用户名: 密码: 验证码:
精馏塔板气液两相流体力学和传质CFD模拟与新塔板的开发
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以双欧拉两相流模型为基础,建立了三维精馏塔板气液两相流场和浓度场的CFD模型。模型中考虑了相含率对湍流状态的影响,使用改进的混合相k?ε湍流模型来描述气液两相湍流流动,其中相间动量和质量传递源相分别采用Krishna和Higbie的计算方法。
     为了证明混合相湍流模型的优越性,在直径为1.2m的工业级筛孔塔板上,模拟计算了气液两相流场,将混合相湍流模型和单相湍流模型的计算结果与实验数据进行了对比,发现混合相湍流CFD模型计算结果与实验结果能够更好的吻合。为了进一步考察所建模型的适用性,本文在0.5×0.5m的矩形筛孔塔板上,模拟了包括漏液、正常和雾沫夹带等全范围操作状态下气液两相流场,计算结果和本文的实验数据吻合较好,表明了所建模型不受操作状态的限制,可以模拟全范围操作状态下塔板气液两相流场。另外,本文还对F1浮阀塔板气液两相流场进行了CFD模拟,模型中的平均体积相含率由本文实验进行关联。模拟得到的板上清液层高度与实验结果吻合较好,证明了模型对不同形式塔板的两相流场具有很好的适用性。
     利用本文提出的流动与组分传递相耦合的气液两相CFD模型,对直径1.2m工业级筛孔塔板气液两相浓度场进行了模拟计算,研究了塔板上气液两相浓度场、点效率和传质量的分布规律,发现泡沫层和气锥是传质发生的主要区域,传质面积和板上液流状况是影响塔板效率的主要因素。
     为了改善传统塔板上液体流动状况,以提高塔板传质效率,本文采用拟单相流CFD模型,模拟改进塔板结构来改善塔板上液体的不均匀流动状态。模拟是在直径为2.44m的筛孔塔板上进行的。模拟计算结果表明,增设斜度系数为16.5%的梯形入口堰,或者10块0.2m长的导流板,就可以基本消除塔板上回流区和滞流区,从而提高塔板的传质效率。
     针对传统的筛板不适合大液气比操作的状况,本文在CFD模拟的基础上,提出了一种新型的气液并流塔板,并进行了流体力学性能的初步测量。实验结果表明,在大液气比条件下,该种塔板具有压降小、通量大、雾沫夹带量小等优良的流体力学性能。
A computational fluid dynamics (CFD) model was developed to predict the hydraulics and mass transfer of distillation trays. The gas and liquid phases were simulated in the Eulerian framework as two interpenetrating phases. A turbulence model based on the k ?εequations for the mixture of the two phases was used. This turbulence model was suitable for computations at all phase fraction values and can be reduced to the equivalent single phase model in the extremes when only one or other of the phase was present. Interaction between the two phases occurred via interphase momentum and mass transfer sources were calculated using the Krishna and Higbie correlations respectively.
     The CFD model was applied to simulate the flow patterns and hydraulics of a commercial-scale 1.2m diameter sieve tray. To testify the validity of mixture turbulence model, predicted clear liquid heights by using mixture phase and single phase turbulence model were compared with the experimental data from the literatures. The comparison revealed that the mixture turbulence model gave better predictions than single phase turbulence model. To validate of the CFD model for all operating statuses of sieve tray, hydraulics of weeping, normal and entrainment statue of a 0.5×0.5m rectangular tray was simulated. Predicted weeping rate, clear liquid height and entrainment were found to be in good agreement with the experimental data. Valve tray was the other kind of tray applied widely in chemical engineering. In this paper, the CFD model was also used to simulate the hydraulics of an open valve tray. To provide the closure relation for the model, correlation of average gas hold up fraction was built by estimated experimental data of clear liquid heights. Several simulations were carried out for a 0.5×0.5m rectangular open valve tray with varying superficial gas velocity, weir height and liquid weir load. The clear liquid heights determined by these simulations were in good agreement with the experimental data, and the validity of the CFD model for vavle tray was proved.
