用户名: 密码: 验证码:
裂纹管结构的振动分析与裂纹识别
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
管道普遍应用于化工、核电和油气储运等领域,是一种重要的工程结构。随着海洋油气资源的开发,海底管道已成为海洋油气集输的重要手段,被誉为海上油气田生命线工程,其安全性和可靠性日益受到重视。然而,由于材料老化、腐蚀和各种环境荷载的长期作用,海底管道不可避免产生凹痕和裂缝等损伤。损伤的累积和扩展导致结构抗力衰减,突发情况下甚至引起海底管道破裂。因此,采取有效的技术手段对海底管道进行结构分析、监测诊断以及安全评价具有重要的理论意义与实用价值。本文围绕海底悬跨管道的振动分析以及结构状态与裂纹识别中的关键科学和技术问题,系统开展了理论和试验研究,其主要内容包括:
     (1)获得了裂纹管结构在复杂荷载联合作用下的局部柔度系数。基于应变能释放原理和线性断裂力学理论,推导了管类结构在轴力、剪力和弯矩作用下由非贯穿直裂纹、圆周非贯穿及贯穿裂纹等三种典型裂纹所引入的附加局部柔度方程,通过数值积分方法进行局部柔度系数求解,发展了较为完善的裂纹管局部柔度系数求解方法。研究结果表明,本文所建立的裂纹管局部柔度能够较为准确地反映裂纹的局部力学行为,弥补了现有模型局限于特定荷载模式或非空心截面的不足,为裂纹管结构的动力分析和损伤识别提供了基本参数。
     (2)基于以上局部柔度系数,建立了裂纹管结构的有限元模型和弹簧铰模型。为了验证裂纹管局部柔度系数及裂纹模型的合理性,进行了裂纹管的动力模型试验,通过对比裂纹管固有频率理论计算值与试验测试值分析了本文裂纹模型的合理性。在此基础上,进行了悬臂裂纹管和简支裂纹管的固有振动分析,系统研究了裂纹位置、裂纹深度与裂纹管固有频率变化之间的关系,并且发展了管类结构裂纹识别的等值线图法。
     (3)分析了边界土体性质变化对悬跨管道固有振动特性的影响,并提出了悬跨管道的状态识别方法。首先,建立了以三向土弹簧约束模拟悬跨管道边界条件的数值模型,讨论了边界土体性质、外部环境荷载、轴向力以及悬跨长度等参数变化对结构固有频率的影响;其次,根据悬跨管道频率结构的内癝特征,构建了结构状态敏感的特征矢量,提出了一种基于核判别分析(Kernel Diseriminant Analysis,简称KDA)的悬跨管道状态识别方法;最后,进行了悬跨管道状态识别的模型试验,利用模型试验数据验证了该方法的有效性。研究结果表明,本文方法能够有效挖掘悬跨管道状态矢量的本质特征,实现了结构状态的正确分类,适合工程应用。
     (4)进行了“呼吸”裂纹结构的非线性谐振分析,提出了一种基于谐振特性的疲劳裂纹识别方法。首先,引入“呼吸”裂纹模型描述疲劳裂纹的非线性时变特性,使用接触分析方法建立了裂纹梁的动力接触模型,研究了裂纹梁在简谐荷载激励下的非线性动力特性,分析了激励频率、裂纹位置、裂纹深度对谐振现象的影响,在此基础上提取了一种“呼吸”裂纹识别的损伤敏感特征;其次,建立了含疲劳裂纹悬跨管道的三维动力接触模模型,进行了疲劳裂纹悬跨管道的非线性谐振分析和裂纹识别;最后,开展了疲劳裂纹识别的模型试验研究,使用三点弯曲疲劳试验预制了不同裂纹程度的裂纹管模型,进行了裂纹悬跨管道的无水和水下动力测试,根据疲劳裂纹管的真实振动信号验证了本文方法的有效性。
As important engineering structures,pipes are widely met in many applications,e.g. chemical plants,power plants,and gas and oil transportation,et al.Submarine pipelines play an important role in the process of oil and gas transportation,regarded as the lifeline of marine oil and gas fields.Therefore,the structural security and reliability of submarine pipelines have received more attention in practice.However,dent,crack and damages are inevitably occurred in structural components of submarine pipelines due to material aging, corrosion and environmental loads.The damage accumulation and performance deterioration would seriously reduce the resisting capacity of the structures against the disaster,even result in collapse.Thus,the safe operation and the prolongation of the service life urgently motivate the research on the structural vibration analysis,health diagnosis and safety assessment for submarine pipelines.The key issues of the above problems,i.e.crack modeling,structural condition recognition and crack identification et al,are stressed in the study.The main achievements of the dissertation are summarized in the following:
     (1) The equations of local flexibility for cracked pipes are theoretically proposed.The local flexibility coefficients for typical crack sections,due to the straight part-through,the circumferential part- through crack and the straight through crack were deduced by linear fracture mechanics and the theory of strain energy release rate.The local flexibility matrix was numerically by the adaptive Simpson algorithm.The results show that the presented local flexibility of cracked pipes can be used to simulate the local mechanics behavior precisely, which provides required parameters for dynamic analysis and crack identification for pipe-like structure with open crack.The presented method overcomes the shortcoming of the traditional crack model.
