grain size records of loess-palaeosol and red clay sequences. Quaternary Science Reviews, 2000, 19: 547– 558.
    [49] Ding Z L, Xiong S F, Sun J M, et al., Pedostratigraphy and paleomagnetism of a ~7.0 Ma eolian loess-red clay sequence at Lingtai, loess plateau, north-Central China and the implication for paleominsoon evolution. Palaeoge Palaeocl Palaeoeco, 1999, 152: 49– 66.
    [50] Ding Z L, Yang S L, Sun JM, et al., Iron geochemistry of loess and red clay deposits in the Chinese Loess Plateau and implications for long-term Asian monsoon evolution in the last 7.0 Ma. Earth and Planetary Science Letters, 2001b, 185 (1-2): 99– 109.
    [51] Ding Z L, Sun J M, Yang S L, et al., Geochemistry of the Pliocene red clay formation in the Chinese Loess Plateau and implications for its origin, source provenance and paleoclimate change. Geochimica et Cosmochimica Acta, 2001a, 65(6): 901– 913.
    [52] Ding Z L, Yu Z W, Rutter N W, et al., Towards an orbital timescale for Chinese loess deposits .Quaternary Science Reviews, 1994, 13: 39– 70.
    [53] Elprince A M, Mashhady M S, Aba-Husayn M M. The occurrence of pedogenic palygorskite (attapulgite) in Saudi Arabia. Soil Science 1979, 128, 211– 218.
    [54] Evans M E Heller F. Magnetic enhancement and palaeoclimate: study of a loess/palaeosol couplet across the Loess Plateau of China. Geophysical Journal International, 1994, 117: 257– 264.
    [55] Eyre J K, Dickson D P E. Mossbauer spectroscopy analysis of iron-containing minerals in the Chinese loess. Journal of Geophysical Research, 1995, 100(139): 17925– 17930.
    [56] Fang X M, Li J J. Review of millennial-scale monsoonal climatic change from paleosol sequences on the Chinese western Loess Plateau and Tibetan Plateau. Chinese Science Bulletin, 1999, 44(Supp): 38– 52.
    [57] Fang X M, Lu L Q, Joseph A Mason, et al., Pedogenic response to millennial summer monsoon enhancements on the Tibetan Plateau. Quaternary International, 2003, 106/107: 79– 88.
    [58] Fine P, Verosub K L, Singer M J. Pedogenic and lithogenic contributions to the magnetic susceptibility record of the Chinese loess/palaeosol sequence. Geophysical Journal International, 1995, 122: 97– 107.
    [59] Folk R. Nanobacteria and the precipitation of carbonate in unusual environments. Sedimentary Geology, 1999, 126(1): 47– 55.
    [60] Glasauer S, Langley S, Beveridge T J. Intracellular Iron Minerals in a Dissimilatory Iron-Reducing Bacterium. Science, 2002, 295: 117– 119.
    [61] Gournay J P, Kirkland B L, Folk R L, Lynch F L. Nanometer-scale features in dolomite from Pennsylvanian rocks, Paradox Basin, Utah. Sedimentary Geology, 1999, 126: 243– 252.
    [62] Govert Nugteren, Vanderberghe Jef. Spatial climatic variability on the Central Loess Plateau(China) as recorded by grain size for the last 250kyr. Global and Planetary Change, 2004, 41: 185– 206.
    [63] Guo B, Zhu R X, Roberts A P, et al., Lack of correlation between paleoprecipitation and magnetic susceptibility of Chinese loess/paleosol. Geophysical Research Letters, 2001b, 28(22): 4259– 4262.
    [64] Guo Z T, Liu T S, Fedoroff N, et al., Climate extremes in loess of China coupled with the strength of deep-water formation in the North Atlantic. Global and Planetary Change, 1998, 18: 113– 128.
    [65] Guo Z T, Ruddiman W F, Hao Q Z, et al., Onset of Asian desertification by 22 Myr ago inferred from loess deposits in Chinaa. Nature, 2002, 416: 159– 163.
    [66] Guo Z T, Biscaye P, Wei L, et al., Summer monsoon variations over the last 1.2Ma from the weathering of loess-soil sequence in China. Geophysical Research Letters, 2000, 27 (12): 1751– 1754.
    [67] Guo Z T, Fedoroff N, An Z S. Genetic types of the Holocene soil and the Pleistocene paleosolsin the Xifeng loess section in Central China. Loess and Environment and Global Change (Liu T S et al. eds), Beijing: Science Press, 1991.
    [68] Guo Z T, Peng S Z, Hao Q Z, et al., Origin of the Miocene-Pliocene Red-Earth Formation at Xifeng in Northern China and implications for paleoenvironments. Palaeoge Palaeocl Palaeoeco, 2001a, 170: 11– 26.
    [69] Han J M and Jiang W Y. Particle size contributions to bulk magnetic susceptibility in Chinese loess and paleosol. Quaternary International, 1999, 62: 103– 110.
    [70] Han J M, Kpperns E, Liu D S, et al., Stable isotope composition of the carbonate concretion in loess and climate change. Quaternary International, 1997, 37: 37– 43.
    [71] Han J M, Fyfe W S, Gu Z Y. Assessment of the palaeoclimate during 3.0~2.6Ma registered by transition of Red Clay to loess-palaeosol sequences in central North China. Palaeoge Palaeocl Palaeoeco, 2002, 185: 355– 368.
    [72] Han J M, Lu H Y, Wu N Q, et al., The magnetic susceptibility of modern soils in China and its paleoclimate reconstruction. Studia Geophysica et Geodaetica, 1996, 40: 262– 275.
    [73] Harrison R J, Dunin-Borkowski R E, Putnis A. Direct imaging of nanoscale magnetic interactions in minerals. Progess National Academic Science USA, 2002, 99(26): 16556– 16561.
    [74] Heller F and Evans M E. Loess magnetism. Review Geophysical, 1995, 33: 211– 240.
    [75] Heller F and Liu T S. Magnetiostratigraphical dating of loess in China. Nature, 1982, 300: 431– 433.
    [76] Heller F, Liu T S. Magnetism of Chinese loess deposits. Journal of Geophysical Research, 1987, 77: 125– 141.
    [77] Heller F, Liu X M, Liu T S,et al., Magnetic susceptibility of loess in China. Earth and Planetary Science Letters, 1991, 103: 301– 310.
    [78] Heller F, Liu T S. Magnetism of Chinese loess deposits. Geophysical Journal of the Royal Astronomical Society, 1984, 77: 125– 141.
