用户名: 密码: 验证码:
河套灌区畦田节水改造关键技术和灌溉决策研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
全球95%的灌溉面积采用地面灌溉技术,内蒙古河套灌区以传统的地面灌溉为主,在灌区种植模式和种植结构不断调整以及水资源供需矛盾日益突出的条件下,研究畦田节水改造关键技术和灌溉决策具有重要意义。本文针对上述问题引入了模拟地面灌溉的SIRMOD模型对畦田节水改造中的土壤入渗参数、田面参数和畦田规格等关键参数进行研究;采用具有评价和优化功能的ISAREG模型研究不同种植模式下粮食作物和考虑灌水技术制约时经济作物的灌溉制度;利用具有决策支持系统功能的SADREG模型对小麦畦田进行灌溉决策研究。本文的主要研究成果有:
     (1)分别采用SIRMOD、Maheshwari、Esfandiari、非线性回归和线性回归模型估算了小麦、玉米畦田的土壤入渗参数,研究结果表明:不管是对均一土质还是分层土壤,SIRMOD模型和非线性回归模型估算土壤入渗参数的精度较高,需要的观测数据相对较少、计算工作量较小;入渗参数随着灌水次数的增加逐渐减小,其中第1次灌水对入渗参数的影响最大,第2次灌水时的入渗系数比第1次灌水时降低约5.0%~11.0%,入渗指数降低约5.0%~15.0%,第3次灌水时土壤的入渗性能逐渐趋于稳定,并且灌水对粉土密实性的影响比粉壤土大。
     (2)采用SIRMOD模型、SRFR模型和田间实测法分别对小麦、玉米不同规格畦田的灌水质量评价结果表明:SIRMOD模型模拟畦田灌水质量的效果较好;同规格的畦田在灌水量相同的条件下,改善灌水质量可以提高作物产量和水分利用效率,而不同规格的畦田随着畦宽的增大,在增加较大灌水量的情况下,灌水质量改善不明显,而水分利用效率明显降低,因此对较大规格畦田进行缩块改造十分必要;根据灌水质量的对比结果,建议灌区采用畦田规格Ⅱ(畦长45m、畦宽7.5m,约为0.5亩),考虑到当前的农业耕作水平,应减少使用面积1.0亩(畦长45m、畦宽15.0m)的畦田,限制使用面积1.5亩及以上的畦田。
     (3)SIRMOD模型对影响灌水质量各因素的模拟结果表明:田面平整精度对水流的推进与消退过程具有显著影响,较低的平整精度值(较佳的田面状况)可获得较好的灌水效果,为此则需实施激光控制精细土地平整;田面糙率对水流的推进与消退过程影响较大,较小的田面糙率其水流推进和消退过程较理想,随着田面糙率的增大,水流推进和消退过程变为凹凸不平的曲线,灌水效率明显下降;灌水量和单宽流量对灌水效果的影响也非常明显,增大灌水量可以提高灌水均匀度,同时降低了灌水效率,增大单宽流量,可以明显改善灌水质量,但并不是单宽流量越大灌水质量越高,不同条件对应不同的适宜单宽流量;不同灌水要素和田面参数条件下有不同的最佳田面坡度,选定适宜的田面坡度可以获得较佳的灌水效果,模拟得出了常规和激光平地时不同畦田规格的最佳田面坡度,根据模拟结果建议畦长控制在45~60m,畦宽小于10m。
     (4)对ISAREG模型所需的各项参数进行了验证,并对作物的实际灌溉制度进行了评价,在此基础上设计了不同作物的多种灌溉制度方案,根据模拟结果得出了灌水日期不受黄河来水日期约束时和现状供水状况下的小麦畦灌优化灌溉制度,考虑灌水技术制约的番茄畦灌和沟灌以及辣椒沟灌和隔沟灌优化灌溉制度,考虑种植模式的小麦间作葵花和小麦间作玉米的优化灌溉制度。
     (5)根据SIRMOD和ISAREG模型各参数的优化结果,采用SADREG模型对小麦畦田灌溉的13个方案进行多目标分析评价,通过对不同方案效益、成本和环境效应的各性能指标的对比分析,并以总效用函数值为标准,评价得出了方案10 (畦长45.0m、畦宽7.5m)为较理想的畦田规格,通过组合其对应的优化田面参数和灌溉制度,得到小麦最佳灌溉决策方案。
The surface irrigation technology is used in percentage of 95 irrigated area in the whole world, and the traditional surface irrigation is main in HeTao irrigation district in Inner Mongolian, so it’s important to study on key technology of border water-saving re-building and irrigation decision-making with increasing contradiction of water resources supply and demand, continuous readjustment of planting mode and structure in this region.