     Based on the hydraulics simulation, mass transfer of a 1.2m diameter sieve tray was predicted. The simulated results including the outlet concentration, the Murphree tray efficiency and the overall column efficiency agreed reasonably with the experimental data. The rules of concentration field of two phases, point efficiencies and transferred mass between two phases on sieve tray were obtained. Results showed that foaming layer and gas wimbles were the major interphase mass transfer zones, and the effective interfacial area and liquid flow field were the main factors influencing interphase mass transfer.
     To improve liquid flow field and interphase mass transfer on distillation tray, a CFD quasi-single phase model was used for a diameter 2.44m sieve tray. Improving -tray structure was used to avoid the uneven fluid flow of liquid. The results of simulations showed that adding trapeziform inlet weir or guide plates could reduce retrograde flow effectively. For simulated sieve tray, the 16.5% trapeziform inlet weir, or ten guide plates with the length of 0.2m were the best way to achieve uniform liquid flow on the tray.
     Because of the lower of mass transfer, efficiency and processing capacity, sieve tray does not suit the case of large ratio of liquid to gas, such as absorption, high pressure distillation. To overcome these shortcomings of sieve tray, the new gas-liquid co-current flow tray was invented in this paper. Its hydrodynamics was investigated by experiment, including clear liquid height, pressure drop and entrainment. The experimental results showed that clear liquid height, pressure drop and entrainment increased as the increase of liquid or gas flow, and the performance of gas-liquid co-current flow tray was better than sieve tray under the operating condition of large ratio of liquid to gas.
引文
[1]余国琮,蒸镏过程和设备的现状与展望,化学工程, 1992, 20(2):20-25.
    [2] Kister H.Z., Distillation Design, New York: McGraw-Hill, 1992.
    [3] Lockett M.J., Distillation Tray Fundamentals, Cambridge, New York: Cambridge University Press, 1986.
    [4] Zuiderweg F.J., Sieve trays, a view on the state of the art, Chem.Eng. Sci., 1982, 37(10): 1441-1464.
    [5] Ho G.E., Mutler R. L., Pruace R.G.H., Characterisation two phase flow patterns in plate columns . Instn. Chem. Engr. Symp. Ser., 1969, 2 (32):10-21.
    [6] Hofhuis P. A., Zuiderweg F. J., Sieve plates: dispersion density and f1ow regimes.Instn. Chem. Engr. Symp. Ser, 1979, 2 (56):21-26.
    [7] Clift R., Grace J. R., Weber. M. E., Bubble Drops and Particles, Academic Press, 1978.
    [8] Dracy D., Bubbling from submerged orifices, AIChE meeting, 1975.
    [9] Sundar R., Tan R. B., A model for bubble-to-jet transition at a submerged orifice. Chem.Eng. Sci., 1999, 18(54): 4053-4060.
    [10] Lockett M. J., Kirkpatrick R. D., Uddin M. S., Froth regime point efficiency for gas-film controlled mass transfer on a two-dimensional sieve tray, Trans. Inst. Chem Eng., 1979, 57: 25-30.
    [11] Tuge H., Hibino S., Nojima U., Volume of a bubble formed at a single submerged orifice in a flowing liquid, Int. Chem. Eng., 1981, 21(4): 630-639.
    [12] Hofer H., Influnce of gas-phase dispersion on plate column efficiency, Ger. Chem. Eng. 1983, 6:113-120.
    [13] Kaltenbacher E., On the effect of the bubble size distribution and the gas-phase diffusion on the selectivity of sieve trays, Chem. Eng. Fundam., 1982, 1:47-68.
    [14] Wong P. F., Kwan W. K., A generalized method for preiciton the spray bubbing transition on sieve plates, Tans. IChemE, 1979, 57: 20-25.
    [15] Payne G. J., Prince G. H., The relationship between the froth and spary regime and the orifice processes occurring on perforated distillation plates. Trans. Instn.Chem. Eng., 1977, 55(4): 266-273.