    [79] Heller F, Liu T S. Palaeoclimatic and sedimentary history from magnetic susceptibility of loess in China. Geophysical Research Letters, 1986, 13: 1169– 1172.
    [80] Heller F, Shen C D, Beer J, et al., Quantitative estimations of pedogenic ferrimagnetic formation in Chinese loess and palaeoclimatic implications. Earth and Planetary Science Letters, 1993, 114: 385– 390.
    [81] Hochella Jr M F, Lower S K, Maurice P A, et al., Nanomierals, Mineral nanoparticles, and Earth systems. Science, 2008, 319, 1631– 1635.
    [82] Honig J M. Analysis of the Verwey transition in magnetite. J Alloys Compounds, 1995, 22:24– 39.
    [83] Huang S L, Shen P Y, Chu H T, et al., Nanometer-size alpha-PbO2-type TiO2 in garnet: A thermobarometer for ultrahigh-pressure metamorphism. Science, 2000, 288: 321– 324.
    [84] Hunt C P, Banerjee S K, Han J M, et al., Rock-magnetic proxies of climate change in the loess-palaeosol sequences of the western Loess Plateau of China. Geophysical Journal International, 1995, 123: 232– 244.
    [85] Ingle’s M, Anadon P. Relationship of clay minerals to depositional environment in the nonmarine Eocene Pontils group, SE Ebro basin (Spain). Journal of Sedimentary Petrology, 1991, 61(6): 926– 939.
    [86] Jahn B M, Gallet S, Han J M. Geochemistry of the Xining, Xifeng and Jiaxian section, Loess Plateau of China: eolian dust provenance and paleosol evolution during the last 140 ka. Chemical Geology, 2001, 178: 71– 94.
    [87] Ji J F, Balsam W, Lu H Y, et al., High resolution hematite/goethite records from Chinese loess sequences for the last glacial-interglacial cycle: Rapid climatic response of the East Asian Monsoon to the tropical Pacific. Geophysical Research Letters, 2004, 31, L03207, doi: 10. 1029/2003GL018975.
    [88] Ji J F, Chen J, Lu H Y. Origin of illite in the loess from the Luochuan area, Loess Plateau, Central China. Clay Mineral, 1999, 34: 525– 532.
    [89] Ji J F, Balsam W, Chen J. Mineralogic and Climatic Interpretations of the Luochuan Loess Section (China) Based on Diffuse Reflectance Spectrophotometry. Quaternary Research, 2001, 56: 23– 30.
    [90] Jones B F, Galán E. Sepiolite and palygorskite. In: Bailey, S.W. (Ed.), Hydrous Phyllosilicates. Reviews in Mineralogy, vol. 16. Mineralogical Society of America, 1988, 631– 674.
    [91] Jordan T H, Basic Research. Opportunities in the Earth Sciences. National Research Council, National Academy Press, Washington D C, 2001, 154.
    [92] Josifovska M G, Mcclean R G, Schofield M A, et al., Discovery of nanocrystalline botanical magnetite. European Journal of Mineralogy, 2001, 13: 863– 870.
    [93] Kalm V E, Rutter N W, Rokosh C D. Clay minerals and their paleoenvironmental interpretation in the Baoji loess section, Southern Loess Plateau, China. Catena, 1996, 27: 49– 61.
    [94] Karl D M, Bird D F, Bjorkman K, et al., Microorganisms in the accreted ice of Lake Vostok, Antarctica. Science, 1999, 286: 2144– 2147.
    [95] Khademi H, Mermut A R. Source of palygorskite in gypsiferous Aridisols and associated sediments from Central Iran. Clay Minerals, 1998, 33, 561– 578.
    [96] Khademi H, Mermut A R. Submicroscopy and stable isotope geochemistry of carbonates and associated palygorskite in selected Iranian aridisols. European Journal of Soil Science, 1999, 50,207– 216.
    [97] Kleteschka G. and Banerjee S K. Magnetic stratigraphy of Chinese loess as a record of natural fire. Geophysical Research Letters, 1995, 22, 1341– 1343.
    [98] Kosterov A. Low-temperature magnetic hysteresis properties of partially ocieized magnetite. Geophysical Journal International, 2002, 149: 796– 804.
    [99] Krinsley D, Dorn R, Tovey N K. Nanometer-scale layering in rock-varnish: Implications for genesis and paleoenvironmental interpretation. Journal of Geology, 1995, 103(1): 106– 113.
    [100] Kukla G and An Z S. Loess stratigraphy in central China. Palaeoge Palaeocl Palaeoeco, 1989, 72: 203– 225.
    [101] Kukla G, Heller F, Liu X M, et al., Pleistocene climates in China dated by magnetic susceptibility. Geology, 1988, 16: 811– 814.
    [102] Kukla G. Loess stratigraphy in central China. Quaternary Science Research, 1987, 6: 191– 219.
    [103] Leng M J, Heaton T H E, Lamb H F, et al., Carbon and oxygen isotope variaitons within the shell of an African lands nail (Limicolaria kambeul chudeaui Germanin): a high-resolution record of climate seasonality ? Holocene, 1998, 8(4): 407– 412.
    [104] LeoneG, Bonadonna F, Zanchetta G, Stable isotope record in mollusca and pedogenic c arbonate from Late Pliocene soil of Central Italy. Palaeoge Palaeocl Palaeoeco, 2000, 163: 115– 131.
    [105] Li G J, Sheng X F, Chen J, et al., Oxygen-isotope record of paleorainwater in authigenic carbonates of Chinese loess-paleosol sequences and its paleoclimatic significance. Palaeoge Palaeocl Palaeoeco, 2007, 245: 551– 559.
    [106] Liosy C, Verecchia E P, Dufour P. Microbial origin for pedgenic micrite associated with a carbonate palesol (Champagne, France). Sedimentary Geology, 1999, 126: 193– 204.
    [107] Liu C Q, Masuda A, Okada A, et al. Isotope geochemistry of Quaternary deposits from the arid lands in the northern China. Earth and Planetary Science Letters, 1994, 127: 25– 38.
    [108] Liu Q S, Banerjee S K, Jackson M J, et al., Grain sizes of susceptibility and anhysteretic remanent magnetization carriers in Chinese loess/paleosol sequences. Journal of Geophysical Research, 2004a, 109, B03101.
    [109] Liu Q S, Banerjee S K, Jackson M J, et al., New insights into partial oxidation model of magntites and thermal alteration of magnetic mineralogy of the Chinese loess in air. Geophysical Journal International, 2004b, 158: 506– 514.