     Aiming at above question, SIRMOD model simulating surface irrigation was intro-duced in this paper, and the critical parameters such as soil infiltration parameters, surface parameters, border sizes, and so on were studied through this model; ISAREG model with function of evaluation and optimization was used to research on irrigation schedules of food crops under different planting mode and cash crops considering irrigation technology condition; SADREG model with function of decision support system was used to research on irrigation decision-making. Main research findings including:
     (1) The soil infiltration parameters of wheat and maize border are separately calcu-lated by SIRMOD, Maheshwari, Esfandiari, non-linear return and linear return model, the results indicating: the precision of SIRMOD and non-linear return model is higher with less observation data and few work; the soil infiltration parameters are gradually reducing with increasing irrigation times, in which the influence of first irrigation to infiltration parame-ters is most greatest, the infiltration coefficient of second irrigation is lower approximately 5.0%~11.0% than first irrigation and infiltration index reduced about 5.0%~15.0%, infiltra-tion capability is gradually stabilizing in third irrigation, and the influence of irrigation to silt is larger than silty loam.
     (2) The irrigation efficiency is separately calculated by SIRMOD, SRFR model and field measurement method in wheat and maize border sizes, the results indicating: the pre-cision of the SIRMOD model is highest; The crop yield and efficiency of water application increase by improving irrigation efficiency under the same border sizes and irrigation quota, However, irrigation efficiency improvement isn’t obvious with border wide enlarging and irrigation quota increasing, and the water use efficiency reduce obviously, therefore it is necessary to reduce the sizes of larger border; According to the comparison results of irri-gation efficiency, it can be suggested that the border sizeⅠ(length is 45.0m and wide is 5.0m)andⅡ(length is 45.0m and wide is 7.5m)should be adopted, while considering pre-sent farming level, the application of 1.0mu border(length is 45.0m and wide is 15.0m) should be decreased, and 1.5mu or lager border should be restricted.
     (3) The simulation results of SIRMOD model for various factors of influencing to ir-rigation efficiency indicates: land leveling precision is obviously influencing to water movement and regression, and lower leveling precision can obtain better irrigation effect, so the laser controlled land level should be advocated; the land roughness’s influence on process of water movement and regression are larger, and the course of water movement and regression of lower land roughness is more perfecter. With increasing of land rough-ness, process of water movement and regression change into scraggly curve and irrigation efficiency has dramatic decline; irrigation quantity and flux per width also influenced on the irrigation effect significantly, irrigation uniformity can be improved by increasing irri-gation quantity, meanwhile, irrigation efficiency decrease, and irrigation efficiency can be reformed through enlarging flux per unit width. However, it’s not that the more lager flux per, the more higher irrigation efficiency, but different conditions is corresponding to dif-ferent flux per width; different irrigation factors and field parameters are corresponding to different optimum field surface slope, so the better irrigation efficiency can be obtained along with appropriate slope, The optimum slopes of different field sizes on condition of the conventional and laser- controlled land technology can be concluded by the SIRMOD model simulation. According to the simulation results, it is suggested that length of border should be controlled between 45~60m and the width less than 10m.