     (2) Based on the proposed local flexibility matrix,the analysis models for cracked pipes are presented by finite element and torsional spring approach.The scaling model was used to validate the proposed local flexibility and cracked pipe model by comparing the theoretical results to experimental data.The measured frequencies of the craked pipes show good agreements with the calculated results,which indicates that the proposed flexibility equations and crack models are reasonable.Moreover,the vibration characteristics analysis for cantilever cracked pipe and simple support cracked pipe are conducted respectively.The effects of crack location,crack depth on natural frequency are discussed in detail.Then,crack in the pipe-like structure was proposed to be identified by contour diagram of crack locations versus crack depth.
     (3) The effects of boundary constraints on the vibration characteristics is presented by taking consideration of the ambient loads,and an effective approach of structural condition identification for free span(CIFS) is proposed Firstly,an interaction model of the contact between the pipeline and seabed was established with respect to boundary constraint variations,which can be simulated by means of altering dynamic stiffness of soil spring. Based on the proposed model,the vibration characteristics of free spanning pipeline under different environmental factors,such as oil property,environmental load,axial force and span length,were studied.Secondly,a methodology to identify the operational conditions of free span based on nonlinear kernel discriminant analysis(KDA) was proposed.The sensitive features were extracted as condition vector for CIFS.Finally,the dynamic model test of free span was used to validate the feasibility.The numerical and experimental results indicate that the proposed method is suitable to capture the discriminative feature underlying in the condition feature vectors,and it is suitable for health diagnosis of submarine pipelines in practice.
     (4)The nonlinear dynamic behavior of cracked structure is studied and an approach to identify a fatigue crack is presented.A breathing crack model was introduced to describe the nonlinear dynamic behavior of fatigue crack,which simulate as a frictionless contact plane problem.The nonlinear dynamic characteristics of a cantilever beam with a fatigue crack subjected to harmonic load were studied.The effects of various factors,such as the excitation frequency,crack location and crack depth on nonlinear dynamic characteristics were discussed.Moreover,nonlinear dynamic analysis of free spanning pipeline was conducted and a sensitive-damage feature was extracted to identify the severity of a fatigue crack. Finally,Fatigue test with three-point bending was used to simulate actual fatigue crack in pipe specimens.And dynamic model tests of cracked free spanning pipelines both underwater and without water were used to validate the proposed approach.The results indicate that proposed feature efficiently assesses the crack severity even in the case of the presence of the observed noise.
引文
[1]董汝博.多点地震动作用下海底悬跨管道非线性分析[D].大连:大连理工大学,2008.
    [2]周延东,刘日柱.我国海底管道的发展状况与前景[J].中国海上油气(工程),1998,10(4):1-5.
    [3]张恩勇.海底管道分布式光纤传感技术的基础研究[D].杭州:浙江大学,2005.
    [4]MMS.Incidents associated with oil and gas operations(outer continental shelf(2000))[R].Washington:Minerals management service,2002.
    [5]许文兵.平湖油气田海底输油管线临时修复方法[J]。中国海洋平台,2003,18(2):37-0.
    [6]程志虎.海底管线的检测.无损检测[J].1998,20(5):143-145.
    [7]李爱英,王凯全,邵辉。管线泄漏监测技术及其研究进展[J].江苏石油化工学院学报,2002,14(4):14-17.
    [8]张剑波.水下结构物检测与维修技术概论[M].北京:石油工业出版社。2005。
    [9]API 579.Recommended practice for fitness-for-service[S].Washington:American petroleum institute,2000.
    [10]DNV recommend practice,DNV-RP-F101:Corroded pipelines IS].Norway:Det Norske Veritas,2000.