    [110] Liu Q S, Banerjee S K, Jackson M J. An integrated study of the grain-size-dependent magnetic mineralogy of the Chinese loess/paleosol and its environment significance. Journal ofGeophysical Research, 2003b, 108, B9.
    [111] Liu Q S, Banerjee S K, Chen F h, et al., Determining the climatic boundary between the Chinese loess and palaeosol: evidence from aeolian coarse-grained magnetite. Geophysical Journal International, 2004d, 156: 267– 274.
    [112] Liu Q S, Deng C L, Torrent J, et al., Review of recent developments in mineral magnetism of the Chinese loess. Quaternary Science Research, 2007, 26: 368– 385.
    [113] Liu Q S, Jackson M J, Banerjee S K, et al., Mechanism of magnetic susceptibility enhancements of the Chinese loess. Journal of Geophysical Research, 2004c, vol. 109, B12107, doi:10.1029/2004JB003249.
    [114] Liu Q S, Torrent J, Maher B A, et al., Quantifying grain size distribution of pedogenic magnetic particles in Chinese loess and its significance for pedogeneses. Journal of Geophysical Research, 2005a, 110, B11102, doi: 10. 1029/2005JB003726.
    [115] Liu Q S, Deng C L, Yu Y J, et al., Temperature dependence of magnetic susceptibility in an argon environment: implications for pedogenesis of Chines. Geophysical Journal International, 2005b, 161:102– 112.
    [116] Liu T S, Guo Z T, Liu J Q, et al. Variation of Eastern Asian monsoon over the last 140,000 years. Bulletion de la sociuete Geologique de France, 1995, 166: 221– 229.
    [117] Liu X M, Liu T S, Xu T C, et al., The Chinese loess Xifeng, I: The primary study on magnetostratigraphy of a loess profile in Xifeng area, Gansu province. Geophysical Journal, 1988, 92: 345– 348.
    [118] Liu X M, Paul H, Tim R. Origin of maghemite in Chinese loess deposits: Aeolian or pedogenic ? Physics of the Earth and Planetary Interiors, 1999b, 112: 191– 201.
    [119] Liu X M, Rolph T, An Z S, et al., Paleoclimatic significance of magnetic properties on the Red Clay underlying the loess and paleosols in China. Palaeoge Palaeocl Palaeoeco, 2003a, 199: 153– 166.
    [120] Lu H Y, Li L, Huang X P, et al., East Asia winter monsoon oscillation and its correlation with North Atlantic Heinrich events during the last glaciation. Progress in Nature Science, 1996, 6(6): 711– 717.
    [121] Lu H Y, Zhang F Q, Liu X D, et al., Periodicities of palaeoclimatic variations recorded by loess-paleosol sequence in China. Quaternary Science Research, 2004, 23: 1891– 1900.
    [122] Ma L J, Catharine M C, Starmer W T, et al., Revival and characterization of fungi from ancient polar ice. Mycologist, 1999, 13: 70– 73.
    [123] Maher B A and Thompson R. Mineral magnetic record of the Chinese loess and paleosols. Geology, 1991, 19: 3– 6.
    [124] Maher B A and Thompson R. Paleoclimatic significance of the mineral magnetic record of the Chinese loess and paleosols. Quaternary Research, 1992, 37: 155– 170.
    [125] Maher B A and Thompson R. Paleorainfall reconstructions from pedogenic magnetic susceptibility variations in the Chinese Loess and paleosols. Quaternary Research, 1995, 44: 383– 391.
    [126] Maher B A, Alekseev A, Alekseeva T. Magnetic mineralogy of soils across the Russian Steppe: climatic dependence of pedogenic magnetite formation. Palaeoge Palaeocl Palaeoeco, 2003b, 201: 321– 341.
    [127] Maher B A, Hu M Y, Roberts H M, et al., Holocene loess accumulation and soil development at the western edge of the Chinese Loess Plateau: implications for magnetic proxies of palaeorainfall. Quaternary Science Research, 2003a, 22: 445– 451.
    [128] Maher B A, Thompson R, Zhou L P. Spatial and temporal reconstructions of changes in the Asian palaeomonsoon: a new mineral magnetic approach. Earth and Planetary Science Letters, 1994, 125: 461– 471.
    [129] Maher B A. Characterization of soils by mineral magnetic measurements. Physics of the Earth and Planetary Interiors, 1986, 42: 76– 92.
    [130] Maher B A. Magnetic properties of modern soil and Quaternary loessic paleosol: paleoclimaticimplication. Palaeoge Palaeocl Palaeoeco, 1998, 137: 25– 54.
    [131] Maher B A. Magnetic properties of some synthetic sub-micron magentites. Geophysical Journal International, 1988, 94: 83– 96.
    [132] Maurice P A. Applications of atomic-force microscopy in environmental colloid and surface chemistry. Colloids and Surfaces A-Physicochemical and Engineering Aspects, 1996, 107: 57– 75.
    [133] McEnroe S A, Harrison R J, Robinson P, et al., Nanoscale haematite-ilmenite lamellae in massive ilmenite rock: an example of‘lamellar magnetism’with implications for planetary magnetic anomalies. Geophysical Journal International, 2002, 151(3): 890– 912.
    [134] Mehra O P and Jackson M L. Iron oxide removal from soils and clays by a dithionite-citrate system buffered with sodium bicarbonate. Clays Clay Mineral, 1960, 7: 317– 327.
    [135] Miao X D, Sun Y , Lu H Y, et al., Spatial pattern of grain size in the Late Pliocene‘Red Clay’deposits(North China) indicates transport by low-level northerly winds. Palaeoge Palaeocl Palaeoeco, 2004, 206: 149– 155.
    [136] Monger H C, Daugherty L A. Neoformation of palygorskite in a southern New Mexico Aridisol. Soil Science Society of America Journal, 1991, 55:1646– 1650.
    [137] Nakano T, Yokoo Y, Nishikawa M, et al., Regional Sr-Nd isotopic ratios of soil minerals in northern China as Asian dust fingerprints. Atmospheric Environment, 2004, 38: 3061– 3067.
    [138] Navrotsky A, Mazeina L and Majzlan J. Size-driven structural and thermodynamic complexity in iron oxides. Science, 2008, 319, 1635– 1638.
    [139] Nilson E, Lehmkuhl F. Interpreting temporal patterns in the Late Quaternary dust flux from Asia to the North Pacific. Quaternary international, 2001, 76/77: 67– 76.