    [16] Pinczewski W. V., Fell C. J. D., Froth to spray transition on sieve tray, Ind. Eng. Chem. Process. Des. Dev, 1982, 21:774-787.
    [17] Bennett D. L., Kao A. S., Wong L. W., A mechanistic analysis of sieve tray froth height and entrainment, AIChE J, 1995, 41(9):2067-2082.
    [18] Dhulesia H., Operation flow regimes on the valve tray, Trans IChemE, Part A, Chem Eng Res Des, 1983, 61:329-332.
    [19] Porter K. E., Lockett M. J., Lim C. T., The effect of liquid channelling on distillation plate efficiency, Trans. Instn.Chem. Engr., 1972, 50 (2):91-101.
    [20]余国琮,黄洁,大型塔板的模拟与板效率的研究(一),化工学报, 1981, 32 (1) : 11-19.
    [21] Solari R. B., Bell R. L., Fluid flow patterns and velocity distribution on commercial-scale sieve trays, AIChE J, 1975, 32(4): 640-649.
    [22] Kister H. Z., Larson K. F., Madsen P. E., Vapor cross flow channeling on sieve trays: fact or myth. Chem. Eng. Prog. , 1992, 88 (11): 86-93.
    [23] Prince G. H., Proceedings of the international symposium on distillation. London: The Institution of Chemical Engineers, 1960, 177-180.
    [24] Hughmark G. A., Connell H. E., Design of perforated plate fractionating towers, Chem. Eng. Prog., 1957, 53(3):127-132.
    [25] Leibson I., Kelley R. E., Bullington L. A., How to design perforated trays, Petrol Ref., 1957, 36(2):127-133.
    [26] Stichlmair J., Mersmann A., Dimensioning plate columns for absorption and rectification, Int. Chem. Eng., 1978, 18(2): 223-236.
    [27]王忠诚,塔板流体力学性能研究:[硕士学位论文],天津,天津大学, 1989.
    [28] Brambilla A. G., Hydrodynamics behaviour of distillation, Inst. Chem. Engs. Symp. Series, 1969, 32-46.
    [29] Bolles W. L., Estimating Valve Tray Performance, Chem. Eng. Progr., 1976, 72(9): 43-55.
    [30]姚玉英,化工原理,天津:天津科学技术出版社, 1992, 174.
    [31] John T. T., Valve Tray Pressure Drop, Ind. Eng. Chem. Process. Des. Dev., 1972, 11(3): 428-429.
    [32] Klein G. F., Simplified model calculates valve-tray pressure drop, Chemical Engineer, 1982, 89 (9): 81-89.
    [33]徐孝民,沈复,浮阀塔板压力降的工程计算式,化学工程, 1985, 4:1-5.
    [34]黄洁,吴剑华,王平,塔板漏液速率和气速下限的计算,化学工程, 1990, 18(3):41-49.
    [35]尚智,贾斗南,苏光辉,筛板塔漏液点气速的计算模型,化学工业与工程, 1998, 15(4):22-26.
    [36] Lockett M. J., Banlk S., Weeping from sieve tray, Ind. Eng. Chem. Process. Des. Dev., 1986, 25: 561-569.
    [37]曾爱武,刘福善,许松林,黄洁,余国琮,筛板不均匀漏液的规律及其影响,高校化学工程学报, 1996, 10(1):80-83.
    [38]王学重,张连生,徐孝民,沈复,浮阀塔板泄漏速率的一个通用关联式,化工学报, 1989, 1:123-127.
    [39] Hunt C., Wilke C. R., Capacity factors in the performance of perforated-plate columns, AIChE J, 1995, 1:441-456.
    [40] Bain J. L., Winkle M. V., A study of entrainment, perforated plate column-air-water system, AIChE J, 1961, 7:363-380.
    [41] Fair J. R., How to predict sieve tray entrainment and flooding, Petro Chem. Engrs., 1961, 33(10):45-52.