     (4) In this paper, several parameters which ISAREG model needs were verified and the actual irrigation schedules of crops were evaluated, then multi- irrigation schemes were designed for various crops. According to the simulation results, wheat’s optimizational ir-rigation schedule in border irrigation under condition of present water supply and irrigation dates without constraint to Yellow River incoming water, tomato’s in border and furrow irrigation and pepper’s in furrow and separate furrow irrigation considering constraints of surface irrigation technology and the wheat interplanting sunflower’s and the wheat inter-planting maize’s considering planting mode was concluded.
     (5)According to the optimizational results of various parameters based on SIRMOD and ISAREG model, Multi-objective analysis and evaluation were made for thirteen schemes of wheat border irrigation by employing SADREG model, and it can be concluded the tenth(length is 45.0m and wide is 7.5m) was the most perfect through comparing and analyzing the performance indexes of benefit, cost and environmental effect and taking the total utility function value as the standard, and the optimally irrigation decision-making scheme of wheat can be obtained by combining with optimized surface parameters and ir-rigation schedule of a correspondence.
引文
1韩振中,姚宛艳,张顺尧.大型灌区现状和节水改造紧迫程度评价[J].中国农村水利水电,2002, (6):16-20
    2郭富庆,习玲,李焕新.建设项目经济评价在灌区续建配套与节水改造项目中的应用[J].水利经济,2007,25(6):37-40
    3刘琛,张艺甫.对河套灌区发展节水型农业浅谈[J].内蒙古水利报,2008,113(1):20-23
    4刘艳,乌仁格日乐,王海江.河套灌区节水灌溉措施的新思考[J].内蒙古水利报,2007,111(3):33-34
    5 Elliot R L, Walker W R. Field evaluation of furrow and advance function [J]. Trans.ASAE, 1982,25(2):396-400
    6 Maheshwari B L. An Optimization Technique for Estimating Infiltration Characteristics in Border Irrigation [J]. Agric.Water Manage. 1988, (13):13-24
    7费良军,王文焰.由波涌畦灌资料推求土壤入渗参数和减渗率系数[J].水利学报,1999,(8):26-29
    8缴锡云,王文焰,雷志栋等.估算土壤入渗参数的改进Maheshwari法[J].水利学报,2001,(1):62-67
    9张新民,王根绪,胡想全等.用畦灌试验资料推求土壤入渗参数的非线性回归法[J].水利学报,2005,36 (1):28-34
    10章少辉,许迪,李益农等.基于SGA与SRFR的畦灌入渗参数与糙率系数优化反演模型(Ⅰ)-模型建立[J].水利学报,2006,37(11):1297-1302
    11章少辉.土壤入渗参数和糙率系数的优化反求方法及应用[D].北京:中国水利水电科学研究院,2005
    12李益农.田面平整精度对畦灌系统性能影响的模拟分析[J].农业工程学报,2001,17(4):43-48
    13李益农,许迪,李福祥.田面平整精度对畦灌性能和作物产量影响的试验研究[J].水利学报, 2000, (11):23-26
    14李益农,许迪.影响水平畦田灌溉质量的灌水技术要素分析[J].灌溉排水学报,2001(4):10-14
    15刘群昌,许迪,谢崇宝等.波涌灌溉技术田间适应性分析[J].农业工程学报,2002,18(4):35-40