    [140] Oldfield F. The source of fine-grained magnetite in sediments, Holocene, 1992, 2: 180-182.
    [141] Snowball I F. Bacterial magnetite and the magnetic properties of sediments in a Swedish lake. Earth and Planetary Science Letters, 1994, 126: 129– 142.
    [142] Porter S C and An Z S. Correlation between climate events in the North Atlantic and China during the last glaciations. Nature, 1995, 375: 305– 308.
    [143] Porter S C. High-resolution paleoclimatic information from Chinese eolian sediments based on grayscale intensity profiles. Quaternary Research, 2000, 53: 70– 77.
    [144] Pouget G, Rambaud D. Quelques types de cristallisation de calcite dans lessols a'croute calcite (steppes alge'riennes). Apport de la microscopie e'letronique. In:Cristallisation-De'formation-Dissolution des Carbonates. University Bordeaux III, Institut de Ge'odynamique, Ed. France, 1980, 371– 380.
    [145] Priscu J C, Adams E E, Lyons W B, et al., Geomicrobiology of subglacial ice above Lake Vostok, Antarctica. Science, 1999, 286: 2141– 2144.
    [146] Qing C S, Chen T H, Xie Q Q, et al., Dissolution behavior of iron oxides minerals in the citrate-bicarbonate-dithionite extraction. Meeting of the Geological Society of America, 2004.
    [147] Riche G, Rambaud D, Riera M. Etude morphologique d'un encroutement calcite, Re'gion d'Irece', Bahia, Bre'sil. Cah. Orstom Se'r. Pe'dol., 1982, 19: 257– 270.
    [148] Rodas M, Luque F J, Mas R, et al., Calcretes, palygorskites and silcretes in the paeogene detrital sediments of the Duero and Tajo basins, central Spain. Clay Minerals, 1994, 29(2): 273– 285.
    [149] Rutter N, Ding Z L, Evans M E, et al., Magnetostratigraphy of the Baoji loess-paleosol section in the North-Central China loess plateau .Quaternary International, 1990, 7/8: 97– 102.
    [150] Sartori M, Heller F, Forster T, et al., Magnetic properties of loess grain size fractions from the section at Paks (Hungary). Phys Earth and Planet Letters, 1999, 116: 53– 64.
    [151] Shen X F, Chen J, Ji J F, et al., Morphological characters and multi-element isotopic signatures of carbonates from Chinese loess-paleosol sequences. Geochimica et Cosmochimica Acta, 2008, 72: 4323– 4337.
    [152] Singer A and Norrish K. Pedogenic palyorskite occurrences in Australia. American Mineralogist, 1974, 59 (5~6): 508– 517.
    [153] Singer A. Pedogenic palygorskite in the arid environment: In: Singer A, Galan E,eds.Palygorskite-Sepiolite, Developments in Sedimentology 37, Amsterdam: Elsevier, 1984, 169– 175.
    [154] Singer A. The paleoclimatic interpretation of clay minerals in sediments-a review. Earth- Science Reviews, 1984, 251– 293.
    [155] Singer M J, Bowen L H, Verosub K L, et al., Mossbauer spectroscopoic evidence for citrate-bicarbonate-dithionite extraction of maghemite from soils. Clays Clay Miner, 1995, 43: 1– 7.
    [156] Singer M J, Verosub K L, Fine P, et al., A conceptual model for the enhancement of magnetic susceptiblity in soils. Quaternary International, 1996, 34-36: 243– 248.
    [157] Southam G, Donald R. Astructural comparison of bacterial microfossilsvs. 'nanobacteria' and nanofossils. Earth- Science Reviews, 1999, 48: 251– 264.
    [158] Spassov S, Heller F, Kretzschmar R, et al., Detrital and pedogenic magnetic mineral phases in the loess/palaeosol sequence at Lingtai (Central Chinese Loess Plateau). Phys Earth and Planetary International, 2003, 140: 255– 275.
    [159] Stock F S, Galinat J K, Bang S S. Microbial precipitation of CaCO3. Soil Biology and Biochemistry, 1999, 31: 1563– 1571.
    [160] Sun D H, Shaw J, An Z S, et al., Magetostratigraphy and paleoclimatic interpretation of a continuous 7.2 Ma Late Cenozoic eolian sediments from the Chinese Loess Plateau. Geophysical Research Letters, 1998b, 25(1): 85– 88.
    [161] Sun D H, An Z S, Shaw J, et al., Magnetostratigraphy and paleoclimatic significance of late tertiary eolian sequences in the Chinese loess plateau. Geophysical Journal International, 1998a, 134: 207– 212.
    [162] Sun D H. Monsoon and westerly circulation changes recorded in the late Cenozoic Aeolian sequences of Northern China. Global and Planetary Change, 2004, 41: 63– 83.
    [163] Sun J M and Liu T S. Multiple origins and interpretations of the magnetic susceptibility signal in Chinese windsblown sediments. Earth and Planetary Science Letters, 2000, 180: 287-296.
    [164] Sun J M. Provenance of loess material and formation of loess deposits on the Chinese Loess Plateau. Earth and Planetary Science Letters, 2002, 203: 845– 859.
    [165] Sun W W, Banerjee S K Hunt C P. The role of maghemite in the enhancement of magnetic signal in the Chinese loess-paleosol sequence: An extensive rock magnetic study combined withcitrate-bicarbonate-dithionite treatment. Earth and Planetary Science Letters, 1995, 133: 493– 505.
    [166] Sun Y B, An Z S. Histroy and variability of Asian interior aridity recorded by eolian flux in the Chinese Loess Plateau during the past 7 Ma. Science in China (Series D), 2002, 45(5): 420– 429.
    [167] Sun Y B, Lu H Y, An Z S. Grain size distribution of quartz isolated from Chinese loess/paleosol. Chinese Science Bulletin, 2000, 45: 2296– 2298.
    [168] Sun Y B, Steven C, Clemens S C, et al., Astronomical timescale and palaeoclimatic implications of stacked 3.6-Myr monsoon records from the Chinese Loess Plateau. Quaternary Science Reviews, 2006, 25: 33– 48.
    [169] Swartz C H, Ulery A L, Gschwend PM. An AEM-TEM study of nanometer-scale mineral associations in an aquifer sand: Implications for colloid mobilization. Geochimica et Cosmochimica Acta, 1997, 61(4): 707– 718.
    [170] Taylor R M, Maher B A, Self P G. Mangetite in soils: I. The synthesis of single domain and superparamagnetic magnetite. Clay Mineral, 1987, 22: 411– 422.