    [42] Ogboja O., Kuye A., A procedure for the design and optimization of sieve trays, Trans Instn Chem Engrs, 1990, 68(9):A445-A552.
    [43] Kister H. Z., Hass J. R., Entrainment from sieve trays in the froth regime, Ind. Eng. Chem. Res., 1988, 27:2331-2350.
    [44]刘云义,谭天恩,筛板喷射工况下的雾沫夹带,化学工程, 1997, 25(2):13-20.
    [45] Sinderen A. H., Wijn E. F., Zanting R. W. J., Entrainment and maximum vapour flow rate of trays, Trans IChE, Part A, Chem Eng Res Des, 2003, 81:94-107.
    [46]于鸿寿,大孔筛板传质性能研究,化学工程, 1985 , (6) :27-34.
    [47] Macfarland S. A., Sigmund P. M., Van Winkle M., Predict distillation efficiency, Hydro. Proc., 1972, 51 (7): 112-114.
    [48] American Institute of Chemical Engineers, Tray Efficiencies in Distillation Columns, New York: University of Delaware, 1958.
    [49] Chan H., Fair J. R., Predict of point efficiencies on sieve trays, Ind. Eng. Chem. Process Des. Dev., 1984, 23 (4): 814-819.
    [50] William G., Matthew V. W., Correlation of valve tray efficiency data, Ind. Eng. Chem. Process Des. Dev., 1972, 11(4):589-604.
    [51] Richard D. S., Ralph H. W., Mass transfer characteristics of valve trays, Ind.Eng. Chem. Res., 1987, 26(2):228-236.
    [52] Garner F. H., Porter K E., Proceedings of the International Symposium on Distillation, London: The Institution of Chemical Engineers, 1960, 43.
    [53] Fane A. G., Sawistowski H., Plate efficiencies in the foam and spary regimes of sieve-plate distillation. Instn. Chem. Engrs.Symp. Ser. New York: AIChE J, 1969 (32): 8-18.
    [54] Foss A. S., Gerster J. A., Pigford R. L, Effect of liquid mixing on the performance of bubble trays, AIChE J , 1958, 4 (2): 231-239.
    [55] Gautreaux M. F., O’Connell H. E., Effect of length of liquid path on plate efficiency. Chem. Eng. Prog. 1955, 51 (5): 232-237.
    [56] Bruin S., Freije A. D., A simple liquid mixing model for distillation plates with stagnant zones. Trans. Instn. Chem. Engrs., 1974, 52 (1): 75-79.
    [57]余国琮,顾芳珍,大型塔板的模拟与板效率的研究(二),化工学报, 1981, 32 (2) :97-109.
    [58] Lockett M. J., Rahman M. A., Dhulesia H. A., Prediction of the effect of weeping on distillation tray efficiency, AIChE J, 1984, 30(3): 423-436.
    [59] Colbum A. P., Effect of entrainment on plate efficience in distillation, Ind. Eng. Chem., 1936, 28:526-530.
    [60] Colburn A. P., Effect of entrainment on plate efficiency in distillation, Industrial & Engineering Chemistry, 1936, 28(5):526-544.
    [61] Rahman M. A., Lockett M. J., Efficiency reduction of large distillation tray by entrainment, Inst Chem Eng Symp Ser. London: IChemE, 1981, 61:111-123.
    [62] Lockett M. J., Rahman M. A., Dhulesia H. A., The effect of entrainment on distillation tray efficiency, Chemical Engineering Science, 1983, 38(5):661-672.
    [63] Lewis W. K. Rectification of binary mixture, Ind. Eng. Chem., 1936, 28(4):399-402.
    [64]路秀林,李玉安,雾沫夹带对蒸馏塔板效率的影响,华东化工学院学报, 1989, 15(6):719-726.
    [65]张红彦,段占庭,周荣琪,混合池模型计算雾沫夹带对蒸馏效率的影响, 2001, 30(8):623-627.