    [11]DNV recommend practice,DNV-RP-F105:Free spanning pipeline[S].Norway:Det Norske Vcritas,2006.
    [12]金伟良,张恩勇,邵剑文等.海底管道失效原因分析及其对策[J]。科技通报,2004,20(6):529-533。
    [13]ASME B31G.Manual of determining the remaining strength of corroded pipelines[S].New York:American society of mechanical engineers,1991.
    [14]BS 7910.Guidance on the method for assessing the acceptability for flaws in fusion welded structure [S].London:British standards institution,1991.
    [15]CAN/CSA-Z184-M86.Gas pipeline system[S].Canadian standard association,1986.
    []6]周晶,陈严飞,李昕等.复杂荷载作用下海底腐蚀管线破坏机理研究进展[J]。海洋工程,2008,26(1):127-137。
    [17]Newman J C,James M,Zerbst U.A review of the CTOA/CTOD fracture criterion[J].Engineering fracture mechanics,2003,70(3-4):371-385.
    [18]郑贤斌.油气管道裂纹缺陷检测技术探讨[J].石油规划设计,2008,19(2):36-38.
    []9]孟凡生,徐爱民,李军.滩海海底管线悬空问题治理对策[J]。中国海洋平台,2006,21(1):52-54.
    [20]Dimarogonas A D.Vibration of cracked structure:a state of the art review[J].Engineering fracture mechanics,1996,55(5):831-857.
    [21]张敬芬,赵德有.工程结构裂纹损伤振动诊断的发展现状和展望[J].振动与冲击,2002,21(4):22-25。
    [22]胡家顺,冯新,李昕,周晶.裂纹梁振动分析与裂纹识别方法研究进展[J].振动与冲击,2007,26(11):146-151。
    [23]Petroski H J.simple static and dynamic models for the cracked elastic beam[J].International Journal of Fracture,1981,17(1):71-76.
    [24]Petroski H J.Stability of a crack in a cantilever beam undergoing large plastic deformation after impact[J].International Journal of Pressure Vessels and Piping,1984,16(4):285-298.
    [25]Silva J M M,Gomez A J M A.Experimental dynamic analysis of cracked free-free beams[J].Experimental Mechanics,1990,30(1):20-25.
    [26]Irwin G R.Analysis of stresses and strains near the end of a crack traversing a plate[J].Journal of Applied Mechanics.1957,24:361-364.
    [27]Rice J R,Levy N.The part-through surface crack in an elastic plate[J].Journal of Applied Mechanics,1972,39:185-194.
    [28]Dimarogonas A D.Analytical methods in rotor dynamics[M].Applied Science Publishers,Essex,1983.
    [29]Papadopoulos C A,Dimarogonas A D.Coupling longitudinal and bending vibrations of a cracked shaft with an open crack[J].Journal of Sound and Vibration,1987,117(1):81-93.
    [30]Papadopoulos C A,Dimarogonas A D.Coupling of bending and torsional vibrations of a cracked Timoshenko shaft[J].Ingenieur Archiv,1987,57:257-266.
    [31]Gounaris G,Dimarogonas A D.A finite element of a cracked prismatic beam for structural analysis [J].Computers & Structures,1988,28(3):309-313.
    [32]Rizos P F,Aspragathos N.Identification of crack location and magnitude in a cantilever from vibration modes[J].Journal of Sound and Vibration.1990,138(3):381-388.
    [33]Papadopoulos C A.Some comments on the calculation of the local flexibility of cracked shafts[J].Journal of Sound and Vibration 2004,278(4-5):1205-1211.
    [34]Papadopoulos C A.The swain energy release approach for modeling cracks in rotors:A.state of the art review[J].Mechanical systems and signal processing,2008,22(4):763-789.
    [35]Christides S,Barr A D S.One dimensional theory of cracked Bernoulli-Euler beams[J].International Journal of Mechanical Science,1984,26(11-12):639-648.
    [36]Christides S,Barr A D S.Torsional vibration of cracked beams of non-circular cross-section[J].International Journal of Mechanical Science,1986,28(7):473-490.
    [37]Shen M-H H,Pierre C.Natural modes of Bernoulli-Euler beams with symmetric cracks[J].Journal of Sound and Vibration,1990,138(1):115-134.
    [38]Chondros T G,Dimarogonas A D,Yao J.A continuous cracked beam vibration theory[J].Journal of Sound and Vibration,1998,215(1):17-34.