    16刘钰,蔡甲冰,白美健等.黄河下游簸箕李灌区田间灌水技术评价与改进[J].中国水利水电科学研究院学报,2005,3(1):32-39
    17闫庆健,李久生.地面灌溉水流特性及水分利用率的数学模拟[J].灌溉排水,2005,24 (2):62-64
    18王京,史学斌,宋玲等.畦田水流特性及灌水质量的分析[J].中国农村水利水电,2005,(6):4-7
    19白美健,许迪,李益农.随机模拟畦面微地形分布及其差异性对畦灌性能的影响[J].农业工程学报,2006,22(6):28-32
    20聂卫波,马孝义.基于水量平衡原理的畦灌水流推进简化解析模型研究[J].农业工程学报,2007,23(1):82-85
    21 Hornbuckle J.W, Christen, E.W and Faulkner, R.D. Use of SIRMOD as a Quasi Real Time Surface Irrigation Decision Support System. [J]. Journal of Irrigation and Drainage Engineering, 2006, 15(2): 217-223
    22 Raine S R, Walker W R. A design and management tool to improve surface irrigation efficiency. [J]. Trans of the ASAE, 2004, 10(3): 19-23
    23 Hornbuckle, J.W. Modeling Furrow Irrigation on Tiled Drained Soils using SIRMOD in the Murrumbidgee Irrigation Area. [J]. Prentice Hall Inc, 1999, (4): 25 -31
    24 Clemmens A J, El-Haddad Z, Strelkoff TS. Assessing the potential for modern surface irrigation in Egypt [J]. Trans of the ASAE, 1999, 42 (4): 58-65
    25 Fariborz Abbasi, Mohammad Shooshtari, Jan Feyen. Evaluation of vrious Surface Irrigation Numerical Simulation Models [J]. Joumals of Irrig. And Darin.Eng. ASCE,2003,129(3):208-213
    26郭宗楼.非线性节水高产优化模型[J].水科学进展, 1994,(3):58-63
    27 Dejuan J, Dinar A, Knapp K C. Crop-Water production function model for irrigation waters [J]. Soil Sci.Soc.AM.1996(49):1005-1009
    28肖红.运用RAGA求解农业线性与非线性规划模型[J].农机化研究,2002,5(2):30-34
    29尚松浩.作物非充分灌溉制度的模拟优化方法[J].清华大学学报,2005,(9):1179-1183
    30陈亚新,康绍忠.非充分灌溉原理[M].北京:中国水利水电出版社,1995
    31 Hall K V, Butcher P J. Crop Production and water-use. Yeld functions for sugarbeet [J]. the Journal of Agricultural Science.1968,1(129),33-42
    32崔远来,李远华.作物缺水条件下灌溉供水量最优分配[J].水利学报,1997,3:31-32.
    33王志良,付强,梁川等.非充分灌溉下作物优化灌溉制度仿真[J].农机化研究,2001,11(4):82-84
    34付强,王立坤,门宝辉等.推求水稻非充分灌溉下优化灌溉制度的新方法[J].水利学报,2003,(1):123-128
    35张兵,袁寿其,李红等.基于最优保留策略遗传算法的玉米小麦优化灌溉模型研究[J].农业工程学报,2005,21(7):123-128
    36 De Lucia A, Kowalski B. A theoretical foundation irrigation for the algorithm [J]. Journal of Chemometr.1987,(1):19-31
    37 Dudley S. An alternative approach regression to partial least squares [J]. ChemometrNtellg Lab Sys. 1993, 18:251-263
    38崔远来.非充分灌溉优化配水技术研究综述[J].灌溉排水学报,2000,19(1):66-70
    39田富强,胡和平,杨诗秀.水稻灌溉制度的计算机模拟[J].农业工程学报,1999,15(4):100-103
    40李远华,罗金耀主编.节水灌溉理论与技术[M].第二版.武汉大学出版社,2003
    41山仑,我国节水农业发展中的科技问题[J].干旱地区农业研究,2003,21(1):1-5
    42李英能.关于我国节水农业技术研究的探讨[J].灌溉排水学报,2003,22(1):11-15