    [66] Delnieki W V, J L Wagner. Performance of multiple downcomer trays, Chemical Engineering Progress, 1970, 66(3):50-60.
    [67]俞晓梅,朱锦忠,徐崇嗣, DJ型塔板工业应用的现状和展望,化学工程,1995, 23(3):43-55.
    [68]俞晓梅,朱锦忠,李瓯等,采用高通量的DJ塔板实现小设备大生产,化工设备设计, 1997, 34(4):42-45.
    [69]李瓯,计建炳,俞晓梅,高液通量DJ塔板的合理设计和工业应用,上海化工, 1999, 24(11):6-10.
    [70]俞晓梅,李瓯,姚克俭, DJ塔板在脱碳塔中的应用,化肥工业, 2000, 26(3):29-32.
    [71] Billet R. Distillation and Absorption, IChE .Symp Series, No 128, London: The Chameleon Press, 1992:A361-A380.
    [72]王忠诚,曾爱武,吴剑华等,新型塔板一导向梯形浮阀塔板的流体力学性能,石油炼制与化工, 1995, 26 (11):36-40.
    [73]王忠诚,姜斌,张雅芝,导向梯形浮阀塔板的特点及工业应用,石油化工, 1998, 27(4):271-274.
    [74]张志恒,浮阀塔板流体力学和传质性能的研究, [硕士学位论文],天津:天津大学, 2005.
    [75]黄习兵,斜孔梯形浮阀的塔板流体力学及传质性能实验研究, [硕士学位论文],天津:天津大学, 2006.
    [76]张容庆,漆萍,高有飞等, L1条形浮阀塔板的性能与工业应用,现代化工, 1996, 16 (10):46-49.
    [77]李玉安,路秀林,赵培,导向浮阀塔板与Fl型浮阀塔板的比较,石油化工, 1996, 25 (8):563-567.
    [78]李玉安,赵培,路秀林,梯形导向浮阀塔板的流体力学模型,华东理工大学学报, 1996, 22(6):675-678.
    [79]刘吉,刘有智,路秀林,组合导向浮阀塔板,山西化工, 1998, 56(1):56-60.
    [80]张荣庆,漆萍,高有飞等,梯形浮阀塔板的开发,炼油设计, 1997, 27 (6):31-34.
    [81]畅广西,张丽君,梯形浮阀塔板的开发与研究,化学工程, 1996,11:2-6.
    [82]潘国昌,刘吉,谢润兴等,微分浮阀塔板及其工业应用,炼油设计,1999,29 (10):33-36.
    [83]刘吉,吕家卓,微分浮阀塔板的研究和应用,化学工程, 2000, 28(5): 10-14.
    [84] Duan Daoshun, Zhao Jingfang., A New High Performance Valve Tray. Proceedings of the International Conference on Petrolum Refining and Petrochemical Processing, 1991, (2): 936-939.
    [85]刘艳升,段道顺, HTV船型浮阀塔板两相流动操作状态及其相互转变规律,化学工程, 1994, 22 (1):14-18.
    [86]曹立姗,杜佩衡,新型垂直筛板塔罩顶空间液滴粒度分布研究,石油化工设备, 1997, 26 (5):20-23.
    [87]杜佩衡,新型垂直筛板塔在我国化工生产中的成功应用及其取得的进展,石油化工设备, 1993, 22(5):8-12.
    [88]李春利,孙玉春,王志英等,新型立体传质塔板CTST的研究与开发进展,河北工业大学学报, 2004, 33(2):155-162.
    [89]刘继东,李春利,李柏春等,新型立体传质塔板—CTST的空间持液量,河北工业大学学报, 2002, 31(4):9-13.
    [90]李春利,张惠源,于文奎,梯形立体喷射塔板(CTST)液体提升量的实验测量与分析,天津市化工过程及设备技术研究会,天津:天津大学出版社,1998,43-39.
    [91]李柏春,李春利,于文奎等,梯形立体喷射塔板在醋酸精馏塔技术改造中的应用,河北工业大学学报, 1999, 28(2):60-62.