    [171] Thomas-Keprta K L, Clemett S J, Bazylinski D A, et al., Truncated hexa-octahedral magnetite crystals in ALH84001: Presumptive biosignatures. Proceedings of the National Academy of Sciences, 2001, 98(5): 2164– 2169.
    [172] Van Velzen A J and Zijderveld J D A. Effects of weathering on single-domain magnetite in Early Pliocene marine marls. Geophysical Journal International, 1995, 121: 267– 278.
    [173] Van Velzen A J and Zijderveld J D A. Low-temperature oxidation of magnetite in loess-paleosol sequences: a correction of rock magnetic parameters. Stud Geophys Geod, 1999, 43: 357– 375.
    [174] Vandenberghe Jef, Lu H Y, Sun D H, et al., The late Miocene and Pliocene climate in East Asia sa recorded by grain size and magnetic susceptibility of the Red Clay deposits (Chinese Loess Plateau). Palaeoge Palaeocl Palaeoeco, 2004, 204: 239– 255.
    [175] Vandenberghe R E, Hus J J, Grave E De. Evidence from Mossbauer spectroscopy of neo-formation of magnetite/maghemite in the soils of loess/paleosol sequences in China. Hyperfine Interactions, 1998, 117: 359– 369.
    [176] VanVelzenA J and Dekkers M J. Low-temperature oxidation of magnetite in loess-paleosol sequences:a correction of rock magnetic parameters. Studiageoph. etgeod, 1999b, 43: 357-375.
    [177] VanVelzenA J and Dekkers M J. The incorporation of thermal methods in mineral magnetism of loess-paleosol sequences:a briefoverview. Chinese Science Bulletin, 1999a,44(sup 1):53– 63.
    [178] Velde V. Clay minerals: A physico-chemical explanation of their occurrence. Developments in Sedimentology, 1985, vol. 40. Elsevier, New York, p. 427.
    [179] Verges V, Madon M, Bruand A, et al., Morphologie et cristallogene'se de microcristaux, superge'nes de calcite en aiguilles. Bulletin Mineralogy, 1982, 105: 351– 356.
    [180] Verosub K L, Fine P, Singer M J, et al., Pedogensis and paleoclimate: interpretation of the magnetic susceptibility record of Chinese loess-paleosol sequences. Geology, 1993, 21: 1011– 1014.
    [181] Vidic N J, TenPas J D, Verosub K L, et al., Separation of pedogenic and lithogenic components of magnetic susceptibility in the Chinese loess/palaeosol sequence as determined by the CBD procedure and a mixing analysis. Geophysical Journal International, 2000, 142: 551-562.
    [182] Vidic Natasa J, Singer M J, Verosub K L. Duration dependence of magnetic susceptibility enhancement in the Chinese loess–palaeosols of the past 620 ky. Palaeoge Palaeocl Palaeoeco, 2004, 211: 271– 288.
    [183] Virina E I, Faustov S S, Heller F. Magnetism of Loess-Palaeosol formations in relation to soil-forming and sedimentary process. Phys Chem Earth, 2000, 25(5): 475– 478.
    [184] Warren L A, Ferris F G. Continuum between sorption and precipitation of Fe(Ⅲ) on microbial surfaces. Environmental Science Technology, 1998, 32: 2331– 2337.
    [185] Warren L A, Maurice P A, Parmar N, et al., Microbially Mediated Calcium Carbonate Precipitation: Implications for Interpreting CalcitePrecipitation and for Solid-Phase Capture of Inorganic Contaminants. Geomicrobiology Journal, 2001, 18: 93– 115.
    [186] Worden R H and Morad S. Clay mineral cements in oil field sandstones. International Association of Sedimentologists, Special Publication, 2003, 34:509. Blackwells, Oxford, UK. ISBNI-40510-587.
    [187] Worm H U. On the superparamagntic-stable single domain transition for magnetite, and frequency dependence of susceptibility. Geophysical Journal International, 1998, 133: 201– 206.
    [188] Xiao J L, Porter S C, An Z S, et al., Grain size of quartz as an indicator of winter monsoon strength on the Loess Plateau of central China during the last 130, 000 yr. Quaternary Research, 1995, 43: 22– 29.
    [189] Xie Q Q, Chen T H, Chen J, et al., Distribution and paleoclimatic interpretation of palygorskite in Lingtai profile of Chinese Loess Plateau. Acta of Geologica Sinica, 2008, 82(5): 967– 974.
    [190] Xu H F, Wang Y F. Crystallization sequence and microstructure evolution of Synrocsamples crystallized from CaZrTi2O7 melts. Journal of Nuclear Materials, 2000, 279: 100– 106.
    [191] Yaalon D H, Wieder M, 1976. Pedogenic palygorskite in some arid brown (Calciorthid) soils of Israel. Clay Minerals, 1976, 11: 73– 80.
    [192] Yang J D, Chen J, An Z S, et al., Variations in 87Sr/86Sr ratios of calcites in Chinese loess: a proxy for chemical weathering associated with the East Asian summer monsoon. Palaeoge Palaeocl Palaeoeco, 2000, 157: 151– 159.
    [193] Yokoo Y, Nakano T, Nishikawa M, et al., Mineralogical variation of Sr-Nd isotopic and elemental compositions in loess and desert sand from the central Loess Plateau in China as a provenance tracer of wet and dry deposition in the northwestern Pacific. Chemical Geology, 2004, 204: 45– 62.
    [194] Zheng H B, Oldfield F, Yu L Z, et al., The magnetic properties of particle-size samples from the Luochuan loess section: evidence for pedogensis. Phys Earth and Planet Interors, 1991, 68: 250– 258.
    [195] Zhou L P, Oldfield F, Wintle A G, et al., Partly pedogenic origin of magnetic variations in Chinese Loess. Nature, 1990, 346: 737– 739.
    [196] Zhu R, Liu Q, Jackson M J. Paleoenvironmental significance of the magnetic fabrics in Chinese loess-paleosols since the last interglacial (<130 ka). Earth and Planetary Science Letters, 2004, 221, (1-4): 55– 69.
    [197]安芷生, Kukla G,刘东生.洛川黄土地层学.第四纪研究, 1989, (2): 155– 168.
    [198]安芷生,刘晓东.东亚季风气候的历史与变率.科学通报, 2000a, 45(3): 238– 249.
    [199]安芷生,孙东怀,陈明扬,等.黄土高原红粘土序列与晚第三纪的气候事件.第四纪研究, 2000b, 20(5):435– 446.