    [39]Chondros T G,Dimarogonas A D,Yao J.Vibration of a beam with a breathing crack[J].Journal of Sound and Vibration,2001,239(1):57-67.
    [40]Liu D,Gurgenci H,Veidt M.Crack detection in hollow section structures through the coupled response measurements[J].Journal of Sound and Vibration,2003,261(1) 17-29.
    [41]Naniwadekar M R,Naik S S,Malti S K.On predection of crack in different orientations in pipe using frequency based approach[J].Mechanical systems and signal processing,2008,22(3):693-708.
    [42]Zheng D Y,Fan S.Vibration and stability of cracked hollow-sectional beams[J].Journal of Sound and Vibration.2003,267(4):933-954.
    [43]Larsen C M,Halse K H.Comparison of models for vortex induced vibrations of slender marine structures[J].Marine Structures,1997,10(6):413-441.
    [44]Larsen C M,Vikestad K,Yttervik R,et al.MARINTEK report:VIVANA theory manual[R].Norway:Trondheim,2000.
    [45]Larsen C M,Koushan K,Passano E.Frequency and time domain analysis of vortex induced vibrations for free span pipelines[C].Proceedings of the 21 st international conference on offshore mechanics and arctic engineering.Oslo,Norway,2002:OMAE2002-28064
    [46]Larsen C M,Passano E,Baarholm G S,Koushan K.Non-linear time domain analysis of vortex induced vibrations for free Spanning pipelines[C].Proceedings of the 23rd international conference on offshore mechanics and arctic engineering.Vancouver,British Columbia Canada,2004:OMAE2004-51404.
    [47]Larsen C M,Yttervik R,Aronsen K.Calculation of in-line vibration of free spanning pipelines[C].Proceedings of the 26th international conference on offshore mechanics and arctic engineering.San Diego,California,USA,2007:OMAE2007-29533.
    [48]Aronsen K H,Larsen C M.Hydrodynamic coefficients for in-line vortex induced vibrations[C].Proceedings of the 26th international conference on offshore mechanics and arctic engineering.San Diego,California,USA,2007:OMAE2007-29531.
    [49]Fumes G K,Berntsen J.On the response of a free span pipeline subjected to ocean currents[J].Ocean engineering,2003,30:1553-1577.
    [50]余建星,俞永清,李红涛,吴海欣,海底管跨涡激振动疲劳可靠性研究[J].船舶力学,2005,9(2):109-115.
    [51]余建星,傅明炀,杨怿,杜尊峰.海底管道涡激振动疲劳可靠性分析[J].天津大学学报,2008,41(11):1321-1325.
    [52]黄维平,王爱群,李华军.海底管道悬跨段流致振动实验研究及涡激力模型修正[J].工程力学,2008,24(12):153-157.
    [53]Vandiver J K,Li L.SHEAR7 V4.4 program theoretical manual[R].USA:Massachusetts Institute of Technology,2005.
    [54]Triantafyllou M S.VIVA extended user's manual[R].USA:Massachusetts Institute of Technology,2003
    [55]Herfjord K,Drange S O,Kvamsdal T.Assessment of vortex-induced vibrations on deepwater risers by considering fluid structure interaction[J].Journal of Offshore Mechanics and Arctic Engineering,1999,121(4):207-212.
    [56]Yamamoto C T,Fregonesi R A,Meneghini J R,et al.Numerical simulations of vortex-induced vibration of flexible cylinders[J].Journal of Fluids and Structures,2004,19(4):467-489.
    [57]Sarpkaya T.A critical review of the intrinsic nature of vortex-induced vibrations[J].Journal of fluids and structures,2004,19:389-447.
    [58]Park H I,Kim C H.Analytical methods for the determination of allowable free span lengths[C].Proceedings of the 7th International Offshore and Polar Engineering Conference,Honolulu,Hawaii,USA,1997,PP:337-342.
    [59]Xu T,Lauridsen B,Bai Y.Wave-induced fatigue of multi-span pipelines[J].Marine structures,1999,12(2):83-106.
    [60]Choi H S.Free spanning analysis of offshore pipelines[J].Ocean engineering,2001,28(10):1325-1338.
    [61]Fyrileiv O,Mork K J.Structural response of pipeline free Spans based on beam theory[C].Proceedings of the 21th international conference on offshore mechanics and arctic engineering.Oslo,Norway,2002:OMAE2002-28458.
    [62]娄敏,郭海燕,杨新华,傅强.海底输液管道内流、轴向力和压强对允许悬跨长度的影响[J]。中国海洋大学学报,2006,36(2):341-344.