    [92]吕建华,李柏春,李春利等,梯形立体喷射塔板在环氧乙烷精制塔中的应用,石油化工, 2002, 31(9): 749-752.
    [93]高长宝,周鹍,王树楹,兰仁水,气液并流填料塔板的流体力学性能,石油化工, 2002, 31(8):619-621.
    [94]刘国标,兰仁水,王树楹等,喷射式并流填料塔板流体力学及传质性能的研究,石油化工, 2004,33(12): 1147-1151.
    [95]王金戌,兰仁水,喷射式并流填料塔板流体力学和传质性能,化学工程, 1999, 21(1):15-18.
    [96] Foumeny E.A., Benyahia F. Can CFD Improve the Handling of Air, Gas and Gas-Liquid Mixtures, Chem. Eng. Progress, 1993(2): 21-26
    [97]傅德熏,马延文,计算流体力学,北京:高等教育出版社, 2002
    [98]李建隆,大型精馏塔板上液体流动性能的研究, [博士学位论文],天津:天津大学, 1985.
    [99]张敏卿,精馏塔板上液相流速场及温度场的研究, [博士学位论文],天津:天津大学, 1990.
    [100]王晓玲,精馏塔板上流体三维流场及传质的模拟, [博士学位论文],天津:天津大学, 2002.
    [101]袁希钢,尤学一,余国琮,筛孔塔板气液两相流动的速度场模拟,化工学报, 1995, 46(4):511-515.
    [102] Elghobashi S. E., Abou-Arab T. W., A two-equation turbulence model fortwo-phase flows. Physics of Fluids, 1983, 4 (26) : 931-938.
    [103]刘春江,蒸馏塔板上计算流体力学及其实验验证的研究, [博士学位论文],天津:天津大学, 1998
    [104]刘伯谭,单、双溢流蒸馏塔板液相流场三维模拟, [硕士学位论文],天津:天津大学, 2001.
    [105]李瑞,蒸馏塔板上流体力学及传质的研究, [博士学位论文],天津:天津大学, 2002.
    [106]孙志民,化工计算传质学的研究, [博士论文],天津:天津大学, 2005.
    [107]邢嵘,喷射工况下的大孔径筛板冷膜试验及CFD模拟, [硕士学位论文],上海:华东理工大学, 2002.
    [108]郭英锋,筛板塔上流动和传质特性的数值模拟, [硕士学位论文],北京:北京化工大学, 2003.
    [109] Yoshida H., Liquid flow over distillation column plates. Chem Eng Com 1987, 51: 261-267.
    [110] Chem B.M., Model for liquid phase flow on sieve trays, Eng. Res. and Design, Trans. I. Chem. E., 1998 (76): 843-848.
    [111] Fischer C. H., Three-Dimension Heterogeneous Modelling of Distillation Tray Hydraulics., AIChE Annual Meeting, Miami Beach, USA, 1998. 15-20.
    [112] Krishna R., CFD simulations of sieve tray hydrodynamics. Chem. Engng. Res. Design, Trans. I. Chem. E. 1999, 77: 639-646.
    [113] J M van Baten., Modeling sieve tray hydraulics using computational fluid dynamics.Chem Engng Jour, 2000, 77: 143-151.
    [114] Bennett D L., New pressure drop correlation for sieve tray distillation columns, AIChE J, 1983, 29: 434-442.
    [115] Ishii M., Two-fluid model for two phase flow,Multiphase Science and Technology, Honisphere Publishing Corporation, New York,1990.
    [116] Delnoij E., Kuipers J. A. M., van Swaaij W. P. M., Computational fluid dynamics applied to gas–liquid contactors, Chemical Engineering Science, 1997, 52(21-22): 3623-3638.
    [117] Delnoij E., Kuipers J. A. M., van Swaaij W. P. M., Dynamic simulation of gas–liquid two-phase flow: Effect of column aspect ratio on the flow structure, Chemical Engineering Science, 1997, 52(21-22): 3759-3772.