    [200]安芷生、吴锡浩、汪品先,等.最近130 ka中国的古季风—古季风变迁.中国科学(B辑), 1991a, 34(11): 1209– 1215.
    [201]安芷生、吴锡浩、汪品先,等.最近130 ka中国的古季风—古季风记录.中国科学(B辑), 1991b, 34(10): 1076– 1081.
    [202]鲍士旦.土壤农化分析.中国农业出版社, 2000, 25– 38.
    [203]曹军骥,张小曳,安芷生,等.最近6.5~2.2 Ma黄土高原粉尘通量变化及其指示的东亚冬季风演化和亚洲干旱化.海洋地质与第四纪地质, 2003, 23(3): 97– 101.
    [204]陈敬中.纳米科技的发展与纳米矿物学研究.地质科技情报, 1994, 13(2): 32– 38.
    [205]陈骏,安芷生,汪永进,等.最近800 ka洛川黄土剖面中Rb/Sr分布和季风变迁.中国科学D辑:地球科学版, 1998, 28(6):498– 504.
    [206]陈骏,季骏峰,仇纲,等.陕西洛川黄土化学风化程度的地球化学研究.中国科学D辑:地球科学版, 1997, 27(5):531– 536.
    [207]陈骏,王洪涛,鹿化煜.陕西洛川黄土沉积物中稀土元素及其它微量元素的化学淋滤研究.地质学报, 1996, 70(1): 61– 72.
    [208]陈天虎,陈骏,季峻峰,等.洛川黄土纳米尺度观察:纳米棒状方解石.地质论评, 2005a, 51(6): 713– 718.
    [209]陈天虎,徐惠芳,鲁按怀,等.水悬浮体系中蒙脱石和凹凸棒石互相作用及其意义.矿物学报, 2003b, 23(4): 313– 318.
    [210]陈天虎,冯有亮,史晓莉.凹凸棒石与酸反应产物和结构演化的研究.硅酸盐学报, 2003a, 31(10): 959– 964.
    [211]陈天虎,谢巧勤.电子显微镜时代与纳米地球科学.合肥工业大学学报(自然科学版), 2005b, 28(9): 1126– 1129.
    [212]陈天虎,徐晓春,岳书仓.苏皖凹凸棒石粘土纳米矿物学及地球化学.北京:科学出版社, 2004, 135– 139.
    [213]陈天虎.凹凸棒石吸附性能应用的制约因素.安徽地质, 1999, 9(3): 199– 203.
    [214]陈天虎.凹凸棒石粘土吸附废水中污染物机理探讨.高校地质学报, 2000, 6(2): 265– 270.
    [215]陈秀玲.黄土高原中部晚新生代碳酸盐反映的气候和源区变化[D].兰州:兰州大学, 2005, 65– 67.
    [216]陈炀,陈骏,季峻锋,等.陕西洛川黄土剖面的白度参数及其古气候意义.地质论评, 2002, 48(1): 38– 43.
    [217]陈暘,陈骏,刘连文,等.最近13万年来黄土高原Rb/Sr记录与夏季风时空变迁.中国科学D辑:地球科学版, 2003, 33(6): 513– 519.
    [218]邓成龙,刘青松,潘永信,等.中国黄土环境磁学.第四纪研究, 2007, 27(20): 193– 209.
    [219]邓成龙,朱日祥,袁宝印.黄土高原全新世风尘沉积的岩石磁学性质及其古气候意义.海洋地质与第四纪地质, 2002, 22(4): 37– 46.
    [220]丁振华.矿物学面临的困难与机遇-纳米科学对矿物学的启示.矿物学报, 1999, 19(3): 379– 384.
    [221]丁仲礼,刘东生.晚更新世东亚古季风变化动力机制的概念模型.科学通报, 1998, 43(2): 122– 132.
    [222]丁仲礼,任剑璋,杨石龄,等.最后两个冰期旋回季风—沙摸系统不稳定性的高分辨率黄土记录.第四纪研究, 1999a, (1): 50– 57.
    [223]丁仲礼,孙继敏,杨石岭,等.灵台黄土-红粘土序列的磁性地层及粒度记录.第四纪研究, 1998, 1:86– 94.
    [224]丁仲礼,孙继敏,朱日祥,等.黄土高原红粘土成因及上新世北方干旱化问题.第四纪研究, 1997, (2): 147– 157.
    [225]丁仲礼,杨石岭,孙继敏,等. 2.6 Ma前后大气环流重构的黄土-红粘土沉积证据.第四纪研究, 1999b, (3): 277– 281.
    [226]都有为,罗河烈.磁记录材料.北京:电子工业出版社, 1992.
    [227]郭正堂,姜文英,吕厚远,等.东亚季风区的极端气候事件及其原因.地学前缘, 2002, 9(1): 113– 120.
    [228]郭正堂,彭淑贞,郝青振,等.晚第三纪中国西北干旱化的发展及其与北极冰盖形成演化和青藏高原隆升的关系.第四纪研究, 1999, (6): 556– 567.
    [229]韩家懋,姜文英,禇骏.黄土-古土壤中磁性矿物的粒度分布.第四纪研究, 1997, (3): 281– 287.
    [230]韩家懋,姜文英,吕厚远,等.黄土中钙结核的碳氧同位素研究(二)碳同位素及其古环境意义.第四纪研究, 1995, (4): 367– 377.
    [231]郝青振,郭正堂. 1.2 Ma以来黄土-古土壤序列风化成壤强度的定量化研究与东亚夏季风演化.中国科学D辑:地球科学版, 2001, 31(6): 520– 528.
    [232]何勇,秦大河,任贾文,等.塬堡全新世黄土剖面有机碳同位素的气候记录.地球化学, 2004, 33(2): 178– 184.
    [233]胡雪峰.“黄土-古土壤”序列中氧化铁和有机质对磁化率的影响.土壤学报, 2004, 41(1): 7– 12.
    [234]季峻峰,陈骏, Balsam W,等.黄土剖面中赤铁矿和针铁矿的定量分析与气候干湿变化研究.第四纪研究, 2007, 27(2): 221– 229.
    [235]季峻峰,陈骏,刘连文,等.洛川黄土中绿泥石的化学风化与磁化率增强.自然科学进展, 1997b, 9(7): 619– 623.
    [236]季峻峰,陈骏,鹿化煜.陕西洛川黄土中伊利石成因的透射电镜证据.科学通报, 1999, 43(19): 2095– 2098.