    [63]罗延生,余建星,方华灿.确定海底管线管跨段模糊固有频率的方法[J].天津大学学报,2001,34(6):775-778.
    [64]Datta T K,Mashaly E A.Transverse response of offshore pipelines to random ground motion[J].Earthquake Engineering and Structural Dynamics,1990,19(2):217-228.
    [65]Ll X,Liu Y K,Zhou J,et al.Experimental study on free spanning submarine pipelines[J].China Ocean Engineering,2002,16(4):537-548.
    [66]周晶,李昕,马恒春等。地震时海底悬跨管道动力特性试验研究[J].水利学报,2003,(1):12-16.
    [67]董汝博,周晶,冯新.非平稳空间相关多点地震动合成方法研究[J].地震工程与工程振动,2007,27(3):10-14.
    [68]董汝博,李昕,金峤,周晶.多点输入下悬跨海底管道非线性地震响应参数分析[J].土木工程学报,2008,41(7):103-109.
    169]董汝博,周晶,冯新.部分悬跨海底管道多点输入地震反应分析[J].振动工程学报,2008,21(2):146-151.
    [70]Cawley P,Adams R.The locations of defects in structures from measurements of natural frequencies [J].Journal of strain analysis,1979,14(2):49-57.
    [71]马宏伟,杨桂通。结构损伤探测的基本方法和研究进展[J].力学进展.1999,29(4):513-527。
    [72]Nikolakopoulos P G,Katsareas D E,Papadopoulos C A.Crack identification in frame structures[J].Computers and Structures,1997,64(1-4):389-406.
    [73]Yang X F,Swamidas A S J,Seshadri R.Crack identification in vibrating beams using the energy method[J].Journal of Sound and Vibration,2001,244(2):339-357.
    [74]王志华,赵勇刚,马宏伟.梁结构中裂纹参数识别方法研究[J].计算力学学报,2006,23(3):307-312.
    [75]Owolabi G M,Swamidas A S J,Seshadri R.Crack detection in beams using changes in frequencies and amplitudes of frequency response functions[J].Journal of Sound and Vibration,2003,265(1):1-22.
    [76]Douka E,Bamnios G,Trochidis A.A method for determining the location and depth of cracks in double-cracked beams[J].Applied Acoustics,2004,65(10):997-1008
    [77]Dilena M,Morassi A.The use of antiresonances for crack detection in beams[J].Journal of Sound and Vibration,2004,276(1-2):195-214.
    [78]Wang D S,Zhu H P,Li L.Damage identification in double-crack concrete beams through resonance and anti-resonance information[C].Proceedings of the 2th international Structural Health Monitoring and Intelligent infrastructure Conference.China,2005,PP:771-776.
    [79]王丹生,朱宏平,陈晓强等。利用压电自传感驱动器进行裂纹钢梁损伤识别的试验研究[J].振动与冲击,2006,25(6):139-142.
    [80]张景绘.动力学系统建模[M].北京:国防工业出版社,2000.
    [81]Lam H F.Detection of damage location based on sensitivity analysis[C].Proceedings of 13th IMAC,1995,PP:1499-1501.
    [82]Pandey A K,Biswas M,Samman M M.Damage detection from changes in curvature mode shapes [J].Journal of Sound and Vibration,1991,145(2):321-332.
    [83]Gounaris G D,Papadopoulos C A.Analytical and experimental crack identification of beam structures in air or fluid[J].Computers & Structure,1997,65(5):633-639.
    [84]Chasalevris A C,Papadopoulos C A.Identification of multiple cracks in beams under bending[J].Mechanical Systems and Signal Processing,2006,20(7):1631-1673.
    [85]唐小兵,沈成武,付军.梁裂纹位置识别的模态能量法[J].武汉理工大学学报(交通科学与工程版),2001,25(3):241-243.
    [86]王松平,唐小兵,沈成武.空间框架结构裂纹位置识别的模态应变能法[J].兰州大学学报(自然科学版),2002,38(2):42-47.
    [87]唐天国,刘浩吾,陈春华等.梁裂缝损伤检测的模态应变能法及试验研究[J].工程力学,2005,22(增刊):39-45.
    [88]李天匀。刘士光等.振动功率流方法诊断梁的损伤[J].振动工程学报,2000,13(4):638-03.
    [89]林言丽,郭杏林.含裂纹的周期简支梁振动功率流特性[J].大连理工大学学报,2004,44(2):181-185.