    43康绍忠,蔡焕杰等.现代农业与生态节水的技术创新及未来研究的重点[J].农业工程学报,2004(1):1-6
    44林性粹,赵乐诗.旱作物地面灌溉节水技术[M].北京:中国水利水电出版社,1999
    45缴锡云,王文焰.覆膜灌溉理论与技术要素试验研究[M].北京:中国农业科技出版社,2001
    46黄修桥,高峰等.节水灌溉与21世纪水资源的持续利用[J].灌溉排水,2001,20(3):1-5
    47许迪,蔡林根,王少丽等.农业可持续发展的农田水土管理研究[M].北京:中国水利水电出版社,2000
    48王维汉,缴锡云,彭世彰等.畦灌土壤入渗参数估算的线性回归法[J].水利学报,2007,38(4):468-472
    49王全九,王文焰,张江辉等.根据畦田水流推进过程水力因素确定Philip入渗参数和田面平均糙率[J].水利学报,2005,(1):125-128
    50王全九,来剑斌,李毅. Philip入渗模型与Green-Ampt入渗模型对比分析[J].农业工程学报,2002,18(2):13-16
    51李久生,饶敏杰.地面灌溉水流特性及水分利用率的田间试验研究[J].农业工程学报,2003,19(3):54-58
    52刘群昌,许迪,李益农等.应用水量平衡法确定波涌灌溉下土壤入渗参数[J].灌溉排水,2001,20 (2):8-12
    53虎胆·吐马尔白,木拉提.沟底膜孔灌水条件下土壤水入渗规律的数值模拟[J].水科学进展,2002, 13(1) :42-45
    54 Fok Y S, Bishop A A. Analysis of water advances in surface irrigation [J]. Irrig and Drain. Div, ASCE, 1965, 91 (1):99 -117
    55 Cahoon J. Kostiakov infiltration parameters from kinematic wave model [J]. Journal of Irrigation and Drainage Engineering, 1998 ,124(2) :127-129
    56 Fangmeier D D, Clemmens A J. Influence of land-leveling percision on land basin advance and performance [J]. Transactions of ASAE, 1999, 42(4) :1019-1025
    57 Causape J, Qulez D, Aragues R. Assessment of irrigation and environmental quality at the hydrological basin level I. Irrigation quality [J]. Agricultural Water Management, 2004,(70):195-209
    58 Luciano Mateos, Oyonarte N A. A spread sheet model to evaluate sloping furrow irrigation accounting for infiltration variability [J]. Agri-cultural Water Man-agement, 2005,(76):62-75
    59 Oyonarte N A, Mateos L, Palomo M J. Infiltration variability in furrow irrigation [J]. Journal of Irrigation and Drainage Engineering,2002,128(1):26-33
    60 Oyonarte N A, Mateos L. Accounting for soil variability in the evaluation of furrow irrigation [J]. Transactions of the American Society of Agricultural Engineers, 2003,46(1):85-94
    61袁志发,周静芋主编.多元统计分析[M].科学出版社, 2003
    62莫正涛,刘彦珍,董云德等.畦田灌溉试验分析[J].中国农村水利水电,2004, (3):9-13
    63张新民,胡想全.畦灌灌水要素决策服务系统[J].灌溉排水学报, 2007, 26(3):65-68
    64史学斌,马孝义.关中西部畦灌优化灌水技术要素组合的初步研究[J].灌溉排水学报,2005,24(2):39-43
    65吴军虎,费良军,王文焰.根据零惯量模型推求膜孔灌溉田面综合糙率系数[J].灌溉排水学报, 2001, 20(1):32-34
    66许迪,蔡林根,王少丽等.农业持续发展的农田水管理研究[M].北京:中国水利水电出版社, 2000
    67仵峰,陈玉民,宰松梅.石津灌区适宜田间灌水技术试验研究[J].中国农村水利水电,2003,(2):32-37
    68周振民,刘月.畦田灌溉水流演进计算简化模型研究[J].灌溉排水, 2005, (2): 23-26
    69李久生,饶敏杰.地面灌溉水流特性及水分利用率的田间试验研究[J].农业工程学报, 2003, 19(3): 54-58
    70吕雯,汪有科,许晓平.秸秆覆盖畦田灌溉水流特性及灌水质量分析[J].水土保持研究,2007,14(2):236-238