    [237]季峻峰,陈骏,王洪涛.陕西洛川黄土-古土壤剖面中伊利石结晶度.地质论评, 1997a, 43(2): 181– 185.
    [238]贾蓉芬,彭先芝,周正,等.西峰和段家坡剖面S5-1层段磁性矿物的成分与组合特征.地球化学, 2004, 33(2): 171– 177.
    [239]贾蓉芬,颜备战,李荣森,等.陕西段家坡黄土剖面中趋磁细菌特征与意义.中国科学(D辑), 1996, 26(5): 411– 416.
    [240]姜文英,韩家懋,刘东生.干旱化对成土碳酸盐碳同位素组成的影响.第四纪研究, 2001, 21(5): 427– 435.
    [241]姜泽春.纳米科学与地学.地质地球化学, 1993, (2): 22– 25.
    [242]李杰,汪罗,裴云鹏,等.甘肃西峰6.2 ~ 2.4Ma B. P.红粘土中饱粉记录及古植被演化.第四纪研究, 2005, 25(4): 467– 473.
    [243]李珍,张家武,马海洲.西宁黄土石英颗粒表面结构与黄土物质来源探讨.沉积学报, 1999, 17(2): 221– 225.
    [244]刘丛强,张劲,李春来.黄土中CaCO3含量及其Sr同位素组成变化与古气候波动记录.科学通报, 1999, 44(10): 1088– 1092.
    [245]刘东生.黄土与环境.西安交通大学学报(社科版), 2002, 22(4): 7– 12.
    [246]刘东生,郑绵平,郭正堂.亚洲季风系统的起源和发展及其与两极冰盖和区域构造运动的时代耦合性.第四纪研究, 1998, (3): 194– 204.
    [247]刘东生.黄土与环境.北京:科学出版社, 1985. 1– 358.
    [248]刘进峰,乔彦松,郭正堂.风尘堆积全岩和石英粒度变化对风化成壤强度的指示.第四纪研究, 2007, 27(2): 270– 276.
    [249]刘连文,陈骏,陈旸,等.最近130ka以来黄土中Zr/Rb值变化及其对冬季风的指示意义.科学通报, 2002, 47(9): 702– 706.
    [250]刘连文,陈骏,王洪涛,陈旸.一个不受风力分选作用影响的化学风化指标:黄土酸不溶相中Fe/Mg值.科学通报, 2001, 46(7): 578– 582.
    [251]刘秀铭,刘东生, Heller F,等.黄土-古土壤的频率磁化率.第四纪科学, 1990, 1: 42– 50.
    [252]刘秀铭,夏敦胜,刘东生,等.中国黄土和阿拉斯加黄土磁化率气候记录的两种模式探讨.第四纪研究, 2007, 27(2): 210– 220
    [253]卢升高,董瑞斌,俞劲炎,等.中国东部红土的磁性及其环境意义.地球物理学报, 1999, 42(6): 764– 771.
    [254]卢演俦.黄土地层中CaCO3含量变化与更新世气候旋回.地质科学, 1981, 2: 122– 131.
    [255]卢玉东,孙建中,李同录,等.利用黄土中的碳同位素半定量地重建古温度.海洋地质与第四纪地质, 2005, 25(3): 139– 143.
    [256]鹿化煜, Huissteden K V,安芷生,等.早、中更新世东亚冬季风强度的快速变化.海洋地质与第四纪地质, 1999a, 19(2): 75– 83.
    [257]鹿化煜, Huissteden K V,周杰,等.中国北方更新世极端冷期冬季风快速变化.中国沙漠, 2000, 20(2): 192– 196.
    [258]鹿化煜,安芷生.黄土高原红粘土与黄土古土壤粒度特征对比.沉积学报, 1999b, 17(2): 226– 232.
    [259]鹿化煜,安芷生.洛川黄土粒度组成的古气候意义.科学通报, 1997, 42(1): 66– 69.
    [260]鹿化煜,安芷生.黄土高原黄土粒度组成的古气候意义.中国科学(D辑), 1998, 28(3): 278– 283.
    [261]彭长琪,孙振亚.近代矿物学研究的一个新领域-机械力矿物学.地质科技情报, 1995, 14(3): 45– 50.
    [262]彭淑贞,郭正堂.西峰地区晚第三纪红土稀土元素的初步研究.海洋地质与第四纪地质, 2000, 20(2): 39– 43.
    [263]彭淑贞.中新世以来中国北方风尘堆积的粘土矿物组成及其古环境意义[D].北京:中国科学院地质与地球物理研究, 2004, 18.
    [264]彭先芝,贾蓉芬,李荣森,等.黄土-古土壤序列中趋磁细菌分布和磁小体形成的古环境研究.科学通报, 2000, 45(增刊): 2710– 2715.
    [265]彭先芝,贾蓉芬,李荣森,等.趋磁菌及磁小体对黄土-古土壤序列磁化率贡献的模拟实验研究.第四纪研究, 2002, 22(2): 188– 194.
    [266]强小科,安芷生,李华梅,等.佳县红粘土堆积的磁学性质及其古气候意义[J].中国科学D辑, 2004, 34(4): 685– 667.
    [267]饶文波,杨杰东,陈骏,等.中国干旱-半干旱区风尘物质的Sr, Nd同位素地球化学:对黄土来源和季风演变的指示.科学通报, 2006, 51(4): 378– 386.
    [268]盛雪芬,陈骏,杨杰东,等.不同粒级黄土-古土壤中碳酸盐碳氧稳定同位素组成及其古环境意义.地球化学, 2002, 31(2): 105– 112.
    [269]盛雪芬,杨杰东,李春雷,等.黄土和沉积岩中分离方解石和白云石的方法实验.岩矿测试, 2000, 19(4): 264– 267.
    [270]盛雪芬.黄土碳酸盐的环境地球化学研究[D].南京:南京大学, 2002.
    [271]师育新,戴雪荣,李节通,等.末次间冰期兰州黄土记录中的粘土矿物及其古环境意义探讨.海洋地质与第四纪地质, 1997, 17(1): 87– 94.
    [272]施倪承,马喆生,何万中,等.太平洋北部洋底锰结核中的纳米固体研究.中国科学(B辑), 1995, 25(7): 778– 784.
    [273]施雅风,汤懋苍,冯玉贞.青藏高原二期隆升与亚洲季风孕育关系探讨.中国科学(D辑), 1998, 28(3): 263– 271.