    [90]Venkatasubramanian V,Chan K.A neural network methodology for process fault diagnosis[J].Journal of Aiche,1989,35(12):1993-2002.
    [91]Wu X,Ghaboussi J,Garrett J H.Use of neural networks in detection of structural damage[J].Computer Structures,1992,42(4):649-59.
    [92]Worden K.Structural fault detection using a novelty measure[J].Journal of Sound and Vibration,1997,201(1):85-101.
    [93]罗跃纲,陈长征,王占国.钢梁损伤的神经网络诊断分析[J].工业建筑,2002,32(1):55-56.
    [94]刘效尧,蔡键,刘晖.桥梁损伤诊断[M].北京:人民交通出版社,2002。
    [95]Sub M W,Shim M B,Kim M Y.Crack identification using hybrid Neuro-genetic technique[J].Journal of Sound and Vibration,2000,238(4):617-635.
    [96]Burczynski T,Beluch W.The identification of cracks using boundary elements and evolutionary algorithms[J].Engineering Analysis with Boundary Elements,2001,25(4-5):313-322.
    [97]He Yongyong,Guo Dan,Chu Fulei.Using genetic algorithms and fmite element methods to detect shaft crack for rotor-bearing system[J].Mathematics and Computers in Simulation,2001,57(1-2):95-108.
    [98]Ruotolo R,Surace C.Damage assessment of multiple cracked beams:numerical results and experimental validation[J].Journal of Sound and Vibration,1997,206(4):567-588.
    [99]Liew K M,Wang Q.Application of wavelet theory for crack identification in structures[J].Journal of Engineering Mechanics,1998,124(2):152-157.
    [100]Quek S T,Wang Q,Zhang L.et al.Sensitivity analysis of crack detection in beams by wavelet technique[J].International Journal of Mechanical Sciences,2001,43(12):2899-2910.
    [101]Douka E,Loutridis S,Trochidis A.Crack identification in beams using wavelet analysis[J].International Journal of Solids and Structures,2003,40(13-14):3557-3569.
    [102]Loutridis S,Douka E,Trochidis A.Crack identification in double-cracked beams using wavelet analysis[J].Journal of Sound and Vibration,2004,277(4-5):1025-1039.
    [103]Chang C C,Chen L W.Detection of the location and size of cracks in the multiple cracked beam by spatial wavelet based approach[J].Mechanical Systems and Signal Processing,2005,19(1):139-155.
    [104]唐贤瑛,罗志凡.基于小波包网络的梁裂纹位置识别仿真研究[J].计算机仿真,2003,20(3):94-96.
    [105]Zhu X Q,Law S S.Wavelet-based crack identification of bridge beam from operational deflection time history[J].International Journal of Solids and Structures,2006,43(7-8):2299-2317.
    [106]任宜春,马石城,林琳.移动荷载作用下梁裂缝识别的小波方法研究[J].振动与冲击,200423(2):82-85.
    [107]廖锦翔,袁明武.结构裂纹群的小波方法识别和数值模拟[J].华南理工大学学报(自然科学版)2005,33(2):75-78。
    [108]陈雪峰,李兵,胡桥等.基于小波有限元的裂纹故障诊断[J]。西安交通大学学报,2004,38(3)295-298.
    [109]李兵,陈雪峰,胡桥等.基于小波有限元的悬臂梁裂纹识别[J].振动工程学报,2004,17(2)159-164.
    [110]向家伟。陈雪峰,李兵等.基于区间B样条小波有限元的裂纹故障定量诊断[J].机械强度,200527(2):163-167.
    [111]Oudmundson P.The dynamic behavior of slender structures with cross-sectional cracks[J].Journal of Mechanics Physics Solids,1983,31(4):329-345.
    [112]Shen M-H H,Chu Y C.Vibrations of beams with a fatigue crack[J].Computers and Structures,1992,45(1):79-93.
    [113]钱管良,顾松年,姜节胜。在线振动监测与故障诊断的一种新途径[J].固体力学学报,1990,11(3):217-228.
    [114]Ruotolo R,Surace C,Crespo P,et al.Harmonic analysis of the vibrations of a cantilevered beam with a closing crack[J].Computers and Structures,1996,61(6):1057-1074.
    [115]Sundermeyer J N,Weaver R L.On crack identification and characterization in a beam by non-linear vibration analysis[J].Journal of Sound and Vibration,1995,183(5):857-871.