    71仵峰,陈玉民,宰松梅.石津灌区适宜田间灌水技术试验研究[J].中国农村水利水电,2003,(2) :19-23
    72王文焰,汪志荣,费良军等.波涌灌溉的灌水质量评价及计算[J].水利学报,2000(3):53-57
    73 Valiantzas J D. Surface water storage independent equation for predicting furrow irrigation advance [J]. Irrg. Sci 2000,(19): 115-123
    74 Kanya L, Khatri R, Smith J. Real-time prediction of soil infiltration characteristics for the management of furrow irrigation [J]. Irrg. Sci 2006, (25): 33-43
    75 Wang Fahong,Wang Xuqing,Ken Sayre.Comparisonof conventional flood irrigated, flat planting with furrow irrigated,raised bed planting for winter wheat in China [J]. Field Crops Research, 2004, 87:35-42
    76 Aggarwal P, Goswami B. Bed planting system for in-creasing water use efficiency ofwheat grown in Inceptisol [J]. Indian J Agric Sci,2003,73:422-425
    77 Sharma R K, Singh R. Furrow irrigated raised bed planting system:An efficient input usage production technology[J]. Indian Farming,2002,(6):25-27
    78 ClemmensA J, El-Haddad Z, Strelkoff T S. Assessing the potential for modern surface irrigation in Egypt [J]. Trans of the ASA E, 1999, 42 (4):45-49
    79胡华.水文统计概率计算中的数学基础[M].南京:华东水利学院出版社, 1975
    80张建国,张皓臻.农田土地激光平整技术的应用[J].农业装备技术,2007,33(5):17-19
    81李益农,许迪,李福祥.农田土地激光平整技术应用及初步评价[J].农业工程学报,1999, (2):32-35
    82石贵余,张金宏.河套灌区灌溉制度研究[J].灌溉排水学报,2003,22(5):72-76
    83刘钰,Pereira L S.考虑地面灌水技术制约的灌溉制度优化[J].农业工程学报,2003,19(4):74-78
    84郑和祥,史海滨,柴建华等.基于RAGA-DP的饲草料作物非充分灌溉制度优化模型[J].农业工程学报,2007,23(6):53-58
    85崔远来,李远华.非充分灌溉条件下稻田优化灌溉制度的研究[J].水利学报,1995(10):29-34.
    86陈亚新,史海滨,魏占民等.农业节水灌溉的理论和学科前沿进展[J].农业高效用水与水土环境保护,西安:陕西科学技术出版社,2000
    87黄高宝,张恩和.调亏灌溉条件下春小麦玉米间套农田水、肥与根系的时空协调性研究[J].农业工程学报,2002,18(1):53-56
    88司徒淞,张薇,庞鸿宾.地面灌水技术优化组合节水高产机理研究[J].灌溉排水学报1998,17(4):11-15
    89王仰仁,孙小平主编.山西农业节水理论与作物高效用水模式[M].北京:中国科学技术出版社,2003
    90段爱旺,孙景生,刘钰等.北方地区主要农作物灌溉用水定额[M].北京:中国农业科学技术出版社,2004
    91左强,李品芳.农业水资源利用与管理[M].北京:高等教育出版社, 2003
    92 Fernando, R. M. Pereira, L. S., Liu, Y. Simulation of capillary rise and deep percolation with ISAREG. In: International Conference on Agricultural Science and Technology, Vol. 6: Information Technology for Agriculture, ICAST, Ministry of Science and Technology, Beijing, China, 2001:421-426.
    93 Pereira L S, Teodoro P R, Rodrigues P N. Irrigation scheduling simulation: the model ISAREG [M]. 2001
    94 De Costa W A. Physiology of yield determination of soybean under different irrigation regimes in the sub-humid zone of Sri Lanka. Field Crops Res. 75, 2002:23-35.