    [118] Delnoij E., Lammers F. A., Kuipers J. A. M., et al., Dynamic simulation of dispersed gas–liquid two-phase flow using a discrete bubble model, ChemicalEngineering Science, 1997, 52(9): 1429-1458.
    [119] Djebbar R., Roustan M., Line A. , Numerical Computation of Turbulent Gas-Liquid Dispersion in Mechanically Agitated Vessels, Chemical Engineering Research and Design, Transactions of the Institute of Chemical Engineers, Part A, 1996, 74(A4): 492-498.
    [120] Kuwagi K., Ozoe H., Three-dimensional oscillation of bubbly flow in a vertical cylinder, International Journal of Multiphase Flow, 1999, 25(1): 175-182.
    [121] Mudde R. F., Simonin O., Two- and three-dimensional simulations of a bubble plume using a two-fluid model, Chemical Engineering Science, 1999, 54(21): 5061-5069.
    [122] Pfleger D., Becker S., Modelling and simulation of the dynamic flow behaviour in a bubble column, Chemical Engineering Science, 2001, 56(4): 1737-1747.
    [123] Michele V., Hempel D. C., Liquid flow and phase holdup—Measurement and CFD modeling for two- and three-phase bubble columns, Chemical Engineering Science, 2002, 57(11): 1899-1908.
    [124] Deen N. G., Solberg T., Hjertager B. H., Large eddy simulation of the gas–liquid flow in a square cross-sectioned bubble column, Chemical Engineering Science, 2001, 56(21-22): 6341-6349.
    [125] Pfleger D., Gomes S., Gilbert N., et al., Hydrodynamic simulations of laboratory scale bubble columns: Fundamental studies of the Eulerian–Eulerian modelling approach, Chemical Engineering Science, 1999, 54(21): 5091-5099.
    [126] Sokolichin A., Eigenberber G., Gas–liquid flow in bubble columns and loop reactors: Part I. Detailed modeling and numerical simulation, Chemical Engineering Science, 1994, 49(24B): 5735-5746.
    [127] Becker S., Sokolichin A., Eigenberger, G., Gas–liquid flow in bubble columns and loop reactors: Part II. Comparison of detailed experiments and flow simulations, Chemical Engineering Science, 1994, 49(24B): 5747-5762.
    [128] Monahan S. M., Vivek S., Fox, R. O., CFD Predictions for Flow-Regime Transitions in Bubble Columns, AIChE J, 2005, 51(7): 1897-1923.
    [129] Lain S., Broder D., Sommerfeld M., et al., Modelling hydrodynamics and turbulence in a bubble column using the Euler-Lagrange procedure, International Journal of Multiphase Flow, 2002, 28(8): 1381-1407.
    [130] Buwa V. V., Ranade V. V., Dynamics of gas–liquid flow in a rectangular bubble column: Experiments and single/multi-group CFD simulations, ChemicalEngineering Science, 2002, 57(22-23): 4715-4736.
    [131] Pan Y., Dudukovic M. P., Chang M., Dynamic simulation of bubbly flow in bubble columns, Chemical Engineering Science, 1999, 54:2481-2489.
    [132] Tsuchiya K., Furumoto A., Fan L. S., et al., Suspension viscosity and bubble rise velocity in liquid-solid fluidized beds, Chemical Engineering Science, 1997, 52(18): 3053-3066.
    [133] Padial N. T., VanderHeyden, W. B., Rauenzahn, R. M., et al., Three dimensional simulation of a three-phase draft-tube bubble column, Chemical Engineering Science, 2000, 55:3261-3273.
    [134] Drew D. A., Passman, S. L., Theory of Multicomponent Fluids, New York: Springer-Verlag, 1999.
    [135]李红海,鼓泡塔板上气液传质界面积的研究, [硕士学位论文], 1997,天津:天津大学.
    [136] Colwell C. J., Clear Liquid Height and Froth Density on Sieve Trays, Ind. Eng. Chem. Pro. Des. Dev., 1981, 20: 298-307.