    [116]Loutridis S,Douka E,Hadjileontiadis L J.Forced vibration behavior and crack detection of cracked beams using instantaneous frequency[J].NDT & E International 2005,38(5):411-419.
    [117]洪起超.工程断裂力学基础[M].上海:上海交通大学出版社,1987.
    [118]柳春图。蒋持平.板壳断裂力学[M].北京:国防工业大学出版社,2000
    [119]Zheng D Y,Kessissoglou N J.Free vibration analysis of a cracked beam by finite element method [J].Journal of Sound and Vibration,2004,273(3):457-475.
    [120]Gander W,Gantschi W.Adaptive Quadrature - Revisited[J].BIT,2000,40:84-101.
    [121]Tada H,Pads P C,Irwin G R.The stress analysis of cracks handbooks(Third Edition)[M].New York:ASME Press,2000
    [122]He Y M,Ye J J,Chen X F,et al.Discussion on calculation of the local flexibility due to the crack in a pipe[J].Mechanical systems and signal processing,2009,23(3):804-810.
    [123]Doebling S W,et al.A summary review of vibration- based damage identification methods[J].The Shock and Vibration Digest,1998,30(2):91 -105
    [124]Sohn Hoon,Farrar C R.,Hemez F M,et al.A Review of Structural Health Monitoring Literature:1996-2001[R].Los- Alamos National Laboratory Report,LA-13976-MS,2003.
    [125]Dado M H.A comprehensive crack identification algorithm for beams under different end conditions [J].Applied acoustics,1997,51(4):381-398.
    [126]Taghi M,BaghmishehV,Peimani M,et al.Crack detection in beam-like structures using genetic algorithms[J].Applied soft computing,2008,8(2):1150-1160.
    [127]Dong G M,Chen J,Zou J.Parameter identification of a rotor with an open crack[J].European Journal of Mechanics A/Solids,2004,23(2):325-333.
    [128]熊仲明,王社良.土木工程结构试验[M].北京:中国建筑工业出版社,2006.
    [129]迟世春,林少书.结构动力模型试验相似理论及其验证[J].世界地震工程,2004,20(4):11-20.
    [130]Murigendrappa S M,Maiti S K,Srirangarajan H R.Experimental and theoretical study on crack detection in pipes filled with fluid[J].Journal of Sound and Vibration,2004,270(4-5):1013-1032.
    [131]中国石油天然气行业标准.海底管道系统规范[S]。北京:石油工业出版社,2002
    [132]Guide for building and classing subsea pipeline system[S].Houston:American bureau of shipping,2006.
    [133]Andersen K H.Cyclic clay data for foundation design of structures subjected to wave loading[C].Proceedings of the cyclic behavior of soils and liquefaction phenomena,Bochum,Germany,2004.
    [134]王新敏.ANSYS工程结构数值分析[M].北京:人民交通出版社,2007.
    [135]API SPEC5L:Specification for Line Pipe[S].USA:American petroleum institute,2000.
    [136]郑志昌,陈俊仁。朱照宇.南海海底土体物理力学特征及其地质环境初步研究[J].水文地质工程地质,2004,4:50-54.
    [137]Offshore standard,DNV-OS-F101:Submarine pipeline systems[S].Norway:Det Norske Veritas,2000..
    [135]Hu Jia-Shun,Feng Xin,Zhou Jing.Condition identification for free spanning submarine pipelines [J].China ocean engineering,2008,22(4):561-574.
    [139]Baudat G,Anouar F.Generalized discriminant analysis using a kernel approach[J].Neural Computation,2000,12(10):2385-2404.
    [140]Yang J,Jin Z,Yang J Y,et al.Essence of kernel fisher discfiminant:KPCA plus LDA[J].Pattrn recognition,2004,37(10):2097-2100.
    [141]Shate-Taylor J,Cristianini N.Kernel methods for pattern analysis[M].Cambridge:Cambridge university press,2004.
    [142]Zheng W,Zhao L,Zou C.et al.Optimal discfiminant vectors using kernel approach[J].IEEE Transactions on Neural Networks,2005,16(1):1-9.
    [143]Dai G.,Yeung D Y.Kernel generalized nonlinear discriminant analysis algorithm for pattern recognition[C].IEEE International Conference on Image Processing,2004,PP:2697-2700.
    [144]Dai G.,Yeung D Y,Qian Y T.Face recognition using a kernel fractional-step discriminant analysis algorithm[J].Pattern Recognition,2007,40(1):229-243.