    95 Hiroki O, Toshiyuki T, Keiji T, Microneteorogical model for estimating evaporation from a bare field in the Hetao Irrigation District in the Yellow River Basin [J]. J Agric Meteorol, 2005, 60(5): 541-544
    96丁日升,康绍忠,冯绍元等.缺水条件下非充分灌溉制度预报系统的研制[J].干旱地区农业研究,2006,24(2):79-75
    97罗遵兰,冯绍元,左海萍.河北省夏玉米水分生产函数模型初步分析[J].节水灌溉,2006,(1):17-19
    98畅利毛,魏占民,郭克贞等.甘肃北部干旱荒漠草原人工牧草需水规律研究,灌溉排水学报[J]. 2006,5(B),8-9
    99畅利毛,郭克贞,魏占民等.干旱荒漠草原应用Penman-monteith与Penman修正式计算ET0的偏差分析[J].灌溉排水学报,2007,26(1),55-58
    100胡顺军,潘渝,康绍忠等.Penman-Monteith与Penman修正式计算塔里木盆地参考作物潜在腾发量比较[J].农业工程学报,2005,21(6):30-35
    101王志强,朝伦巴根,天谷孝夫.等.达拉特旗大畦灌溉夏玉米非充分灌溉制度的制定[J].干旱区资源与环境,2005,19 (7):157-161
    102孙书洪,王学安,王仰仁等.基于作物水分生产函数下的限额灌溉制度优化研究[J].水利水电技术,2005,36(10):105-108
    103汤广民,王友贞.安徽淮北平原主要农作物的优化灌溉制度与经济灌溉定额[J].灌溉排水学报,2006,25(2):24-29
    104胡庆芳,尚松浩,温守光等.潇河冬小麦水肥生产函数偏最小二乘回归建模及分析[J].节水灌溉,2006,(1):1-8
    105郭克贞,李和平,史海滨等.毛乌素沙地饲草料作物耗水量与节水灌溉制度优化研究[J].灌溉排水学报,2005,24(1):24-27
    106魏占民.干旱区作物-水关系与田间灌溉水有效性的SWAP模型模拟研究[D].内蒙古农业大学博士学位论文,2003
    107丛振涛,雷志栋,杨诗秀等.基于SPAC理论的田间腾发量计算模式[J].农业工程学报,2004,20 (2):6-9
    108刘昌明,周长青,张士锋.等.小麦水分生产函数及其效益的研究[J].地理研究,2005,24(1):2-10
    109 Allen R G,Pereira L S,Dirk R,Martin S. Crop evapotranspiration-Guidelines for computing crop water requirements [M]. FAO Irrigation and Drainage, Paper 56, Rome,1998
    110 Pereira L S, Calculation of reference evapotranspiration [M]. FAO, 1996
    111 Wallace J S, C R Lloyd, M V K Sivakumar. Measurement of soil, plant and total evaporation from millet in Niger [J], Agric, For.Meterol. 1993,63:149-169
    112 Daamen C C, L P Simmonds, J S Wallace. Use of microlysimeters to measure evaporation from sandy soils [J]. Agric, For. Meteorol. 1993,65:159-173
    113 N.Katerji et.al. Salinity and drought, a Parison of their effects on the relationship between yield and evapotranspiration [J]. Agric Water Management.1998(36):45-54
    114樊引琴,蔡焕杰.单作物系数法和双作物系数法计算作物需水量的比较研究[J].水利学报,2002,3:50-54
    115闫浩芳,史海滨,薛铸.参考作物需水量的不同计算方法对比[J].农业工程学报.2008,18(4):55-59
    116史海滨,何京丽,郭克贞等.参考作物腾发量计算方法及其适用性评价[J].灌溉排水学报,1997,16(3):50-54
    117胡顺军,潘渝,康绍忠等. Penman-Monteith与Penman修正式计算塔里木盆地参考作物潜在腾发量比较[J].农业工程学报,2005,21(6):30-35
    118刘钰,L.S.Pereira.对FAO推荐的作物系数计算方法的验证[J].农业工程学报, 2000,16 (5):26-30
    119陈晓楠,黄强,邱林等.基于遗传程序设计的作物水分生产函数研究[J].农业工程学报,2006,22(3):6-9
    120刘增进,,李宝萍,李远华等.冬小麦水分利用效率与最优灌溉制度的研究[J].农业工程学报,2004,20(4):58-63
    121Сholpankulov E D, Inchenkova O P, Paredes P, testing the irrigation scheduling simulation model isareg for cotton and winter wheat in central Asia [J]. Trans of the ASA E, 2004, 62(6):97-124
    122 Liu Y, Fernando R M, Pereira L S, Water balance simulation with ISAREG considering water Table.interactions. In: Zazueta, F.S., Xin, J.N. World Congress on Computers in Agriculture and Natural Resources, ASAE, St. Joseph, 2001:857-863.