    [137] Getye Gesit, Nandakumar K., Chuang K.T., CFD Modeling of Flow Patterns and Hydraulics of Commercial– Scale Sieve Tray, AIChE J, 2003, 49(4): 910-925.
    [138]陶文铨,数值传热学,西安:西安交通大学出版社, 2001
    [139] Rahbar Rahimi, Mahmood Reza Rahimi, Farhad Shahraki, and Mortaza Zivdar, Efficiencies of Sieve Tray Distillation Columns by CFD Simulation, Chem.Eng.Technol., 2006, 29(3):326-335.
    [140] Behzadi A., Issa R.I., Rusche H., Modelling of dispersed bubble and droplet flow at high phase fractions, Chem. Eng. Sci., 2004, 59:759–770.
    [141] Issa R.I., 1992. A simple model for Ct. Private Communication, see Hill (1998).
    [142] Fuller E.N., Schettler, P.D., Giddings, J.C.J., A new method for prediction of binary gas-phase diffusion coefficients, Ind. Eng. Chem. 1966, 58 (5): 18-29.
    [143] Wilke CR, Chang P C.Correlation of diffusion coefficients in dilute solution.AIChE J, 1955, 1(2): 264-270.
    [144] Launder B. E., Spalding, D. B., Numerical computation of turbulent flows, Computer Methods in Applied Mechanics and Engineering, 1974, 3(2): 269-289.
    [145] Brown R. S., Ph.D. Thesis, University of California, Berkeley, 1958.
    [146] Lemieux E. J., Scotti L. J., Distillation perforated plate performance, Chem.Eng. Prog. 1969, 65:52-64.
    [147] Nutter D. E., Liquid Weeping Accompanied by Bubble Formation at Submerged Orifices, AIChE J 1972, 68 (124), 73.
    [148] Samuel O. F., Weeping from Distillation/Absorption Trays, Ind. Eng. Chem. Process Des. Dev., 1985, 24:1073-1080.
    [149] Wada T., Kageyama, O., Azami, S. et al, Kagaku Kogaku, 1986, 30: 507-516.
    [151]黄洁,王忠诚,塔板持液量的测定与计算,化学工程, 1993, 21(4):6-10.
    [153] Kozio L. A., Mackowiak, J., Liquid entrainment in tray columns with downcomers, Chem. Eng. Proc., 1990, 27 (3): 145-153.
    [155] Sakata M., Yanagi T., Performance of a Commercial Scale 14% Hole Area Sieve Tray, Ind. Eng. Chem. Process Des. Dev. 1982, 21: 712-717.
    [156] Higbie R, The rate of absorption of a pure gas into a still liquid during short periods of exposure, AIChE J, 1935, 31: 365-378.
    [157] Dribika M.M., Biddulph M.W., Prediction methods for distillation point efficiencies on sieve trays with small holes, Chemical Engineering Research and Design, Transactions of the Institute of Chemical Engineers, Part A, 1992, 70(A2): 142-148.
    [158] Sharma M. M., Mashelkar R. A., Mehta V. D., Mass transfer in plate columns, Brit. Chem. Eng., 1969, 14(1): 70-76.
    [159]徐世民,陈宁,干爱华,张泽廷,大型塔板液体停留时间分布与板效率的研究,化学工程, 2002, 30(1):12-16.
    [160] Biddulph M. W, Burton. A. C. Mechanisms of Recirculating Liquid Flow on Distillation Sieve Plates, Ind. Eng. Chem. Res., 1994, 33 (11) :2706-2711.
    [161]赵龙涛,钟思青,余美娟等,板式塔液体不均匀流动及其改善.石油化工, 2000, 29(5):347-353.
    [162] Porter K. E, Yu K.T., Chembers S., Zhang M. Q. Flow patterns and temperature profiles in a 2.44m diameter sieve tray. ICHE Symposium Series, 1992, 128A:257-273.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700