    [145]Howlanda P,Wang J L,Park H.Solving the small sample size problem in face recognition using generalized discriminant analysis[J].Pattern Recognition,2006,39(2):277-287.
    [146]Li Wei-hua,Shi Tie-lin,Yang,Shu-zi.An approach for mechanical fault classification based on generalized discriminant analysis[J].Front.Mech.Eng China,2006,1(3):292-298.
    [147]Cho H W.Identification of contributing variables using kernel-based discriminant modeling and reconstruction[J].Expert systems with applications,2007,33(2):274-285.
    [148]Kerschen G.,Wordenb K,Vakakisc A F,Golinval J C.Past,present and future of noniinear system identification in structural dynamics[J].Mechanical Systems and Signal Processing,2006,20(3):505-592.
    [149]Andrew R W.统计模式识别(第二版).王萍等译[M].北京:电子工业出版社,2004.
    [150]Vapnik V.统计学习理论的本质。张学工译[M].北京:清华大学出版社,2000.
    [151]李巍华.基于核方法的机械故障特征提取与分类技术研究[D].武汉:华中科技大学,2003.
    [152]胡家顺,冯新,李昕,周晶.海底悬跨管道的状态识别[J].工程力学,2009,26(1):238-243.
    [153]王华忠。俞金寿.核函数方法及其模型选择[J].江南大学学报(自然科学版),2006,5(4):500-504.
    [154]Mika S,Sch(?)lkopf B,Smola A,et al.Kernel PCA and de-noising in feature extraction[J].Advances in neural processing systems,1999,11:536-542.
    [155]Rosipal R,Trejo L J,Leonard J T,et al.Kernel PCA for Feature Extraction and De-Noising in Nonlinear Regression[J].Neural Computing & Application,2001,10(3):231-243.
    [156]Vandiver J K.Detection of structural failure on fixed platform by measurement of dynamic response [J].Journal of Petroleum Technology,1977,29(5):305-310.
    [157]Friswell M I,Penny J E T.Crack Modeling for Structural Health Monitoring[J].Structural health monitoring,2002,1(2):139-148.
    [158]Peng Z K,Lang Z Q,Billings S A,Lu Y.Analysis of bilinear oscillators under harmonic loading using nonlinear output frequency response functions[J].International Journal of Mechanical Sciences,2007,49(11):1213-1225.
    [159]Rivola A,White P R.Bispectral analysis of the bilinear oscillator with application to the detection of fatigue cracks[J].Journal of Sound and Vibration,1998,216(5):889-910.
    [160]Cacciola P,Muscolino G.Dynamic response of a rectangular beam with a known non-propagating crack of certain or uncertain depth[J].Computers and Structures,2002,80(27-30),2387- 2396.
    [161]Benfratello S,Cacciola P,Impollonia N.et al.Numerical and experimental verification of a technique for locating a fatigue crack on beams vibrating under Gaussian excitation[J].Engineering Fracture Mechanics,2007,74(18):2992-3001.
    [162]Kisa M,Brandon J A.The effects of closure ofcracks on the dynamics of a cracked cantilever beam [J].Journal of Sound and Vibration,2000,238(1),1-18.
    [163]Andreaus U,Casini P,Vestroni F.Non-linear dynamics of a cracked cantilever beam under harmonic excitation[J].International Journal of Non-linear Mechanics,2007,42(3):566-575.
    [164]Liu T J C.Fracture mechanics and crack contact analyses of the active repair of multi-layered piezoelectric patches bonded on cracked structures[J].Theoretical and Applied Fracture mechanics,2007,47(2):120-132.
    [165]Chati M,Rand R,Mukherjee S.Modal analysis of a cracked beam[J].Journal of Sound and Vibration,1997,207(2):249-270.
    [166]ANSYS 非线性高阶求解策略[M].Ansys.Inc.2000.
    [167]Kam T Y,Lee T Y.Detection of cracks in structures using modal test data[J].Engineering fracture mechanics,1992,42(2):381-387.
    [168]胡家顺,冯新,周晶.呼吸裂纹梁的非线性动力特性研究[J].振动与冲击,2009,28():76-81.
    [169]张淑茳,史冬岩.海洋工程结构的疲劳与断裂[M].哈尔滨:哈尔滨工程大学出版社。2005。
    [170](美)Suresh S著,王中光等译.材料的疲劳[M].北京:国防工业出版社,1993.
    [171]李德葆,陆秋海.工程振动试验分析[M]。北京:清华大学出版社,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700