    123许迪,李益农,刘钰等.基于需水和输配水模拟与节水多准则分析的DSS模型应用研究[J].水利学报,2004,(11):7-14
    124许迪,李益农.田间节水灌溉新技术研究与应用[M].北京:中国农业出版社,2002
    125 Gon?alves J. M. a. SADREG, a DSS for surface irrigation. In: Pereira L.S., Dukhovny V.A. & Horst M.G.(Eds.) Irrigation Management for Combating Desertification in the Aral Sea Basin. [M].Assessment and Tools. Vita Color Publ., Tashkent, 2005:337-373
    126曾珍香.决策支持中心-DSS的发展趋势[J].系统工程与电子技术,2000,22(2):22-24
    127兰翠,董桂菊,魏晓莉等.决策支持系统(DSS)在农业中的应用[J].农机化研究,2006,9:161-163
    128 Gon?alves J.M., Horst M.G., Pereira L.S. etal. a DSS for improving surface irrigation systems[M]. SADREG, 2005
    129 Gon?alves J.M, Pereira L.S, Campos A.A, etal. Demand and delivery simulation and multi-criteria analysis for water saving in the lower yellow river basin [M]. China Agriculture Press, Beijing, 2003:247-272
    130 Gon?alves J.M, AndréA.P, Pedro M, etal. SEDAM, a DSS for demand and distribution simulation and scenarios evaluation in a surface irrigation district [J]. EFITA/WCCA. 2005, 28(2):771-778
    131 Janssen R. Multi-objective Decision Support for Environmental Management [M]. Kluwer Academic Publishe Dordrecht,1992
    132 Strelkoff T.A.Computer Programme for Simulating Flow in Surface Irrigation Fur-rows-Basins-Borders [R].USDA-ARS, Water Conservation Lab, Phoenix,1993
    133 Saaty T.L. How to make a decision: the AHP [J]. Europ. J. Operat.Res,1990,48(1):9-26
    134 Pereira L S, Cai L G. Water Savings in the Yellow River Basin [M].China Agriculture Press,Beijing,2003: 211-216
    135 Darouich H, Gon?alves J M, Pereira L.S, Water saving scenarios for cotton under surface irrigation: analysis with the DSS SADREG. In: N. Lamaddalena, C. Boglioti, M. Todorovic, A. Scardigno Water Saving in Mediterranean Agriculture & Future Research Needs, Options Mediterranéennes, Série B, 56 vol.I, 2007:381-396
    136 Gon?alves J M. The Decision Support System SADREG: application to improve wheat surface irrigation.In: A. Rocha, J. Vasconcelos, R. Moreira, J. Torres, P. Sobral (Eds.) Novas perspectivas em sistemas e tecnologias de informa??o, vol. II, 2007:15-26
    137 Thysen I, Detlefsen N K. Online decision support for irrigation for farmers [J]. Agricultural Water Management, 2006 ,86: 269-276
    138 Cholpankulov E D, Inchenkova O P, Paredes P, etal. Strategies for irrigation scheduling to cope with waterscarcity. In: Pereira, L.S., Dukhovny, V.A., Horst, M.G. (Eds.), Irrigation Management for Combating Desertification in the Aral Sea Basin [M]. Assessment and Tools. Vita Color Publisher, Tashkent, 2005:123-144

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700