    [274]孙东怀,陈明扬, Shaw John,等.晚新生代黄土高原风尘堆积序列的磁性地层年代与古气候.中国科学(D辑), 1998, 28(1): 79– 84.
    [275]孙东怀,刘东生,陈明扬,等.中国黄土高原红粘土序列的磁性地层学与气候变化.中国科学(D辑), 1997, 27(3): 265– 270.
    [276]孙东怀,鹿化煜, Rea David,等.中国黄土粒度的双峰分布及其古气候意义.沉积学报, 2000, 18(3): 327– 335.
    [277]孙东怀,周杰,吴锡浩,等.全新世气候适宜期黄土高原及黄土/沙漠过渡区年降雨量的初步恢复.中国沙漠, 1995, 15(4): 339– 344.
    [278]孙继敏.中国黄土的物质来源及其粉尘的产生机制与搬运过程.第四纪研究, 2004,24(2): 176– 183.
    [279]孙有斌,安芷生.风尘堆积物中石英颗粒表面微结构特征及其沉积学指示.沉积学报, 2000a, 18(4): 506– 509.
    [280]孙有斌,安芷生.最后4个冰期旋回中国黄土记录的东亚冬季风变化.地球科学, 2002b, 27(1): 19– 24.
    [281]孙有斌,强小科,孙东怀,等.新近纪以来中中国黄土高原的风尘记录.地层学杂志, 2001a, 25(2): 94– 101.
    [282]孙有斌,孙东怀,安芷生.灵台红粘土-黄土-古土壤序列频率磁化率的古气候意义.高校地质学报, 2001b, 7(3): 300– 306.
    [283]孙有斌,周杰,安芷生.灵台风尘堆积中钙结核的地球化学研究.地球化学, 2000b, 29(3): 277– 282.
    [284]孙有斌,周杰,鹿化煜,等.风化成壤对原始粉尘粒度组成的改造.中国沙漠, 2002a, 22(1): 16– 20.
    [285]孙玉兵,谢巧勤.黄土高原风尘序列的碳酸盐成因及其风化过程.矿物岩石地球化学通报, 2007, 26(2): 170– 175.
    [286]童纯菡,李巨初,葛良全,等.地气物质纳米微粒的实验观测及其意义.中国科学(D辑), 1998, 28(2): 153– 156.
    [287]王晓勇.中国典型气候带表土中的磁性矿物颗粒及其环境意义[D].西安:中国科学院地球环境研究所,2006, 16– 17.
    [288]文启忠.中国黄土地球化学.北京:科学出版社, 1989.
    [289]文启忠,刁桂仪,贾蓉芬,等.末次间冰期以来渭南黄土剖面地球化学指标所反映的古气候变化.地球化学, 1996b, 25(6): 529– 535.
    [290]文启忠,刁桂仪,潘景瑜,等.黄土高原黄土的平均化学成分与地壳克拉克值的类比.土壤学报, 1996a, 33(3): 221– 231.
    [291]文启忠,余素华,顾雄飞,等.黄土中稀土元素的初步探讨.地球化学, 1981, (2): 151– 157.
    [292]汶玲娟,鹿化煜,强小科.新近纪黄土高原红粘土粒度和沉积速率的空间变化及其揭示的古大气粉尘传输动力.中国科学D辑:地球科学版, 2004, 34 (8): 739– 747.
    [293]吴海斌,陈发虎,王建民.黄土高原第四纪粉尘沉积速率的时空变化及其意义.沉积学报, 1998, 16(1): 147– 156.
    [294]谢巧勤,陈天虎,季竣峰,等.甘肃灵台黄土-红粘土序列中凹凸棒石的分布及其古气候意义.岩石矿物学杂志, 2005, 24(6): 653– 658.
    [295]谢巧勤,陈天虎,孙玉兵,等.洛川黄土-红粘土序列铁氧化物组成及其古气候指示.矿物学报, 2008, (4)( in press).
    [296]熊毅.土壤胶体(一) .土壤胶体的物质基础.北京:科学出版社, 1983, 32– 246.
    [297]薛祥煦,赵景波.陕西旬邑新近纪红粘土微形态特征及其意义.沉积学报, 2003, 21(3): 448– 451.
    [298]杨石岭,丁仲礼. 7.0Ma以来中国北方风尘沉积的游离铁/全铁值变化及其古季风指示意义.科学通报, 2000, 45(22): 2453– 2456.
    [299]易惟熙,沈承德,刘东生.洛川黄土微米级至纳米级物质颗粒度分布规律.地球化学, 1995, 24(4): 327– 333.
    [300]余素华,文启忠,张士三,等.中国西北地区晚第四纪黄土中镁铝地球化学与古气候意义.沉积学报, 1994, 12(1): 112– 116.
    [301]张富生,边立曾,林承毅,等.深海猛结核中螺旋状超微生物化石的发现及其意义.高校地质学报, 1995, 1(1): 109– 116.
    [302]张海生,潘建明,陈建芳,等.楚科奇海和白令海沉积物中的生物标志物及其生态环境响应.海洋地质与第四纪地质, 2007, 27(2): 41– 49.
    [303]张立德,牟季美.纳米材料和纳米结构.北京:科学出版社, 2000, 1– 525.
    [304]章振根.纳米科技与地学研究的思考.大地构造与成矿学, 1995, 19(1): 77– 82.
    [305]赵景波.黄土的本质与形成模式.沉积学报, 2003, 21(2): 198– 204.
    [306]赵良,季峻峰,陈骏,等.最近13万年来黄土高原黄土剖面中绿泥石的化学风化与古气候变迁.矿物学报, 2003, 23(2): 163– 168.
    [307]赵志琦,刘丛强,肖应凯,等.黄土风化过程的硼同位素地球化学研究.中国科学D辑:地球科学, 2002, 32(6): 507– 513.
    [308]郑洪汉, Theng B K G, Whitton J S.黄土高原黄土-古土壤的矿物组成及其环境意义.地球化学, 1994, 23(增刊): 113– 123.
    [309]周鑫,郭正堂,彭淑贞,等.西峰剖面午城黄土古风化强度变化与早更新世季风环境演化.第四纪研究, 2007, 27(4): 645– 650.
    [310]周瑶琪,柴之芳,徐英庭,等.用扫描隧道显微镜研究铁陨石和铁质宇宙尘球粒的亚微米和纳米结构.岩矿测试, 1996, 15(1): 1– 12.
    [311]朱日祥,李春景,吴汉宁,等.中国黄土磁学性质与古气候.中国科学(B辑), 1994, 24(9): 992– 997.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700